
1 APPLE 1046

BOOKS FOR PROFESSIONALS BY PROFESSIONALS‘M

Ian Newmarch
A Programmer’s Guide

to JiniT” Technology

Up-to-date coverage of the newest IinilM features announced by Sun this year

I

Addresses important topics such as application architecture. user interfaces for JiniTM services,

and how hardware devices and CORBA fit in with the IiniTM framework

Tech reviewed by master JavaTM programmer and well-known columnist Bill Venner

APress Media, LLC

1 APPLE 1046

libdocdel@fr.com

2

A Programmer’s Guide to
Jinim Technology

IAN NEWMARCH

APress Media, LLC

libdocdel@fr.com

3

A Programmer’s Guide to IiniT'“I Technology

Copyright ©2000 by Ian Newrnarch

Originally published by Apress in 2000

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical. including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN 978' 1- 893 1 15-804 ISBN 978- 1-4302-0360-0 (eBool-I)
DO] 10.1007f978-1-4302'0860'0

Ti'ademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names onlyin an editorial fashion and to the
benefit of the trademark owner. with no intention of infringement of the trademark.

Editorial Directors: Dan Ap pieman, Gary Cornell. Karen Watterson

Editor: Andy Carroll

Production Editor: Kari Brooks

Page Composition: Tony Ionick—Rappid Rabbit

Artist: Karl Miyajima

indexer: Carol Burbo

Cover: Karl Miyajima

The information in this book is distributed on an “as is" basis. without warranty. Although every

precaution has been taken in the preparation of this work, neither the author nor Apress shall

have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

|ibdocde|@fr.com

3

libdocdel@fr.com

4

Contents at a Glance

Introduction ... xu:

Chapter 1 Overview of Jini .. 1

Chapter 2 Troubleshooting Jini

Configuration Problems .. 17

Chapter 3 Discovering a Lookup Service ... 23

Chapter 4 Entry Objects ... 43

Chapter 5 Service Registration .. 49

Chapter 6 Client Search ... 57

Chapter 7 Leasing ... 63

Chapter 8 A Simple Example .. 83

Chapter 9 Choices for Service Architecture 109

Chapter 10 Discovery Management .. 153

Chapter 11 Join Manager ... 161

Chapter 12 Security ... 169

Chapter 13 More Complex Examples .. 193

Chapter 14 Remote Event ... 235

Chapter 15 ServiceDiscoveryManager.. 255

Chapter 16 Transaction ... 271

Chapter 17 LEGO MINDS TORMS .. 295

Chapter 18 CORBA and Jini ... 323

Chapter 19 User Interfaces for Jini Services/........... 355

Chapter 20 Activation ... 393

Index .. 433

iii

libdocdel@fr.com

5

Contents

Introduction ... xm

Chapter 1 Overview of Jini ... 1

Jini ... 1

Components .. 2

Service Registration .. 3

Client Lookup ... 5

Proxies .. 7

Client Structure .. 8

Server Structure .. 10

Partitioning an Application .. 11

Support Services .. 13

HTTP Server .. 13

RMI Daemon ... 15

Summary .. 15

Chapter 2 Troubleshooting Jini

Configuration Problems ... 17

Java Packages ... 17

Jini versions ... 18

libdocdel@fr.com

6

Contents

Jini Packages ... 19

Lookup Service ...20

RMI Stubs ..20

Debugging ..22

Summary ..22

Chapter 3 Discovering a Lookup Service23

Running a Lookup Service ...23

Reggie ...23

rrnid and IDK 1.3 ...26

Unicast Discovecy...26

LookupLocator ..27

InvalidLookupLocator...27

Running the InvalidLookupLocator ..29

Information from the LookupLocator ...29

getRegistrar ..30

Running the UnicastRegister..32

Broadcast Discovery ..32

Groups ..33

LookupDiscovery...33

DiscoveryListener ..34

DiscoveryEvent ..35

Staying Alive ...37

Running the MulticastRegister...38

Broadcast Range ..39

ServiceRegistrar ...39

libdocdel@fr.com

7

Information from the ServiceRegistrar ... 41

Summary .. 42

Chapter 4 Entry Objects ... 43

Entry Class ... 43

Attribute Matching Mechanism... 45

Restrictions on Entries ... 46

Convenience Classes .. 46

Further Uses of Entries ... 47

Summary .. 48

Chapter 5 Service Registration ... 49

ServiceRegistrar .. 49

ServiceItem ... 49

Registration ... 51

ServiceRegistration .. 51

The SimpleService Program ... 52

Running the SimpleService .. 53

Information from the ServiceRegistration .. 54

Service ID ... 54

Entries .. 55

Summary .. 55

Contents

Vii

libdocdel@fr.com

8

Contents

viii

Chapter 6 Client Search ...57

Searching for Services with the ServiceRegistrar 57

Receiving the ServiceMatches Object ... 60

Matching Services ... 61

Summary ..62

Chapter 7 Leasing... 63

Requesting and Receiving Leases .. 63

Cancellation ... 65

Expiration ... 65

Renewing Leases ... 65

Granting and Handling Leases ... 66

Abstract Lease .. 67

Landlord Lease Package .. 68

Summary .. 81

Chapter 8 A Simple Example ... 83

Problem Description .. 83

Service Specification .. 86

common Classes ... 87

MIMEType ... 87

FileClassifier Interface ..89

The Client .. 90

libdocdel@fr.com

9

Unicast Client .. 90

Multicast Client ... 94

Exception Handling .. 96

The Service Proxy .. 97

Uploading a Complete Service .. 98

FileClassifier Implementation ... 99

FileClassifierServer Implementation... 99

Client Implementation ... 104

What Classes Need to Be Where? ... 104

Running the FileClassifier .. 1 06

Summary .. 1 07

Chapter 9 Choices for Service Archi tecture 109

Proxy Choices ... 109

Proxy Is the Service ... 109

RMI Proxy .. 1 I 0

Non-RMI Proxy.. 112

RMI and Non—RMI Proxies ... 1 14

RMI Proxy for FileClassifier .. 115

What Doesn’t Change ... 1 15

RemoteFileClassifier ... 1 1 6

FileClassifierImpl .. 1 l 6

FileClassifierServer.. 11 7

What Classes Need to Be Where? ... 120

Running the RMI Proxy FileClassifier.. 122

Non -RMI Proxy for FileClassifier ... 123

FileClassifierProxy... 124

Contents

libdocdel@fr.com

10

Contents

FileServerImpl ... 126

Service Provider ... 128

What Classes Need to Be Where? ... 131

Running the RMI Proxy FileClassifier ... 132

RMI and non-RMI Proxies for FileClassifier .. 133

FileClassiflerProxy ... 133

ExtendedFileClassifier .. 134

ExtendedFileClassifierImpl .. 135

FileClassifierServer ..137

What Classes Need to Be Where? ... 139

Using Other Services .. 140

Heart Interface ... 142

HeartServer .. 142

HeartClient... 145

Heart Implementation .. 147

Summary .. 152

Chapter 10 Discovery Management ... 153

Finding Lookup Locators ... 153

LookupLocatorDiscovery.. 155

LookupDiscoveryManager.. 157

Summary .. 159

Chapter 11 Join Manager.. 161

Jini 1.1 JoinManager .. 161

10

libdocdel@fr.com

11

Jini 1 . 0 JoinManager .. 163

Getting Information from IoinManager .. 166

Summary .. 167

Chapter 12 Securi ty.. 169

Getting Going with No Security .. 169

Why AllPermission Is Bad ... 170

Removing AllPermission ... 172

Jini with Protection .. 173

Service Requirements .. 174

Client Requirements .. 176

RMI Parameters ... 178

ServiceRegistrar .. 179

Transaction Manager and Other Activatable Services 180

rmid... 182

rmid and IDK 1.3 ... 183

Being Paranoiac ... 186

Protection Domains .. 1 86

Signing Standard Files .. 187

Signing Other Services .. 188

Permissions ... 88

Putting It Together .. 1 89

Summary .. 191

11

Contents

libdocdel@fr.com

12

Contents

xii

Chapter 13 More Complex Examples .. 193

Where Are the Class Files? ... 193

Problem Domain ... 193

NameEntry Interface ... 1 95

Naive Implementation .. 1 96

Factory Implementation ... 199

Using Multiple Class Files ...201

Running Threads from Discovery ..204

Server Threads ...204

Join Manager Threads ...207

Client Threads ..207

Inexact Service Matching ...209

Matching Using Local Services ..213

Finding a Service Once Only... 221

Leasing Changes to a Service...225

Leased FileClassifier ..226

The FileClassifierLeasedResource Class ..228

The FileClassifierLeaseManager Class ...229

The FileClassifierLandlord Class ..231

Summary ..233

Chapter 14 Remote Events ...235

Event Models ..235

Remote Events ...236

Event Registration ..238

12

libdocdel@fr.com

13

Listener List ... 239

Single Listener ... 239

Multiple Listeners .. 241

Listener Source... 242

File Classifier with Events .. 244

Monitoring Changes in Services .. 249

Summary .. 254

Chapter 15 ServiceDiscoveryManager ... 255

ServiceDiscoveryManager Interface ... 255

ServiceItemFilter Interface .. 256

Finding a Service Immediately .. 257

Using a Filter ... 259

Building a Cache of Services .. 262

Running the CachedClientLookup .. 265

Monitoring Changes to the Cache .. 266

Summary .. 269

Chapter 16 Transactions ... 271

Transaction Identifiers ... 271

TransactionManager .. 272

TransactionParticipant ... 223

Mahalo .. 273

13

Contents

xiii

libdocdel@fr.com

14

Contents

xiv

A Transaction Example ..274

PayableFileClassifierImpl ...276

Accountslmpl ...282

Client ..287

Summary ..294

Chapter 17 LEGO MINDSTORMS ..295

Making Hardware into Jini Services ...295

MINDSTORMS ..296

MINDSTORMS as a Jini Service...296

RCXPort ..297

RCX Programs ..299

Jini Classes .. 301

Getting It Running ..307

Entry Objects far a Robot ...315

A Client-Side RCX Class ...316

Higher-Level Mechanisms: Not Quite C ... 317

Summary ..322

Chapter 18 CORBA and Jini ..323

CORBA ...323

CORBA to Java Mapping ..325

Jini Proxies .. 326

14

libdocdel@fr.com

15

Contents

A Simple CORBA Example ... 328

CORBA Server in Java ... 328

CORBA Client in Java .. 330

Iini Service ... 331

Iini Server and Client .. 334

Building the Simple CORBA Example ... 334

Running the Simple CORBA Example ... 335

CORBA Implementations ... 335

Room-Booking Example .. 336

CORBA Objects .. 337

Multiple Objects .. 340

Exceptions .. 344

Interfaces for Single Thin Proxy ... 345

RoomBookingBridge Implementation .. 347

Other Classes ... 351

Building the Room-Booking Example ... 352

Running the Room-Booking Example ... 352

Migrating a CORBA Client to Jini ... 353

Jini Service as a CORBA Service .. 354

Summary .. 354

Chapter 19 User Interfaces for Jini Services 355

User Interfaces as Entries ... 355

User Interfaces from Factory Objects ... 356

Current Factories .. 358

Marshalling Factories .. 358

15

libdocdel@fr.com

16

Contents

UIDescriptor..360

Toolkit ..360

Role ...361

Attributes ..362

File Classifier UI Example ...363

Images ...372

ServiceType ..373

MINDS TORMS UI Example ..374

RCXLoaderFrame ..374

RCXLoaderFrameFactory ...380

Exporting the FrameFactory ..38]

Customized User Interfaces ...382

CarIFrame ..383

CarlFrameFactory ...387

Exporting the FrameFactory...388

The RCX Client ...389

Summary t...392

Chapter 20 Activation ...393

A Service Using Acti vation ... 394

The Service ...394

The Server ..395

Running the Service ..400

Security ... 401

Non-Lazy Services ... 402

Maintaining State ..402

LeaseRenewalService .. 41 1

16

libdocdel@fr.com

17

The Norm Service .. 412

Using the LeaseRenewalService... 413

LookupDiscoveryService ... 420

The Fiddler Service ... 422

Using the LookupDiscoveryService ... 422

Summary .. 431

Index... 433

17

Contents

xvii

libdocdel@fr.com

18

Introduction

THE BUSINESS AND ACADEMIC WORLDS HAVE LONG ACCEPTED the use of networking

technologies, allowing users to share files and applications and to exchange infor-

mation using network services such as email. The explosive growth of the Internet

has made everyone conscious of the importance of networked applications, and

this importance is set to grow at an enormous rate with the emergence of home
and mobile networks.

For the programmer, building distributed applications can be a complex

business. There are issues related to network stability and accessibility in addition

to partitioning applications into portions that can run separatelybut still be linked

into larger functional units. A large variety of frameworks—experimental and

commercial—have been devised to make it easier to build and deploy distributed

applications.

Iini is one of the latest frameworks for building distributed applications.

Created by Sun Microsystems, it builds upon previous experiences but also intro—

duces new concepts that fit into the modern object-oriented world. Iini is written

in Java and distributes and organizes applications based on the distributed object—

oriented principles supported by Java. It allows the programmer to build type-safe

applications with distributed garbage collection, which results in applications that
are resilient to network failures and can that discover and use distributed services

at need.

This book is written for programmers/architects who have a working know-

ledge of lava and of network programming and who want to come up to speed

with Iini quickly. It assumes you are comfortable with network concepts such as

remote procedure calls, are familiar with Java syntax, and have a working know-

ledge of the lava core classes.

This is a hands—on, study-the-code book. My intention is to introduce you to

code that can be readily understood, and that can be copied and used in your own

programs. The book covers the full range of Iini concepts, and it also deals with a

number of advanced topics such as linking Iini and CORBA systems and using

Jini to make hardware devices available across the network. The book has been

available on the Internet in various forms for nearly two years, and has benefited

from user feedback while it has been aiding many new Iini programmers.

The first eight chapters cover the basics of Iini programming, leading to a

complete, but simple, application. The subsequent chapters discuss more

advanced material, such as event handling, security, transactions, and activation,

and it also covers the new helper classes of Iini 1.1. In addition, I have included

topics not normally covered in Jini books, such as user interfaces, links to other

distributed systems such as CORBA, and using hardware devices with Jini.

18

libdocdel@fr.com

19

Introduction

The book uses Iini version 1.1, released late in 2000, and the code works with

both JDK 1.2 and JDK 1.3

Files

The source for the programs in the book is available as a zip file: programs . zip. The

compiled classes are also available as a zip file: classes . zip. These files are on this

Web site: http : //pandonia . canberra .edu. au/java/jini/tutorial/Jini. xml.

Other Resources

- Iini FAQ: http: //www.artima.com/jini/faq. html

- Iini CommunityWeb site: http : //www.j ini. org/

0 Iini home page: http : //www. sun . com/j ini/index. html

- RMI home page: http: //java . sun. com/products/jdk/Imi/index. html

0 Iini mailing list: jini-users@java.sun.com

0 Iini mailing list archives:

http://archives .java . sun . com/archives/jini—users . html

O RMI mailing list: Imi-users@java. sun. com

0 RMI mailing list archives:

http://archives.java . sun . com/archives/Imi-users. html

0 Iini Interface Repository for standardized service interfaces (empty at

present): http : //www. art ima . com/j ini/ interrepo/

19

libdocdel@fr.com

20

Acknowledgments

The author is grateful for comments on this tutorial from

Brian Ieltema, jeltema@richdist.east.sun.com

RogerWhitney, whitney@cs . sdsu . edu

Robbert van den Beld, rbe@mms—dresden . de

Chitrarasu Muthaiyan, chitrarasu@csw1. com

Smart Remphrey, Stuart . Remphrey@Aus . Sun . COM

H Larrea, jlarrea@redtop.com

John McClain, John .McClain@East . Sun .COM

Bob Scheifler, rws@east . sun . com

Much of the work for this book was done while the author was on a sabbatical

program at the CRC for Distributed Systems Technology, http : //www.dstc . edu . au,

and the work reported in this book has been funded in part by the Co-operative

Research Centre Program through the Department of Industry, Science and Tour-
ism of the Commonwealth Government ofAustralia.

20

libdocdel@fr.com

21

CHAPTER 1

Overview of Jini

IINI IS MIDDLEWARE FOR building distributed systems in Java. It builds upon the dis-

tributed computing mechanisms of sockets and Remote Method Invocation. The

intent is to offer “network plug and work,” where new services can join a network

of other services and be immediately useful, and where clients can search for and

use these services. Iini has only been released for a little over a year as this is being

written, and it introduces novel ideas and technologies for building distributed

systems. This chapter gives a brief overview of the components of a Jini system

and the relationships between them.

Jini

Iini is the name for a distributed computing environment that can offer “network

plug and work.” A device or a software service can be connected to a network and

announce its presence, and clients that wish to use such a service can then locate

it and call it to perform tasks. Iini can be used for mobile computing tasks where a

service may only be connected to a network for a short time, but it can more gen-

erally be used in any network where there is some degree of change. There are

many scenarios where this would be useful:

0 A new printer can be connected to the network and announce its presence

and capabilities. A client can then use this printer without having to be spe—

cially configured to do so.

0 A digital camera can be connected to the network and present a user inter-

face that will not only allow pictures to be taken, but it can also become

aware of any printers so that the pictures can be printed.

0 A configuration file that is copied and modified on individual machines can

be made into a network service from a single machine, reducing mainte-
nance 008123.

0 New capabilities extending existing ones can be added to a running system

without disrupting existing services, or without any need to reconfigure clients.

21

libdocdel@fr.com

22

Chapter I

0 Services can announce changes of state, such as when a printer runs out of

paper. Listeners, typically of an administrative nature, can watch for these

changes and flag them for attention.

Jini is not an acronym for anything, and it does not have a particular meaning.

(though it gained a post-hoe interpretation of “Jini Is Not Initials") A Jini system or

federation is a collection of clients and services all communicating by the Iini pro-

tocols. Often this will consist of applications written in Java, communicating using

the lava Remote Method Invocation mechanism. Although Jini is written in pure

lava, neither clients nor services are constrained to be in pure lava. They may

include native code methods, act as wrappers around non—Java objects, or even be

written in some other language altogether. Jini supplies a “middleware” layer to

link services and clients from a variety of sources.

Components

Iini is just one of a large number of distributed systems architectures, including

industry-pervasive systems, such as CORBA and DCOM. It is distinguished by

being based on Java and deriving many features purely from this lava basis. One of

the later chapters in this book discusses bridging between Iini and CORBA, as an

example of linking these different distributed architectures.

There are other lava frameworks from Sun that might appear to overlap Iini,

such as Enterprise Java Beans (EIBs). EIBs make it easier to build business logic

servers, whereas lini would be better used to distribute those services in a “net-

work plug and play” manner.

You should be aware that Iini is only one competitor in a non—empty market.

The success or failure of Iini will result partly from the politics of the market, but

also (hopefully!) the technical capabilities ofIini, and this book will deal with some

of the technical issues involved in using Iini.

In a running Iini system, there are three main players. There is a service, such

as a printer, a toaster, a marriage agency, etc. There is a client which would like to

make use of a service. Third, there is a lookup service (service locator), which acts

as a broker/trader/locator between services and clients. There is one additional

component, and that is a network connecting all three of these. This network will

generally be running TCP/IP. (The Iini specification is fairly independent of net-

work protocol, but the only current implementation is on TCP/ 1P.) See Figure 1- 1.

Code will be moved around between these three pieces, and this is done by

marshalling the objects. This involves serializing the objects in such a way that

they can be moved around the network, stored in this “freeze-dried” form, and

later reconstituted by using instance data and included information about the

class files. Movement around the network is done using Java’s socket support to

send and receive objects.

22

libdocdel@fr.com

23

lookup
client service service

TCP/IP

Figure 1 —1. Components ofa Iim' system

In addition, objects in one IVM (IavaVirtual Machine) may need to invoke

methods on an object in another IVM. Often this will be done using RMI (Remote

Method Invocation), although the Iini specification does not require this and there

are many other possibilities.

Service Registration

A service is a logical concept and can be anything, such as a blender, a chat ser-

vice, a disk. A service is usually defined by a Java interface, and this interface is
used to advertise the service. This interface is also used to locate a service. Each

service can be implemented in many ways, by many different vendors. For exam-

ple, there may be Joe’s dating service, Mary’s dating service, and many others.

What makes them the same service is that they implement the same interface;

what distinguishes one from another is that each different implementation uses a

different set of objects (or maybe just one object) belonging to different classes.

A service is created by a service provider, and a service provider plays a num-

ber of roles:

0 It creates the objects that implement the service.

0 It registers one of these—the service object—with lockup services. The ser-

vice object is the publicly visible part of the service, and it will be
downloaded to clients.

0 It stays alive in a server role, performing various tasks such as keeping the
service “alive."

23

Overview ofIini

libdocdel@fr.com

24

Chapter 1

In order for the service provider to register the service object with a lookup

service, the server must first find the lookup service. This can be done in two ways.

If the location of the lookup service is known, then the service provider can use

unicast TCP to connect directly to it. If the location is not known, the service pro-

vider will make UDP multicast requests, and lookup services may respond to these

requests. Lookup services will be listening on port 4160 for both the unicast and

multicast requests. (4160 is the decimal representation of hexadecimal (CAFE -

BABE). Oh well, these numbers have to come from somewhere.) This process is

illustrated in Figure 1-2.

lookup service
service provider

service

object
Figure 1 -2. Queryingfor a service locator

When the lookup service gets a request on this port, it sends an object back to

the server, as shown in Figure 1-3. This object, known as a registrar, acts as a proxy to

the lookup service and runs in the service’s IVM. Any requests that the service pro-

vider needs to make of the lookup service are made through this proxy registrar.

Any suitable protocol may be used to do this, but in practice the implementations

of the lookup service that you get (such as those from Sun) will probably use RMI.

lookup service
service provider

service

object

registrar
Figure 1 —3. Registrar returned

24

libdocdel@fr.com

25

Overview ofIim'

What the service provider does with the registrar is register the service with

the Iookup service. This involves taking a copy of the service object and storing it

on the lookup service, as shown in Figure 1-4.

Iookup service

service provider

service

object service

object

Figure 1-4. Service uploaded

Client Lookup

The client on the other hand, is trying to get a copy of the service object into its

own IVM. It goes through the same mechanism to get a registrar from the lookup

service, as shown in Figures 1-5 and 1—6.

Iookup
client service

service

object

Figure 1 -5. Queryingfor a service locator

25

libdocdel@fr.com

26

Chapter 1

Iookup
client service

object

Figure 1-6. Registrar returned

However, the client does something different with the registrar. It requests that

the service object be copied across to it. See Figures 1-7 and 1-8.

Iookup
client service

service

object
Figure 1 - 7. Askingfor a service

iookup
client service

service

object

object
Figure 1 -8. Service object returned

At this point the original service object is running on its host, there is a copy

of the service object stored in the lockup service, and there is a copy of the ser-

vice object running in the client’s IVM. The client can make requests of the

service object running in its own WM.

26

libdocdel@fr.com

27

Proxies

Some services can be implemented by a single object, the service object. How does

this work if the service is actually a toaster, a printer, or is controlling some piece of

hardware? By the time the service object runs in the client’s IVM, it may be a long

way away from its hardware. It cannot control this remote piece ofhardware all by

itself. In this situation, the implementation of the service must be made up of at

least two objects, one running in the client and another distinct one running in the

service provider.

The service object is really a proxy, which will communicate with other objects

in the service provider, probably using RMI. The proxy is the part of the service

that is visible to clients, but its function will be to pass method calls back to the

rest of the objects that form the total implementation of the service. There isn’t a

standard nomenclature for these server-side implementation objects. I shall refer

to them in this book as the service backend objects.

The motivation for discussing proxies is the situation in which a service object

needs to control a remote piece of hardware that is not directly accessible to the

service object. However, this need not involve hardware—there could be files

accessible to the service provider that are not available to objects running in cli-

ents. There could be applications local to the service provider that are useful in

implementing the service. Or it could simply be easier to program the service in

ways that involve objects on the service provider, with the service object being just

a proxy. The majority of service implementations end up with the service object

being just a proxy to service backend objects, and it is quite common to see the

service object being referred to as a service proxy. It is sometimes referred to as

the service proxy even if the implementation doesn’t use a proxy at all!

The proxy needs to communicate with other objects in the service provider,

but this begins to look like a chicken-and-egg situation: how does the proxy find

the service backend objects in its service provider? Use a Jini lookup? No, when the

proxy is created it is “primed” with its own service provider’s location so that when

it is run it can find its own “home,” as illustrated in Figure 1-9.

How is the proxy primed? This isn’t specified by Jini, and it can be done in

many ways. For example, an RMI naming service can be used, such as rmiregistry,

where the proxy is given the name of the service. This isn’t very common, as RMI

proxies can be passed more directly as returned objects from method calls, and

these can refer to ordinary RMI server objects or to RMI activable objects. Another

option is that the proxy can be implemented without any direct use of RMI and

can then use an RMl-exported service or some other protocol altogether, such as

FTP, HTTP, or a home-grown protocol. These various possibilities are all illustrated

in later chapters.

27

Overview oflint

libdocdel@fr.com

28

Chapter 1

service
locator

 service

‘-I
service

provider

service

implementation

registrar

 service

proxy

registrar

 -~_—-‘

Figure 1 -9. A proxy service

Client Structure

Now that we’ve looked at how the various pieces interact, we’ll take a look at what

is going on inside clients and services. Internally a client will look like this:

PSEUDOCODE WHERE DISCUSSED

Prepare for discovery Chapter 3, “Discovering a Lookup Service”

Discover a lookup service Chapter 3, “Discovering a Lookup Service”

Prepare a template for Chapter 4, “Entry Objects," and

lookup search Chapter 6, “Client Search"

Look up a service Chapter 6, “Client Search”

Call the service Chapter 8, “A Simple Example”

The “prepare for discovery” step involves setting up a list of service locators

that will be looked for. The “discover a lookup service” step is where the unicast or

multicast search for lookup services is performed. “Prepare a template for lookup

search" involves creating a description of the service so that it can be found. “Look

up a service” is when a service locator is queried to see if it has such a service.

Once a suitable service has been found, then “call the service” will invoke methods

on this service.

28

libdocdel@fr.com

29

Overview ofjini

The following code has been simplified from the real case by omitting various

checks on exceptions and other conditions. It attempts to find a FileClassifier

service, and then calls the getMIMETypeO method on this service. The full version of

the code is given in Chapter 8. I won’t give detailed explanations right now—this is

just to show how the preceding schema translates into actual code.

public class TestUnicastFileClassifier {

public static void main(String argv[]) {

new TestUnicastFileClassitier();

}

public TestUnicastFileClassitier() {

LookupLocator lookup = null;

ServiceRegistrar registrar = null;

FileClassitier classifier = null;

// Prepare for discovery

lookup = new LookupLocator("jini://www.all_about_files.com");

// Discover a lookup service

// This uses the synchronous unicast protocol

registrar = lookup.getRegistrar();

// Prepare a template for lookup search

Class[] classes = new Class[] {FileClassifier.class};

ServiceTemplate template = new ServiceTemplate(null, classes, null);

// Lookup a service

classifier = (FileClassifier) registrar.lookup(template);

// Call the service

MIMEType type;

type = classifier.getMIMEType("tile1.txt");

System.out.println("Type is " + type.toString());

}

} // TestUnicastFileClassitier

29

libdocdel@fr.com

30

Chapter 1

10

Server Structure

A server application will internally look like this:

PSEUDOCODE HHERE DISCUSSED

Prepare for discovery Chapter 3, “Discovering a Lookup Service”

Discover a lookup service Chapter 3, “Discovering a Lookup Service”

Create information about a service Chapter 4, “Entry Objects”

Export a service Chapter 5, “Service Registration"

Renew leasing periodically Chapter 7, “Leasing”

Again, the following code has been simplified by omitting various checks on

exceptions and other conditions. It exports an implementation of a file classifier

service as a FileClassifierImpl object. The full version of the code is given in

Chapter 8. I won’t give detailed explanations right now—this is just to show how

the preceding schema translates into actual code.

public class FileClassifierServer implements DiscoveryListener {

protected LeaseRenewalManager leaseManager new LeaseRenewalManager();

public static void main(String argv[]) {

new FileClassifierServerO;

// keep server running (almost) forever to

// - allow time for locator discovery and

// - keep re—registering the lease

Thread .currentThread() . sleep(Lease. FOREVER);

public FileClassifierServerO {

LookupDiscover discover = null;

// Prepare ‘For discovery - empty here

// Discover a lookup service

// This uses the asynchronous multicast protocol,

// which calls back into the discovered() method

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS),-

30

libdocdel@fr.com

31

Overview ofIinz'

discover.addDiscoveryListener(this);

}

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar registrar = evt.getRegistraIs()[0];

// At this point we have discovered a lookup service

// Create information about a service

ServiceItem item = new ServiceItem(null,

new FileClassifierImpl(),

null);

// Export a service

ServiceRegistration reg = registrar.register(item, Lease.FOREVER);

// Renew leasing

leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

}

} // FileClassifierServer

Partitioning an Application

Iini uses a service View of applications, in contrast to the simple object—oriented

view ofan application. Of course, a Iini “application” will be made up of objects,

but these will be distributed as individual services, which will communicate via

their proxy objects. The service View will show these services as they exist on their

servers, without any detail about their implementation by objects. This leads to a

different way of partitioning an application, not into its component objects, but

into its component services. The Iini specification claims that in many monolithic

applications there are one or more services waiting to be released, and that mak-

ing them into services increases their possible uses.

To support this claim, we can look at a smart file viewer application. This

application will be given a filename, and based on the structure of the name will

decide what type of file it is (. rtf is Rich Text Format, .gif is a GIF file, and so on).

Using this classification, it will then call up an appropriate viewer for that type of

file, such as an image viewer or document viewer. A UML class diagram for this

application, using a standard object—oriented approach, might look like Figure 1-10.

There are a number of services that could be extracted from this smart file

viewer application. Classifying a file into types is one service that can be used in

lots of different situations, not just when you want to View file contents. Each of

the different viewer classes is another service.

11

31

libdocdel@fr.com

32

Chapter 1

12

SmartViewer

FileCIassifier

getMlM EType()

display()

lmageDisplay

TextDispIay

display()

Figure 1-10. UML diagramfor an application

However, this is not to say that every class should become a service! That

would be overkill. What makes these qualify as services is that they all

0 have a simple interface

0 are useful in more than one situation

0 can be replaced or varied

They are reusable, and this is what makes them good candidates for services.

They do not require high-bandwidth communication, and they are not completely
trivial.

If the application is reorganized as a collection of services, then it could look

like Figure 1-11.

Each service may be running on a different machine on the network (or on the

same machine—it doesn’t matter). Each exports a proxy to whatever service loca—

tors are running. The SmartViewer application finds and downloads whatever

services it needs, as it needs them.

32

libdocdel@fr.com

33

 SmartViewer

FileCIassifierService FileCIassifierProxy

service

ImageDispIayPr-

ImageDispIayService

service
v

FileClassifierPr

lmageDisplayProxy TextDisplayService

TextDisplayProxy service

lookup service

Figure 1-11. Application as a collection ofservices

Support Services

The three components of a Iini system are clients, services, and service locators,

each ofwhich can run anywhere on the network. These will be implemented using

Java code running in JavaVirtual Machines (IVMs). The implementation may be in

pure lava but it could make use of native code using INI (Java Native Interface) or

make external calls to other applications. Often, each of these applications will run

in its own IVM on its own computer, though they could run on the same machine

or even share the same IVM. When they run, they will need access to Java class

files, just like any other Java application. Each component will use the CLASSPATH

environment variable or use the CLASSPATH option with the runtime to locate the

classes it needs to run.

However, Jini also relies heavily on the ability to move objects across the net-

work, from one IVM to another. In order to do this, particular implementations

must make use of support services such as RMI daemons and HTTP (or other)

servers. The particular support services required depend on implementation

details, and so may vary from one Iini component to another.

HTTP Server

A Java object running as a service has a proxy component exported to the service

locators and then onto a Client. The proxy passes through a service locator’s IVM

in “passive” form and is activated [brought to life) in the client’s JVM. Essentially, a

33

Overview ofjini

13

libdocdel@fr.com

34

Chapter 1

14

snapshot of the object’s state is taken using serialization, and this snapshot is
moved around.

An object consists of both code and data, and it cannot be reconstituted from

just its data—the code is also required. So, where is the code? This is where a dis-

tributed Iini application differs from a standalone application or a client—server

application: the code is not likely to be on the client side. If it was required to be on

the client side, then Iini would lose almost all of its flexibility because it wouldn’t

be possible to just add new devices and their code to a network. The class defini-

tions are most likely on the server, or perhaps on the vendor’s home Web site.

This means that class definitions for service proxy objects must also be

downloaded, usually from where the service came from. This could be done

using a variety of methods, but most commonly an HTTP or FTP protocol is

used. The service specifies the protocol and also the location of the class files

using the java . rmi. server. codebase property. The object’s serialized data con-

tains this codebase, which is used by the client to access the class files.

If the codebase specifies an HTTP URL, then there must be an HTTP server run—

ning at that URL and the class files must be on this server. This often means that

there is one HTTP server per service, but this isn't required—a set of services could

make their class files available from a single HTTP server, and this server could be

running on a different machine than the services. This gives two sets of class files:

the set needed to run the service (specified by CLASSPATH) and the set needed to

reconstitute objects at the client (specified by the codebase property). For example,

the mahalo service supplied by Sun as a transaction manager uses the class files in

mahalo . jar to run the service and the class files in mahalo—d1 . jar to reconstitute the

transaction manager proxy at the client. These files and support services are

shown in Figure 1-12.

mahalo-dl.jar mahalo proxy

instance data

 mahalo.'ar

Figure 1-12. Support servicesfor mahalo

34

libdocdel@fr.com

35

Overview ofIini

To run mahalo, the CLASS PATH must include ma halo.jar, and to reconstitute its

proxy on a client, the codebase property must be set to mahalo—dl. jar.

RMI Daemon

As mentioned earlier, a proxy service gets exported to the client, and in most cases

it will need to communicate with its host service. There are many ways to do this,

which are discussed in full in later chapters. One mechanism is the lava Remote

Method Invocation (RMI) system. This comes in two flavors in JDK 1.2: the original

UnicastRemoteObject and the newer Activatable class.Whereas UnicastRemoteObj ect

requires a process to remain alive and running, Activatable objects can be stored

in a passive state and the Activation system will create a new IVM if needed when a

method call is made on the object.While passive, an activatable object will need to

be stored on some server, and this server must be one that can accept method calls

and activate the objects. This server is called an RMI daemon, and Sun supplies

such a server, called rmid.

This is really obscure and deep stuff if you are new to RMI or even to the

changes it is going through. So Why is it needed? Sun supplies a service locator

called reggie, and this is really just another Iini service that plays a special role. It

exports proxy objects—the registrar objects. What makes this complex is that

reggie uses Activatable in its implementation. In order to run reggie, you first have

to start an Imid server on the same machine, and then reggie will register with it.

Running rmid has beneficial side-effects. It maintains log files of its own

state, which includes the activable objects it is storing. So reggie can crash or

terminate, and mid will restore it as needed. Indeed, even rmid can crash or be

terminated, and it will use its log files to restore state so that it can still accept

calls for reggie objects.

Summary

A Iini system is made up of three parts:

0 Service

0 Client

0 Service locator

15

35

libdocdel@fr.com

36

Chapter 1

16

Code is moved between these parts of applications. A registrar acts as a proxy

to the lookup locator and runs on both the client and service.

A service and a client both possess a certain structure, which is detailed in the

following chapters. Services may require support from other non—Iini servers, such
as an HTTP server.

36

libdocdel@fr.com

37

CHAPTER 2

Troubleshooting Jini

Configuration Problems

)INI IS ADVERTISED AS “network plug and work,” which carries the idea of zero

administration, where you buy a device, switch it on, and voila—it is there and

available. Well, this may happen in the future, but right now there are a number

of back-room games that you have to succeed at. Once you have won at these,

network plug and work does indeed work, but if you lose at any stage, then it can

be all uphill!

The difficulty is getting the right files in the right places with the right permis-

sions. About 50 percent of the messages in the Iini mailing list are about these

configuration problems. They shouldn’t occur, and that is why this is “The Chapter

That Shouldn’t Exist.” This chapter looks at some of the problems that can arise in

a Iini system. Most of them are configuration problems of some kind.

This is the second chapter in the book, so right now you shouldn’t have man-

aged to fail at anything! In the following chapters, the sections contains

instructions on what to do to get the example programs working, and include

step—by—step instructions, so skip on to the next chapters, but come back here

when things go wrong. Your luck may vary: I got a reasonable way into my first

attempts without problems, and some people are even luckier. Some aren’t. . . .

Java Packages

A typical Java packages error looks like this:

Exception in thread "main" java.lang.NoClassDefFoundError:

basic/InvalidLookupLocator

Most of the code in this tutorial is organized into packages. To run the exam-

ples, the classes must be accessible from your class path. For example, one of the

programs in the basic directory is Invalid LookupLocator. j ava. This defines the class

InvalidLookupLocator in the basic package. The program must be run using the

fully qualified path name, like this:

java basic.InvalidLookupLocator

37

17

libdocdel@fr.com

38

Chaper

18

Note the use of the period (.), not a slash (I).

In order to find this class, the CLASSPATH must be set correctly for the Java run—

time. If you have copied the classes . zip file, the class files for this tutorial are in

there. You only need to reference this:

CLASSPATH=classes.zip:...

If you have downloaded the source files, then they are all in subdirectories,

such as basic, complex, etc. After compilation, the class files should also be in the

subdirectories, such as basic/InvalidLookupLocator . class. An alternative to using

classes . zip is to set the CLASSPATH to include the directory containing those subdi-

rectories. For example, if the full path is / home/j an/classes/basic/

Invalid LookupLocator. class, then set the CLASSPATH to

CLASSPATH:/home/jan/classes:...

An alternative to setting the CLASSPATH environment variable is to use the

-classpath option to the Java runtime engine, like this:

java —classpath /home/jan/classes basic.InvalidLookupLocator

Jini Versions

At the time of writing, there are two versions of Iini: 1.0 and a version of 1.1. The

core classes are all the same for versions 1.0 and 1.1. The only changes in version

1.1 for the programmer are that some classes from Iini 1.0 have been better speci—

fied and are in different packages, and some classes are new.

These are the main classes that have changed:

0 JoinManageI

0 LeaseRenewalManager

0 ServiceIDListeneI

These are the main new classes:

0 LookupLocatorDiscover

0 LookupDiscoveryManageI

- ClientLookupManager

38

libdocdel@fr.com

39

Troubleshootinglini Configuration Problems

If you get syntax or runtime errors relating to these classes, then it is possible

that you are using Iini 1.0 instead of Iini 1.1. If you get “deprecated” warnings, then

it is likely that you are using the Iini 1.0 classes in a Iini 1.1 environment. The old

classes are supported for now, but are not approved.

Jini Packages

A typical Iini package error looks like this:

Exception in thread "main" java.lang.NoClassDefFoundError:

net /jini/discover/DiscoverListener

The Iini class files are all in jar files. The Jini distribution puts them in a lib

subdirectory when they are unpacked. There are a whole bunch of these jar files:

jini-core.jar mahalo-d1.jar sun-util.jar

jini-examples-dl.jar mahalo.jar tools.jar

jini-examples.jar reggie-d1.jar reggie.jar

jini—ext.jar

The jini-core . jar jar file contains the major packages of Jini:

net.jini.core net.jini.core.discovery

net.jini.core.entry net.jini.core.event

net.jini.core.lease net.jini.core.lookup

net. jini . core.transaction

If the Java compiler or runtime can’t find a class in one of these packages, then

you need to make sure that the j ini-core. jar file is in your CLASSPATH.

19

39

libdocdel@fr.com

40

Chaper

The jar file jini—ext . jar contains a set of packages that are not in the core, but

are still heavily used:

net.jini.admin net.jini.discovery

net.jini.entry net.jini.1ease

net.jini.lookup net.jini.lookup.entry

net.jini. space

If the Java compiler or runtime can’t find a class in one ofthese packages, then

you need to make sure that the jini-ext . jar file is in your CLASSPATH.

The sun—util . jar jar file contains the packages from the com. sun .j ini hierarchy.

These contain a number of “convenience” classes that are not essential but can be

useful. These are less frequently used.

A compile or run of a Iini application will typically have an environment set

something like this:

JINI_HOME=wheIever_Jini_home_is

CLASSPATH=.:$JINI_HOME/lib/jini—core.jar:$JINI_HOME/lib/jini-ext.jar

Lookup Service

A typical lookup service error looks like this:

java.rmi.activation.ActivationException: ActivationSystem not running;

nested exception is:

java.rmi.NotBoundException: java.rmi.activation.ActivationSystem

java.rmi.NotBoundException: java.Imi.activation.ActivationSystem

The command rmid starts the activation system running. If this cannot start

properly or dies just after starting, you will get this message. Usually it is caused by

incorrect file permissions.

RMI Stubs

A typical RMI stubs error looks like this:

java.Imi.StubNotFoundException:

Stub class not found: rmi.FileClassifieIImpLStub;

nested exception is:

java.lang.ClassNotFoundException: Imi.FileClassifierImpLStub

20

40

libdocdel@fr.com

41

TroubleshootingJini Configuration Problems

Many of the examples in this book export services as remote RMI objects. These

objects are subclasses of UnicastRemoteObj ect.What gets exported is not the object

itself, but a stub that will act as a proxy for the object (which continues to run back in

the server). The stub has to be created using the mic compiler, like this:

rmic -v1.2 -d . rmi.FileC1assifierImp1

This will create a FileClassifierImpl_Stub.class in the rmi subdirectory. The

stub class file needs to be accessible to the Java runtime in the same way as the

original class file.

Another typical error is this:

java.rmi.ServerException: RemoteException occurred in server thread; nested excep—
tion is:

java.rmi.UnmaIshalException: error unmarshalling arguments; nested exception is:

java.lang.ClassNotFoundException: rmi.FileClassifierImpl_Stub

This error arises when an object is trying to get a remote reference to

FileClassifierImpl, and it is trying to load the class file for the stub from an HTTP

server. What makes this one particularly annoying is that it may not be referring to

the FileClassifierImpl_Stub at all! The class will often implement a remote inter-

face, such as RemoteFileClassifier. This, in turn, implements the common class

FileClassifier, as shown in Figure 2-1.

Fi/eC/assifier

RemoteFi/eC/assifier

FileCIassifierlmpLStub

Figure 2-1. Interfaces and superclassesfor an exported stub

Classfilesfor all of these classes and interfaces have to be available! The

FileClassifier interface may be “well known,” with a class file on each client

and server. However, an interface such as RemoteFileClassifier, as well as the

21

41

libdocdel@fr.com

42

Chapter 2

22

implementation files for FileClassifierImpl, may only be known to a particular

server. The HTTP server must carry not only the class files for the stubs, but the

class files for all superclasses and interfaces that are not available to all—in this

case, for RemoteFileClassifier as well as FileClass-Fier.

Debugging

Debugging a Iini application is difficult because there are so many bits to it, and

these bits are all running separately: the server for a service, the client, the lookup

services, the remote activation daemons, and the HTTP servers. There are a few (not

many) errors within the Jini objects themselves, but more importantly, many of

these objects are implemented using multiple threads, and the flow of execution is

not always clear. There are no magic “debug” flags that can be turned on to show

what is happening.

On either the client or service side, a debugger such as jdb can be used to step

through or trace execution of a client or server. Lots of print statements help too.

There are also three flags that can be turned on to help:

java -Djava.security.debug=access \

-Dnet.jini.discovery.debug=1 \

-Djava.rmi.server.logCalls=true .

These flags don’t give complete information, but they do give some, and they

can at least tell you if the application’s parts are still living! If the java. security. debug

property is set to access, then every time the application needs to check a security

access (such as making a network connection, opening a file, etc.) it will print a

message. If net . j ini . discovery. debug is set to any non-null value, then any excep—

tions thrown during the discovery process will be printed. The final property will

set on logging of RMI calls.

Summary

Setting up and running a Iini system is complex at present, with many things that

can go wrong. This chapter looked at some of the problems that can occur and

some of the solutions. The list is not complete, but it may help in the most com—
mon situations.

42

libdocdel@fr.com

43

CHAPTER 3

Discovering a Lookup

Service

IINI USES A LOOKUP SERVICE in much the same way as other distributed systems use

naming services and traders. Services register with lookup services, and clients use

them to find services they are interested in. Iini lookup services are designed to

be an integral part of the Iini system, and they have their own set of classes and

methods. This chapter looks at what is involved in discovering a lookup service or

service locator. This is common to both services and clients. The chapter also

discusses issues particular to the Sun lookup service, reggie.

Running a Lookup Service

A client locates a service by querying a lookup service (service locator). In order to

do this, it must first locate a lookup service. Similarly, a service must register itself

with a lookup service, and in order to do so it must also first locate a lookup service.

The initial task for both a client and a service is thus discovering a lookup ser-

vice. Such a service (or set of services) will usually have been started by some

independent mechanism. The search for a lookup service can be done either by

unicast or by multicast. Unicast means that you know the address of the lookup

service and can contact it directly. Multicast is used when you do not know where

a lookup service is and have to broadcast a message across the network so that any

lookup service can respond. In fact, the lookup service is just another Jini service,

but it is one that is specialized to store services and pass them on to clients looking
for them.

Reggie

Sun supplies a lookup service called reggie as part of the standard Iini distribution.

The specification of a lookup service is public, and in future we can expect to see

other implementations of lookup services.

There may be any number of these lookup services running in a network. A

LAN may run many lookup services to provide redundancy in case one of them

crashes. Similarly, across the internet, people may run lookup services for a variety

43

23

libdocdel@fr.com

44

Chapwr3

24

of reasons: a public lookup service is running on http : //www. j ini . canberra . edu . au

to aid people trying Iini clients and services so that they don’t need to also set up a

lookup service. Other lookup services may act as coordination centers, such as a

repository of locations for all the atomic clock servers in the world.

Anybody can start a lookup service (depending on access permissions), but it

will usually be started by an administrator, or started at boot time.

Reggie requires support services: an HTTP server and an RMI daemon, rmid.

These need to be already running by the time reggie is started. If there is already

an HTTP server running, it can be used, or a new one can be started.

If you don’t have access to an HTTP server (such as Apache), then there is a

simple one supplied by Iini. This server is incomplete, and it is only good for

downloading Iava class files—it cannot be used as a general-purpose Web server.

The Iini HTTP server is in the tools . jar file, and it can be started with this

command:

java -jar tools.jar

This Iini HTTP server runs on a default port (8080), which means that any user

can start it as long as local network policies do not forbid it. It uses the current

directory as the document root for locating class files. These can be controlled by

parameters:

java -jar tools-jarfile [-port port-number] [-dir document-root-dir] [-trees]
[-verbose]

The HTTP server is needed to deliver the stub class files (of the registrar) to

clients. These class files are stored in reggie—dl . jar, so this file must be reachable

from the document root. For example, on my machine the jar file has the full path

/home/jan/tmpdir/j inil_0/lib/reggie-dl . jar. I set the document root to /home/jan/

tmpdir/ jinil_0/ lib, so the relative URL from this server is just /reggie—d1. jar.

The other support service needed for reggie is an RMI daemon. This is mid,

and it is a part of the standard Java distribution. Vendors could implement other

RMI daemons, but this is unlikely to happen. rmid must be run on the same

machine as reggie. The following command is a Unix command that runs rmid

as a background process:

rmid &

This command also has major options:

rmid [—port num] [-1og dir]

44

libdocdel@fr.com

45

Discovering a Lookup Service

These options can specify the TCP port used (which defaults to 4160) . You can

also specify the location for the log files that rmid uses to store its state—they

default to being in the log subdirectory.

There is a security issue with rmid on multiuser systems such as Unix. The

activation system that it supports allows anyone on the same machine to run pro—

grams using the user ID that rmid is running under. That means you should never

run rmid using a sensitive user ID such as root, but instead should run it as the

least privileged user, nobody.

Once the HTTP server and mid are running, reggie can be started with a num-

ber of compulsory parameters:

java -jar lookup-server-jarfile lookup-client-codebase lookup—policy-file \

output-log-dir lookup-service-group

The parameters are as follows:

- The lookup—server-jarfile will be reggie.jar or some path to it.

0 The lookup—client—codebase will be the URL for the reggie stub class

files, using the HTTP server started earlier. In my case, this is

http : //jannote. dstc . edu . au : 8080/reggie-d1.jar. Note that an absolute IP

hostname must be used—you cannot use localhost because to the :reggie

service that means jannote . dstc . edu . au. To the clientit would be a different

machine altogether, because to the client localhost is their own machine,

not jannote . dstc .edu . au! The client would then fail to find reggie—dl. jar

on its own machine. Even an abbreviated address, such as jannote, would
fail to be resolved if the client is external to the local network.

0 The lookup— policy—file controls security accesses. Initially you can set this

to the policy. all path in the Jini distribution, but for deployment, use a less

dangerous policy file. The topic of security is discussed in Chapter 12, but in

brief, Jini code mobility allows code from other sources to run within the

client machine. Ifyou trust the other code, then that may be fine, but can

you really trust it? If not, you don’t want to run it, and Iini security can con-

trol this. However, in the debugging and testing phases, this security can

cause extra complications, so you should turn off security while testing

other aspects ofyour code by using a weak security policy. Then make sure

you turn it back on later!

0 The output—log—dir can be set to any (writable) path to store the log files.

' The lookup—service-group can be set to the public group public.

25

45

libdocdel@fr.com

46

Chapmr3

26

As an example, on my own machine, I start reggie like this:

java jar /home/jan/tmpdir/jinil_O/lib/reggie.jar \

http://jannote.dstc.edu.au:8080/Ieggie-dl.jar \

/home/jan/tmpdiI/jini1_0/example/lookup/policy.all \

/tmp/reggie_1og public

After starting, reggie will promptly exit! Don’t worry about this—it is actually

kept in a passive state by mid and will be brought back into existence whenever

necessary (this is done by the new Activation mechanism of RMI in IDK 1.2).

You only need to start reggie once, even if your machine is switched off or

rebooted. The activation daemon rmid restarts it on an as-needed basis, since it

keeps information about reggie in its log files.

rmid and JDK 1.3

rmid is responsible for starting (or restarting) services such as reggie. It will create a

new IVM on demand to run the service. rmid may look after a number of services,

not just reggie, and they will all be run in their own IVMs. In IDK 1.2 there was no

difference in handling these different IVMs. However, in IDK 1.3, the ability to set

different security policies was introduced. This topic is dealt with in detail in

Chapter 12.

In IDK 1.3, starting rmid requires an extra parameter to set the

sun . rmi . activation . execPolicy policy. It is simplest to set it so that rmid behaves

the same way as it did in IDK 1.2. This can be done with the following command:

rmid —J-Dsun .Imi . activation . execPolicy=none

This setting ignores the new security mechanism, and it is not recommended

as a long-term or production solution.

Unicast Discovery

Unicast discovery can be used when you know the machine on which the lookup

service resides and can ask for it directly. This approach is expected to be used for

a lookup service that is outside of your local network, but that you know the

address ofanyway (such as your home network while you are at work, or a network

identified in a newsgroup or emailmessage, or maybe even one advertised on TV).

Unicast discovery relies on a single class, LookupLocator, which is described
in the next section. Basic use of this class is illustrated in the sections on the

Invalid LookupLocator program. The InvalidLookupLocator should be treated as an

46

libdocdel@fr.com

47

Discoveringa Lookup Service

introductory Iini program that you can build and run without having to worry

about network issues. Connecting to a lookup service using the network is done

with the getRegistrar()method of LookupLocator, and an example program using

this is shown in the UnicastRegistrar program in the “Get Registrar" section.

LookupLocator

The LookupLocator class in the net .jini. core. discovery package is used for unicast

discovery of a lookup service. There are two constructors:

package net.jini.core.discovery;

public class LookupLocator {

LookupLocator(java.1ang.StIing url)

throws java.net.MalformedURLException;

LookupLocator(java.lang.String host,int port);

For the first constructor, the url parameter follows the standard URL syntax

of “protocol:/ /host" or “protocol:/ /host:port”. The protocol is jini. If no port is

given, it defaults to 4160. The host should be a valid DNS name (such as

pandonia . canberra . edu . au or an IP address (such as 137 .92 . 11. 13). So for example,

jini : //pandonia . canberra .edu . au : 4160 may be given as the URL for the first con—

structor. No unicast discovery is performed at this stage, though, so any rubbish

could be entered. Only a check for the syntactic validity of the URL is performed.

The first constructor will throw an exception if it discovers a syntax error. This syn-

tactic check is not even done for the second constructor, which takes a host name

and port separately.

InvalidLookupLocator

The following program creates some objects with valid and invalid host/URLs.

They are only checked for syntactic validity rather than existence as URLs. That is,

no network lookups are performed. This should be treated as a basic example to

get you started building and running a simple Iini program.

package basic;

import net .jini .core . discovery . LookupLocator;

27

47

libdocdel@fr.com

48

Chapter 3

28

/**
*

*/

pub

InvalidLookupLocator.java

lic class InvalidLookupLocator {

static public void main(String argv[]) {

new InvalidLookupLocator();

}

public InvalidLookupLocator() {

LookupLocator lookup;

// this is valid

try {

lookup = new LookupLocator("jini://localhost");

System.out.println("First lookup creation succeeded");

} catch(java.net.MaltormedURLException e) {

System.err.println("First lookup failed:

n

+ e.toString());

// this is probably an invalid URL,

// but the URL is syntactically okay

try {

lookup = new LookupLocator("jini://ABCDEFG.org");

System.out.print1n("Second lookup creation succeeded");

} catch(java.net.MalformedURLException e) {

System.err.println("Second lookup failed: + e.toString());

// this IS a malformed URL, and should throw an exception

try {

lookup = new LookupLocator("A:B:C://ABCDEFG.0Ig");

System.out.println("Third lookup creation succeeded");

} catch(java.net.MalformedURLException e) {

System.err.println("Third lookup failed: + e.toString());

// this is valid, but no check is made anyway

lookup = new LookupLocator("localhost", 80);

System.out.println("Fourth lookup creation succeeded");

}

} // InvalidLookupLocator

48

libdocdel@fr.com

49

Discovering a Lookup Service

Running the InvalidLookupLocator

All Iini programs will need to be compiled using the IDK 1.2 compiler. Iini pro-

grams vvill not compile or run under IDK 1.1 (any versions).

The InvalidLookupLocator program defines the InvalidLookupLocator class in

the basic package. The source code will be in the InvalidLookupLocator. java file

in the basic subdirectory. From the parent directory, this can be compiled by a
command such as this:

javac basic/InvalidLookupLocator.java

This will leave the class file also in the basic subdirectory.

When you compile the source code, the CLASSPATH will need to include the

jini-core . jar Iini file. Similarly, when a service is run, this Iini file will need to be

in its CLASSPATH, and when a client runs, it will also need this file in its CLASSPATH.

The reason for this repetition is that the service and the client are two separate

applications, running in two separate W5, and quite likely will be on two sepa-

rate computers.

The InvalidLookupLocator has no additional requirements. It does not perform

any network calls and does not require any additional service to be running. It can

be run simply by entering this command:

java —classpath basic.InvalidLookupLocator

Information from the LookupLocator

Two of the methods of LookupLocator are these:

String getHost();

int getPort();

These methods will return information about the hostname that the locator

will use, and the port it will connect on or is already connected on. This is just the

information fed into the constructor or left to default values, though. It doesn’t

offer anything new for unicasting. This information will be useful in the multicast

situation, though, if you need to find out Where the lookup service is.

29

49

libdocdel@fr.com

50

Chapter 3

30

getRegistrar

Search and lookup is performed by the getRegistrar() method of the LookupLocator,

which returns an object of class ServiceRegistrar.

public ServiceRegistrar getRegistrar()

throws java.io.IOException,java.lang.ClassNotFoundException

The ServiceRegistrar class is discussed in detail later. This class performs net-

work lookup on the URL given in the LookupLocator constructor.

UML sequence diagrams are useful for showing the timelines of object exist—

ence and the method calls that are made from one object to another. The timeline

reads down, and the method calls and their returns read across. A UML sequence dia—

gram augmented with a jagged arrow showing the network connection is shown in

Figure 3-1. The UnicastRegister object makes a new() call to create a LookupLocator,

and this call returns a lookup object. The getRegistrar() method call is then

made on the lookup object, and this causes network activity. As a result of this, a

ServiceRegistrar object is created in some manner by the lookup object, and this

is returned from the method as the registrar.

Unicast

Register LookupI

I new Locator serVice
I I locator

I lookup '
I4——-——-i

I I

I getRegistrarQ I _
I I SerVIce
I registrar I Registrar
I I I

Figure 3-1. UML sequence diagramfor lookup

The UnicastRegistrar program that implements Figure 3-1 and performs the

network connection to get a ServiceRegistrar object is as follows:

package basic;

import net.jini.core.discovery.LookupLocator;

50

libdocdel@fr.com

51

Discovering a Lookup Service

import net.jini.core.lookup.ServiceRegistrar;

/**

* UnicastRegistrar.java
*/

public class UnicastRegister {

static public void main(String argv[]) {

new UnicastRegister();

public UnicastRegister() {

LookupLocator lockup = null;

ServiceRegistrar registrar = null;

try {

lookup = new LookupLocator("jini://www.jini.canberra.edu.au");

} catch(java.net.MalformedURLException e) {

System.err.println("Lookup failed: " + e.toString());

System.exit(1);

}

try {

registrar = lookup.getRegistrar();

} catch (java.io.IOException e) {

System.err.println("Registrar search failed:

System.exit(1);

} catch (java.lang.ClassNotFoundException e) {

System.err.println(”Registrar search failed:

System.exit(1);

+ e.toString());

+ e.toString());

}

System.out.println("Registrar found");

// the code takes separate routes from here for client or service

}

} // UnicastRegister

The registrar object will be used in different ways for clients and services: the

services will use it to register themselves, and the clients will use it to locate services

31

51

libdocdel@fr.com

52

Chapter 3

32

NOTE 'i'his program. mfg!!! m)! run (as is. dirt" to security issues. “if?!” is the

mm we rhefimr section of't'liirwter i2.

Running the UnicastRegister

When the UnicastRegistrar program in the previous section program needs to be

compiled and run, it has to have the file jini-code . jar in its CLASSPATH.When run, it

will attempt to connect to the service locator, so obviously the service locator needs

to be running on the machine specified in order for this to happen. Otherwise, the

program will throw an exception and terminate. In this case, the host specified is

w . jini . canberra . edu . au. It could, however, be any machine accessible on the local

or remote network (as long as it is running a service locator). For example, to con-

nect to the service locator running on my current workstation, the parameter for

LookupLocator would be jini : //pandonia . canberra . edu . au.

The UnicastRegister program will receive a ServiceRegistraI from the service

locator. However, it does so with a simple readObject () on a socket connected to

the service locator, so it does not need any additional support services, such as

rmiregistry or Imid. The program can be run by this command:

java basic.UnicastRegister

The CLASSPATH for the UnicastRegister program should contain the Iini jar files

as well as the path to basic/UnicastRegister. class.

Broadcast Discovery

If the location of a lookup service is unknown, it is necessary to make a broadcast

search for one. UDP supports a multicast mechanism that the current implemen-

tations of Iini use. Because multicast is expensive in terms of network require-

ments, most routers block multicast packets. This usually restricts broadcasts to a

local area network, although this depends on the network configuration and the

time-to-live (TTL) of the multicast packets.

There can be any number of lookup services running on the network accessi-

ble to the broadcast search. On a small network, such as a home network, there

may be just a single lookup service, but in a large network there may be many—

perhaps one or two per department. Each one of these may choose to reply to a

broadcast request.

52

libdocdel@fr.com

53

Discovering a Loakup Service

Groups

Some services may be meant for anyone to use, but some may be more restricted

in applicability. For example, the Engineering department may wish to keep lists of

services specific to that department. This may include a departmental diary ser-

vice, a departmental inventory, etc. The services themselves may be running

anywhere in the organization, but the department would like to be able to store

information about them and to locate them from their own lookup service. Of

course, this lookup service may be running anywhere, too!

So there could be lookup services specifically for a particular group of ser—

vices, such as the Engineering department services, and others for the Publicity

department services. Some lookup services may cater to more than one group—

for example, a company may have a lookup service to hold information about all

services running for all groups on the network.

When a lookup service is started, it can be given a list of groups to act for as a

command line parameter. A service may include such group information by giving

a list of groups that it belongs to. This is an array of strings, like this:

String [] groups = {"Engineering dept"};

LookupDiscovery

The LookupDiscovery class in package net . j ini . discovery is used for broadcast dis-

covery. There is a single constructor:

LookupDiscover(java.lang.String[] groups)

The parameter in the LookupDiscovery constructor can take three possible

values:

0 null, or LookupDiscovery.ALL_GROUPS, means that the object should attempt

to discover all reachable lookup services, no matter which group they

belong to. This will be the normal case.

0 An empty list of strings, or LookupDiscovery . NO_GROUPS, means that the object

is created but no search is performed. In this case, the method setGroups()

will need to be called in order to perform a search.

0 A non-empty array of strings can be given. This will attempt to discover all

lookup services in that set of groups.

33

53

libdocdel@fr.com

54

Chapter 3

DiscoveryListeneI

A broadcast is a multicast call across the network, and lookup services are

expected to reply as they receive the call. Doing so may take time, and there will

generally be an unknown number of lookup services that can reply. To be notified

of lookup services as they are discovered, the application must register a listener

with the LookupDiscover object, as follows:

public void addDiscoverListener(DiscoveryListener l)

The listener must implement the DiscoverListener interface:

package net.jini.discovery;

public abstract interface DiscoveryListener {

public void discovered(DiscoverEvent e);

public void discarded(DiscoveryEvent e);

The discovered () method is invoked whenever a lookup service has been dis-

covered. The API recommends that this method should return quickly and not

make any remote calls. However, the discovered () method is the natural place for a

service to register, and it is also the natural place for a client to ask if there is a ser—

vice available and to invoke the service. It may be better to perform these lengthy

operations in a separate thread.

There are other timing issues involved—when the Dis coveryListener is cre-

ated, the broadcast is made, and after this, a listener is added to this discovery

object. What happens if replies come in very quickly, before the listener is added?

The “Iini Discovery Utilities Specification” guarantees that these replies will be

buffered and delivered when a listener is added. Conversely, no replies may come

in for a long time—what is the application supposed to do in the meantime? It

cannot simply exit, because then there would be no object to reply to! It has to be

made persistent enough to last until replies come in. One way of handling this is

for the application to have a GUI interface, in which case the application will stay

until the user dismisses it. Another possibility is that the application may be pre-

pared to wait for a While before giving up. In that case, the main () method could

sleep for, say, ten seconds and then exit. This will depend on what the application

should do if no lookup service is discovered.

The discarded () method is invoked whenever the application discards a

lookup service by calling discard () on the registrar object.

34

54

libdocdel@fr.com

55

Discovering a Laokup Service

DiscoveryEvent

The parameter of the discoveredo method of the DiscoveryListeneI interface is a

DiscoveryEvent object.

package net.jini.discovery;

public Class DiscoveryEvent {

public net.jini.core.lookup.ServiceRegistrar[] getRegistIarsO;

This has one public method, getRegistra rs (), which returns an array of

ServiceRegistrar objects. Each one of these implements the ServiceRegistrar

interface, just like the object returned from a unicast search for a lookup service.

More than one ServiceRegistrar object can be returned if a set of replies have

come in before the listener was registered—they are collected in an array and

returned in a single call to the listener. A UML sequence diagram augmented with

jagged arrows showing the network broadcast and replies is shown in Figure 3—2.

Multicast

Register Lookup

: Discovery LOOKUP
new” /I/SerVIces

I discover I
I I

I addDiscoveryListener() I
l“""‘___—_‘_“—T

I : I
I ' I

' discovered(evt) 'I<——-———————I

 Discovery

Event

% Service

kfl—mgmi—l RegistrarI

Figure 3-2. UML sequence diagramfor discovery

In Figure 3—2, the creation of a LookupDiscovery object starts the broadcast

search, and it returns the discover object. The Multica stRegister adds itself as a lis-

tener to the discover object. The search continues in a separate thread, and when a

55

35

libdocdel@fr.com

56

Chaper

36

new lookup service replies, the discover object invokes the discovered() method

in the MulticastRegister, passing it a newly created DiscoveryEvent. The

MulticastRegister object can then make calls on the DiscoveryEvent, such as

getRegistrars(), which will return suitable ServiceRegistrar objects. There is

no line connecting to the ServiceRegistrar because the DiscoveryEvent creates

the ServiceRegistrar somehow, but the actual mechanism that is used is hidden

in the implementation of the DiscoveryEvent.

A MulticastRegister program that implements multicast searches for lookup
services would look like this:

package basic;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

/**

* MulticastRegister.java
*/

public class MulticastRegister implements DiscoveryListener {

static public void main(String argv[]) {

new MulticastRegister();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(10000L);

} catch(java.lang.InterruptedException e) {

// do nothing

public MulticastRegisteI() {

System.setSecurityManager(new java.rmi.RMISecurityManager());

LookupDiscover discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.to$tring());

e.printStackTrace();

System.exit(1);

56

libdocdel@fr.com

57

Discovering (1 Lookup Service

discover.addDiscoveryListener(this),'

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

// the code takes separate routes from here for client or service

System.out.println("-Found a service locator");

public void discarded(DiscoveryEvent evt) {

}

} // MulticastRegister

Staying Alive

In the preceding constructor for the MulticastRegister program, we create a

LookupDiscovery object, add a DiscoveryListener, and then the constructor termi-

nates. The main() method, having called this constructor, promptly goes to sleep.

What is going on here? The constructor for LookupDiscovery actually starts up a num-

ber of threads to broadcast the service and to listen for replies (see Chapter 21).

When replies come in, the listener thread will call the discovered () method of

the MulticastRegister. However, these threads are daemon threads. Java has two

types of threads—daemon and user threads—and at least one user thread must be

running or the application will terminate. All these other threads are not enough

to keep the application alive, so it keeps a user thread running in order to continue
to exist.

The sleep() method ensures that a user thread continues to run, even though

it apparently does nothing. This will keep the application alive, so that the daemon

threads (running in the “background”) can discover some lookup locators. Ten sec-

onds (10,000 milliseconds) is long enough for that. To stay alive after this ten

seconds expires requires either increasing the sleep time or creating another user

thread in the discovered () method. In Chapter 7, use is made of a useful constant,

Lease . FOREVER. It is tempting to use the FOREVER constant if you want a thread to

sleep forever. While the “leasing" system understands this FOREVER constant, the

standard Java sleep() method does not treat it any special way and merely uses its

37

57

libdocdel@fr.com

58

ChapmrB

38

Long. MAX_VALUE value and treats it as the maximum value of a long, so that it just

sleeps for a very lengthy period.

I have placed the sleep() call in the main () method. It is perfectly reasonable to

place it in the application constructor, and some examples do this. However, it

looks a bit strange in the constructor, because it looks like the constructor does not

terminate (so is the object created or not?), so I prefer this placement. Note that

although the constructor for MulticastRegister will have terminated without us

assigning its object reference, a live reference has been passed into the discover

object as a DiscoveryListener, and it will keep the reference alive in its own dae-

mon threads. This means that the application object will still exist for its

discovered() method to be called.

Any other method that results in a user thread continuing to exist will do just

as well. For example, a client that has an AWT or Swing user interface will stay alive

because there are many user threads created by any of these GUI objects.

For services, which typically will not have a GUI interface running, another

simple way to keep them alive is to create an object and then wait for another

thread to notify() it. Since nothing will, the thread (and hence the application)

stays alive. Essentially, this is an unsatisfied wait that will never terminate—

usually an erroneous thing to do, but here it is deliberate:

Object keepAlive = new Object();

synchronized(keepAlive) {

try {

keepAlive.wait();

} catch(InterruptedException e) {

// do nothing

This will keep the service alive indefinitely, and it will not terminate unless

interrupted. This is unlike sleep(), which will terminate eventually.

Running the MulticastRegisteI

The MulticastRegister program needs to be compiled and run with jini-core. jar

and jini-ext . jar in its CLASSPATH. The extra jar file is needed because it contains

the class files from the net . jini .discovery package. When run, the program will

attempt to find all the service locators that it can. If there are none, it will find

none—pretty boring. So one or more service locators should be set running in the

network or on the local machine. Service locators running in the network must be

accessible by multicast calls or they will not be found. This usually means that they

will have to be on the same LAN as the MulticastRegister program.

58

libdocdel@fr.com

59

Discovering a Loakup Service

This program will receive ServiceRegistrars from the service locators. How-

ever, it does so with a simple readObject() on a socket connected to a service

locator, and so does not need any additional RMI support services, such as

rmiregistry.

Broadcast Range

Services and clients search for lookup locators using the multicast protocol by

sending out packets as UDP datagrams. It makes announcements on UDP

224.0.1.84 on port 4160. How far do these announcements reach? This is con-

trolled by two things:

- the time-to-live (TTL) field on the packets

- the network administrator settings on routers and gateways

By default, the current implementation of LookupDiscovery sets the TTL to 15.

Common network administrative settings restrict such packets to the local net-

work. However, the TTL can be changed by giving the system property

net . j ini . discovery. ttl a different value. However, be careful about setting this;

many people will get irate if you flood the networks with multicast packets.

ServiceRegistrar

The ServiceRegistrar is an abstract class that is implemented by each lookup ser—

vice. The actual details of this implementation are not relevant here. The role of a

ServiceRegistrar is to act as a proxy for the lookup service. This proxy runs in the

application, which may be a service or a client.

This is the first object that is moved from one IVM to another by Iini. It is

shipped from the lookup service to the application looking for the lookup service,

using a socket connection. From then on, it runs as an object in the application’s

address space, and the application makes normal method calls to it. When needed,

it communicates back to its lookup service. The implementation used by Sun’s

reggie uses RM] to communicate, but the application does not need to know this,

and anyway, it could be done in different ways. This proxy object should not cache

any information on the application side, but instead should get “live” information

from the lookup service as needed. The implementation of the lookup service sup—

plied by Sun does exactly this.

39

59

libdocdel@fr.com

60

Chaper

40

The ServiceRegistrar object has two major methods. One is used by a service

attempting to register:

public ServiceRegistration register(ServiceItem item,

long leaseDuration)

throws java.rmi.RemoteException

The other method (with two forms) is used by a client trying to locate a partic—

ular service:

public java.lang.0bject lookup(ServiceTemplate tmpl)

throws java.rmi.RemoteException3

public ServiceMatches lookup(ServiceTemplate tmpl,

int maxMatches)

throws java.rmi.RemoteException;

The details of these methods are given in Chapter 5 and Chapter 6. For now, an

overview will suffice.

A service provider will register a service object (that is, an instance of a class),

and a set ofattributes for that object. For example, a printer may specify that it can

handle Postscript documents, or a toaster that it can deal with frozen slices of

bread. The service provider may register a singleton object that completely imple—

ments the service, but more likely it will register a service proxy that will

communicate back to other objects in the service provider. Note carefully: the reg-

istered object will be shipped around the network, and when it finally gets to run,

it may be a long way away from where it was originally created. It will have been

created in the service’s IVM, transferred to the lookup locator by register(), and

then to the client’s IVM by lookup().

A client is trying to find a service using some properties of the service that it

knows about. Whereas the service can export a live object. the client cannot use a

service object as a property, because then it would already have the thing, and

wouldn’t need to try to find one! What it can do is use a class object, and try to

find instances of this class lying around in service locators. As discussed later in

Chapter 6, it is best if the client asks for an interface class object. In addition to

this class specification, the client may specify a set of attribute values that it

requires from the service.

The next step is to look at the possible forms of attribute values, and at how

matching will be performed. This is done using Iini Entry objects, which are dis-

cussed in Chapter 4. The simplest services, and the least demanding clients, will

not require any attributes: the Entry[] array will be null. You may wish to skip

ahead to Chapter 5 or to Chapter 6 and come back to the discussion of entries in

Chapter 4 later.

60

libdocdel@fr.com

61

Discovering a Lookup Service

Information from the ServiceRegistrar

The ServiceRegistrar is returned after a successful discovery has been made. This

object has a number of methods that will return useful information about the

lookup service. So, in addition to using this object to register a service or to look up

a service, you can use it to find out about the lookup locator. The major methods
are these:

String[] getGroups();;

LookupLocator getLocator();

ServiceID getServiceID();

The first method, getGroups (), will return a list of the groups that the locator is
a member of.

The second method, getLocator(), is more interesting. This returns exactly the

same type of object as is used in the unicast lookup, but now its fields are filled in

by the discovery process. You can find out which host the locator is running on,

and its hostname, by using the following statement:

registrar.getLocator().getHost();

The following code shows how this can be used in the discovered() method to

print information about each lookup service that replies to the multicast request:

public void discovered(DiscoveryEvent evt) {

ServiceRegistIaI[] registrars = evt.getRegistrars();

for (int n = O; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

System.out.print1n("Service locator at " +

registrar.getLocator().getHost());

You could use the discovered () method to find out where a service locator is so

that the next time this program runs, it could connect directly by unicast.

The third method, getServiceID(), is unlikely to be of much use to you. In gen-

eral, service IDs are used to give a globally unique identifier for the service (different

services should not have the same ID), and a service should have the same ID with

all service locators. However, this is the service ID of the lookup service, not of any

services registered with it.

41

61

libdocdel@fr.com

62

Chapter 3

42

Summary

Both services and clients need to find lookup services. Discovering a lookup

service may be done using unicast or multicast protocols. Unicast discovery is

a synchronous mechanism. Multicast discovery is an asynchronous mechanism

that requires use of a listener to respond when a new service locator is discovered.

When a service locator is discovered, it sends a ServiceRegistrar object to run

in the client or service. This acts as a proxy for the locator. This object may be que-

ried for information, such as the host the service locator is on.

62

libdocdel@fr.com

63

CHAPTER 4

Entry Objects

A SERVICE IS EXPORTED T0 LOOKUP SERVICES based on its class. Clients search for ser-

vices using Class information, typically using an interface. There is often additional

information about a service that is not part of its class information, such as who

owns the service, who maintains it, where it is located, and so on. Entries are used

to pass this kind of additional information about services to clients. The clients

can then use that information—as well as class type—to decide if a particular ser-

vice is what it wants.

Entry Class

When a service provider registers a service, it places a copy of the service object (or

a service proxy) on the lookup service. This copy is an instance of a class, albeit in

serialized form. The server can optionally register sets of attributes along with the

service object. Each set is described by an Entry object. What is stored on each ser-

vice locator is an instance of a class along with a set ofEntry objects, each of which

describes some special additional attributes of the service.

For example, a set of file editors may be available as services. Each editor is

capable of editing different types of files, as shown in Figure 4—1.

Editor

+ r
} TextEditor RTFEditor ImageEditor

Figure 4-]. Editor class diagram

NOTE Thrust) t'lttxxt's would probably be imi’rfltt't-tc. rather than insirmn'uhlt’
classes.

63

43

libdocdel@fr.com

64

ChapWr4

44

In this situation, a client could search for a suitable editor in two ways:

0 By asking for an instance of a specific class, such as lmageEditor

- By asking for an instance of the general class Editor with the additional

information that it can handle a certain type of file

The type of search performed depends on the problem domain, as defined by

the services and possible clients. Services advertise themselves by exporting an

object that is of a particular class and by exporting additional information along

with this object. Iini clients can then search for specific types of services by asking

for an object that implements the specific class, such as ImageEditor. They can also

search for superclass objects and include extra objects to narrow the search, based

on additional information advertised by the service. This additional information is

given in objects belonging to subclasses of the Entry class.

The Entry class allows services to advertise their capabilities in very flexible

ways. For example, suppose an editor was capable of handling a number of file

types, such as plain text and RTF files. It could do so by exporting a service object

implementing Editor along with an Entry object saying that it can handle plain text

and another Entry object saying that it can handle RTF files. The service imple—

mentation can just add more and more information about its capabilities without

altering the basic interface.

To manage this way of adding information, we could have a FileType class,

which would give information about the types of files handled:

public Class FileType implements Entry {

public String type; // this is a MIME type

public FileType(String type) {

this.type = type;

For a text editor, the attribute set would be FileType("plain/text"). For an RTF

editor, the attribute set would be FileType("application/rtf").

For an editor capable of handling both plain text and RTF files, its capabilities

would be given by using an array of entries:

Entry[] entries = new Entry[] {new FileType("plain/text"),

new FileType("application/rtf")

};

64

libdocdel@fr.com

65

On the other side, suppose a client wishes to find services that can handle the

attributes that it requires. The client uses the same Entry class to do this. For any

particular Entry, the client specifies both of the following:

0 Which fields must match exactly (a non-null value)

0 Which fields it does not care about (a null value)

For example, to search for a plain text editor, an entry like this would be used:

Entry[] entries = new Entry[] {new FileType("plain/text")},'

If any editor would do, the following entry could be used:

Entry[] entries = new Entry[] {new FileType(null)};

Attribute Matching Mechanism

The attribute matching mechanism is pretty basic. For example, a printer typically

has the capacity to print a certain number of pages per minute, but if it specifies

this using an Entry, it actually becomes rather hard to find. A client can request a

printer service in which it does not care about speed, or it can request a particular

speed. It cannot ask for printers with a speed greater than some value. It cannot

ask for a printer without a capability, such as anything except a color printer. An

attribute must either match exactly or be ignored. The relational operators such as

“<” and “!=” are not supported.

If you want to search for a printer with a particular speed, then printer speed

capabilities may need to be given simpler descriptive values, such as “fast," “aver-

age,” or “slow.” Then, once you have a “fast" printer service returned to the client, it

can perform a query on the service, itself, for the actual speed. This would be done

outside of the Iini mechanisms, using whatever interface has been agreed on for

the description of printers. A similar problem, that of finding a physically “close”

service, is taken up in Chapter 13.

The attribute matching mechanism that was chosen by the Jini designers, of

exact matches with wildcards, is comparatively easy to implement. It is a pity from

the programmer’s View that a more flexible mechanism was not used. One sug-

gestion often made in the Iini mailing list is that there should be a boolean matches 0

method on the service object. However, that would involve unmarshalling the ser—

vice on the locator in order to run the matches() method, and this would slow the

lookup service down and generate a couple of awkward questions:

- What security permissions should the filter run with?

65

Entry Objects

45

libdocdel@fr.com

66

Chapter 4

46

0 What would happen if the filter modifies its arguments (deep copying to

avoid this would cause further slowdowns)?

The ServiceDiscoveryManager—discussed in Chapter 15—has the ability to do

client- side filtering to partly rectify this problem.

Restrictions on Entries

Entries are shipped around in marshalled form. Exported service objects are seri-

alized, moved around, and reconstituted as objects at some remote client. Entries

are similarly serialized and moved around. However, when it comes to comparing

them, this is usually done on the lookup service, and they are not reconstituted on

the lookup service. So when comparing an entry from a service and an entry from

a client request, it is the serialized forms that are compared.

An entry cannot have one of the primitive types, such as int or char, as a field.

If one of these fields is required, then it must be wrapped up in a class such as

Integer or Character. This make it easier to perform “wildcarding” for matching

(see Chapter 5 for details). Iini uses null in the fields of Entry objects from the cli-

ent to act as a wildcard. This will work for any class, including wrapper classes

such as Boolean. The primitive types, such as boolean, have no values that can be

used as a wildcard pattern, since all possible values (true and false) could be valid

request values.

Jini places some further restrictions on the fields of Entry objects. They must

be public, non-static, non-transient, and non-final. In addition, an Entry class

must have a no-args constructor.

Convenience Classes

The AbstractEntry class implements the Entry interface, and it is designed as a

convenience class. It implements methods such as equals() and toString(). An

application would probably want to subclass this instead of implementing Entry.

In addition, Sun’s implementation ofIini contains a further set of convenience

classes, all subclassed out ofAbstractEntry. These require the j ini-ext . jar file.

They are the following:

0 Address—The address of the physical component of a service.

- Comment—A free-form comment about a service.

66

libdocdel@fr.com

67

0 Location—The location of the physical component of a service. This is dis-
tinct from the Address class in that it can be used alone in a small, local

organization.

- Name—The name of a service as used by users. A service may have multiple
names.

- ServiceIm‘o—Generic information about a service. This includes the name

of the manufacturer, the product, and the vendor.

- ServiceType—Human—oriented information about the “type” of a service.

This is not related to its data or class types and is more oriented toward

allowing someone to determine what a service (for example, a printer) does

and if it is similar to another, without needing to know anything about data

or class types for the lava platform.

0 Status—The base class from which other status-related entry classes can be

derived.

For example, the Address class contains the following:

String country;

String locality; // City or locality name.

String organization; // Name of the company or organization that provides
// this service.

String organizationalUnit; // The unit within the organization that provides this
// service.

String postalCode; // Postal code.

String stateOrProvince; // Full name or standard postal abbreviation of a

// state or province.

String street; // Street address.

You may find these classes useful; on the other hand, what services would like

to advertise, and what clients would like to match on, is pretty much unknown as

yet. These classes are not part of the formal Iini specification.

Further Uses of Entries

The primary intention of entries is to provide extra information about services so

that clients can decide whether or not they are the services the client wants to use.

An expectation in this is that the information in an entry is primarily static. How-

ever, entries are objects, and they could also implement behavior as well as state.

67

Entry Objects

47

libdocdel@fr.com

68

Chapter 4

48

This should not be used to extend the behavior of a service, since all service

behavior should be captured in the service interface specification.

A good example of a “non—static” entry is ServiceType, which is an abstract

subclass of AbstractEntry. This contains “human oriented” information about a

service, and contains abstract methods, such as String getDisplayName(). This

method is intended to provide a localized name for the service. Localization (for

example, producing an appropriate French name for the service for French-

speaking communities) can only be done on the client side and will require code

to be executed in the client to examine the locale and produce a name.

Another use is to define the user interface for a service. Services do not have or

require user interfaces for human users, since they are defined by Java interfaces

that can be called by any other lava objects. However, some services may wish to

offer a way of interacting with themselves by means of a user interface, and this

involves much executable code. Since it is not part of the service itself, this should

be left in suitable Entry objects. This topic is looked at in detail in Chapter 19.

Summary

An entry is additional information about a service, and a service may have any

number of entries. Clients request services by class and by entries, using a simple

matching system. There are a number of convenience classes that subclass Entry.

68

libdocdel@fr.com

69

CHAPTER 5

Service Registration

THIS CHAPTER LOOKS AT HOW SERVICES REGISTER themselves with lockup locators

so that they can later be found by clients. From the service locator, the server

will get a ServiceRegistrar object. The server will prepare a description of the

service in a ServiceItem and will then call the ServiceRegistrar’s register()

method with the ServiceItem as a parameter. The ServiceItem can contain addi-

tional information about a service in addition to its type, and this information is

stored in Entry objects.

ServiceRegistrar

A server for a service finds a service locator using either a unicast lookup with a

LookupLocator or a multicast search using LookupDiscovery. In both cases, a

ServiceRegistrar object is returned to act as a proxy for the lookup service.

The server then registers the service with the service locator using the

ServiceRegistrar’s register() method:

package net.jini.core.lookup;

public Class ServiceRegistrar {

public ServiceRegistration register(ServiceItem item,

long leaseDuration)

throws java.rmi.RemoteException;

The second parameter here, leaseDuration, is a request for the length of time

(in milliseconds) the lookup service will keep the service registered. This request

need not be honored—the lookup service may reject it completely, or only grant a

lesser time interval. This is discussed in Chapter 7.

The first parameter is of ServiceItem type.

ServiceItem

The service provider will create a ServiceItem object by using the constructor,
shown here:

69

49

libdocdel@fr.com

70

Chapter 5

package net.jini.core.lookup;

public Class ServiceItem {

public ServiceID serviceID;

public java.lang.0bject service;

public Entry[] attributeSets;

public ServiceItem(ServiceID serviceID,

java.lang.0bject service,

Entry[] attrSets);

Once the service provider has created the ServiceItem object, it is passed into

register(). The first parameter, serviceID, is set to null when the service is regis-

tered for the first time. The lookup service will set a non-null value as it registers

the service. On subsequent registrations or re-registrations, this non-null value

should be used. The serviceID is used as a globally unique identifier for the service.

The second parameter, service, is the service object that is being registered.

This object will be serialized and sent to the service locator for storage. When a

client later requests a service, this is the object it will be given. There are several

things to note about the service object:

0 The object must be serializable. Some objects, such as the graphical user inter-

face JTextArea object are not serializable at present and so cannot be used.

0 The object is created in the service’s IVM. However, when it runs, it will do so

in the client’s IVM, so it may need to be a proxy for the actual service. For

example, the object may be able to show a set of toaster controls, but might

have to send messages across the network to the real toaster service, which

is connected to the physical toaster.

- If the service object is an RMI proxy, then the object in the ServiceItem is

given by the programmer as the UnicastRemoteObject for the proxy stub, not

the proxy itself. The Java runtime substitutes the proxy. This subtlety is

explored in Chapter 6.

The third parameter in the ServiceItem constructor, attrSets, is a set of entries

giving information about the service in addition to the service object/ service

proxy itself. If there is no additional information, this can be null.

50

70

libdocdel@fr.com

71

Registration

The server attempts to register the service by calling register(). This may throw a

java. rmi. RemoteException, which must be caught. The second parameter to the

register() method is a request to the service locator for the length of time to store

the service. The time requested may or may not be honored.

The return value is of type ServiceRegistration.

ServiceRegistration

The ServiceRegistration object is created by the lookup service and is returned to

run in the service provider. This object acts as a proxy object that will maintain the

state information for the service object exported to the lookup service.

Actually, the ServiceRegistration object can be used to make changes to the

entire ServiceItem stored on the lookup service. The ServiceRegistration object

maintains a serviceID field, which is used to identify the Service-Item on the lookup

service. The serviceID value can be retrieved by getServiceID() for reuse by the

server if it needs to do so (which it should, so that it can use as the same identifier

for the service across all lookup services). These objects are shown in Figure 5-1.

Lookup Service

Service Provider

service _
ob'ect ‘

Figure 5-1. Objects in service registration

Other methods can be used to change the entry attributes stored on the

lookup service, such as the following:

void addAttributes(Entry[] attrSets);

void modifyAttributes(Entry[] attrSetTemplates, Entry[] attrSets);

void setAttributes(EntIy[] attrSets);

The final public method for the ServiceRegistrat ion class is getLease(), which

returns a Lease object that allows renewal or cancellation of the lease. This is dis-

cussed in more detail in Chapter 7.

71

Service Registration

51

libdocdel@fr.com

72

ChaanS

52

The major task of the server is then over. It will have successfully exported the

service to a number of lookup services. What the server then does depends on how

long it needs to keep the service alive or registered. If the exported service can do

everything that the service needs to do, and does not need to maintain long-term

registration, then the server can simply exit. More commonly, if the exported service

object acts as a proxy and needs to communicate back to the service, then the server

can sleep so that it maintains the existence of the service. If the service needs to be

re-registered before timeout occurs, the server can also sleep in this situation.

The SimpleService Program

A unicast server that exports its service and does nothing else is shown in the

following SimpleService program:

package basic;

import net.jini.core.discovery.LookupLocator;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import java.io.Serializable;

/**

* SimpleSerice.java
*/

public class SimpleService implements Serializable {

static public void main(String argv[]) {

new SimpleService();

public SimpleService() {

LookupLocator lookup = null;

ServiceRegistrar registrar = null;

try {

lockup = new LookupLocator("jini://localhost");

} catch(java.net.MalformedURLException e) {

System.err.println("Lookup failed: “ + e.toString());

System.exit(1);

try {

72

libdocdel@fr.com

73

Service Registration

registrar = lookup.getRegistrar();

} catch (java.io.IOException e) {

System.err.println("Registrar search failed:

System.exit(1);

} catch (java.lang.ClassNotFoundException e) {

System.err.println("Registrar search failed:

System.exit(1);

+ e.toString());

+ e.toString());

// register ourselves as service, with no serviceID
// or set of attributes

ServiceItem item = new ServiceItem(null, this, null);

ServiceRegistration reg = null;

try {

// ask to register for 10,000,000 milliseconds

reg = registrar.register(item, 10000000L);

} catch(java.rmi.RemoteException e) {

System.err.println("Register exception: + e.toString());

}

System.out.println("Service registered");

// we can exit here it the exported service object can do

// everything, or we can sleep it it needs to communicate
// to us or we need to renew a lease later

//

// Typically, we will need to renew a lease later

} // SimpleService

Running the SimpleService

The SimpleService program needs to be compiled and run with j ini-core . jar in its

CLASSPATH. When run, it will attempt to connect to the service locator, so obviously

one needs to be running on the machine specified in order for this to happen.

Otherwise, it will throw an exception and terminate.

The instance data for the service object is transferred in serialized form

across socket connections. This instance data is kept in this serialized form by

the lookup services. Later, when a client asks for the service to be reconstituted,

it will use this instance data and also will need the class files. At this point, the

class files will also need to be transferred, probably by an HTTP server. There is

no need for additional RMI support services, such as rmiregistry or rmid, since

all registration is done by the register() method.

53

73

libdocdel@fr.com

74

ChapkrS

54

Information from the ServiceRegistration

The ServiceRegistrar object’s register() method is used to register the service,

and in doing so returns a ServiceRegistration object. This can be used to give

information about the registration itself. The relevant methods are these:

ServiceID getServiceID();

Lease getLease();

The service ID can be stored by the application if it is going to re-register again

later. The lease object can be used to control the lease granted by the lookup loca-

tor, and it will be discussed in more detail in Chapter 7. For now, we can just use it

to find out how long the lease has been granted for by using its get Expiration()
method:

long duration = reg.getLease().getExpiration() —

System.currentTimeMillis();

System.out.println("Lease expires at: " +
duration +

" milliseconds from now");

Service ID

A service is unique in all the world. It runs on a particular machine and performs

certain tasks. However, it will probably register itself with many lookup services.

It should have the same “identity” on all of these. In addition, if either the service

or one of these locators crashes or restarts, then this identity should be the same
as before.

The ServiceID plays the role of unique identifier for a service. It is a 128-bit

number generated in a pseudo-random manner and is effectively unique—the

chance that the generator might duplicate this number is vanishingly small. Ser-

vices do not generate this identifier because the actual algorithm is not a public

method of any class. Instead, a lookup service should be used.When a service

needs a new identifier, it should register with a lookup service using a null service

ID. The lookup service will then return a value.

The first time a service starts, it should ask for a service ID from the first

lookup service it registers with. It should reuse this for registration with every

other lookup service from then on. If it crashes and restarts, then it should use the

same service ID again, which means that it should save the ID in persistent storage

and retrieve it on restarting. The previous code is not well—behaved in this respect.

74

libdocdel@fr.com

75

Entries

A server can announce a number of entry attributes when it registers a service

with a lookup service. It does so by preparing an array of Entry objects and passing

them into the Serviceltem used in the register() method of the registrar. There is

no limitation to the amount of information the server can include about the ser-

vice, and it is better if the server gives more information than less; in later searches

by clients, each entry is treated as though it were OR’ed with the other entries. In

other words, the more entries that are given by the server, the more information is

available to clients, and the greater the chance of matching a client’s requirements.

For example, suppose we have a coffee machine on the seventh level in room

728 of our building, which is known as both “GP South Building” and “General

Purpose South Building.” Information such as this, and general information about

the coffee machine, can be encapsulated in the convenience classes Location and

Comment from the net .jini.1ookup. entry package. If this were on our network as a

service, it would advertise itself as follows:

import net.jini.lookup.entry.Location;

import net.jini.lookup.entry.Comment;

Location loci
ll

new Location("7", "728",

“GP South Building");

Location loc2 new Location("7", "728",
ll

"General Purpose South Building");

Comment comment new Comment("DSTC coffee machine“);

Entry[] entries new Entry[] {loc1, loc2, comment};

ServiceItem item = new ServiceItem(..., ..., entries);

registrar.register(item, ...)5

Summary

A service uses the ServiceRegistrar object, which is returned as a proxy from a

locator, to register itself with that locator. The server prepares a ServiceItem that

contains a service object and a set of entries, and the service object may be a proxy

for the real service. The server registers this service and entry information using

the register() method of the ServiceRegistrar object.

Information about a registration is returned as a ServiceRegistration object,

which may be queried for information such as the lease and its duration.

75

Service Registration

55

libdocdel@fr.com

76

CHAPTER 6

Client Search

THIS CHAPTER LOOKS AT WHAT THE CLIENT has to do once it has found a service

locator and wishes to find a service. From the service locator, the client will get a

ServiceRegistIar object. To find a service from the locator, the client needs to pre—

pare a description of the service, which it does using a ServiceTemplate object. The

client will then call one of two methods on the ServiceRegistrar to return either a

single matching service or a set of matching services.

Searching for Services with the ServiceRegistIar

A client gets a ServiceRegistrar object from the lookup service, and it uses the

lookup() method to search for a service stored on that lookup service. Here is

the lookup() method:

public Class ServiceRegistrar {

public java.lang.0bject lookup(ServiceTemplate tmpl)

throws java.Imi.RemoteException;

public ServiceMatches lookup(ServiceTemplate tmpl,

int maxMatches)

throws java . rmi . RemoteException;

The first of these methods just finds a service that matches the request. The sec—

ond finds a set (as many as maxMatches).

The lookup methods use a class of type ServiceTemplate to specify the service
looked for:

package net.jini.core.1ookup;

public Class ServiceTemplate {

public ServiceID serviceID;

public java.lang.Class[] serviceTypes;

public Entry[] attributeSetTemplates;

76

57

libdocdel@fr.com

77

ChapmrB

58

ServiceTemplate(ServiceID serviceID,

java.lang.Class[] serviceTypes,

Entry[] attrSetTemplates);

Although each service should have been assigned a serviceID by a lookup ser-

vice, a client might not know the serviceID (it could be the first time the client has

looked for this service, for example). In this case, the serviceID is set to null. If the

client does know the serviceID, then it can set the value to find the service. The

attributeSetTemplates is a set of Entry elements used to match attributes, and it

will be discussed in the “Matching Services" section, later in this chapter.

The major parameter of the lookup () methods is a ServiceTemplate, which con-

tains a list of serviceTypes. We know that services export instances of a class, but

how does the client ask so that it gets a suitable instance delivered from the lookup

locator?

Although the lookup services keep instances of objects for the service, the

client will only know about a service from its specification (unless it already has a

serviceID for the service), and the specification will almost certainly be a Java

interface. Therefore, the client needs to ask using this interface. An interface can

have a class object just like ordinary classes, so the list of serviceTypes will typically

be a list of class objects for service interfaces. Thus, the client will usually request

an interface object.

To be more concrete, suppose a toaster is defined by this interface:

public interface Toaster extends java.io.SeIializable {

public void setDaIkness(int dark);

public void startToastingO;

A Breville “Extra Lift” toaster would implement this interface in one particular

way, as would other toasters:

public class BrevilleExtraLiftToaster implements Toaster {

public void setDarkness(int dark) {

}

public void startToasting() {

77

libdocdel@fr.com

78

When the Toaster service starts, it exports an object of class

BrevilleExtraLiftToaster to the lookup service. However, the client does not

know what type of toaster is out there, so it will make a request like this:

System.setSecurityManager(new RMISecurityManagerO);

// specify the interface object

Class[] toasterClasses = new Class[1];

toasterClasses[O] = Toaster.class;

// prepare a search template of serviceID, classes and entries

ServiceTemplate template = new ServiceTemplate(nu11,

toasterClasses,

null);

// now find a toaster

Toaster toaster = null;

try {

toaster = (Toaster) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

System.exit(2);

Notice that lookup() can throw an exception. This can occur if, for example, the

service requested cannot be de-serialized.

As a result of calling the lookup() method, an object (an instance of a class

implementing the Toaster interface) has been transported across to the client,

and the object has been coerced to be of this Toaster type. This object has two

methods: setDarkness() and startToasting(). No other information is available

about the toaster’s capabilities because the interface does not specify any more,

and in this case the set of attribute values was null. So the client can call either of

the two methods:

toaster.setDarkness(1);

toaster.startToasting();

Before leaving this discussion, you might wonder what the role of

System. setSecurityManager(new RMISecurityManager()) is. A serialized object has

been transported across the network and is reconstituted and coerced to an object

implementing Toaster. We know that here it will, in fact, be an object of class

BrevilleExtraLiftToaster, but the client doesn’t need to know that. Or does it?

Certainly the client will not have a class definition for this class on its side. But

78

Client Search

59

libdocdel@fr.com

79

ChapwrS

60

when the toaster object begins to run, then it must run using its

BrevilleExtraLiftToaster code! Where does it get it from?

From the server—most likely by an HTTP request on the server. This means

that the Toaster object is loadinga class definition across the network, and this

requires security access. So a security manager capable of granting this access

must be installed before the load request is made.

Note the difference between loading a serialized instance and loading a class

definition: the first does not require access rights; only the second does. So if the

client had the class definitions of all possible toasters, then it would never need to

load a class and would not need a security manager that allows classes to be

loaded across the network. This is not likely, but may perhaps be needed in a high—

security environment.

Receiving the ServiceMatches Object

If a client wishes to search for more than one match to a service request from a

particular lookup service, then it specifies the maximum number of matches it

would like returned by using the maxMatches parameter of the second lookup()

method. The client gets back a ServiceMatches object that looks like this:

package net.jini.core.lookup;

public Class ServiceMatches {

public Serviceltem[] items;

public int totalMatches ;

The number of elements in items need not be the same as totalMatches.

Suppose there are five matching services stored on the locator. In that case,

totalMatches will be set to 5 after a lookup. However, if you used maxMatches to

limit the search to at most two matches, then items will be set to be an array with

only two elements.

In addition, not all elements of this array need be non-null! Note that in

lookup(tmpl) when asking for only one match, an exception can be returned, such

as when the service is not serializable. No exception is thrown here, because

although one match might be bad, the others might still be okay. So a value of null

as the array element value is used to signify this. The following code shows how to

properly handle the ServiceMatches object:

ServiceMatches matches = registrar.lookup(template, 10);

// NB: matches.totalMatches may be greater than matches.items.1ength

for (int n 0; n < matches.items.length; n++) {

79

libdocdel@fr.com

80

Toaster toaster = (Toaster) matches.items[n].service;

if (toaster != null) {

toaster.setDarkness(1);

toaster.startToasting();

}

This code will start up to ten toasters cooking at once!

Matching Services

As mentioned previously, a client attempts to find one or more services that satisfy

its requirements by creating a ServiceTemplate object and using this in a registrar’s

lookup() call. A ServiceTemplate object has three fields:

ServiceID serviceID;

java.lang.Class[] serviceTypes;

EntIy[] attributeSetTemplates;

If the client is repeating a request, then it may have recorded the serviceID

from an earlier request. The serviceID is a globally unique identifier, so it can be

used to identify a service unambiguously. This serviceID can be used by the ser-

vice locator as a filter to quickly discard other services.

Alternatively, a client may want to find a service satisfying several interface

requirements at once. For example, a client may look for a service that implements

both Toaster and FireAlarm (so that it can properly handle burnt toast). The client

will fill the serviceTypes array with all of the interface classes that the service has to

implement.

And finally, the client will specify a set of attributes in the attrSetTemplates

field that must be satisfied by each service. Each attribute required by the client is

taken in turn and matched against the set offered by the service. For example, in

addition to requesting a Toaster with a FireAlarm, a client entry may specify a loca-

tion in GP South Building. This will be tried against all the variations of location

offered by the service. A single match is good enough. An additional client require-

ment of, say, manufacturer would also have to be matched by the service.

The more formal description that follows comes from the ServiceTemplate API
documentation:

1. A service item (item) matches a service template (tmpl) if: item.serviceID

equals tmpl. serviceID (or if tmp1.serviceID is null); and item. service is

an instance of every type in tmpl . serviceTypes; and item.attribute5ets

80

Client Search

61

libdocdel@fr.com

81

Chapter 6

62

contains at least one matching entry for each entry template in

tmpl . attributeSetTemplates.

2. An entry matches an entry template if the class of the template is the

same as, or a superclass of, the class of the entry, and every non-null field

in the template equals the corresponding field of the entry. Every entry

can be used to match more than one template. Note that in a service

template, for serviceTypes and attributeSetTemplates, a null field is

equivalent to an empty array; both represent a wildcard.

Summary

A client prepares a ServiceTemplate, which is a list of class objects and a list of

entries. For each service locator that is found, the client can query the

ServiceRegistrar object by preparing a ServiceTemplate object and calling

the ServiceRegistraI object’s lookup() method to see if the locator has a service

matching the template. If the match is successful, an object is returned that can be

cast into the class required. Service methods can then be invoked on this object.

81

libdocdel@fr.com

82

CHAPTER 7

Leasing

IN DISTRIBUTED APPLICATIONS, THERE MAY BE partial failures of the network or of

components on the network. Leasing is a way for components to register that they

are alive, but to ensure that they are “timed out" if they fail or are unreachable.

Leasing is the mechanism used between applications to give access to resources

over a period of time in an agreed manner.

Leases are requested for periods of time, and these requests may be granted,

modified, or denied. The most common example of a lease is when a service is reg-

istered with lookup services. A lookup service will not want to keep a service

forever, because it may disappear. Keeping information about nonexistent ser-

vices is a waste of resources on the lookup service and also may lead to clients

wasting time trying to access services that aren’t there. As a result, a lookup service

will grant a lease saying that it will only keep information for a certain period of

time, and the service can renew the lease later if it wants to.

Requesting and Receiving Leases

Leases are requested for a period of time. In Iini, a common use of leasing is for a

service provider to request that a copy of the service be kept on a lookup service

for a certain length of time, for delivery to clients on request. The service provider

requests a time in the ServiceRegistIar’s register() method. Two special values of
the time are

0 Lease .ANY—the service lets the lookup service decide on the time

- Lease. FOREVER—the request is for a lease that never expires

The lookup service acts as the granter of the lease and decides how long it will

actually create the lease for. (The lookup service from Sun typically sets the lease

time as only five minutes.) Once it has done that, it will attempt to ensure that the

request is honored for that period of time. The lease is returned to the service and

is accessible through the getLease() method of the ServiceRegistration object.

82

63

libdocdel@fr.com

83

Chapmr?

These objects are shown in Figure 7—1. The following are typical calls to register the
service and then find the lease:

ServiceRegistration reg = registrar.register();

Lease lease = reg.getLease();

Service

exported _
servnce ‘

rec istrar

Figure 7-1. Objects in a leased system

The principal methods of the Lease object are these:

package net.jini.core;

public interface Lease {

void cancel() throws

UnknownLeaseException,

java.rmi.RemoteException;

long getExpiration();

void renew(long duration) throws

LeaseDeniedException,

UnknownLeaseException,

java.rmi.RemoteException;

The expiration value returned from getExpirat ion () is the time in milliseconds

since the beginning of the epoch (the same as in System.currentTimeMillis ()). To

find the amount of time still remaining from the present, the current time can be

subtracted from this, as follows:

long duration = lease.getExpiration() — System.currentTimeMillis();

64

83

libdocdel@fr.com

84

Cancellation

A service can cancel its lease by using cancel(). The lease communicates back to

the lease management system on the lookup service, which cancels storage of the
service.

Expiration

When a lease expires, it does so silently. That is, the lease granter (the lookup ser—

vice) will not inform the lease holder (the service) that it has expired. While it

might seem nice to get warning of a lease expiring so that it can be renewed, this

would have to be done in advance of the expiration (“I’m just about to expire;

please renew me quickly!”) but this would complicate the leasing system and not

be completely reliable anyway (for example, how far in advance is soon enough?).

Instead, it is up to the service provider to call renew() before the lease expires if

it wishes the lease to continue. The parameter for renew() is in milliseconds, and

represents an extra duration from now. This is in contrast to the expiration time

returned from getExpiration(), which is measured since the epoch.

Renewing Leases

Iini supplies a LeaseRenewalManager class that looks after the process of calling

renew() at suitable times.

package net.jini.lease;

public class LeaseRenewalManager {

public LeaseRenewalManager();

public LeaseRenewalManager(Lease lease,

long expiration,

LeaseListener listener);

public void renewFor(Lease lease,

long duration,

LeaseListener listener);

public void renewUntil(Lease lease,

long expiration,

LeaseListener listener);

84

Leasing

65

libdocdel@fr.com

85

Chapter 7

66

WARNING in Hui 1.0, tirixr‘lass’ was in parrkngecom.sur1.j13.r1'i: inflni Li if is

now in package net . jini. lease,

The LeaseRenewalManager manages a set of leases, which may be set by a con-

structor or added later by renewFor() or renewUntil (). The time requested in these

methods is in milliseconds. The expiration time is measured since the epoch,
whereas the duration time is measured from now.

Generally leases will be renewed and the manager will function quietly.

However, the lookup service may decide not to renew a lease and will cause an

exception to be thrown. This will be caught by the renewal manager and will cause

the listener’s notifyo method to be called with a LeaseRenewalEvent as parameter,

which will allow the application to take corrective action if its lease is denied. If the

listener is null, then no notification will take place.

Ifyou are using Iini 1.0, you have to be careful about setting the duration in renew-

For() due to a bug that has since been fixed. Ifyou want the service to be registered

forever, it is tempting to use Lease. FOREVER. However, the Iini 1.0 implementation just

adds this to System . currentTimeMillis (), which overflows to a negative value that is

not checked. As a result, it never does any renewals. You need to check

duration + System.currentTimeMillis() > 0

before calling renewFor(). This is fixed in Iini 1.1. The renewUntil () method can use

Lease . FOREVER with no problems.

Granting and Handling Leases

The preceding discussion looked at leases from the side ofthe client that receives a

lease and has to manage it. The converse of this is the agent that grants leases and

has to manage things from its side. This is more advanced material that you can

skip for now if you want—it is not really needed until Chapter 14. An example of

creating a lease is also given in Chapter 13.

A lease can be granted for almost any remote service—any one where one

object wants to maintain information about another one that is not within the

same virtual machine. As with other remote services, there are the added partial

failure modes, such as network crash, remote service crash, timeouts, and so on.

An object that keeps information on a remote service will hand out a lease to the

service and will want the remote service to keep “pinging" it periodically to say

that it is still alive and that it wants the information kept. Without this periodic

assurance, the object might conclude that the remote service has vanished or is

somehow unreachable, and that it should discard the information about it.

85

libdocdel@fr.com

86

Leases are a very general mechanism for allowing one service to have confi-

dence in the existence of the other for a limited period. Because they are general,

they allow for a great deal of flexibility in use. Because of the potential variety of

services, some parts of the Iini lease mechanism cannot be completely defined

and must be left as interfaces for applications to fill in. This generality means that

all of the details are not filled in for you, as your own requirements cannot be com-

pletely predicted in advance.

A lease is given as an interface, and any agent that wishes to grant leases must

implement this interface. Iini provides two implementations, an AbstractLea se

and a subclass of this, a Landlord Lease.

A main issue in implementing a particular lease class lies in setting a policy for

handling the initial request for a lease period and in deciding what to do when a

renewal request comes in. A couple of simple possibilities are these:

0 Always grant the requested time.

0 Ignore the requested time and always grant a fixed time.

Of course, there are many more possibilities based on the lessor’s expected time to

live, system load, etc.

There are other issues, though. Any particular lease will need a time-out

mechanism. Also, a group of leases can be managed together, and this can reduce

the amount of overhead involved in managing individual leases.

Abstract Lease

An abstract lease gives a basic implementation of a lease that can almost be used

for simple leases.

package com.sun.jini.lease;

public abstract class AbstractLease implements Lease, java.io.Serializable {

protected AbstractLease(long expiration);

public long getExpiration();

public int getSerialFormat();

public void setSerialFormat(int format);

public void renew(long duration);

protected abstract long doRenew(long duration);

86

Leasing

67

libdocdel@fr.com

87

Chapter 7

68

WARNING This (fuss. mu! muse Hm! depend on it. are still ”affirm-J specified

(”Mimi/1‘1!t‘hrmge inflame I-‘rersfrms offinf.

This class supplies straightforward implementations of much of the Lease

interface, with three provisos:

0 The constructor is protected, so that constructing a lease with a specified

duration is devolved to a subclass. This means that a lease duration policy

must be set by this subclass.

0 The renew() method calls into the abstract doRenew() method, again to force

a subclass to implement a renewal policy.

0 The Lease interface does not implement the cancel() method, so this must
also be left to a subclass.

Thus, this class implements the easy things, and leaves all matters of policy to con—
crete subclasses.

Landlord Lease Package

The landlord is a package that allows more complex leasing systems to be built. It

is not part of the Iini specification, but is supplied as a set of classes and interfaces.

The set is not complete in itself—some parts are left as interfaces and need to have

class implementations. These will be supplied by a particular application.

A landlord looks after a set of leases. Leases are identified to the landlord by a

cookie, which is just some object that uniquely labels each lease to its landlord. It

could be an Integer, for example, with a new value for each lease. A landlord does

not need to create leases itself, as it can use a landlord lease factory to do this. (But,

of course, it can create them, depending on how an implementation is done.)

When a client wishes to cancel or renew a lease, it asks the lease to perform the

renewal, and in turn the lease asks its landlord to do it. A client is unlikely to ask

the landlord directly, as it will only have been given a lease, not a landlord.

87

libdocdel@fr.com

88

The principal classes and interfaces in the landlord package are shown in

Figure 7-2, where the interfaces are shown in italicized font and the classes in
normal font.

LandlordLease Landlord

LandlordLeaseFactory LeasePoIicy

A A

LandlordLease.Factory LeaseDurationPolicy

Figure 7-2. Class diagram ofthe landlord package

This fairly complex set of classes and interfaces is driven by a number of
factors:

- The key object in a landlord system is the landlord itself. Because there are

many ways that a landlord could manage a set of leases, the Landlord is an

interface rather than a class, with many possible implementations.

0 Because there are many possible landlords, there could be many possible

lease-types created, which will all be subclasses of Lease. A common design

pattern in such a circumstance is to use a factory object to create the leases.

These factory objects will implement the Landlord LeaseFactory interface.

0 A simple lease implementation was needed for a variety of situations, and

this is the Landlord Lease class. When a particular implementation is chosen,

the factory pattern says that a new factory is needed to create new objects.

So to create LandlordLease objects, the LandlordLease. Factory factory class is

used. (Note the dot (.) in the LandlordLease. Factory class name, which dis-

tinguishes it from the LandlordLeaseFactory interface.) A lease (on the client)

also requires the existence of some handler for its methods on the lease—

granting side, which is the landlord.

0 To handle all policy issues, such as initial granting of lease times, and requests

for lease renewal, a policy object is used. There can be many possible policies

88

Leasing

69

libdocdel@fr.com

89

Chapter 7

70

implementing the LeasePolicy interface. Each lease policy needs to make

decisions about leases, but it needs to make decisions on the lease—granting

side, so a lease policy needs to keep enough information locally to make

proper decisions. The information about leases on the granting side is kept in

leased resources, which are implementations of the Lea sedResource interface.

‘ For each lease on the client side, there will be a leased resource on the grant—

ing side. These must be stored and managed somehow. There may be only a

few leases, but there could be many thousands. There could be relationships

between them (such as linear order), or none at all. So, to avoid decisions

about storage structures that would be wrong half of the time, lease man—

agement is just left as an interface.

lava uses interfaces as specifications without implementation details. For

individual classes this is often fine. However, using interfaces can be limiting when

you are dealing with a set of classes that are expected to interact in certain ways.

Interfaces do not show the interactions that may need to exist in order for an

implementation of the set of classes to function together. This means the interface

definitions are not complete as they stand, because they fail to show the links

between classes that must exist in any implementation. To see what these links

actually are, let us look at a simple implementation for the Foo landlord package.

Ifwe have a landlord for a Foo resource, then we could end up with the class

structure shown in Figure 7-3.

This diagram uses a UML class diagram annotated with arrows and multiplic-

ities. An association with an arrow means that the object at the source of the arrow

will know about the object at the other end of the arrow. For example, each

Landlord Lease knows about (has a reference to) a Foo Landlord, but the landlord

does not know about any leases. At each end of each association between classes,

the multiplicity of that end of the link is also shown. A “*” is a wildcard pattern,

meaning “zero to many.” So for example, any number of Landlord Leases (from zero

upwards) may know about a single FooLandlord.

Some comments are appropriate about the directions and multiplicities:

- A landlord can be managing many leases, but it doesn’t know what the

leases are—the leases know their landlord, and they call its methods using

the lease cookie. So many LandlordLease objects contain a reference to a
FooLandlord .

- Certain requests need to be forwarded through the system. For example, a

renew() request from a lease will get passed to a landlord. The landlord can—

not handle it directly, since the renewal is a matter requiring policy

decisions. It must be passed to a lease policy object. One way of doing this

(as shown in Figure 7-3) is for the landlord to have a reference to a lease

89

libdocdel@fr.com

90

manager, which has a reference to a lease policy. Similarly, a newLease()

request from the landlord will need to invoke a newLease() method on the

factory, and this can be done by ensuring that the lease policy also has a ref-

erence to the factory.

- A factory may be used by many lease policies, a policy may be used by many

lease managers, and a lease manager may be used by many landlords.

LandlordLease

cancel()

renew(duration)

1

Foo
Landlord

cancel(cookie) renew(leasedFiesource,

renew(cookie, duration) duration)

newLease(foo, duration) leaseFor(leaseResource, °:°k'eoo

Foo

LeasedResource

1 duration)

*

F00 LandlordLease.
LeaseManager Factor

register(leasedResource, newLease(landlord,
duration) duration, cookie)

1

Figure 7—3. Class diagram ofa landlord implementation

LandlordLease Class

The Landlord Lease class extends Abstract Lease. This class has the private fields

cookie and landlord, as shown in Figure 7-4.

90

leasing

71

libdocdel@fr.com

91

Chapmr?

72

cancel()

renew(duration)
l

AbstractLease

renew(duration)

doFlenew(duration)

Landlord landlord

doRenew(duration)

Figure 7-4. The class diagramfor LandlordLease

Implementation of the methods cancel ()and doRenew() in the Landlord Lease is

deferred to its landlord. The implementation of these methods in Landlord Lease

simply passes the requests on to the landlord:

public void cancel() {

landlord.cancel(cookie);

protected long doRenew(long renewDuration) {

return landlord.renew(cookie, renewDuration);

The Landlord Lea se class can be used as is, with no subclassing needed. Note

that the landlord system produces these leases but does not actually keep them

anywhere—they are passed on to clients, which then use the lease to call the land—

lord and hence interact with the landlord lease system. Within the landlord

system, on the lessor side, the cookie is used as an identifier for the lease.

91

libdocdel@fr.com

92

LeasedResource Interface

A Leased Resource is a convenience wrapper around a resource that includes extra

information about a lease and methods for use by landlords. It defines an interface
as follows:

public interface LeasedResource {

public void setExpiration(long newExpiration);

public long getExpiIation();

public Object getCookie();

This interface includes the cookie, a unique identifier for a lease within a

landlord system, as well as expiration information for the lease. This is all the

information maintained about the lease that has been given out to a client.

An implementation of Lea sedResource will typically include the resource that is

leased, plus a method of setting the cookie. The following code shows an example:

/**

* FooLeasedResource.java
*/

package foolandlord;

import com.sun.jini.lease.landlord.LeasedResource;

public class FooLeasedResource implements LeasedResource {

static protected int cookie = 03

protected int thisCookie;

protected Foo foo;

protected long expiration = 0;

public FooLeasedResource(F00 foo) {

this.foo = foo;

thisCookie = cookie++;

public void setExpiration(long newExpiIation) {

this.expiration = newExpiration;

public long getExpiIation() {

return expiration;

92

Leasing

73

libdocdel@fr.com

93

74

ChapWr?

public Object getCookie() {

return new Integer(thisCookie);

public Foo getFoo() {

return foo;

}

} // FooLeasedResource

LeasePolicy Interface

A lease policy is used when a lease is first granted and when it tries to renew itself.

The time requested may be granted, modified, or denied. A lease policy is speci-

fied by the LeasePolicy interface.

package com.sun.jini.lease.landlord;

public interface LeasePolicy {

public Lease leaseFor(LeasedResource resource, long requestedDuration)

throws LeaseDeniedException;

public long renew(LeasedResource resource, long requestedDuration)

throws LeaseDeniedException, UnknownLeaseException;

public boolean ensuIeCurrent(LeasedResource resource);

This interface includes a factory method, lea seFor 0, that returns a lease

based on the policy and request.

LeaseDurationPolicy Class

An implementation of the LeasePolicy interface is given by LeaseDurationPolicy

class. This class grants and renews leases based on constant values for maximum

and default lease durations, as shown here:

package com.sun.jini.lease.landlord;

public class LeaseDurationPolicy implements LeasePolicy {

public LeaseDurationPolicy(long maximum, long defaultLength,

93

libdocdel@fr.com

94

Landlord landlord, LeaseManager mgr, LandlordLeaseFactory factory);

public Lease leaseFor(LeasedResource resource, long requestedDuration)

throws LeaseDeniedException;

public long renew(LeasedResource resource, long requestedDuration);

public boolean ensureCurrent(LeasedResource resource);

In addition to implementing the interface methods, the constructor also

passes in the factory to be used (which will probably be a LandlordLease . Factory)

and maximum and default lengths for leases. The maximum duration is to set a

hard upper limit (which could he, say, Lease. FOREVER), while the default is what is

granted if the client asks for a duration of Lease .ANY.

LeaseManager Interface

The operations that can be carried out on a lease are creation, renewal, and can-

cellation. The first two are subject to the lease policy and must be handled by the

leaseFor() and renew() methods of the policy. These set or alter the properties of a

single lease. There may be many leases for a resource, or even many resources with

one or more leases. Some level of management for a group of leases may be

needed, and this is done by a Lea seManager.

The LeaseManager interface is defined as follows:

package com.sun.jini.lease.landlord;

public interface LeaseManager {

public void register(LeasedResource resource, long duration);

public void renewed(LeasedResource resource, long duration,

long oldExpiration);

This LeaseManager doesn’t actually manage the leases, since they have been

given to the client. Rather, it handles the lease resource, which has the cookie

identifier and the expiration time for the lease.

An implementation of Lea seManager will look after a set of leases (really, their

resources) by adding a new lease resource to its set for each lease, and by updating

information about renewals. The interface does not include a method for inform—

ing the manager of cancelled leases, though—that is done to the Landlord instead,

by the lease when the lease’s ca ncel() method is called.

This split responsibility between LeaseManager and Landlord is a little awkward

and can possibly lead to memory leaks, with the manager holding a reference to a

94

Leasing

75

libdocdel@fr.com

95

Chapmr?

76

lease (resource) that the landlord has cancelled. Either the list of lease resources

must be shared between the two, or the landlord must ensure that it passes on

cancellations to the manager.

There is also the question of how the lease manager is informed of changes

to individual leases by the lease policy. The LeaseDurationPolicy will pass on this

information in its leaseFor() and renew() methods, but other implementations

of LeasePolicy need not. As we only use the LeasePolicy implementation, we are

okay here.

A third question is who looks after leases expiring, and how this can be done.

No part of the landlord specifications talk about this or give a suitable method.

This suggests that it, too, is subject to some sort of policy, but it is not one with

landlord support. It is left to implementations of one of the landlord interfaces, or

to a subclass. A convenient place to locate this checking is in the lease manager,

because it has knowledge of all the leases and their duration. Possible ways of

doing this include the following:

0 A thread per lease, which will sleep and time out when the lease should

expire. This will need to sleep again if the lease has been renewed in the
meantime.

- A single sleeper thread sleeping for the minimum period of all leases. This

may need to be interrupted ifa new lease is created with a shorter expiration

period.

0 A pollng mechanism in which a thread sleeps for a fixed time and then

cleans up all leases that have expired in the meantime.

0 A lazy method, in which no active thread looks for lease expiries but just

cleans them up if it comes across expired leases while doing something else.

(This lazy approach is taken by the IavaSpaces Outrigger service, which

grants leases for Entry objects).

The Foo LeaseManager implements this third polling mechanism method:

/**

* FooLeaseManager.java

*/

package foolandlord;

import java.util.*;

import net.jini.core.lease. Lease;

import com.sun.jini.1ease.landlord.LeaseManager;

import com.sun.jini.lease.landlord.LeasedResource;

import com.sun.jini.1ease.1andlord.LeaseDurationPolicy;

95

libdocdel@fr.com

96

Leasing

import com.sun.jini.lease.landlord.Landlord;

import com.sun.jini.lease.landlord.LandlordLease;

import com.sun.jini.lease.landlord.LeasePolicy;

public class FooLeaseManager implements LeaseManager {

protected static long DEFAULT_TIME = 30*1000L;

protected Vector fooResources = new Vector();

protected LeaseDurationPolicy policy;

public FooLeaseManager(Landlord landlord) {

policy = new LeaseDurationPolicy(Lease.FOREVER,

DEFAULT_TIME,

landlord,

this,

new LandlordLease.Factory());

new LeaseReaper().run();

public void register(LeasedResource r,long duration) {

fooResources.add(r);

public void renewed(LeasedResource I, long duration, long olddur) {

// no smarts in the scheduling, so do nothing

public void cancelAll(0bject[] cookies) {

for (int n cookies.length; --n >= 0;) {

cancel(cookies[n]);

public void cancel(0bject cookie) {

for (int n = fooResources.size(); --n >= 0;) {

FooLeasedResource r = (FooLeasedResource) fooResources.elementAt(n);

if (r.getCookie().equals(cookie)) {

fooResources.removeElementAt(n);

public LeasePolicy getPolicy() {

77

96

libdocdel@fr.com

97

Chapmr?

return policy;

public LeasedResource getResource(Object cookie) {

for (int n = fooResources.size(); --n >= 0;) {

FooLeasedResource r = (FooLeasedResource) fooResources.elementAt(n);

if (r.getCookie().equals(cookie)) {

return I;

}

return null;

class LeaseReaper extends Thread {

public void run() {

while (true) {

try {

Thread.sleep(DEFAULT_TIME) ;

}

catch (InterruptedException e) {

}

for (int n = fooResources.size()—1; n >= 0; n--) {

FooLeasedResource r = (FooLeasedResource)

fooResources.elementAt(n)

if (!policy.ensureCurrent(r)) {

System.out.println("Lease expired for cookie = " +

r.getCookie()) ;

fooResources.removeElementAt(n);

} // FooLeaseManager

78

97

libdocdel@fr.com

98

Landlord Interface

The Landlord is the final interface in the package that we need for a basic landlord

system. Other classes and interfaces, such as LeaseMap are for handling leases in

batches, and will not be dealt with here. The Landlord interface is as follows:

package com.5un.jini.lease.landlord;

public interface Landlord extends Remote {

public long renew(0bject cookie, long extension)

throws LeaseDeniedException, UnknownLeaseException, RemoteException;

public void cancel(Object cookie)

throws UnknownLeaseException, RemoteException;

public RenewResults renewAll(Object[] cookie, long[] extension)

throws RemoteException;

public void cancelAll(Object[] cookie)

throws LeaseMapException, RemoteException;

The renew() and cancel() methods are usually called from the renew() and

cancel() methods of a particular lease. The renew() method needs to use a policy

object to ask for renewal, and in the Foo Landlord implementation, it gets this policy

from the FooLeaseManager. The cancel() method needs to modify the list of leases,

and in the FooLandlord implementation, it passes this on to the FooLeaseManager,

since that is the only object that maintains a list of resources.

There must be a method to ask for a new lease for a resource, and this is not

specified by the landlord package. This request will probably be made on the

lease-granting side, and this should have access to the landlord object, which

forms a central point for lease management. 80, an implementation of this inter—

face will quite likely have a method such as

public Lease newFooLease(Foo foo, long duration);

which will give a lease for a resource.

The lease used in the landlord package is a LandlordLease. This contains a pri—

vate field, which is a reference to the landlord itself. The lease is given to a client as

a result of newFooLease (), and this client will usually be a remote object. This will

involve serializing the lease and sending it to this remote client. While serializing

it, the landlord field will also be serialized and sent to the client.

98

Leasing

79

libdocdel@fr.com

99

Chapmr7

80

When the client methods such as renew() are called, the implementation of

the LandlordLease will make a call to the landlord. The lease is on the client, which

by then will be remote from its origin where the landlord lives. That means the land-

lord object invoked by the lease will need to be a remote object making a remote

call. The Landlord interface already extends Remote, but if it is to run as a remote

object, then the easiest way is for Foo Landlord to extend the Unica stRemoteObject
class.

Putting all this together for the FooLandlord class gives us this:

/**

* FooLandlord.java
*/

package foolandlord;

import com.sun.jini.lease.landlord.*;

import net.jini.core.lease.LeaseDeniedException;

import net.jini.core.lease.Lease;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.Remote;

public class FooLandlord extends UnicastRemoteObject

implements Landlord {

FooLeaseManager manager;

public FooLandlord() throws java.rmi.RemoteException {

manager = new FooLeaseManager(this);

public void cancel(0bject cookie) {

manager.cancel(cookie);

public void cancelAll(Object[] cookies) {

manager.cancelAll(cookies);

public long renew(java.lang.0bject cookie,

long extension)

throws net.jini.core.1ease.LeaseDeniedException,

net.jini.core.lease.UnknownLeaseException {

LeasedResource resource = manager.getResource(cookie);

it (resource != null) {

99

libdocdel@fr.com

100

return manager.getPolicy().renew(resource, extension);

}

return -1;

public Lease newFooLease(Foo foo, long duration)

throws LeaseDeniedException {

FooLeasedResource r = new FooLeasedResource(foo);

return manager.getPolicy().1easeFor(r, duration);

public Landlord.RenewResults renewAll(java.1ang.0bject[] cookies,

long[] extensions) {

long[] granted = new long[cookies.length];

Exception[] denied = new Exception[cookies.length];

for (int n = cookies.length; -—n >= 0;) {

fly{

granted[n] = renew(cookies[n], extensions[n]);

denied[n] = null;

} catch(Exception e) {

granted[n] = -1;

denied[n] = e;

}

return new Landlord.RenewResults(granted, denied);

}

} // FooLandlord

Building an implementation ofthe landlord package, such as the Foo package,

means providing implementations of the Landlord, Lea sed Resource, and

LeaseManager interfaces. This has been done using the FooLandlord, FooLeasedResource,

and FooLeaseManager classes.

Summary

Leasing allows resources to be managed without complex garbage-collection

mechanisms. Leases received from services can be dealt with easily, using

LeaseRenewalManager. Entities that need to hand out leases can use a system, such

as the landlord system, to handle these leases.

100

Leasing

81

libdocdel@fr.com

101

CHAPTER 8

A Simple Example

THIS CHAPTER LOOKS AT A SIMPLE PROBLEM to give a complete example of a Iini ser-

vice and client.

Before a Iini service can be built, common knowledge must be defined about

the type of service that will be offered. This involves designing a set of “well-known"

classes and interfaces. Based on a well-known interface, a client can be written to

search for and use services implementing the interface.

The client can use either a unicast or multicast search to find services, but it

will be uninterested in how any particular service is implemented. This chapter

looks at building clients using both methods, and these clients will be heavily

reused throughout the rest of the book.

The service, on the other hand, is implemented by each vendor in a different

way. This chapter discusses a simple choice, with alternatives being dealt with in

the next chapter. It is difficult to get a Iini service and client functioning correctly,

as there are many configuration issues to be dealt with. These are discussed in
some detail.

By the end of this chapter you should be able to build a client and a service,

and configure your system so that they are able to run and communicate with
each other.

Problem Description

Applications often need to work out the type of a file to see if it is a text file, an

HTML document, an executable, etc. This can be done in two ways:

- By examining the file’s name

- By examining the file’s contents

Utilities such as the Unix file command use the second method and have a

complex description file (such as /etc/magic or /usr/share/magic) to aid in this.

Many other applications, such as Web browsers, mail readers, and even some oper-

ating systems, use the first method and work out a file’s type based on its name.

A common way of classifying files is into MIME types, such as text/plain and

image/git. There are tables of “official" MIME types (unofficial ones can be added

101

83

libdocdel@fr.com

102

ChapmrB

84

on an ad hoc basis), and there are also tables of mappings from filename endings

to corresponding MIME types. These tables have entries such as these:

application/postscript ai eps ps

application/rtf rtf

application/zip zip

image/git git

image/jpeg J‘peg jpg J'Pe
text/html html htm

text/plain txt

These tables are stored in files for applications to access.

Storing these tables separately from the applications that would use them is

considered bad from the object—oriented point of View, since each application

would need to have code to interpret the tables. Also, the multiplicity of these

tables and the ability of users to modify them makes this a maintenance problem.

It would be better to encapsulate at least the filename to MIME type mapping

table in an object.

We could define a MIME class as follows:

package standalone;

/**

* MIMEType.java
*/

public class MIMEType {

/**

* A MIME type is made up of 2 parts

* contentType/subtype
*/

protected String contentType;

protected String subtype;

public MIMEType(String type) {

int slash = type.index0f('/');

contentType = type.substring(0, slash-1);

subtype = type.substring(slash+1, type.1ength());

public MIMEType(String contentType, String subtype) {

this.contentType = contentType;

102

libdocdel@fr.com

103

this.subtype = subtype;

public String toString() {

return contentType + "/" + subtype;

}

} // MIMEType

We could then define a mapping class like this:

package standalone;

/**

* FileClassitier.java
*/

public class FileClassitier {

static MIMEType getMIMEType(String tileName) {

if (fileName.endsWith(".gif")) {

return new MIMEType("image", "git");

} else if (fileName.endsWith(".jpeg")) {

return new MIMEType("image", "jpeg");

} else it (fileName.endsWith(".mpg")) {

return new MIMEType("video", "mpeg");

} else it (fileName.endsWith(".txt")) {

return new MIMEType("text", "plain");

} else if (fileName.endsWith(".html")) {

return new MIMEType("text", "html");

} else

// fill in lots of other types,

// but eventually give up and

return null;

}

} // FileClassitier

This mapping class has no constructors, because it just acts as a lookup table via

its static method getMIMEType().

Applications can make use of these classes as they stand, by simply compiling

them and having the class files available at run time. This would still result in

duplication throughout IVMs, possible multiple copies of the class files, and

potentially severe maintenance problems if applications need to be recompiled,

so it might be better to have the FileClassifier as a network service. Let’s consider
what would be involved in this.

103

A Simple Example

85

libdocdel@fr.com

104

Chapter 8

86

Service Specification

If we wish to make a version of FileClassifier available across the network, there

are a number ofpossibilities. The client will be asking for an instance of a class,

and generally will not care too much about the details of this instance. It will want

an object that belongs to the FileClassifier class or one of its subclasses and will

not usually care which of these it gets, as long as it contains the method

getMIMETypeO.

Services will have particular implementations and will upload these to the

service locators. The uploaded service will be of a specific class and may have
associated entries.

There are several options that the client could use in trying to locate a suitable
serv1ce:

1. This is the silly option: push the entire implementation up to the lookup

service and make the client ask for it by its class. Then the client might just

as well create the classifier as a local object, because it has all the informa-

tion needed! This doesn’t lend itself to flexibility with new unknown

services coming along, because the client already has to know the details.

So this option is not feasible.

2. Let the client ask for a superclass of the service. This is better, as it allows

new implementations of a service to just be implemented as new sub—

classes. It is not ideal, as classes have implementation code, and if this

changes over time, there is a maintenance issue with the possibility ofver-

sion “skew.” This can be used for Iini; it just isn’t the best way.

3. Separate the interface completely from the implementation. Make the

interface available to the client, and upload the implementation to the

lookup service. Then, when the client asks for an instance object that

implements the interface, it will get an object for this interface, which

implements the interface in some way or other. The client generally will

not care how the object does this. This will reduce maintenance: if the

client is coded just in terms of the interface, then it will not need recom-

pilation even if the implementation changes. Note that these words will

translate straight into Java terms; the client knows about a Java interface,

whereas the service provider deals in terms of a Java class that imple—
ments the interface.

The ideal mechanism in the Iini world is to specify services by interfaces and

have all clients know this interface. Then each service can be an implementation

of this interface. This is simple in Java terms, simple in specification terms, and

simple for maintenance. This is not the complete set of choices for the service, but

it is enough to allow a service to be specified and to get on with building the client.

104

libdocdel@fr.com

105

One possibility for service implementation is looked at later in this chapter,

and the next chapter is devoted to the full range of possibilities.

Common Classes

The client and any implementations of a service must share some common

classes. For a file-classification service, the common classes are the classifier itself

(which can be implemented as many different services) and the return value, the

MIME type. These have to change very slightly from their standalone form.

MIMEType

The MIMEType class is known to the client and to any file—classifier service. The

MIMEType class file can be expected to be known to the W5 of all clients and ser-

vices. That is, this class file needs to be in the CLASSPATH of every file-classifier

service and of every client that wants to use a file—classifier service.

The getMIMEType() method will return an object from the file-classifier service.

There are implementation possibilities that can affect this object:

0 If the service runs in the client’s IVM, then nothing special needs to be done.

0 If the service is implemented remotely and runs in a separate IVM, then the

MIMEType object must be serialized for transport to the client’s IVM. For this

to be possible, it must implement the Serializable interface. Note that while

the class files are accessible to both client and service, the instance data of

the MIMEType object needs to be serializable to move the object from one
machine to the other.

There can be differences in the object depending on the implementation. If it

implements Serializable, it can be used in both the remote and local cases, but if

it doesn’t, it can only be used in the local case.

Making decisions about interfaces based on future implementation concerns

is traditionally rated as poor design. In particular, the philosophy behind remote

procedure calls is that they should hide the network as much as possible and make

the calls behave as though they were local calls. With this philosophy, there is no

need to make a distinction between local and remote calls at design time. How-

ever, a document from Sun, “A Note on Distributed Computing” by Jim Waldo and

others, argues that this is wrong, particularly in the case ofdistributed objects. The

basis of their argument is that the network brings in a host of other factors, in par—

ticular that of partial failure. That is, part of the network, itself, may fail, or a com—

ponent on the network may fail without all of the network or all of the components

failing. If other components do not make allowance for this possible (or maybe

105

A Simple Example

87

libdocdel@fr.com

106

ChapmrB

88

even likely) behavior, then the system as a whole will not be robust and could be

brought down by the failure of a single component.

According to this document, it is important to determine whether the objects

could be running remotely and to adjust interfaces and classes accordingly at the

design stage. This lets you to take into account possible extra failure modes of

methods, and in this case, an extra requirement on the object. This important

paper is reprinted in the Iini specification book from Sun (Thelini Specification by

Ken Arnold and others) and is also at

http://www.sun.com/research/techrep/1994/abstract_29.html.

These considerations lead to an interface that adds the Serializable interface

to the original version of the MIMEType class, as objects of this class could be sent
across the network.

package common;

import java.io.Serializable;

/**

* MIMEType. java
*/

public class MIMEType implements Serializable {

/**

* A MIME type is made up of 2 parts

* contentType/subtype
*/

protected String contentType;

protected String subtype;

public MIMEType(String type) {

int slash = type.index0f('/');

contentType = type.substring(o, slash-1);

subtype = type.substring(slash+1, type.length());

public MIMEType(String contentType, String subtype) {

this.contentType = contentType;

this.subtype = subtype;

public String toString() {

return contentType + "/" + subtype;

}

} // MIMEType

106

libdocdel@fr.com

107

FileClassifier Interface

Changes have to be made to the file—classifier interface, as well. First, interfaces

cannot have static methods, so we will have to turn the getMIMEType () method into

a public instance method.

In addition, all methods are defined to throw a java . rmi. RemoteException. This

type of exception is used throughout Java (not just by the RMI component) to

mean “a network error has occurred.” This could be a lost connection, a missing

server, a class not downloadable, etc. There is a little subtlety here, related to the

java . rmi . Remote class: the methods of Remote must all throw a RemoteException, but

a class is not required to be Remote if its methods throw RemoteExceptions. If all the

methods of a class throw RemoteExcept ion, it does not mean the class implements

or extends Remote. It only means that an implementation may be implemented as a

remote (distributed) object, and that an implementation might also use the RMI
Remote interface.

There are some very fine points to this, which you can skip ifyou want. Basically,

though, you can't go wrong ifevery method ofa Iini interface throws RemoteExcept ion

and the interface does not extend Remote. In fact, prior to IDK 1.2.2, making the

interface extend Remote would force each implementation of the interface to

actually be a remote object. At)DK 1.2.2, however, the semantics of Remote were

Changed a little, and this requirement was relaxed. From IDK 1.2.2 onwards, an

interface can extend Remote without implementation consequences. At least, that

is almost the case: “unusual” ways ofimplementing RMI, such as over HOP (IIOP is

the transport protocol for CORBA, and RMI can use this), have not yet caught up to

this. So for maximum flexibility, just throw RemoteExcept ion from each method and
don’t extend Remote.

Doing so gives the following interface:

package common;

/**

* FileClassifieI.java
*/

public interface FileClassifier {

public MIMEType getMIMEType(String fileName)

throws java.Imi.RemoteException;

} // FileClasssifier

Why does this interface throw a java . Imi . RemoteException in the getMIMEType()

method?Well, an interface is supposed to be above all possible implementations

107

A Simple Example

89

libdocdel@fr.com

108

Chapwrs

90

and should never change. The implementation discussed later in this chapter does

not throw such an exception. However, other implementations in other sections

use a Remote implementation, and this will require that the method throws a

java . Imi . RemoteException. Since it is not possible to just add a new exception in a

subclass or interface implementation, the possibility must be added in the inter-

face specification.

The Client

The client is the same for all of the possible server implementations discussed

throughout this book. The client does not care how the service implementation is

done, just as long as it gets a service that it wants, and it specifies this by asking for
a FileClassitier interface.

Unicast Client

If there is a known service locator that will know about the service, then there is no

need to search for the service locator. This doesn’t mean that the location of the

service is known, only the location of the locator. For example, there might be a

(fictitious) organization “All About Files” at www . all_aboutjiles . com that would

know about various file services, keeping track of them as they come online, move,

disappear, etc. A client would ask the service locator running on this site for the

service, wherever it is. This uses the unicast lookup techniques:

package client;

import common.FileClassifier;

import common.MIMEType;

import net.jini.core.discovery.LookupLocator;

import net.jini.core.lookup.ServiceRegistIar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import java.Imi.RMISecurityManageI;

import net.jini.core.1ookup.ServiceTemplate;

/**

* TestUnicastFileClassifier.java
*/

public class TestUnicastFileClassifier {

108

libdocdel@fr.com

109

A Simple Example

public static void main(String argv[]) {

new TestUnicastFileClassifier();

public TestUnicastFileClassifier() {

LookupLocator lookup = null;

ServiceRegistrar registrar = null;

FileClassifier classifier = null;

try {

lookup = new LookupLocator("jini://www.all_about_files.com");

} catch(java.net.MalformedURLException e) {

System.err.println("Lookup failed:

System.exit(1);

+ e.toString());

System.setSecurityManager(new RMISecurityManageI());

try {

registrar = lookup.getRegistrar();

} catch (java.io.IOException e) {

System.err.println("Registrar search failed:

System.exit(1);

+ e.toString());

} catch (java.lang.ClassNotFoundException e) {

System.err.println("Registrar search failed: + e.toString());

System.exit(1);

Class[] classes = new Class[] {FileClassifier.class};

ServiceTemplate template = new ServiceTemplate(null, classes, null);

try {

classifier = (FileClassifier) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

System.exit(1);

it (classifier == null) {

System.out.println("Classifier null");

System.exit(2);

}

MIMEType type;

tIy {

91

109

libdocdel@fr.com

110

ChapmrB

92

type = classifier.getMIMEType("ti1e1.txt");

System.out.println("Type is " + type.toString());

} catch(java.rmi.RemoteException e) {

System.err. print1n(e.toString());

}

System.exit(0);

}

} // TestUnicastFileClassifier

The client’s IVM is illustrated in Figure 8-1. This shows a UML class diagram,

surrounded by the WM in which the objects exist.

client JVM

TestFile

Classifier

Service

Registrar

——>

Discovery

File

Classifier

MlMEType

 Lookup ,, |

Figure 8-1. Objects in clientIVM

The client has a main TestFileClassifier class, which has two objects of types

LookupDiscovery and MIMEType. It also has objects that implement the interfaces

ServiceRegistrar and FileClassifier, but it doesn’t know, or need to know, what

classes they are. These objects have come across the network as implementation

objects of the two interfaces.

110

libdocdel@fr.com

111

A Simple Example

Figure 8—2 shows the situation when the service locator's IVM is added in. The

lookup service has an object implementing ServiceRegistrar, and this is the object

exported to the client.

Service

Registrar

service locator
JVM

TestFile
Classifier

Service

Registrar

 File
Classifier

Figure 8-2. Objects in the client and service locatorIVMs

This figure shows that the client gets its registrar from the JVM of the service

locator. This registrar object is not specified in detail. Sun supplies a service loca-

tor known as reggie, which implements the ServiceRegistrar using an imple-

mentation that neither clients nor services are expected to know. The classes that

implement the ServiceRegistraI object are contained in the reggie—d1.jar file and

are downloaded to the clients and services using (typically) an HTTP server.

The figure also shows a question mark for the object in the client implement—

ing FileClassifier. The source of this object is not yet shown; it will get the object

from a service, but we haven’t yet discussed any of the possible implementations

93

111

libdocdel@fr.com

112

ChapmrB

94

of a FileClassifier service. One implementation will be discussed in the “Upload-

ing a Complete Service” section later in this chapter, and others will be discussed

in Chapter 9.

Multicast Client

We have looked at the unicast client, where the location of the service locator is

already known. However, it is more likely that a client will need to search for ser-

vice locators until it finds one holding a service it is looking for. It would need to

use a multicast search for this. If it only needs one occurrence of the service, then

it can exit after using the service. More complex behavior will be illustrated in later

examples.

In this situation, the client does not need to have long-term persistence, but

it does need a user thread to remain in existence for long enough to find service

locators and find a suitable service. Therefore, in main () a user thread sleeps for a

short period (ten seconds).

package client;

import common.FileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

/**

* TestFileClassifier.java
*/

public class TestFileClassifier implements DiscoveryListener {

public static void main(String argv[]) {

new TestFileClassitieI();

// stay around long enough to receive replies

try {

Thread . currentThreadO .sleep(100000L);

} catch(java.lang.InterruptedException e) {

112

libdocdel@fr.com

113

// do nothing

public TestFileClassifier() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoverEvent evt) {

ServiceRegistraI[] registrars = evt.getRegistrars();

Class [] classes = new Class[] {FileClassifier.class};

FileClassifier classifier = null;

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

for (int n = 0,’ n < registrars.length; n++) {

System.out.println("Service found");

ServiceRegistrar registrar = registrars[n];

try {

classifier = (FileClassifier) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

continue;

}

if (classifier == null) {

System.out.println("ClassifieI null");

continue;

// Use the service to classify a few file types

MIMEType type;

try {

113

A Simple Example

95

libdocdel@fr.com

114

Chaper

96

String fileName;

fileName = "file1.txt";

type classifier.getMIMEType(fileName);

printType(fileName, type);

fileName = "filez.rtt";

type classifier.getMIMEType(fileName);

pIintType(fileName, type);

fileName = "tile3.abc";

type classifier.getMIMEType(fi1eName);

printType(fileName, type);

} catch(java.rmi.RemoteException e) {

System.err.println(e.toString());

continue;

}
// success

System.exit(0);

private void printType(String fileName, MIMEType type) {

System.out.print("Type of " + fileName + " is ");

it (type == null) {

System.out.println("null");

} else {

System.out.println(type.toStIing());

public void discarded(DiscoveryEvent evt) {

// empty

}

} // TestFileClassitier

Exception Handling

A Iini program can generate a huge number of exceptions, often related to the net-

work nature of Iini. This is not accidental, but lies at the heart of the Iini approach

to network programming. Services can disappear because the link to them has

vanished, the server machine has crashed, or the service provider has died. Class

files can disappear for similar problems with the HTTP server that delivers them.

114

libdocdel@fr.com

115

Timeouts can occur due to unpredictable network delays. Many of these excep-

tions have their own exception types, such as LookupUnmarshalExcept ion, which

can occur when unmarshalling objects. Many others are simply wrapped in a

RemoteExcept ion, which has a detail field for the wrapped exception.

Since many Iini calls can generate exceptions, these must be handled some-

how. Many]ava programs (or rather, their programmers!) adopt a somewhat

cavalier attitude to exceptions: catch them, maybe put out an error message, and

continue—lava makes it easy to handle errors! More seriously, whenever an excep-

tion occurs, the question has to be asked: Can the program continue, or has its

state been corrupted but not so badly that it cannot recover, or has the program’s state

been damaged so much that the program must exit.

The multicast TestFileClassifier of the last section can throw exceptions at a

number of places:

0 The LookupDiscovery constructor can fail. This is indicative of some serious

network error. The created discover object is needed to add a listener, and if

this cannot be done, then the program really can’t do anything. So it is

appropriate to exit with an error value.

0 The ServiceRegistrar. lookup() method can fail. This is indicative of some

network error in the connection with a particular service locator. While this

may have failed, it is possible that other network connections may succeed.

The application can restore a consistent state by skipping the rest of the

code in this iteration of the for() loop by using a continue statement.

0 The FileClassifier.getMIMETypeO method can fail. This can be caused by a

network error, or perhaps the service has simply gone away. Regardless,

consistent state can again be restored by skipping the rest of this loop
iteration.

Finally, if one part of a program can exit with an abnormal (non-zero) error

value, then a successful exit should signal its success with an exit value of 0. If this

is not done, then the exit value becomes indeterminate and is of no value to other

processes that may wish to know whether the program exited successfully or not.

The Service Proxy

A service will be delivered from out of a service provider. That is, a server will be

started to act as a service provider. It will create one or more objects, which

between them will implement the service. Amongst these will be a distinguished

object—the service object. The service provider will register the service object with

service locators and then will wait for network requests to come in for the service.

115

A Simple Example

97

libdocdel@fr.com

116

Chapter 8

98

What the service provider will actually export as a service object is usually a proxy

for the service. The proxy is an object that will eventually run in a client and will

usually make calls back across the network to service backend objects. These

backend objects running within the server actually complete the implementation
of the service.

The proxy and the service backend objects are tightly integrated; they must

communicate using a protocol known to them both, and they must exchange

information in an agreed upon manner. However, the relative size of each is up to

the designer of a service and its proxy. For example, the proxy may be “fat” (or

“smart”), which means it does a lot of processing on the client side. Backend

object(s) within the service provider are then typically “thin,” not doing much at

all. Alternatively, the proxy may be “thin,” doing little more (or nothing more) than

passing requests between the client and “fat” backend objects, and most process-

ing will be done by the backend objects running in the service provider.

As well as this choice of size, there is also a choice of communication mecha—

nisms between the client and service provider objects. Client/ server systems often

have the choice of message—based or remote procedure call (RPC) communica-

tions. These choices are also available between a Iini proxy and its service. Since

they are both in Java, there is a standard RPC—like mechanism called RMI (Remote

Method Invocation), and this can be used if wanted. There is no need to use this,

but many implementations of lini proxies will do so because it is easy. RMI does

force a particular choice of thin proxy to fat service backend, though, and this may
not be ideal for all situations.

This chapter will look at one possibility only, where the proxy is fat and is the

whole of the service implementation (the service backend is an empty set of

objects). This is the simplest way of implementing the file-classifier service, but

not always the most desirable. Chapter 9 will look in more detail at the other

possibilities.

Uploading a Complete Service

The file-classifier service does not rely on any particular properties of its host—it is

not hardware or operating-system dependent, and does not make use of any files

on the host side. In this case, it is possible to upload the entire service to the client

and let it run there. The proxy is the service, and no processing elements need to
be left on the server.

116

libdocdel@fr.com

117

A Simple Example

FileClassifier Implementation

The implementation of the FileClassifier is straightforward:

package complete;

import common.MIMEType;

import common.FileClassi+ier;

/**

* FileClassitierImpl.java
*/

public class FileClassifierImpl implements FileClassifier, java.io.$eria1izable {

public MIMEType getMIMEType(String fileName) {

if (fileName.endsWith(".gif")) {

return new MIMEType("image", "git");

} else if (fileName.endswith(".jpeg")) {

return new MIMEType("image", “jpeg");

} else if (fileName.endswith(".mpg")) {

return new MIMEType("video", "mpeg");

} else if (fileName.endsNith(".txt")) {

return new MIMEType("text", “plain");

} else if (fileName.endsWith(”.html")) {

return new MIMEType("text", ”html");

} else

// fill in lots of other types,

// but eventually give up and

return null;

public FileClassifierImpl() {

// empty

}

} // FileClassifierImpl

FileClassifierServer Implementation

The service provider for the file—classifier service needs to create an instance of the

exportable service object, register this, and keep the lease alive. In the discovered ()

99

117

libdocdel@fr.com

118

Chaper

100

method, it not only registers the service but also adds it to a LeaseRenewalManager,

to keep the lease alive “forever.” This manager runs its own threads to keep re-

registering the leases, but these are daemon threads. 50 in the main() method, the

user thread goes to sleep for as long as we want the server to stay around.

The following code uses an “unsatisfied wait” condition that will sleep forever

until interrupted. Note that if the server does terminate, then the lease will fail to

be renewed and the exported service object will be discarded from lookup locators

even though the server is not required for delivery of the service.

The serviceID is initially set to null. This may be the first time this service is

ever run, or at least the first time it is ever run with this particular implementation.

Since service IDs are issued by lookup services, it must remain null until at least

the first registration. Then the service ID can be extracted from the registration

and reused for all further lookup services. In addition, the service ID can be saved

in some permanent form so that if the server crashes and restarts, the service ID

can be retrieved from permanent storage. The following server code saves and

retrieves this value in a FileClassifier . id file. Note that we get the service ID from

the registration, not from the registrar.

package complete;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoverEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.1ookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistIation;

import net.jini.core.lease.Lease;

import net.jini.core.1ookup.ServiceID ;

// import com.sun.jini.lease.LeaseRenewalManager; // Jini 1.0

// import com.sun.jini.lease.LeaseListener; // Jini 1.0

// import com.sun.jini.lease.LeaseRenewalEvent; // Jini 1.0

import net jini.lease.LeaseListener; // Jini 1.1

import net.jini.lease.LeaseRenewa1Event; // Jini 1.1

import net.jini.lease.LeaseRenewalManager; // Jini 1.1

import java.io.*;

/**

* FileClassifierServer.java
*/

public class FileClassifierServer implements DiscoveryListener,

118

libdocdel@fr.com

119

A Simple Example

LeaseListener {

protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

protected ServiceID serviceID = null;

public static void main(String argv[]) {

new FileClassifierServer();

// keep server running forever to

// - allow time for locator discovery and

// - keep re—registering the lease

Object keepAlive = new Object();

synchronized(keepAlive) {

try {

keepAlive.wait();

} catch(java.lang.InterruptedException e) {

// do nothing

public FileClassifierServer() {

// Try to load the service ID from file.

// It isn't an error if we can't load it, because

// maybe this is the first time this service has run

DataInput din = null;

try {

din = new DataInputStream(new FileInputStream("FileClassi'Fier.id"));

serviceID = new ServiceID(din);

} catch(Exception e) {

// ignore

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println("Discovery failed " + e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

101

119

libdocdel@fr.com

120

(Maper

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

ServiceItem item = new ServiceItem(serviceID,

new FileClassifierImpl(),

null);

ServiceRegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);

} catch(java.rmi.RemoteException e) {

System.erI.println("Register exception: " + e.toString());

continue;

}

System.out.println("Service registered with id " + reg.getServiceID());

// set lease renewal in place

leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

// set the serviceID if necessary

if (serviceID == null) {

serviceID = reg.getServiceID();

// try to save the service ID in a file

DataOutputStream dout = null;

try {

dout = new DataOutputStream(new

FileOutputStream("FileClassitier.id"));

serviceID.writeBytes(dout);

dout.flush();

} catch(Exception e) {

// ignore

public void discarded(DiscoveryEvent evt) {

102

120

libdocdel@fr.com

121

A Simple Example

public void notify(LeaseRenewalEvent evt) {

System.out.println("Lease expired " + evt.toString());

} // FileClassifierServer

Figure 8-3 shows the server, by itself, running in its JVM.

server JVM

FileClassifier

Server

Service

Registrar

A

LeaseRenewal

Manager

Discovery
File

Classifier

A

FileClassifier

lmpl

Figure 8-3. Objects in the serverIWVI

Figure 8-2 showed that the client receives an object implementing

ServiceRegistrar from the service locator (such as reggie).When we add in the

service locator and the client in their IVMs, the picture looks like what is shown

in Figure 8-4.

103

121

libdocdel@fr.com

122

Chapter 8

104

Service
Reglslrar

TestFI le

Classmer Server

LeaseRenewal \
Manager

File
Classlller

Figure 8-4. Objects in all theW3

The unknown FileClassifier object in the client is here supplied by the service

object F ileClassitieIImpl (Via the lookup service, where it is stored in passive form).

Client Implementation

The client for this service was discussed earlier in the section “The Client.” The

client does not need any special information about this implementation of the

service and so can remain quite generic.

What Classes Need to Be Where?

In this chapter we have defined the following classes:

0 common . MIMEType (in the section “Common Classes”)

0 common. FileClassifier (in the section “Common Classes”)

- complete. FileClassitieIImpl (in the section “Uploading a Complete

Service”)

122

libdocdel@fr.com

123

0 complete . FileClassifierServer (in the section “Uploading a Complete
Service”)

0 client .TestFileClassifier (in the section “The Client")

These classes are all required to run a file-classifier application that consists of a
file-classifier client and a file-classifier service.

Instance objects of these classes could be running on up to four different
machines:

0 The server machine for F ileClassifier

' The machine for the lookup service

0 The machine running the TestFileClassifier client

0 An HTTP server will need to run somewhere to deliver the class file defini-

tion of FileClassifierImpl to clients

What classes need to be “known” to which machines? The term “known” can refer

to different things:

0 The class may be in the CLASSPATH of a IVM.

‘ The class may be loadable across the network.

' The class may be accessible by an HTTP server.

Service Provider

The server running FileClassifierServer needs to know the following classes and
interfaces:

- The common. FileClassifier interface

0 The common.MIMEType class

0 The complete. FileClassifierServeI class

0 The complete. FileClassifierImpl class

These classes all need to be in the CLASSPATH of the server.

123

A Simple Example

105

libdocdel@fr.com

124

Chapter 8

106

HTTP Server

The class complete. FileClassifierImpl will need to be accessible to an HTTP

server, as discussed in the next section.

Lookup Service

The lookup service does not need to know any of these classes. It just deals with

them in the form of a java . Imi . MarshalledObject.

Client

The client needs to know the following:

0 The common. FileClassifieI interface

0 The common . MIMEType class

' The client.TestFileClassitier class

These all need to be in the CLASSPATH of the client. In addition, the client will need

to know the class files for complete. FileClassifieIlmpl. However, these will come

across the network as part of the discovery process, and this will be invisible to the

client's programmer.

Running the FileClassifieI

We now have a FileClassitierServer service and a TestFileClassifier client to

run. There should also be at least one lookup locator already running. The

CLASSPATH should be set for each to include the classes discussed in the last section,

in addition to the standard ones.

A serialized instance of complete. FileClassifierImpl will be passed from the

server to the locator and then to the client. Once on the client, the Jini classes will

need to be able to restore the FileClassifierImpl object from the instance data and

from the class file, and so will need to load the FileClassitierImpl class file from
an HTTP server. The location of this class file relative to the server’s DocumentRoot

will need to be specified by the service invocation. For example, if it is stored in

/DocumentRoot/classes/complete/FileClassitierImpl . class, then the service will be

started by this command:

124

libdocdel@fr.com

125

java —Dj ava . rmi . codebase=httpz //hostname/classes \

complete. FileClassifierServer

In this command, hostname is the name of the host the server is running on.

Note that this host name cannot be localhost, because the local host for the server

will not be the local host for the client!

The client will be loading a class definition across the network. It will need to

allow this in a security policy file with the following statement:

java —Djava.security.policy=policy.a11 client.TestFileClassi-fier

Summary

The material of the previous chapters is put together in this chapter in a simple

example. The requirements of class structures for a Iini system are discussed,

along with details ofwhat classes need to be available to each component of a Iini

system.

125

A Simple Example

107

libdocdel@fr.com

126

CHAPTER 9

Choices for Service

Architecture

A CLIENT WILL ONLY BE LOOKING for an implementation of an interface, and the

implementation can be done in many different ways, as discussed in this chapter.

In the previous chapter we discussed the roles of service proxy and service back-

end and briefly talked about how different implementations could place different

amounts of processing in the proxy or backend. This can lead to situations such as

a thin proxy communicating to a fat backend using RMI, or at the other end of the

scale, to a fat proxy and a thin backend. The last chapter showed one implementa-

tion—a fat proxy with a backend so thin that it did not exist. This chapter fills in

some of the other possibilities.

Proxy Choices

A Iini service will be implemented using a proxy on the client side and a service

backend on the service provider side. In RPC-like systems there is little choice: the

proxy must be thin and the backend must be fat. Message—based client/ server sys-

tems allow choices in the distribution of processing, so that one or other side can

be fat or thin, or they can equally share. Iini allows a similar range of choices, but

does so using the object-oriented paradigm supported by Java. The following sec-

tions discuss the choices in detail, giving alternative implementations of a file-
classifier service.

Proxy Is the Service

One extreme proxy situation is where the proxy is so fat that there is nothing left to

do on the server side. The role of the server is to register the proxy with service

locators and just to stay alive (renewing leases on the service locators). The service

itself runs entirely within the client. A class diagram for the file classifier problem

using this method is given in Figure 9-1. This was the implementation discussed in

the previous chapter.

126

109

libdocdel@fr.com

127

Chapter 9

110

FiIeCIassifier

FiIeCIassifierImpI

Figure 9-1. Class diagramforfile classifier

We have already seen the full object diagram for the WMS in Chapter 8, but

just concentrating on these classes looks like Figure 9-2.

client JVM
server JVM

 FileClassifierlmpl ' \ FiieClassifierlmpl
Figure 9-2. Objects in theIVMs

The client asks for a FileClassifieI. What is uploaded to the service locators,

and thus what the client gets, is a FileClassifierImpl. The FileClassifierImpl runs

entirely within the client and does not communicate back to its server at all. This

can also be done for any service if the service is purely a software one that does not

need any link back to the server. It could be something like a calendar that is inde-

pendent of location, or a diary that uses files on the client side rather than the

server side.

RMI Proxy

The opposite proxy extreme is where all of the processing is done on the server

side. The proxy just exists on the client to take calls from the client, invoke the

method in the service on the server, and return the result to the client. Java’s RMI

127

libdocdel@fr.com

128

Choicesfor Service Architecture

does this in a fairly transparent way (once all the correct files and additional serv-

ers are set up!).

A class diagram for an implementation of the file classifier using this mecha-

nism is shown in Figure 9.3.

 FileClassifierImpLStub FiIeCIassifierImpI

Figure 9-3. Class diagram for RMI proxy

The objects in the WMS are shown in Figure 9-4.

client JVM
sewer JVM

FileClassifierlmpl FileClassifierlmpLStub “ \

FileClassifierlmpl_Stub
Figure 9-4. IVM objectsfor RMIproxy

The full code for this mechanism is given later in the chapter in the "RMI

Proxy for FileClassifier" section.

The class structure for this mechanism is much more complex than the fat

proxy because of RM] requirements. The RemoteFileClassifier interface has to be

defined, and the implementation class has to implement (or call suitable methods

111

128

libdocdel@fr.com

129

Chapter 9

112

from) the UnicastRemoteObject class. The FileClassi-FierImpl_Stub is generated

from FileClassifierImpl by using the mic compiler. Implementing the Remote

interface allows the methods of the FileClassifierImpl to be called remotely.

Inheriting from UnicastRemoteObject allows RMI to export the stub rather than the

service, which remains on the server.

Apart from creating the stub class by using rmic, the stub is essentially invisi-

ble to the programmer; the server code is written to export the implementation,

but the RMI runtime component of Java recognizes this and actually exports the

stub instead. This can cause a little confusion—the programmer writes code to

export an object of one class, but an object of a different class appears in the ser—
vice locator and in the client.

This structure is useful when the service needs to do no processing on the cli-

ent side but does need to do a lot on the server side—for example, a diary that

stores all information communally on the server rather than individually on each

client. Services that are tightly linked to a piece of hardware on the server give fur-

ther examples.

Non-RMI Proxy

If RMI is not used, and the proxy and backend service want to share processing,

then both the backend service and the proxy must be created explicitly on the ser-

vice provider side. The proxy is explicitly exported by the service provider and

must implement the interface, but on the server sidethis requirement does not

hold, since the proxy and backend service are not tightly linked by a class structure

any more. The class diagram for the file classifier with this organization is dis-

played in Figure 9-5.

FiIeCIassifier

FileClassifierProxy Fi|eserver|mpl

Figure 9-5. Class diagramfor non-RMI proxy

The IVMs at runtime for this scenario are shown in Figure 9—6.

129

libdocdel@fr.com

130

Choicesfor Service Architecture

server JVM

FileServerlmpl

FileClasslflerProxy

client JVM

 FileClassifierProxy ‘ " ‘
Figure 9-6. JVM objectsfora non-RMI proxy

This doesn’t specify how the proxy and the server communicate. They could

open up a socket connection, for example, and exchange messages using a mes—

sage structure that only they understand. Or they could communicate using a

well-known protocol, such as HTTP. For example, the proxy could make HTTP

requests, and the service could act as an HTTP server handling these requests and

returning documents. A version of the file classifier using sockets to communicate

is given later in this chapter in the “Non-RMI Proxy for FileClassifier” section.

This model is good for bringing “legacy” client/server applications into the

Iini world. Client/server applications often communicate using a specialized pro—

tocol between the client and server. Copies of the client have to be distributed to

all machines, and if there is a bug in the client, they all have to be updated, which

is often impossible. Worse, if there is a change to the protocol, the server must be

rebuilt to handle old and new versions while attempts are made to update all the

clients. This is a tremendous problem with Web browsers, for example, that have

varying degrees of support for HTML 3.2 and HTML 4.0 features, let alone new

protocol extensions such as style sheets and XML. CGI scripts that attempt to

deliver the “right" version of documents to various browsers are clumsy, but nec-

essary, hacks.

What can be done instead is to distribute a “shell” client that just contacts the

server and uploads a proxy. The Iini proxy is the real “heart” of the client, whereas

the Iini backend service is the server part of the original client/server system.

When changes occur, the backend service and its proxy can be updated together,

and there is no need to make changes to the shell out on all the various machines.

130

113

libdocdel@fr.com

131

Chapter 9

RMI and Non-RMI Proxies

The last variation is to have a backend service, an explicit proxy, and an RMI proxy.

Both of the proxies are exported: the explicit proxy has to be exported by register-

ing it with lookup services, while the RMI proxy is exported by the RMI runtime

mechanisms. The RMI proxy can be used as an intermediary for RPC-like commu-

nication between the explicit proxy and the backend service. This is just like the

last case, but instead of requiring the proxy and service to implement their own

communication protocol, it uses RMI instead. The proxy and service can be of any

relative size, just like in the last case. What this does is simplify the task of the

programmer.

Later in the chapter, in the “RMI and Non—RMI Proxies for FileClassifier”

section, there is a non-RMI proxy, FileClassifierProxy, implementing the

FileClassifier interface. This communicates with an object that implements

the ExtendedFileClassifier interface. There is an object on the server of type

ExtendedFileClassifierImpl and an RMI proxy for this on the client side of type

ExtendedFileClassifierImpl_Stub The class diagram is shown in Figure 9-7.

FileClassifier

A

I
I

FileClassifier

Prox

|

ExtendedFile ExtendedFile

ClaSSifierlmPI ClassifierlmpLStub

Figure 9-7. Class diagramfor RMI and non-RMI proxies

While this looks complex, it is really just a combination of the last two cases.

The proxy makes local calls on the RMI stub, which makes remote calls on the ser-

vice. The IVMs are displayed in Figure 9-8.

114

131

libdocdel@fr.com

132

Choicesfor ServiceArchitecture

client JVM server JVM

FileClassifierProxy ; ’ FileClassifierProxy

ExtendedFile
ExtendedFile - -

ClassifierlmpLStub

 Classmerlmpl

ExtendedFile

ClassifierlmpLStub

Figure 9—8. IVM objectsfor RMI and non-RMI proxies

RMI Proxy for FileClassifier

An RMI proxy can be used when all of the work done by the service is done on the

server side. In that case, the server exports a thin proxy that simply channels

method calls from the client across the network to the “real” service in the server,

and returns the result back to the client. The programming for this is relatively

simple. The service has to do two major things in its class structure:

1. Implement Remote. This is because methods will be called on the service

from the proxy, and these will be remote calls on the service.

2. Inherit from UnicastRemoteObject (or Activatable). This means that it’s the

backend service’s constructor that will create and export a proxy or stub

object without the programmer having to do anything more. (An alterna-

tive to inheritance is for the object to call the

UnicastRemoteObject.exportObject() method.)

What Doesn’t Change

In Chapter 8, we discussed a file-classifier application built from a client and a ser-

vice, and in this chapter we have shown a different implementation of the service.

A new file-classifier application can be built using this new implementation of the

service. Clearly, some things must change in this new version, but because of the Jini

architecture, the changes are basically localized to the service implementation. That

115

132

libdocdel@fr.com

133

ChapwrQ

116

is, most of the file-classifier application doesn’t change at all, even if the service

implementation changes.

The client is not concerned about the implementation ofthe service at all, and

so the client doesn’t change. The FileClassifier interface doesn’t change either,

since this is fixed and used by any client and any service implementation. We have

already declared its methods to throw RemoteExcept ion, so a proxy is able to call its

methods remotely. The MIMEType doesn’t change either, since we have already

declared it to implement Serializable—it is passed back across the network from

the service to its proxy.

RemoteFileClassifier

An implementation of the service using an RMI proxy will need to implement both

the FileClassitier and the Remote interfaces. It is convenient to define another

interface, called RemoteFileClassifier, just to do this. This interface will be used

fairly frequently in the rest of this book.

package rmi;

import common.FileClassifier;

import java.Imi.Remote;

/**

* RemoteFileClassifier.java
*/

public interface RemoteFileClassifier extends FileClassifier, Remote {

} // RemoteFileClasssifieI

FileClassifierImpl

The service provider will run the backend service. When the backend service

exports an RMI proxy, it will look like this:

package rmi;

import java.rmi.server.UnicastRemoteObject;

import common.MIMEType;

import common.FileC1assifier;

133

libdocdel@fr.com

134

Choicesfor Service Architecture

/**

* FileClassitierImpl.java
*/

public class FileClassifierImpl extends UnicastRemoteObject

implements RemoteFileClassitier {

public MIMEType getMIMEType(String fileName)

throws java.rmi.RemoteException {

System.out.println("Called with " + fileName);

if (fileName.endsWith(".gif")) {

return new MIMEType("image", "gif");

} else if (fileName.endsWith(".jpeg")) {

return new MIMEType(“image", "jpeg");

} else if (fileName.endswith(".mpg")) {

return new MIMEType("video", "mpeg");

} else it (fileName.endswith(".txt")) {

return new MIMEType("text", "plain");

} else it (fileName.endswith(".html“)) {

return new MIMEType("text", "html");

} else

// fill in lots of other types,

// but eventually give up and

return new MIMEType(null, null);

public FileClassifierImpl() throws java.rmi.RemoteException {

// empty constructor required by RMI

} // FileClassifierImpl

Filedas 51'fierServer

The service provider changes very little from the version in Chapter 8, which

exported a complete service. Both this server and the earlier one export a service

object with register() , but at this point the RMI runtime intervenes and substi-

tutes an RMI stub object. The other major change is that the server no longer

needs to explicitly stay alive. While the RMI system keeps a reference to the RMI

stub object, it keeps alive the IVM that contains the stub object. This means that

the daemon threads that are looking after the discovery process will continue to

117

134

libdocdel@fr.com

135

ChapmrS

run, and in turn, since they have a reference to the service provider as listener, the

service provider will continue to exist.

The following server creates and manages the RMI service:

package rmi;

import rmi.FileClassifierImpl;

import rmi.RemoteFileClassifier;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

// import com.sun.jini.lease.LeaseRenewalManager;

// import com.sun.jini.lease.LeaseListener;

// import com.sun.jini.lease.LeaseRenewalEvent;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini.lease.LeaseRenewalEvent;

import java.rmi.RMISecurityManager;

/**

* FileClassifierServer.java
*/

public class FileClassifieIServerRMI implements DiscoveryListeneI, LeaseListener {

protected FileClassifierImpl impl;

protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

public static void main(String argv[]) {

new FileClassifierServerRMI();

// no need to keep server alive, RMI will do that

public FileClassifierServerRMI() {

try {

impl = new FileClassitierImpl();

} catch(Exception e) {

System.err.println("New impl:' + e.toString());

118

135

libdocdel@fr.com

136

System.exit(1);

// install suitable security manager

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {
discover new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.print1n(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoverEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistIars();

RemoteFileClassifier service;

for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

// export the proxy service

ServiceItem item = new ServiceItem(null,

impl,

null);

ServiceRegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);

} catch(java.rmi.RemoteException e) {

System.err.print("Register exception: ");

e.printStackTrace();

// System.exit(2);

continue;

}

try {

System.out.print1n("service registered at " +

registrar.getLocator().getHost());

} catch(Exception e) {

}

leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

136

Choicesfor Service Architecture

119

libdocdel@fr.com

137

ChapwrQ

public void discarded(DiscoverEvent evt) {

public void notify(LeaseRenewalEvent evt) {

System.out.pIint1n("Lease expired " + evt.toString());

} // FileClassifierServerRMI

What Classes Need to Be Where?

This chapter deals with a number of different implementations of the file-classifier

service. Each implementation introduces some new classes, but also depends on

some of the classes we have developed in earlier chapters. In deploying the ser-

vice, we need to pay attention to this set of classes and determine which classes

need to be known to the different parts of the Iini system. This “What Classes Need

to Be Where?" section is repeated for each of the different service implementa—

tions, and it describes the configuration issues for each of these different

implementation choices.

For the RMI proxy implementation, we need to consider these classes:

common.MIMEType

common . FileClassifier

Imi. RemoteFileClassifier

Imi. FileClassi-Fierlmpl

Imi . FileClassifierImpl_Stub

rmi. FileClassifierServeI

client. TestFileClassifieI \

(The FileClassifierImpLStub class is added to our classes by Imic as discussed in

the next section.)

120

137

libdocdel@fr.com

138

Choicesfor Service Architecture

These classes could be running on up to four different machines:

0 The server machine for FileClassifierServer

0 The HTTP server, which may be on a different machine

0 The machine for the lookup service

0 The machine running the TestFileClassifier client

So, which classes need to be known to which machines?

The server running FileClassifierServer needs to know the following classes
and interfaces:

0 The common. FileClassifier interface

0 The rmi . RemoteFileClassifier interface

- The common.MIMEType class

0 The rmi. FileClassifieIServer class

0 The rmi.Fi1eC1assifierImp1 class

The lookup service does not need to know any of these classes. It just deals

with them in the form ofa java .rmi.Marsha11edObject.

The client needs to know the following:

0 The common . FileClassifier interface

' The common .MIMEType class

In addition, the HTTP server needs to be able to load and store classes. It

needs to be able to access the following:

0 The rmi . FileClassitierImpLStub interface

0 The rmi.RemoteFileC1assifier interface

. The common. FileClassifier interface

0 The common.MIMEType class

121

138

libdocdel@fr.com

139

ChapmrQ

122

The reason for all of these is slightly complex. In the FileClassifierProxy

constructor, the FileClassifierImpl class is passed in. The RMI runtime converts

this to FileClassifierImpl_Stub. This class implements the same interfaces as

FileClassifierImpl, that is, RemoteFileClassifier and hence FileClassifier, so

these also need to be available. In the implementation, FileClassifierImpl refer-

ences the MIMEType class, so this must also be available.

So, what does the phrase “available” mean in the last sentence? The HTTP

server will look for files based on the java . rmi . server. codebase property of the

application server. The value of this property is a URL. Often, URLs can be file

references such as file : / / home/j an/ index. html or HTTP references such as

http : / / host/ index . html. But for this case, clients running anywhere will use the

URL, so it cannot be a file reference specific to a particular machine. For the same

reason, it cannot be just localhost, unless you are running every part of a Iini fed-

eration on a single computer!

If java . rmi . server . codebase is an HTTP reference, then the preceding class

files must be accessible from that reference. For example, suppose the property

is set to

java .rmi. server. codebase=http : //myWebHost/classes

(where myWebHost is the name of the HTTP server’s host) and this Web server has its

DocumentRoot set to /home/webdocs. In that case, these files must exist:

/home/webdocs/classes/rmi/FileClassifierImpl_Stub.class

/home/webdocs/c1asses/Imi/RemoteFileClassifier.class

p/home/webdocs/classes/common/Fileclassifier.class

/home/webdocs/c1asses/common/MIMEType.class

Running the RMI Proxy FileClassifier

As with the file classifier developed in Chapter 8, we again have a server and a

client to run. The client does not depend on how the service is implemented, and

it does not even find out about the service until it has been started and has per-

formed a search for the service. That means the client is started in exactly the same

way as it was started in Chapter 8:

java -Djava . security . policy=policy. all client . TestFileClassifier

The server in this situation is more complex than the one in Chapter 8,

because the RMI runtime is manipulating RMI stubs, and these have additional

requirements. Firstly, RMI stubs must be generated during compilation. Secondly,

security rights must be set, because an RMISecurityManageI is used.

139

libdocdel@fr.com

140

Choicesfor Service Architecture

Although the FileClassifierImpl is created explicitly by the server, it is not this

class file that is moved around. The FileClassifierImpl object continues to exist

on the server machine. Rather, a stub object is moved around and will run on the

client machine. This stub is responsible for sending the method requests back to

the implementation class on the server. The client machine must be able to access

the class file for the stub. This class file has to be generated from the implementa-

tion class by the stub compiler rmic with the following command:

rmic —v1.2 —d /home/webdocs/classes Imi.FileClassifierImpl

Here, the -v1. 2 option says to generate JDK 1.2 stubs only, and the —d option says

where to place the resultant stub class files so that they can be located by the HTTP

server (in this case, in the local file system). If the -v1 . 2 option is omitted, rmic will

also generate Java 1.1 skeleton files, which are not needed. In Java 1.3, it may not

be necessary to even run rmic. Note that the pathnames for directories here and

later do not include the package name of the class files. The class files (here

FileClassifierImpl_Stub . class) will be placed in and looked for in the appropriate
subdirectories.

The value of java . rmi . server. codebase must specify the protocol used by the

HTTP server to find the class files. This could be the file protocol or the http pro-

tocol. For example, if the class files are stored on myWeb server’s pages under

classes/rmi/FileClassifierImpl_Stub . class. the codebase would be specified as

java . rmi . server . codebase=http : //myWebHost/classes/

(where myWebHost is the name of the HTTP server).

The server also sets a security manager. This is a restrictive one, so it needs to

be told to allow access. This can be done by setting the java . security. policy prop-

erty to point to a security policy file, such as policy . all.

Combining all these points leads to startups such as this:

java -Djava.rmi.server.codebase=http://myWebHost/classes/ \

-Djava.security.policy=policy.all \
rmi.FileClassifierServer

Non-RMI Proxy for FileClassi-Fier

Many client-server programs communicate by message passing, often using aTCP

socket. The two sides need to have an agreed-upon protocol; that is, they must

have a standard set of message formats and know what messages to receive and

what replies to send at any time. Jini can be used in this sort of case by providing a

wrapper around the client and server, and making them available as a Iini service.

140

123

libdocdel@fr.com

141

ChapwrQ

124

The original client then becomes a proxy agent for the server and is distributed to

Iini clients for execution. The original server runs within the Iini server and per-

forms the real work of the service, just as in the thin proxy model. What differs is

the class structure and how the components communicate.

The proxy and the service do not need to belong to the same class, or even

share common superclasses. Unlike the RMI case, the proxy is not derived from

the service, so they do not have a shared class structure. The proxy and the service

are written independently, using their own appropriate class hierarchies. However,

the proxy still has to implement the FileClassifier interface, since that is what the

client is asking for and the proxy is delivering.

If RMI is not used, then any other distributed communication mechanism can

be employed. Typically client-server systems will use something like reliable TCP

ports—this is not the only choice, but it is the one used in this example. Thus, the

service listens on an agreed-upon port, the client connects to this port, and they

exchange messages.

The message format adopted for this solution is really simple:

0 The proxy sends a message giving the file extension that it wants classified.

This can be sent as a newline-terminated string (terminated by the '\n'
character).

0 The service will either succeed or fail in the classification. If it fails, it sends a

single line of the empty string " " followed by a newline. If it succeeds, it

sends two lines, the first being the content type, the second the subtype.

The proxy will then use this reply to either return null or a new MIMEType object.

FileClassifierProxy

The proxy object will be exported completely to a Iini client, such as

TestFileClassifier.When this client calls the getMIMEType() method, the proxy

opens up a connection to the service on an agreed—upon TCP port and exchanges

messages on this port. It then returns a suitable result. The code looks like this:

package socket;

import common.FileClassifier;

import common.MIMEType;

import java . net. Socket;

import java.io.Serializab1e;

import java.io.IOException;

141

libdocdel@fr.com

142

Choicesfor Service Architecture

import java.rmi.Naming;

import java.io.*;

/**

* FileClassifierProxy

*/

public class FileClassitierProxy implements FileClassifier, Serializable {

static public final int PORT = 2981;

protected String host;

public FileClassifierProxy(String host) {

this.host = host;

public MIMEType getMIMEType(String fileName)

throws java.rmi.RemoteException {

// open a connection to the service on port XXX

int dotIndex = fileName.lastIndex0f('.');

if (dotIndex == -1 I! dotIndex + 1 == fileName.length()) {
// can't find suitable index

return null;

}

String fileExtension = fileName.substring(dotIndex + 1);

// open a client socket connection

Socket socket = null;

try {

socket = new Socket(host, PORT);

} catch(Exception e) {

return null;

String type = null;

String subType = null;

* protocol:
* Write: file extension

* Read: "null" + '\n'

* type + '\n' + subtype + '\n‘

125

142

libdocdel@fr.com

143

ChapmrQ

126

try {

InputStreamReader inputReadeI =

new InputStreamReader(socket.getInputStream());

BufferedReader reader = new BufferedReader(inputReader);

OutputStreamwriter outputWriter =

new 0utputStreamWriter(socket.getOutputStream());

Bufferedwriter writer = new BufferedWriter(outputWriter)5

writer.write(fileExtension);

writer.newLine();

writer.flush();

type reader.readLine();

it (type.equals("null“)) {

return null;

}

subType = reader.readLine();

} catch(IOException e) {

return null;

}

// and finally

return new MIMEType(type, subType);

}

} // FileClassifierProxy

FileServerImpl

The FileServerImpl service will be running on the server side. It will run in its own

thread (inheriting from Thread) and will listen for connections. When one is

received, it will create a new Connection object in its own thread, to handle the

message exchange. (This creation of another thread is probably overkill here

where the entire message exchange is very short, but it is good practice for more

complex situations.)

/**

* FileServerImpl.java
*/

package socket;

import java.net.*;

import java.io.*;

143

libdocdel@fr.com

144

Choicesfor Service Architecture

public class FileServerImpl extends Thread {

protected ServerSocket listenSocket;

public FileServerImpl() {

try {

listenSocket = new ServerSocket(FileClassitierProxy.PORT);

} catch(IOException e) {

e.printStackTrace();

public void run() {

try {

while(true) {

Socket clientSocket = listenSocket.accept();

new Connection(clientSocket).start();

}

} catch(Exception e) {

e.printStackTrace();

}

} // FileServerImpl

class Connection extends Thread {

protected Socket client;

public Connection(Socket clientSocket) {

client = clientSocket;

public void run() {

String contentType = null;

String subType = null;

try {

InputStreamReader inputReader =

new InputStreamReader(client.getInputStream());

BufferedReader reader new BufferedReader(inputReader);

OutputStreamWIiter outputWriter =

new 0utputStreamWriter(client.getOutputStream());

Butteredwriter writer = new BufferedWriter(outputwriter)3

127

144

libdocdel@fr.com

145

ChapwrQ

128

String fileExtension = reader.readLine();

if (fileExtension.equals("gif")) {

contentType = "image“;

subType = "gif";

} else it (fileExtension.equals("txt")) {

contentType = "text“;

subType = "plain";

} // etc

if (contentType == null) {

writer.write("null");

} else {

writer.write(contentType);

writer.newLine();

writer.write(subType);

}

writer.newLine();

writer.close();

} catch(IOException e) {

e.printStackTrace();

Service Provider

The Iini service provider must start a F ileServerImpl to listen for later connections.

Then it can register a FileClassifierProxy proxy object with each lookup service,

which will send them on to interested clients. The proxy object must know where

the service backend object (the FileServerImpl) is listening in order to attempt a

connection to it, and this information is given by first making a query for the local

host and then passing the hostname to the proxy in its constructor.

package socket;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoverListener;

import net.jini.discovery.DiscoverEvent;

import net.jini.core.lookup.ServiceRegistIar;

import net.jini.core.1ookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistIation;

import net.jini.core.lease.Lease;

145

libdocdel@fr.com

146

Choices for ServiceArchitecture

// import com.sun.jini.lease.LeaseRenewalManager; // Jini 1.0

// import com.sun.jini.lease.LeaseListener; // Jini 1.0

// import com.sun.jini.lease.LeaseRenewalEvent; // Jini 1.0

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini.lease.LeaseRenewalEvent;

import java.rmi.RMISecurityManager;

import java.net.*;

/**

* FileClassifierServer.java
*/

public class FileClassifierServer implements DiscoveryListener, LeaseListener {

protected FileClassifierProxy proxy;

protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

public static void main(String argv[]) {

new FileClassifierServer();

try {

Thread.sleep(1000000L);

} catch(Exception e) {

}

public FileClassifierServer() {

try {

new FileServerImpl().start();

} catch(Exception e) {

System.err.println("New impl: " + e.toString());

System.exit(1);

// set RMI scurity manager

System.setSecurityManager(new RMISecurityManager());

// proxy primed with address

String host = null;

try{

host = InetAddress.getLocalHost().getHostName();

} catch(UnknownHostException e) {

e.printStackTrace();

System.exit(1);

129

146

libdocdel@fr.com

147

Chapwr9

proxy = new FileClassifierProxy(host);
// now continue as before

LookupDiscover discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListeneI(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

// export the proxy service

ServiceItem item = new ServiceItem(null,

PIOXY:

null);

ServiceRegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);

} catch(java.rmi.RemoteException e) {

System.err.print("Register exception: ");

e.printStackTrace();

// System.exit(2);

continue;

}

try {

System.out.println("service registered at " +

registrar.getLocator().getHost());

} catch(Exception e) {

}

leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

130

147

libdocdel@fr.com

148

Choicesfor Service Architecture

public void discarded(DiscoveryEvent evt) {

public void notity(LeaseRenewalEvent evt) {

System.out.println("Lease expired " + evt.toString());

} // FileClassifierServer

What Classes Need to Be Where?

This section has considered a non-RM] proxy implementation. An application that

uses this service implementation will need to deal with these classes:

0 common .MIMEType

. common . FileClassifier

. socket.FileClassifierProxy

- socket.FileServerImp1

. socket . FileClassitierServer

. client.TestFileClassitier

Objects in these classes could be running on up to four different machines:

0 The server machine for FileClassifierServer

- The HTTP server, which may be on a different machine

- The machine for the lookup service

' The machine running the TestFileClassifier client

80, what classes need to be known to which machines?

The server running FileClassifierServer needs to know the following classes
and interfaces:

0 The common . FileClassifieI interface

131

148

libdocdel@fr.com

149

ChaerQ

132

0 The common .MIMEType class

- The socket. FileClassifierServer class

0 The socket. FileClassifierProxy class

0 The socket. FileServerImpl class

The lookup service does not need to know any of these classes. It just deals

with them in the form of a j ava.rmi.MarshalledObject.

The client needs to know the following:

0 The common. FileClassifier interface

- The common .MIMEType class

In addition, the HTTP server needs to be able to load and store classes. It

needs to be able to access the following:

0 The socket. FileClassifierProxy interface

0 The common . FileClassifier interface

0 The common.MIMEType class

Running the RMI Proxy FileClassifier

A file classification application will have to run a server and a client, as in the ear—

lier standalone implementation in Chapter 8 and the RMI implementation just a

few pages earlier. The client is unchanged, as it does not care which server imple-
mentation is used:

java -Djava.security.policy=policy.all client.TestFileClassifier

The value of j ava . rmi . server. codebase must specify the protocol used by the HTTP

server to find the class files. This could be the file protocol or the http protocol.

For example, if the class files are stored on myWeb server’s pages under

classes/socket/FileClassifierPony.class, the codebase would be specified as

java . rmi . server. codebase=http : //myWebHost/classes/

(where myWebHost is the name of the HTTP server host).

149

libdocdel@fr.com

150

Choicesfor Service Architecture

The server also sets a security manager. This is a restrictive one, so it needs to

be told to allow access. This can be done by setting the java . security. policy prop-

erty to point to a security policy file, such as policy . all.

Combining all these points leads to startups such as this:

java -Djava.Imi.server.codebase=http://myWebHost/classes/ \

-Djava.security.policy=policy.all \
FileClassifierServer

RMI and non-RMI Proxies for FileClassi-Fier

An alternative that is often used for client/server systems instead ofmessage pass-

ing is remote procedure calls (RPC). This involves a client that does some local

processing and makes some RPC calls to the server. We can also bring this into the

Iini world by using a proxy that does some processing on the client side, and that

makes use of an RMI proxy/ stub when it needs to make calls back to the service.

The RPC mechanism would most naturally be done using RMI in Java.

Some file types are more common than others: GIF, DOC, and HTML files,

abound, but there are many more types ranging from less common ones, such as

FrameMaker MIF files, to downright obscure ones, such as PDPll overlay files. An

implementation ofa file classifier might place the common types in a proxy object

that makes them quickly available to clients, and the less common ones back on

the server, accessible through a (slower) RMI call.

FileClassifierProxy

The proxy object will implement FileClassifieI so that clients can find it. The

implementation will handle some file types locally, but others it will pass on to

another object that implements the Extended FileClassif ier interface. The

ExtendedFileClassifieI has one method: getExtraMIMEType() . The proxy is told about

this other object at constructor time. The FileClassifieIProxy class is as follows:

/**

* FileClassitierProxy.java

*/

package extended;

import common.FileClassifier;

import common.ExtendedFileClassifier;

import common.MIMEType;

133

150

libdocdel@fr.com

151

ChapHWQ

import java.rmi.RemoteException;

public class FileClassifierProxy implements FileClassifier {

/**

* The service object that knows lots more MIME types
*/

protected ExtendedFileClassifier extension;

public FileClassifierProxy(ExtendedFileClassifier ext) {

this.extension = ext;

public MIMEType getMIMEType(String fileName)

throws RemoteException {

if (fileName.endsWith(".gif")) {

return new MIMEType(“image", "git");

} else if (tileName.endswith(“.jpeg")) {

return new MIMEType("image", "jpeg");

} else if (tileName.endsw1th(".mpg“)) {

return new MIMEType("video", "mpeg");

} else if (fileName.endsWith(".txt")) {

return new MIMEType("text", "plain");

} else if (tileName.endsWith(".html")) {

return new MIMEType("text", "html");

} else {

// we don't know it, pass it on to the service

return extension.getExtraMIMEType(tileName);

}

} // FileClassifierProxy

ExtendedFileClassifier

The Extended FileClassifier interface will be the top-level interface for the service

and an RMl proxy for the service. It will be publicly available for all clients to use.

An immediate subinterface, RemoteExtendedFileClassifier, will add the Remote

interface:

/**

* ExtendedFileClassitier.java
*/

134

151

libdocdel@fr.com

152

Choicesfor Service Architecture

package common;

import java.io.Serializable;

import java.rmi.RemoteException;

public interface ExtendedFileClassitier extends Serializable {

public MIMEType getExtraMIMEType(String fileName)

throws RemoteException;

} // ExtendedFileClassitier

and

plot

* RemoteExtendedFileClassifier.java

*/

package extended;

import java.rmi.Remote;

interface RemoteExtendedFileClassifier extends common.ExtendedFileClassifieI,

Remote {

} // RemoteExtendedFileClassitier

ExtendedFileClassifierImpl

The implementation of the ExtendedFileClassifier interface is done by an

ExtendedFileClassifierImpl object. This will also need to extend

UnicastRemoteObject so that the RMI runtime can create an RMI proxy for it. Since

this object may handle requests from many proxies, an alternative implementa-

tion of searching for MIME types using a hash table is given. This is more efficient

for repeated searches:

/**

* ExtendedFileClassitierImpl.java

*/

package extended;

import java.rmi.server.UnicastRemoteObject;

152

135

libdocdel@fr.com

153

ChapwrQ

136

import common.MIMEType;

import java.util.HashMap;

import java.util.Map;

public class ExtendedFileClassitierImpl extends UnicastRemoteObject

implements RemoteExtendedFileClassifier {

/**

* Map of String extensions to MIME types

*/

protected Map map = new HashMap();

public ExtendedFileClassitierImpl() throws java.rmi.RemoteException {

/* This object will handle all classification attempts
* that fail in client-side classifiers. It will be around

* a long time, and may be called frequently, so it is worth

* optimizing the implementation by using a hash map
*/

map.put("rtf", new MIMEType("application", "rtf"));

map.put("dvi", new MIMEType(”application", "x-dvi"));

map.put("png", new MIMEType("image", "png"));
// etc

public MIMEType getExtraMIMEType(String tileName)

throws java.rmi.RemoteException {

MIMEType type;

String fileExtension;

int dotIndex = fileName.lastIndex0f('.');

it (dotIndex == -1 ll dotIndex + 1 == fileName.length()) {
// can‘t find suitable suffix

return null;

fileExtension= fileName.substring(dotIndex + 1);

type = (MIMEType) map.get(fileExtension);

return type;

}

} // ExtendedFileClassifierImpl

153

libdocdel@fr.com

154

Choicesfor Service Architecture

FileClassifierServer

The final piece in this jigsaw puzzle is the server that creates the service (and

implicitly the RMI proxy for the service) and also the proxy primed with knowl-

edge of the service:

package extended;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistraI;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

// import com.sun.jini.lease.LeaseRenewalManager;

// import com.sun.jini.lease.LeaseListener;

// import com.sun.jini.lease.LeaseRenewalEvent;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini.lease.LeaseRenewalEvent;

import java.rmi.RMISecurityManager;

/**

* FileClassiFierServeI.java
*/

public class FileClassifierServer implements DiscoveryListener, LeaseListener {

protected FileClassifierProxy proxy;

protected ExtendedFileClassifierImpl impl;

protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

public static void main(String argv[]) {

new FileClassifierServer();

// RMI keeps this alive

public FileClassiiierServer() {

try {

impl = new ExtendedFileClassifierImpl();

} catch(Exception e) {

System.err.println("New impl:'

System.exit(1);

I

+ e.toString());

137

154

libdocdel@fr.com

155

ChapwrQ

// set RMI scurity manager

System.setSecurityManager(new RMISecurityManager());

// proxy primed with impl

proxy = new FileClassifierProxy(impl);

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.print1n(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = O; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

// export the proxy service

ServiceItem item = new ServiceItem(null,

proxy,

null);

ServiceRegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);

} catch(java.rmi.RemoteException e) {

System.err.print("Register exception: ");

e.printStackTrace();

continue;

}

try {

System.out.println("service registered at " +

registrar.getLocator().getHost());

} catch(Exception e) {

}

138

155

libdocdel@fr.com

156

Choicesfor Service Architecture

leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

public void discarded(DiscoveryEvent evt) {

public void notify(LeaseRenewalEvent evt) {

System.out.print1n("Lease expired " + evt.toString());

} // FileClassifieIServer

What Classes Need to Be Where?

The implementation of the file classifier in this section uses both RMI and non-

RMI proxies. As in other implementations, there is a set of classes involved that

need to be known to different parts of an application. We have these classes:

- common.MIMEType

. common.FileC1assifier

. common.ExtendedFileClassifieI

- extended.FileClassifieIProxy

- extended.RemoteExtendedFileClassifier

. extended.ExtendedFileServerImpl

. extended.FileClassifierServeI

. client.TestFileClassi‘Fier

The server running FileClassifieIServer needs to know the following classes
and interfaces:

- The common. FileClassifier interface

' The common.MIMEType class

' The common. ExtendedFileClassitier class

139

156

libdocdel@fr.com

157

Chapter 9

140

0 The extended . FileClassifierServer class

0 The extended. FileClassifierProxy class

0 The extended.RemoteExtendedFileClassifier class

- The extended. ExtendedFileServerImpl class

The lookup service does not need to know any of these classes. It just deals

with them in the form ofa java . rmi.MaIshalledObject.

The client needs to know the following:

0 The common. FileClassifier interface

0 The common.MIMEType class

In addition, the HTTP server needs to be able to load and store classes. It

needs to be able to access the following:

0 The extended. FileClassifierProxy interface

0 The extended . RemoteExtendedFileClassifier class

- The extended. ExtendedFileServerImp1_Stub class

0 The common . FileClassifier interface

0 The common.MIMEType class

Using Other Services

In all the examples so far, a proxy has been created in a server and registered with a

lookup service. Meanwhile, a service backend has usually been left behind in the

server to handle calls from the proxy. However, there may be no need for the ser-

vice to exist on the server, and the proxy could make use of other services

elsewhere. This may be subject to security restrictions imposed by the client,

which may disallow connections to some hosts.

In this section, we shall give an example of using a non-Jini service on another

host. Recently an Australian, Pat Farmer, attempted to set a world record for jog-

ging the longest distance. While he was running around, I became involved in a

small project to broadcast his heartbeat live to the Web; a heart monitor was

attached to him, which talked via an R8232 link to a mobile phone he was carrying.

157

libdocdel@fr.com

158

Choicesfor Service Architecture

This did a data transfer to a program running at http : / /www.micromed . com . au

located at the Gold Coast, which forwarded the data to a machine at the Distrib-

uted Systems Technology Centre (DSTC) in Brisbane. This ran aWeb server deliv—

ering an applet, and the applet talked back to a server on the DSTC machine,

which sent out the data to each applet as it was received from the heart monitor.

Now that the experiment is over, the broadcast data is sitting as a file at

http : //www . micromed . com . au/patfarmer/vz/patfhr . ecg, and it can be viewed on the

applet from http : //www. micromed . com . au/patfarmeI/vz/heart . html. We can make it

into a Jini service as follows:

1. Create a service that we can locate using the service type (“display a heart

monitor trace”) and information about it, such as whose heart trace it is

showing.

2. Have the service connect to an HTTP address encoded into the service by

its constructor (or other means), and read from this and display the con—

tents, assuming it is heart cardiograph data.

3. The information about whose trace it is can be given by a Name entry.

The client shows what you see in Figure 9-9. The break towards the right-hand

side shows where the current trace is being written (it scans from left to right, over-

writing as it goes). Cardiologists do not seem to be concerned about the lack of

horizontal or vertical scales, as long as the trace is physically the right size!

Figure 9-9. Heart monitor trace service

The heart monitor service can be regarded in a couple of ways:

- It is a full-blown service uploaded to the client that just happens to use an

external data source supplied from an HTTP server.

libdocde|@fr.com 141

158

libdocdel@fr.com

159

ChapwrQ

0 It is a “fat” proxy to the HTTP service, and it acts as a client to this service by

displaying the data.

Many other non-RM] services can be built that act in this “fat proxy” style.

Heart Interface

The Heart interface only has one method, and that is to show() the heart trace in
some manner:

/**

* Heart.java
*/

package heart;

public interface Heart extends java.io.Seria1izable {

public void show();

} // Heart

HeartServer

The HeartServer is similar to the method discussed in Chapter 8, of uploading a

complete implementation of the service. This service, of type HeartImpl, is primed

with a URL identifying where the heart data is stored. An HTTP server will later

deliver this data.

This implementation is enough to locate the service. However, rather than just

getting anyone’s heart data, a client may wish to search for a particular person’s

data. This can be done by adding a Name entry as additional information about the

service. A server that exports the complete service, plus the entry information, is
as follows:

package heart;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

142

159

libdocdel@fr.com

160

Choicesfor ServiceArchitecture

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

// import com.sun.jini.lea$e.LeaseRenewalManager;

// import com.sun.jini.1ease LeaseListener;

// import com.sun.jini.1ease.LeaseRenewalEvent;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini lease.LeaseRenewalEvent;

import net.jini.c0re.entry.Entry;

import net.jini.lookup.entry.Name;

/**

* HeartServer.java

*/

public class HeartServer implements DiscoveryListener,

LeaseListener {

protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

public static void main(String argv[]) {

new HeartServer();

// keep server running forever to

// — allow time for locator discovery and

// - keep re-registering the lease

Object keepAlive = new Object();

synchronized(keepAlive) {

try {

keepAlive.wait();

} catch(InterruptedException e) {

// do nothing

public HeartServer() {

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

143

160

libdocdel@fr.com

161

CWapmrQ

discover.addDiscoveryListener(this)3

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

ServiceItem item = new ServiceItem(null,

new HeartImpl("http:// _

www.micromed.com.au/patfarmer/vz/patfhr.ecg");

new Entry[] {new Name("Pat Farmer")});

ServiceRegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);

} catch(java.rmi.RemoteException e) {

System.err.println("Register exception: + e.toStIing());

continue;

}

System.out.println("service registered");

// set lease renewal in place

leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

public void discarded(DiscoveryEvent evt) {

public void notify(LeaseRenewalEvent evt) {

System.out.println("Lease expired " + evt.toString());

} // HeartServer

144

161

libdocdel@fr.com

162

Choicesfor ServiceArchitecture

HeartClient

The client searches for a service implementing the Heart interface, with the addi-

tional requirement that it be for a particular person. Once it has this, the client just

calls the show() method on the service to display this in some manner:

package heart;

import heart.Heart;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistraI;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.entry.Entry;

import net.jini.lookup.entry.Name;

/**

* HeartClient.java
*/

public class HeartClient implements DiscoveryListener {

public static void main(String argv[]) {

new HeartClient();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(1ooooooL);

} catch(java.lang.InterruptedException e) {

// do nothing

public HeartClient() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

145

162

libdocdel@fr.com

163

ChapwrQ

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoverEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

Class [] classes = new Class[] {Heart.class};

Entry [] entries = new Entry[] {new Name("Pat Farmer")};

Heart heart = null;

ServiceTemplate template = new ServiceTemplate(null, classes,

entries);

for (int n = 0; n < registrars.length; n++) {

System.out.println("Service found");

ServiceRegistrar registrar = registrars[n];

try {

heart = (Heart) registrar.lookup(temp1ate);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

continue;

}

if (heart == null) {

System.out.println("Heart null");

continue;

}

heart.show();

System.exit(0);

public void discarded(DiscoveryEvent evt) {

// empty

}

} // HeartClient

146

163

libdocdel@fr.com

164

Choicesfor Service Architecture

Heart Implementation

The HeartImpl class opens a connection to an HTTP server and requests delivery of

a file. Heart data needs to be displayed at a reasonable rate, so it reads, draws, and

sleeps, in a loop. It acts as a fat client to the HTTP server, displaying the data in a

suitable format (in this case, it uses HTTP as a transport mechanism for data deliv-

ery). As a “client-aware” service, it customizes this delivery to the characteristics of

the client platform, just occupying a “reasonable” amount of screen space and

using local colors and fonts.

/**

* HeartImpl.java
*/

package heart;

import java.io.*;

import java.net.*;

import java.awt.*;

public class HeartImpl implements Heart {

protected String url;

/*

* If we want to run it standalone we can use this

*/

public static void main(String argv[]) {

HeartImpl impl =

new HeartImpl("file:/home/jan/projects/jini/doc/heart/TECG3.ecg");

impl.show();

public HeartImpl(String u) {

url = u;

double[] points null;

Painter painter null;

String heartRate = —— ;

147

164

libdocdel@fr.com

165

Chapwrs

public void setHeartRate(int rate) {

if (rate > 20 && rate <= 250) {

heartRate = "Heart Rate: " + rate;

} else {

heartRate = “Heart Rate: —-";

public void quit(Exception e, String s) {

System.err.println(s);

e.printStackTrace();

System.exit(1);

public void show() {

int SAMPLE_SIZE = 300 / Toolkit.getDefaultToolkit().

getScreenResolution();

Dimension size = Toolkit.getDefaultToolkit().

getScreenSize();

int width = (int) size.getWidth();

// capture points in an array, for redrawing in app if needed

points = new double[width * SAMPLE_SIZE];

for (int n = 0; n < width; n++) {

points[n] = -1;

URL dataUrl = null;

InputStream in = null;

try {

dataUrl = new URL(url);

in = dataUrl.openStream();

} catch (Exception ex) {

quit(ex, "connecting to ECG server");

return;

Frame frame = new Frame("Heart monitor");

trame.set$ize((int) size.getWidth()/2, (int) size.getHeight()/2);

try {

painter = new Painter(this, frame, in);

painter.start();

148

165

libdocdel@fr.com

166

Choicesfor Service Architecture

} catch (Exception ex) {

quit(ex, "fetching data from ECG server");

return;

}

frame.setVisible(true);

}

} // HeartImpl

class Painter extends Thread {

static final int DEFAULT_SLEEP_TIME = 25; // milliseconds

static final int CLEAR_AHEAD = 15;

static final int MAX = 255;

static final int MIN = 0;

final int READ_SIZE = 10;

protected HeartImpl app;

protected Frame frame;

protected InputStream in;

protected final int RESOLUTION = Toolkit.getDefaultToolkit().

getScreenResolution();

protected final int UNITS_PER_INCH = 125;

protected final int SAMPLE_SIZE = 300 / RESOLUTION;

protected int sleepTime = DEFAULT_SLEEP_TIME;

public Painter(HeartImpl app, Frame frame, InputStIeam in) throws Exception {

this.app = app;

this.frame = frame;

this.in = in;

public void run() {

while (lframe.isVisible()) {

try {

Thread.sleep(1000);

} catch(Exception e) {

// ignore

int height = frame.getSize().height;

int width = frame.getSize().width;

149

166

libdocdel@fr.com

167

ChapmrQ

int x = 1; // start at 1 rather than 0 to avoid drawing initial line

// from -128 .. 127

int magnitude;

int nread;

int max = MIN; // top bound of magnitude

int min = MAX; // bottom bound of magnitude

int oldMax = MAX + 1;

byte[] data = new byte[READ_SIZE];

Graphics g = frame.getGraphics();

g.setColor(Color.red);

try {

Font f = new Font("Serif”, Font.BOLD, 20);

g.setFont(f);

} catch (Exception ex) {
//

}

try {

boolean expectHR = false; // true ==> next byte is heartrate

while ((nread = in.read(data)) l= —1) {

for (int n = 0; n < nread; n++) {

int thisByte = data[n] & OXFF;

if (expectHR) {

expectHR = false;

app.setHeartRate(thisByte);

continue;

} else if (thisByte == 255) {

expectHR = true;

continue;

// we are reading bytes, from -127..128

// convert to unsigned

magnitude = thisByte;

// then convert to correct scale

magnitude —= 128;

// scale and convert to window coord from the top downwards

int y = ((128 — magnitude) * RESOLUTION) / UNITS_PER_INCH;

app.points[x] = y;

150

167

libdocdel@fr.com

168

Choicesfor Service Architecture

// draw only on multiples of sample size

1+ (x % SAMPLE_SIZE == 0) {

// delay to draw at a reasonable rate

Thread.sleep(sleepTime);

int x0 = x / SAMPLE_SIZE;

g.clearRect(x0, 0, CLEAR_AHEAD, height);

if (oldMax != MAX + 1) {

g.drawLine(x0-1, oldMax, x0, min);

}

g.drawLine(xo, min, x0, max);

oldMax = max;

min = 1000;

max = —1000;

if (app.heartRate != null) {

g.setColor(Color.black);

g.clearRect(0, 180, 200, 100);

g.drawString(app.heartRate, 0, 220);

g.setColor(Color.red);

}

} else {

if (y > max) max = y;

if (y < min) min = y;

}

if (++x >= width * SAMPLE_SIZE) {

x = o;

}

}

} catch(Exception ex) {

if (! (ex instanceof SocketException)) {

System.out.println("Applet quit -— got “ + ex);

}

} finally {

try {

if (in != null) {

in.close();

in = null;

}

} catch (Exception ex) {
// hide it

151

168

libdocdel@fr.com

169

Chapter 9

152

Summary

Clients are built to make use of the services they find, but they do not need to be

concerned with how the services are implemented. On the other hand, service

implementers need to be aware of the choices they have in building services, and

they need to Choose the architecture that best suits the needs of the service. This

chapter has looked at a number of possibilities and has used a simple running

example to illustrate some of the possible design patterns.

169

libdocdel@fr.com

170

CHAPTER 10

Discovery Management

CLIENTS AND SERVICES BOTH NEED to find lookup services. In Chapter 3, we looked at

the code that was common to both clients and services in both unicast and broad-

cast discovery. Parts of that code has been used in many examples since. This

chapter discusses some utility classes that make it easier to deal with lookup ser-

vices by encapsulating this type of code into common utility classes and providing

a good interface to them. This chapter only applies to Iini 1.1, Since these classes

were only brought into Iini with version 1.1.

Finding Lookup Locators

Both services and clients need to find lookup locators. Services will register with

these locators, and clients will query them for suitable services. Finding these

lookup locators involves three components:

0 A list of lookup locators for unicast discovery

0 A list of groups for lookup locators using multicast discovery

0 Listeners whose methods are invoked when a service locator is found

Chapter 3 considered the cases of a single unicast lookup service and a set of

multicast lookup services. This was all that was available in Iini 1.0. Iini 1.1 has

been extended to handle a set ofunicast lookup services and a set ofmulticast

lookup services. The Iini 1.1 Helper Utilities document (part of the Iini 1.1 specifi—

cation) defines three interfaces:

- DiscoveryManagement, which looks after discovery events

- DiscoveryGroupManagement, which looks after groups and multicast searches

0 Di5coveryLocatorManagement, which looks after unicast discovery

Different classes may implement different combinations of these three interfaces.

The LookupDiscovery class was changed in Iini 1.1 to use DiscoverGIoupManagement

and DiscoveryManagement. The LookupDiscovery class performs multicast searches,

170

153

libdocdel@fr.com

171

ChaperO

154

informing its listeners when lookup services are discovered. The

LookupLocatorDiscovery class is new in Iini 1.1 and is discussed later in this

chapter. It performs a similar task for unicast discovery and implements the

two interfaces DiscoveryLocatorManagement and DiscoveryManagement. Another class

discussed later is LookupDiscoverManager, which handles both unicast and broad-

cast discovery, and so implements all three interfaces. With these three cases

covered, it is unlikely that you will need to implement these interfaces yourself.

The DiscoveryManagement interface is as follows:

package net.jini.discovery;

public interface DiscoveryManagement {

public void addDiscoveryListeneI(DiscoveryListener 1);

public void removeDiscoverListener(DiscoverListener 1);

public ServiceRegistrar[] getRegistrars();

public void discard(ServiceRegistrar proxy);

public void terminate();

The addDiscoveryListener() method is the most important method, as it

allows a listener object to be informed whenever a new lockup service is

discovered.

The DiscoverGroupManagement interface is shown next:

package net.jini.discovery;

public interface DiscoveryGroupManagement {

public static final String[] ALL_GROUPS = null;

public static final String[] NO_GROUPS = new String[0];

public String[] getGroups();

public void addGroups(String[] groups) throws IOException;

public void setGroups(String[] groups) throws IOException;

public void removeGroups(String[] groups);

The most important of these methods is setGroups(). If the groups have ini—

tially been set to N0_GROUPS, no multicast search is performed. If it is later changed

by setGroups (), then this initiates a search. Similarly, addGroups () will also initiate a

search. (This is why they may throw remote exceptions.)

171

libdocdel@fr.com

172

The third interface is DiscoveryLocatorManagement:

package net.jini.discovery;

public interface DiscoveryLocatOIManagement {

public LookupLocator[] getLocators();

public void addLocators(LookupLocator[] locators);

public void setLocators(LookupLocator[] locators);

public void removeLocators(LookupLocator[] locators);

A client or service will generally set the locators in its own constructor, so

these methods will probably only be useful ifyou need to change the set ofunicast

addresses for the lookup services.

LookupLocatorDiscovery

In Chapter 3, the section on finding a lookup service at a known address only

looked at a single address. If lookup services at multiple addresses are required,

then a naive solution would be to put the code from Chapter 3 into a loop. The

LookupLocatorDiscovery class provides a more satisfactory solution by providing

the same event handling method as in the multicast case; that is, you supply a

list of addresses, and when a lookup service is found at one of these addresses,

a listener object is informed.

The LookupLocatorDiscovery class is specified as follows:

package net.jini.discovery;

public class LookupLocatorDiscovery implements DiscoverManagement,

DiscoveryLocatorManagement {

public LookupLocatorDiscovery(LookupLocator[] locators);

public LookupLocator[] getDiscoveredLocatorsO;

public LookupLocator[] getUndiscoveredLocators();

Rewriting the unicast example from Chapter 3 using this utility class makes it

look much like the example on multicast discovery from the same chapter. The

similarity is that it now uses the same event model for lookup service discovery; the

difference is that it uses a set of LookupLocator objects rather than a set of groups.

package discoverymgt;

172

Discovery Management

155

libdocdel@fr.com

173

Chapmrlo

import net.jini.discovery.LookupLocatorDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoverEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.discovery.LookupLocator;

import java.net.MalformedURLException;

/**

* UnicastRegister.java
*/

public class UnicastRegister implements DiscoveryListeneI {

static public void main(String aIgv[]) {

new UnicastRegisteI();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(10000L);

} catch(java.lang.lnterruptedException e) {

// do nothing

public UnicastRegisteI() {

LookupLocatorDiscovery discover = null;

LookupLocator[] locators = null;

try {

locators = new LookupLocator[] {new LookupLocator("jini://localhost")};

} catch(MalformedURLException e) {

e.printStackTrace();

System.exit(1);

}

try {

discover = new LookupLocatorDiscovery(locators);

} catch(Exception e) {

System.err.println(e.toString());

e.printStackTrace();

System.exit(1);

discover.addDiscoveryListener(this);

156

173

libdocdel@fr.com

174

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = O; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

// the code takes separate routes from here for client or service

System.out.println("found a service locator");

}

public void discarded(DiscoveryEvent evt) {

}

} // UnicastRegister

LookupDiscoveryManager

An application (client or service) that wants to use a set of lookup services at fixed,

known addresses, and also to use whatever lookup services it can find by multi—

cast, can use the LookupDiscoveryManager utility class. Most of the methods of this

class come from its interfaces:

package net.jini.discovery;

public class LookupDiscoveryManager implements DiscoveryManagement,

DiscoverGroupManagement,

DiscoveryLocatorManagement {

public LookupDiscoveryManager(String[] groups,

LookupLocator[] locators,

DiscoveryListener listener)

throws IOException;

This class differs from LookupDiscovery and LookupLocatorDiscovery in that it

insists on a DiscoveryListener in its constructor. Programs using this class can

follow the same event model as the last example:

package discoverymgt;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.discovery.DiscoveryGroupManagement;

174

Discovery Management

157

libdocdel@fr.com

175

ChaperO

import net.jini.discovery.DiscoveryListener;

import net.jini.disc0very.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.discovery.LookupLocator;

import java.net.MalformedURLException;

import java.io.IOException;

import java.rmi.RemoteException;

/**

* AllcastRegister.java
*/

public class AllcastRegister implements DiscoveryListener {

static public void main(String argv[]) {

new AllcastRegister();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(10000L);

} catch(java.lang.InterruptedException e) {

// do nothing

public AllcastRegister() {

LookupDiscoveryManager discover = null;

LookupLocator[] locators = null;

try {

locators = new LookupLocator[] {new LookupLocator("jini://localhost")};

} catch(MalformedURLException e) {

e.printStackTrace();

System.exit(1);

}

try {

discover = new _

LookupDiscoveryManager(DiscoveryGroupManagement.ALL_GROUPS,

locators,

this);

} catch(IOException e) {

System.err.print1n(e.tostring());

e.printStackTrace();

System.exit(1);

158

175

libdocdel@fr.com

176

Discovery Management

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = O; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

try {

System.out.pIintln(“tound a service locator at " +

registrar.getLocator().getHost());

} catch(RemoteException e) {

e.printStackTrace();

continue;

}

// the code takes separate routes from here for client or service

}

public void discarded(DiscoveryEvent evt) {

}

} // AllcastRegister

Summary

The LookupLocatorDiscovery and LookupDiscoveryManager utility classes add to the

LookupDiscovery class by making it easier to find lookup services using both unicast
and broadcast searches.

159

176

libdocdel@fr.com

177

CHAPTER 11

Join Manager

FINDING A LOOKUP SERVICE INVOLVES a common series of steps, and convenience

classes for encapsulating this were considered in the last chapter. Subsequent

interaction with the discovered lookup services also involves common steps for

services as they register with the lookup services. A join manager encapsulates

these additional steps into one convenience class for services.

Jini 1.1 JoinManager

A service needs to locate lookup services and register the service with them. Locat—

ing services can be done using the utility classes from Chapter 10. As each lookup

service is discovered, it needs to be registered, and the lease needs to be main-

tained. The JoinManager class performs all of these tasks. There are two constructors:

public class JoinManager {

public JoinManageI(0bject obj,

Entry[] attrSets,

ServiceIDListener callback,

DiscoveryManagement discovengr,

LeaseRenewalManager leaseMgr)

throws IOException;

public JoinManager(Object obj,

Entry[] attrSets,

ServiceID serviceID,

DiscoveryManagement discovengr,

LeaseRenewalManager leaseMgr)

throws IOException;

The first constructor is used when the service is new and does not have a ser-

vice ID. A ServiceIDListener can be added to note and save the ID. The second

constructor is used when the service already has an ID. The other parameters are

for the service and its entry attributes, a DiscoveryManagement object to set groups

and unicast locators (typically this will be done using a LookupDiscoveryManager),

and a lease renewal manager.

177

161

libdocdel@fr.com

178

Chapwrll

162

The following example uses the JoinManager class to register a FileClassifierImpl.

In the Chapter 8 example of“Uploading a Complete Service" (and other examples

in Chapter 9) the server implemented the DiscoveryListener interface in order to

be informed when new lookup locators were discovered so that the service could

be registered with each of them. Ifyou use a join manager, there is no need for a

DiscoveryListener, since the join manager adds itself as a listener and handles the

registration with the lookup service.

package joinmgr;

import rmi.FileClassifierImp1;

import net.jini.lookup.loinManager;

import net.jini.core.lookup.ServiceID;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceRegistrar;

import java.rmi.RemoteException;

import net jini.lookup.ServiceIDListener;

import net.jini.lease.LeaseRenewalManager;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.discovery.DiscoveryEvent;

import net.jini.discovery.DiscoveryListener;

/**

* FileClassifierServer.java
*/

public class FileClassifierServer

implements ServiceIDListener {

public static void main(String argv[]) {

new FileClassifierServer();

// stay around forever

Object keepAlive = new Object();

synchronized(keepAlive) {

try {

keepAlive.wait();

} catch(InterruptedException e) {

// do nothing

178

libdocdel@fr.com

179

jbhrfllanager

public FileClassifierServeI() {

JoinManager joinMgr = null;

try{

LookupDiscoveryManager mgr =

new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListener */);

joinMgr = new JoinManager(new FileClassifierImpl(), /* service */ new

FileClassifierImpl(), /* service */

null /* attr sets */,

this /* ServiceIDListener*/,

mgr /* DiscoveryManagement */,

new LeaseRenewalManager());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

public void serviceIDNotify(ServiceID serviceID) {
// called as a ServiceIDListener

// Should save the ID to permanent storage

System.out.println("got service ID " + serviceID.toString());

} // FileClassifierServer

There are a number of other methods in JoinManager that allow you to modify

the state of a service registration.

Jini 1.0 JoinManager

A version of JoinManager was present in Iini 1.0. At that time it was in the com. sun

package and no formal specification was given. Classes in the com. sun packages

may be changed in later versions of Iini, or may even disappear completely. In

moving from Iini 1.0 to Iini 1.1, the JoinManager classes were specified and moved

to a new package. This section describes the old version for those still using Iini 1.0.

When possible, such users should switch to Iini 1.1

163

179

libdocdel@fr.com

180

Chapwrll

164

There are a number of possible constructors for JoinManager. This is the

simplest:

JoinManager(java.lang.0bject obj,

Entry[] attrSets,

ServiceIDListener callback,

LeaseRenewalManager leaseMgr)

This constructor specifies the service to be managed and its entry attributes.

The callback is a listener object that will have its serviceIDNotii‘yo method called

when a new locator is discovered. This is usually used to find the value of the

ServiceID assigned by a lookup locator to a service. The callback argument can be

null if the programmer has no interest in saving the ServiceID. The leaseMgr can

also be set to null and will then be created as needed.

This constructor will initiate a search for service locators belonging to the

group “public”, which is defined by a group value of the empty string " There is

no constant for this, and the locators from Sun do not appear to belong to this

group, so most applications will need to follow this up immediately with a call to

search for locators belonging to any group:

JoinManager joinMgr = new JoinManager(obj, null, null, null);

joinMgI.setGIoups(LookupDiscover.ALL_GROUPS);

ThesecondeonsflucunisasflflhMN$

JoinManager(java.lang.0bject obj,

Entry[] attrSets,

java.lang.5tring[] groups,

LookupLocator[] locators,

ServiceIDListener callback,

LeaseRenewalManager leaseMgr)

This constructor adds groups and locators, which allow multicast searches for

locators belonging to certain groups, and also unicast lookups for known locators.

A multicast-only search for any groups would have both additional parame—
ters set to null:

JoinManageI joinMgr = new JoinManageI(obj, null,

LookupDiscover.ALL_GROUPS,

null, null, null);

180

libdocdel@fr.com

181

Iohtnlanager

On the other hand, a unicast lookup for a single known site would be done
like this:

LookupLocator[] locators = new LookupLocator[1];

locators[0] new LookupLocator(“http://www.all_about_files.com");

JoinManager joinMgr = new JoinManageI(obj, null,

LookupDiscover.N0_GROUPS,

locators, null, null);

(This code ignores exception handling.)

For example, uploading the complete service of the complete package could
be done as follows:

package joinmgr;

import complete.FileClassifierImpl;

import com.sun.jini.lookup.JoinManageI;

import net.jini.core.1ookup.SericeID;

import com.sun.jini.lookup.ServiceIDListener;

import com.sun.jini.1ease.LeaseRenewalManageI;

import net.jini.discovery.LookupDiscovery;

/**

* FileClassifierSereI1_0.java
*/

public class FileClassifierServer1_O implements ServiceIDListener {

public static void main(String aIgv[]) {

new FileClassifierSerer1_o();

// stay around long enough to receive replies

try {

Thread.currentThIead().sleep(1000000L);

} catch(java.1ang.InterruptedException e) {

// do nothing

public FileClassifierSereI1_0() {

JoinManageI joinMgr = null;

165

181

libdocdel@fr.com

182

Chapmrll

166

try {

/* this is one way of doing it

joinMgI = new JoinManager(new FileClassifierImpl(),

null,

this,

new LeaseRenewalManager());

joinMgI.setGroups(null);
*/

/* here is another */

joinMgI = new JoinManager(new FileClassifierImpl(),

null,

LookupDiscovery.ALL_GROUPS,

null,

this,

new LeaseRenewalManager());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

public void serviceIDNotify(ServiceID serviceID) {

System.out.print1n("got service ID " + serviceID.toString());

} // FileClassifieISerer1_O

Getting Information from JoinManager

The JoinManager looks unhelpful in supplying information about the lookup loca-

tors it finds. However, this information is available by a slightly circuitous route. A

service can register a ServiceIDListener to the JoinManager. This will be invoked

whenever a new locator is found by its serviceIDNot ify() method. A ServiceID is

not particularly useful, so we just ignore it. However, within the serviceIDNotifyO

method we do know that a new service locator has been found, since that is the

only occasion on which it is called.

The complete set of service locators can be found with the JoinManager’s getJoin —

Set () method, which returns an array of ServiceRegistrar objects. We have met this

class before: its get Locator() method will return a LookupLocator, which has informa-

tion such as the host in getHost(). These classes can be put together as follows:

182

libdocdel@fr.com

183

Jothmanager

protected JoinManager joinmgr;

joinmgr = new JoinManager(service, null,

this, new LeaseManager());

public void serviceIDNotify(ServiceID serviceID) {

ServiceRegistrar registrars = joinmgr.get]oin$et();

for (int n = 0; n < registrar.length; n++) {

LookupLocator locator = registrars[n].getLocator();

String hostName = locator.getHost();

If you want to find out which is the latest locator to be found, you will have to

cache the previous set and find which is new in the array returned. Each call to

getJoinSet () will return a new array.

Summary

A JoinManager can be used by a server to simplify many of the aspects of locating

lockup services, registering one or more services, and renewing leases for them.

167

183

libdocdel@fr.com

184

CHAPTER 12

Security

SECURITY PLAYS AN IMPORTANT ROLE in distributed systems. All parts of a Jini djinn,

which consists of clients, services, and lookup services, can be subjected to attack

by hostile agents. You could trust everyone, but the large number of attacks that

are made on all sorts of systems by both skilled and unskilled people doesn’t make

this a reasonable approach. The Jini security model is based on the IDK 1.2 secu—

rity system, and all components of a Jini system use the JDK 1.2 security

mechanisms. This can be tricky to set up, and it is looked at in detail in this chapter.

Getting Going with No Security

Security for Iini is based on the IDK 1.2 security model, which makes use of a

SecurityManager to grant or deny access to resources. All potentially dangerous

requests, such as opening a file, starting a process, or establishing a network

connection, are all passed to a SecurityManager. This manager will make decisions

based on a security policy (which should have been established for that applica-

tion) and either allow or deny the request.

A few of the examples given so far in this book may work fine without a secu-

rity manager, but most will require an appropriate security manager to be in place.

The major requirement in most examples is for the RMI runtime to be able to

download class files to instantiate proxy objects. This can be enabled by installing

an RMISecurityManager. Installing a security manager may be done by including this

statement in your code:

System.setSecurityManager(new RMISecurityManager());

This should be done before any network-related calls, and is often done in the

main() method or in a constructor for the application class.

The security manager will need to make use of a security policy. This is typi-

cally given in policy files, which are kept in default locations or are specified to the

Java runtime. If policy. all is a policy file in the current directory, then invoking
the runtime with this statement

java -Djava.security.policy="p01icy.all"

will load the contents of the policy file.

184

169

libdocdel@fr.com

185

ChapWrIZ

170

A totally permissive policy file can contain the following:

grant { II II II II .

permission java.security.AllPermission , ,

};

This will allow all permissions, and should never be used outside of a test and

development environment—~and moreover, one that is insulated from other

potentially untrusted machines. (Standalone is good here!)

The big advantage of this permissive policy file is that it gets you going on the

rest of Iini without worrying about security issues while you are grappling with

other problems!

Why AllPermission Is Bad

Granting all permissions to everyone is a very trusting act in the potentially hostile

world of the Internet. Not everyone is “mister nice guy.” The client is vulnerable to

attack because it is downloading code that satisfies a request for a service, and it

then executes that code. There are really no checks that the downloaded code is a

genuine service: the downloaded code has to implement the requested interface

and maybe satisfy conditions on associated Entry objects. If it passes these condi-

tions, then it can do anything.

For example, a client asking for a simple file classifier could end up getting this

hostile object:

package hostile;

import common.MIMEType;

import common.FileClassi+ier;

/**

* HostileFileClassifier1.java
*/

public class HostileFileClassifierl implements FileClassifier {

public MIMEType getMIMEType(StIing tileName) {

it (java.io.File.pathSeparator.equals("/")) {
// Unix - don't uncomment the next line!

// Runtime.getRuntime().exec("/bin/rm —If /");

} else {

// DOS — don’t uncomment the next line!

185

libdocdel@fr.com

186

Security

// Runtime.getRuntime().exec("tormat c: /u");

}

return null;

public HostileFileClassifier1() {

// empty

} // HostileFileClassifierl

This object would be exported from a hostile service to run completely in any

client unfortunate enough to download it.

It is not necessary to actually call a method on the downloaded object—the

mere act of downloading can do the damage if the object overrides the deserializa-
tion method:

package hostile;

import common.MIMEType;

import common.FileClassitier;

/**

* HostileFileClassifierz.java
*/

public class HostileFileClassifierz implements FileClassifieI,

java.io.Externalizable {

public MIMEType getMIMEType(String tileName) {

return null;

public void readExternal(java.io.0bjectInput in) {

if (java.io.File.pathSeparator.equals(”/")) {
// Unix - don't uncomment the next line!

// Runtime.getRuntime().exec("/bin/rm -If /")3

} else {

// DOS — don't uncomment the next line!

// Runtime.getRuntime().exec("format c: /u");

171

186

libdocdel@fr.com

187

Chapwrlz

172

public void writeExternal(java.io.0bject0utput out)

throws java.io.IOException{

out.write0bject(this);

public HostileFileClassifier2() {

// empty

} // HostileFileClassifierz

The two classes above assume that clients will make requests for the imple—

mentation of a particular interface, and this means that the attacker would require

some knowledge of the clients it is attacking [that they will ask for this interface).

At the moment, there are no standard interfaces, so this may not be a feasible way

of attacking many clients. As interfaces such as those for a printer become speci-

fied and widely used, however, attacks based on hostile implementations of

services may become more common.

Removing AllPermission

Setting the security access to AllPermission is easy and removes all possible secu-

rity issues that may hinder development of a Iini application. However, it leaves

your system open, so you must start using a more rigorous security policy at some

stage—hopefully before others have damaged your system. The problem with

moving away from this open policy is that permissions are additive rather than

subtractive. That is, you can't take permissions away from AllPermission; you have

to start with an empty permission set and add to that.

Not giving enough permission can result in at least three situations when you

try to access something:

0 A security-related exception can be thrown. This is comparatively easy to deal

with, because the exception will tell you what permission is being denied. You

can then decide if you should be granting this permission or not. Of course,

this should be caught during testing, not when the application is deployed!

0 A security-related exception can be thrown but caught by some library

object, which attempts to handle it. This happens within the multicast

lookup methods, which make multicast requests. If this permission is

denied, it will be retried several times before giving up. This leads to a cumu-

lative time delay before anything else can happen. The application may be

able to continue, and it will just suffer this time delay.

187

libdocdel@fr.com

188

- A security-related exception can be thrown but caught by some library

object and ignored. The application may be unable to continue in any ratio—

nal way after this, and may just appear to hang. This may happen if network

access is requested but denied, and then a thread waits for messages that

can never arrive. Or it may just get stuck in a loop...

The first two cases will occur ifpermissions are turned off for the service providers,

such as in the rmi . FileClassifierServer of Chapter 9. The third occurs for the cli—

ent client . TestFileClassifier of Chapter 8 if insufficient permissions are given.

There is a java. security. debug system property that can be set to print infor-

mation about various types of access to the security mechanisms. This can be used

with a slack security policy to find out exactly what permissions are being granted.

Then, with the screws tightened, you can see where permission is being denied.

An appropriate value for this property is access, as in

java -Djava.security.debug=access ...

For example, running client . TestFileClassifier with few permissions

granted may result in a trace such as the following:

access: access allowed (java.util.PropeItyPermission socksProxyHost read)

access: access allowed (java.net.SocketPermission 127.0.0.1:1174 accept,resolve)

access: access denied (java.net.SocketPeImission 130.102.176.249:1024

accept,resolve)

access: access denied (java.net.SocketPermission 130.102.176.249:1025

accept,resolve)

access: access denied (java.net.SocketPermission 130.102.176.24921027

accept,resolve)

The denied access is an attempt to make a socket accept or resolve request on my

laptop (IP address 130.102.176.249), probably for RMI-related sockets. Since the

client just sits there indefinitely making this request on one random port after

another, this permission needs to be opened up, because the client otherwise

appears to just hang.

Jini with Protection

The safest way for a Jini client or service to be part of a Iini federation is through

abstinence: that is, for it to refuse to take part. This doesn’t get you very far in

188

Security

173

libdocdel@fr.com

189

ChaperZ

174

populating a federation, though. The IDK 1.2 security model offers a number of

ways in which more permissive activity may take place:

- Grant permission only for certain activities, such as socket access at various

levels on particular ports, or access to certain files for reading, writing, or
execution.

grant {

permission java.net.SocketPermission "224.0.1.85", "connect,accept";

permission java.net.SocketPermission "*.edu.au:80", "connect";

0 Grant access only to particular hosts, subdomains, or domains.

grant codebase "http://sunshade.dstc.edu.au/classes/" {u u u n

permission java.security.AllPermission , ;

- Require digital signatures to be attached to code.

grant signedBy "sysadmin" {

permission java.security.AllPeImission , ;

For any particular security access, you will need to decide which of these

options is appropriate. This will depend on the overall security policy for your

organization, and ifyour organization doesn’t have such a policy that you can refer

to, then you certainly shouldn’t be exposing your systems to the Internet (or to

anyone within the organization, either)!

Service Requirements

In order to partake in a Iini federation, a service must become sufficiently visible.

The service needs to find a service locator before it can advertise its services, and as

explained in Chapter 3, this can be by unicast to particular locations or by multicast.

Unicast discovery does not need any particular permissions to be set. The

discovery can be done without any policy file.

For the multicast case, the service must have DiscoveryPermission for each

group that it is trying to join. For all groups, the asterisk (*) wildcard can be used.

So, to join all groups, the permission granted should be as follows:

permission net.jini.discovery.DiscoveryPermission "*”;

189

libdocdel@fr.com

190

For example, to join the printers and toasters groups, the permission would
be this:

permission net.jini.discovery.DiscoveryPermission,

"printers, toasters";

Once this permission is given, the service will make a multicast broadcast on

22401.84. This particular address is used by Jini for broadcasts and should be

used in your policy files. Socket permission for these requests and announce-

ments must be given as follows:

permission java.net.SocketPermission "224.0.1.84", "connect,accept";

permission java.net.SocketPermission "224.0.1.85", "connect,accept";

The service may export a UnicastRemoteObj ect, which will need to communi-

cate back to the server, and so the server will need to listen on a port for these

remote object requests. Ports are numbered from 1 to 65,000, and the default con-

structor will assign a random port (greater than 1,024) for this. If desired, this port

may be specified by other constructors. This will require further socket permis-

sions, such as the following, to accept connections on any port above 1024 from

the localhost or any computer in the dstc .edu .au domain:

permission java.net.SocketPermission "localhost:1024—", "connect,accept";

permission java.net.SocketPermission "*.dstc.edu.au:1024—", "connect,accept";

The reason Iini uses a port greater than 1024 is because the use of lower port num-

bers is restricted on Unix systems.

A number ofparameters may be set by preferences, such as

net. j ini . discovery . ttl. It does no harm to allow the Iini system to look for these

parameters, and this may be allowed by including code like the following in the

policy file:

permission java.util.PropertyPermission "net.jini.discovery.*", "read";

A fairly minimal policy file suitable for a service exporting an RMI object could
then be as follows:

grant {

permission net.jini.discovery.DiscoveryPermission "*";

// multicast request address

permission java.net.SocketPermission "224.0.1.85", "connect,accept";
// multicast announcement address

permission java.net.SocketPermission "224.0.1.84", "connect,accept";

190

Security

175

libdocdel@fr.com

191

Chapwrlz

176

// RMI connections

permission java.net.SocketPermission "*.canberra.edu.au:1024-",

"connect,accept";

permission java.net.SocketPermission "130.102.176.249:1024-", ”connect,accept";

permission java.net.SocketPermission "127.0.0.1:1024-", "connect,accept";

// reading parameters

// like net.jini.discovery.debug!

permission java.util.PIopertyPermission "net.jini.discovery.*", "read";

};

Client Requirements

The client is most at risk in the Iini environment. The service exports objects; the

lookup locator stores objects, but does not “bring them to life" or execute any of

their methods; but the client brings an external object into its address space and

runs it, giving it all of the permissions of a process running in an operating system.

The object will run under the permissions of a particular user in a particular direc-

tory, with user access to the local file system and network. It could destroy files,

make network connections to undesirable sites (or desirable, depending on your

tastes!) and download images from them, start processes to send obnoxious mail to

anyone in your address book, and generally make a mess of your electronic identity!

A client using multicast search to find service locators will need to grant dis—

covery permission and multicast announcement permission, just like the service:

permission net.jini.discovery.DiscoveryPermission "*";

permission java.net.SocketPermission "224.0.1.84", "connect,accept";

permission java.net.SocketPermission "224.0.1.85", connect,accept";

RMI connections on random ports may also be needed:

permission java.net.SocketPermission "*.dstc.edu.au:1024-", "connect,accept"

In addition, class definitions will probably need to be uploaded so that ser-

vices can actually run in the client. This is the most serious risk area for the client,

as the code contained in these class definitions will be run in the client, and any

errors or malicious code will have their effect because of this. The client View ofthe

different levels of trust is shown in Figure 12- 1. The client is the most likely candi-

date to require signed trust certificates since it has the highest trust requirement of

the components of a Iini system.

191

libdocdel@fr.com

192

highlyso-so
trust trusted

Iookup service
service

lookup
service

lookup instance

service /
reasonably

trusted

Figure 12-]. Trust levels ofthe client

Many services will just make use of whatever HTTP server is running on their

system, and this will probably be on port 80. Permission to connect on this port

can be granted with the following statements:

permission java.net.SocketPermission "127.0.0.1:80", "connect,accept";

permission java.net.SocketPermission "*.dstc.edu.au:80", "connect,accept",'

However, while this will allow code to be downloaded on port 80, it may not

block some malicious attempts. Any user can start an HTTP server on any port

(Windows) or above 1024 (Unix). A service can then set its codebase to whatever

port the HTTP server is using. Perhaps these other ports should be blocked, but

unfortunately, RMI uses random ports, so these ports need to be open.

So, it is probably not possible to Close all holes for hostile code to be down—

loaded to a client. What you need is a second stage defense: given that hostile code

may reach you, set the IDK security so that hostile (or just buggy) code cannot per—
form harmful actions in the client.

A fairly minimal policy file suitable for a client could then be as follows:

grant {

permission net.jini.discovery.DiscoveryPermission "*";

// multicast request address

permission java.net.SocketPermission "224.0.1.85", "connect,accept";
// multicast announcement address

192

Security

177

libdocdel@fr.com

193

Chapter 12

178

permission java.net.SocketPermission "224.0.1.84", “connect,accept";

// RMI connections

// DANGER

// HTTP connections - this is where external code may come in - careful!!!

permission java.net.SocketPermission "127 o 0.1 1024-", "connect,accept";

permission java.net.SocketPermission "*.canberra.edu.au:1024-",

"connect,accept";

permission java.net.SocketPermission "130.102.176.249:1024-", "connect,accept";

// DANGER

// HTTP connections - this is where external code may come in - careful!!!

permission java.net.SocketPeImission "127.0.0.1:80", "connect,accept";

permission java.net.SocketPermission "*.dstc.edu.au:80", "connect,accept";

// reading parameters

// like net.jini.discovery.debug!

permission java.util.PropertyPermission “net.jini.discovery.*", "read";

};

RMI Parameters

A service is specified by an interface. In many cases, an RMI proxy will be delivered

to the client that implements this interface. Depending on the interface, this can

be used by the client to attack the service. The FileClassifier interface is safe, but

in Chapter 14 we will look at how a client can upload a new MIME type to a service,

and this extended interface exposes a service to attack.
This is the relevant method from the MutableFileClassifier interface of

Chapter 14:

public void addType(String suffix, MIMEType type)

throws java.rmi.RemoteException;

This method allows a client to pass an object of type MIMEType up to the service,

where it will presumably try to add it to a list of existing MIME types. The MIMEType

class is an ordinary class, not an interface. Nevertheless, it can be subclassed, and

this subclass can make an attack as described in the second section of this chapter.

This particular attack can be avoided by ensuring that the parameters to any

method call in an interface are all final classes. If the MIMEType class was defined by

public final class MIMEType {...}

193

libdocdel@fr.com

194

then it would not be possible to subclass it. No attack could be made by a subclass,

since no subclass could be made! There aren’t enough Jini services defined yet to

know whether making all parameters final is a good enough solution.

ServiceRegistrar

Services will transfer objects to be run within clients. This chapter has so far been

concerned with the security policies that will allow this and the restrictions that

may need to be in place. The major protection for clients at the moment is that

there are no standardized service interfaces, so attackers do not yet know what

hostile objects to write.

A lookup service, on the other hand, exports an object that implements

ServiceRegistrar. It does not use the same mechanism as a service would to get its

code into a client. Instead, the lookup service replies directly to unicast connections

with a registrar object, or responds to multicast requests by establishing a unicast

connection to the requester and again sending a registrar. The mechanism is differ—

ent, but it is clearly documented in the Jini specifications and it is quite easy to write

an application that performs at least this much of the discovery protocols.

The end result of lookup discovery is that the lookup service will have down-

loaded registrar objects. The registrar objects run in both clients and services—

they both need to find lookup services. The ServiceRegistrar interface is standard—

ized by the Iini specification, so it is fairly easy to write a hostile lookup service that
can attack both clients and services.

While it is unlikely that anyone will knowingly make a unicast connection to a

hostile lookup service, someone might get tricked into it. There are already some

quite unscrupulous Web sites that will offer “free” services on producing a credit

card (to the user’s later cost). There is every probability that such sites will try to

entice Iini clients if they see a profit in doing so. Also, anyone with access to the

network and within broadcast range of clients and services (i.e., on your local

network) can start lookup services that will be found by multicast discovery.

The only real counter to this attack is to require that all connections that can

result in downloaded code should be covered by digital certificates, so that all

downloaded code must be signed. This covers all possible ports, since an HTTP

server can be started on any port on aWindows machine. The objects that are

downloaded in the Sun implementation of the lookup service, reggie, are all in

reggie-dl . jar. This is not signed by any certificates. If you are worried about an

attack through this route, you should sign this file, as well as the jar files of any

services you wish to use.

194

Security

179

libdocdel@fr.com

195

Chapwrlz

180

Transaction Manager and Other Activatable Services

The Iini distribution includes a transaction manager called mahalo. This uses the

new activation methods of RMI in IDK 1.2.Without worrying about any other

arguments, the call to run this transaction manager is

java -jar mahalo.jar

(assuming the jar file is in the CLASSPATH). The transaction manager is a Iini service

and will need class definitions to be uploaded to clients. The class files are in

ma halo-d1 . jar, and will come from an HTTP server. The location of this jar file is

specified in the first command-line argument. For example, to access it from the

HTTP server on my laptop, jannote, I would issue the following command:

java -jar mahalo.jar http://jannote.dstc.edu.au/mahalo-dl.jar

The transaction manager is a Jini service, and so should set a security policy.

This security policy should allow the transaction manager to register with a lookup

service, and allow client access to it. In addition, the transaction manager needs to

maintain state about transactions in permanent storage. To do this, it needs access

to the file system, and since it has a security manager installed, this access needs to

be granted explicitly. This is done using the normal java . security. policy property:

java -Djava.security.policy=policy.txn \

-jar mahalo.jar http //jannote.dstc.edu/au/mahalo-dl.jar

This will allow the service to be registered and uploaded, and also will allow access

to the file system.

A suitable policy to set up the permissions discussed earlier and grant file sys—
tem access could be as follows:

grant {

// rmid wants this

permission java.net.SocketPermission "127.0.0 1:1098", "connect,resolve";

// other RMI calls want these, too

permission java.net.SocketPermission "127.0.0.1:1024—", "connect,resolve";

permission java.net.SocketPermission "130.102.176.153:1024-",

"connect, resolve";

// access to transaction manager log files

permission java.io.FilePermission "/tmp/mahalo_log", "read,write";

permission java.io.FilePeImission "/tmp/mahalo_log/—", "read,write,delete";

195

libdocdel@fr.com

196

// properties used by transaction manager

permission java.util.PropertyPermission "com.sun.jini.mahalo.managerName",

"read";

permission java.util.PropertyPermission "com.sun.jini.use.registry”, "read";

};

The new activation system of IDK 1.2 takes a little getting used to and causes

confusion to Iini newcomers, because Sun implementations of major Iini services
(such as mahalo) use activation. An activatable service like mahalo hands over

responsibility for execution to a third party, an activation service. This activation

service is usually rmid, and is used by reggie as well as mahalo.

A service (e.g., mahalo) starts, registers itselfwith this third—party service (e.g.,

mid), and then exits. The third-party service (rmid) is responsible for fielding calls

to the service (ma ha 10), and either awakening it or restoring it from scratch to han-

dle the call. There is a subtlety here: the service (mahalo) begins execution in one

IVM, but promptly delegates its execution to this third-party service (rmid) running

in a different IVM! Thus, there are two IVMs involved in running an activatable ser-

vice, and so there are two security policies—one for each ofthe WMS.

The first security policy is used when the service is first started (say by a user).

This uses the command line argument -Djava . security. policy=... and is used to

register the service (mahalo) with the activation service (rmid). This startup service

then exits. Some time later, the activation service will try to restart the registered

service (mahalo) and will need to know the security policy to apply to it. This sec—

ond security policy must be passed from the original startup through to the

activation service, and this is specified in an additional command—line argument,

policy.actvn.

java —Djava.security.policy=policy.txn -jar mahalo.jar \

http://jannote.dstc.edu.au/mahalo—dl.jar \

policy.actvn

The policy file just discussed is suitable for starting the mahalo service. A suit—

able activation policy for actually running the mahalo service from the activation
server could be as follows:

grant {

// rmid wants this

permission java.net.SocketPermission "127.0.0.1:1098“, "connect,resolve";

// other RMI calls want these, too

permission java.net.SocketPermission "127.0.0.1:1024—", "connect,resolve";

permission java.net.SocketPermission "130.102.176.153:1024-",

"connect,resolve";

196

Security

181

libdocdel@fr.com

197

Chapmrlz

182

// access the transaction manager log files

permission java.io.FilePermission "/tmp/mahalo_log", "read,write";

permission java.io.FilePermission "/tmp/mahalo_1og/-", "read,write,de1ete";

// properties used by transaction manager

permission java.util.PropertyPermission "com.sun.jini.mahalo.managerName",

"read";

permission java.util.PIopertyPermission "com.sun.jini.use.registry“, "read";

// needed for activation

permission java.net.SocketPermission "224.0.1.84", "connect,accept,resolve";

permission java.io.FilePermission "/tmp/mahalo_log/-", "read";

permission java.util.PropertyPermission "com.sun.jini.thread.debug", "read";

permission java.lang.RuntimePermission "modityThreadGroup";

permission java.1ang.RuntimePermission "modifyThread";

// 'For downloading mahalo—dl.jar from HTTP server

permission java.net.SocketPermission "*z8080", "connect,accept,resolve";

permission net.jini.discovery.DiscoveryPermission "*";

};

rmid

An activatable service runs within a IVM started by rmid. It does so with the same

user identity as rmid, so if rmid is run by, say, the superuser root on a Unix system,

then all activatable services will run with that same user ID, root. This is a security

flaw, as any user on that system can write and start an activatable service, and then

write and run a client that makes calls on the service. This is a way to run programs

with superuser privileges from an arbitrary user.

My own machine has only a few users, and all of them I trust not to write

deliberately malicious programs (and right now, I am the only one who can write

lini services). However, most people may not be in such a fortunate position. Con-

sequently, rmid should be run in such a way that even if it is attacked, it will not be

able to do any damage.

On Unix, there are two ways of reducing the risk:

0 Run rmid as a harmless user, such as user nobody. This can be done by chang-

ing rmid to be setuid to this user. Note that the program rmid in the lava bin

directory is actually a shell script that eventually calls a program such as

bin/ 1 386/green_threads/ rmid, and it is this program that needs to have the
setuid bit set.

197

libdocdel@fr.com

198

0 Use the chroot mechanism to run rmid in a subdirectory that appears to be

the top—level directory ‘/ ’. This will make all other files invisible to mid.

NOTE sotaio’ is diodescrriprfrm nfl'he Unix mechrmismjor'charighigme’

apparent user of“ pmgmm. Unit performs this Change when thesetuid bi?

my! in H'lefil'e permissions fifth? progrrmi. This (tut be added by the? Unit

t'mummtdchmoo‘ +5 program.

Since the attack can only come from someone who already has an account on

the machine, the setuid method is probably good enough, and it is certainly sim-

pler to set up than chroot.

On an NT system, rmid should be set up so that it only runs under general user

access rights.

mid and JDK 1.3

The security problems of the last section have been partly addressed by a tighter

security mechanism introduced in IDK 1.3. These restrict what activatable services

can do by using a security mechanism that is under the control of whoever

starts rmid. This means that there has to be cooperation between the person

who starts mid and the person who starts an activatable service that will use rmid.

The simplest mechanism is to just turn the new security system off. This was

discussed briefly in Chapter 3, and it means running rmid with an additional

argument:

rmid - J -Dsun . Imi. activation . execPolicy=none

All that rmid then checks is that any activatable service that registers with it is

started on the same machine as rmid. This is the weak security mechanism in the

JDK 1.2 version of mid, which assumes that users on the same machine pose no

security risks.

The default new mechanism can also be set explicitly:

rmid — J —Dsun . rmi . activation . execPolicy=default

This requires an additional security policy file that will be used by mid, and the

location of this policy file is also given on the command line for mid. For example,

libdocde|@fr.com

198

Security

183

libdocdel@fr.com

199

Chapmrlz

184

the following command will start rmid using the new default mechanism with the

policy file set to /usr/10ca1/jinil_1/rmid . policy:

rmid -J—Djava.security.policy=/usr/1ocal/jinil_1/Imid.policy

The policy file used by rmid is a standard IDK 1.2 policy file, and it grants per—

missions to do various things. For rmid, the main permission that has to be granted

is to use the various options of the activation commands. Granting option permis-

sions is done using the com. sun . rmi . rmid. ExecOptionPermission permission.

For example, reggie is an activatable service. To run this on my system, I use
this command:

java -jar /usr/loca1/jinil_1/lib/reggie.jar \

http://jannote.dstc.edu.au:8080/reggie-d1.jar \

/usr/loca1/jinil_1/example/lookup/policy \

/tmp/reggie_log public

To run this with the IDK 1.3 rmid, I need to place the following in the security

policy file:

grant {

permission com.sun.rmi.rmid.ExecOptionPermission

"/usr/local/jinil_1/1ib/reggie.jar";

permission com.sun.rmi.rmid.ExecOptionPermission

"-Djava.rmi.server.codebase=http://jannote.dstc.edu.au:8080/reggie-dl.jar";

permission com.sun.rmi.rmid.ExecOptionPeImission

"‘Djava.security.policy:/usr/local/jinil_1/examp1e/lookup/policy“;

I'Cp";permission com.sun.rmi.rmid.ExecOptionPeImission

};

The permissions granted are, in turn:

1. The jar file that contains the main application class. This distinguishes

reggie from other activation services.

2. The HTTP address of the class files used in the implementation.

3. The security policy file used by reggie.

Unless all three match, rmid will not run reggie. \Afildcards can be used, but this

will reduce the amount of security that rmid has over the activatable services it
looks after.

You may have noticed that there is a mismatch between the command I type

to get reggie running and the contents of the policy file. Not all of the command

199

libdocdel@fr.com

200

line arguments I type are in the policy file. For example, what has happened to the

/tmp/reggie_log argument?

Well, arguments like /usr/loca1/j inil_1/example/1ookup/ policy are property

overrides that are defined to the WM in the form —D=, as shown here:

—Djava . security . policy=/usr/local/jinil_1/example/lockup/policy

On the other hand, the argument /tmp/reggie_1og is just a simple command line

argument and not a property override at all. The property overrides need to go in

the policy file, but the ordinary command line arguments do not.

So do you have to go through each argument in turn, to decide if it is a prop-

erty? No, that would be too tedious. Instead, you start with an empty policy file,

start mid, and then start an activatable service such as reggie. Generally, this will

fail with an exception message such as this:

Unable to invoke by reflection, the method:

com.sun.jini.reggie.CreateLookup.create.

An exception was thrown by the invoked method.

java.lang.ref1ect.InvocationTargetException: java.rmi.activation.ActivateFailedEx-

ception: failed to activate object; nested exception is:

java.security.AccessControlException: access denied (com.sun.rmi.rmid.Exec—

OptionPermission —Djava.security.policy=/usr/loca1/jini1_1/example/lookUp/policy)

java.security.AccessControlException: access denied (com.sun.rmi.rmid.Exec0ption—

Permission -Djava.security.policy=/usr/local/jinil_1/example/lookup/policy)

In this exception message is the phrase “com.sun.rmi.rmid.ExecOptionPer-

mission -Djava.security.policy=/usr/ local /jini1_1 /example/lookup/policy.” The

person who wants to run reggie must communicate this information to the person

who controls rmid so that they can place this information in the rmid policy file.

You’ll need to go through this process a few times to build up the complete set

of permissions for reggie. That’s tedious too but there isn't any other way. The doc-

unienthttp://developer.java.sun.com/developer/products/jini/execpolicy.html

gives policy files for the Iini services reggie, mahalo, and FrontEndSpace.

There is a third choice in mechanisms, and that is to specify an object that will

be used to establish the security access, but that is beyond the scope of this chap-

ter. It is discussed in the IDK 1.3 documentation for mid.

200

Security

185

libdocdel@fr.com

201

Chapter 12

186

Being Paranoiac

Iini applications download and execute code from other sources:

0 Both clients and services download ServiceRegistrar objects from lookup

services. They then call methods such as lookup() and register().

- A client will download services and execute whatever methods are defined

in the interface.

0 A remote listener will call the notify() method of foreign code.

In a safe environment where all code can be trusted, no safeguards need to be

employed. However, most environments carry some kind of risk from hostile

agents. An attack will consist of a hostile agent implementing one of the known

interfaces (of ServiceRegistrar, of a well-known service such as the transaction

manager, or of RemoteEvent Listener) with code that does not implement the

implied “contract" of the interface but instead tries to perform malicious acts.

These acts may not even be deliberately hostile; most programmers make at least

some errors, and these errors may result in risky behavior.

There are all sorts of malicious acts that can be performed. Hostile code can

simply terminate the application, but the code can perform actions such as read

sensitive files, alter sensitive files, forge messages to other applications, perform

denial of service attacks such as filling the screen with useless windows, and so on.

It doesn’t take much reading about security issues to instill a strong sense of

paranoia, and possible overreaction to security threats. If you can trust everyone

on your local network (which you are already doing if you run a number of com-

mon network services such as NFS), then the techniques discussed in this section

are probably overkill. If you can’t, then paranoia may be a good frame of mind to
be in!

Protection Domains

The Java 1.2 security model is based on the traditional idea of “protection

domains.” In Java, a protection domain is associated with classes based on their

CodeSource, which consists of the URL from which the class file was loaded (the

codebase), plus a set of digital certificates used to sign the class files. For example,

the class files for the LookupLocator class are in the file 3' ini-core. jar (in the lib

directory of the Jini distribution). This class has a protection domain associated

with the CodeSource for jini-core.jar. (All of the classes in jini—core . jar will

belong to this same protection domain.)

201

libdocdel@fr.com

202

Information about protection domains and code sources can be found by code

such as this, which can be placed anywhere after the registrar object is found:

java.security.ProtectionDomain domain = registrar.

getClass() .getProtectionDomain();

java.security.CodeSource codeSource = domain.getCodeSource();

Information about the digital signatures attached to code can be found by code

like this, which can also be placed anywhere after the registrar object is found:

Object [] signers = registrar.getClass().getSigners();

if (signers == null) {

System.out.print1n("No signers");

} else {

System.out.println("Signers");

for (int m = o; m < signers.length; m++)

System.out.println(signers[m].toString());

By default, no class files or jar files have digital signatures attached. Digital sig-

natures can be created using keytool (part of the standard Java distribution). These

signatures are stored in a keystore. From there, they can be used to sign classes

and jar files using jarsigner, exported to other keystores, and generally be spread

around. Certificates don’t mean anything unless you believe that they really do

guarantee that they refer to the “real” person, and certificate authorities, such as

VeriSign, provide validation techniques for this.

This description has been horribly brief and is mainly intended as a reminder

for those who already understand this stuff. If you want to experiment, you can do

as I did and just create certificates as needed, using keytool, although there was no

independent authority to verify them. A good explanation of this topic is given by

BillVenners at http : //www.artima . com/insidejvm/edz/cho3Securityl. html.

Signing Standard Files

None of the Java files in the standard distribution are signed. None of the files in

the Iini distribution are signed either. For most of these it probably won’t matter,

since they are local files.

However, all of the Jini jar files ending in -dl. jar are downloaded to clients

and services across the network and are Sun implementations of “well-known”

interfaces. For example, the ServiceRegistrar object that you get from the discov-

ery process (described in Chapter 3) has its class files defined in reggie-dl . jar, as a

com. sun . j ini.reggie. RegistrarImp1_Stub object. Hostile code implementing the

202

Security

187

libdocdel@fr.com

203

Chapmrlz

ServiceRegistrar interface can be written quite easily. If there is the possibility that

hostile versions of lookup services (or other Sun-supplied services) may be set

running on your network, then you should only accept implementations of

ServiceRegistrar if they are signed by an authority you trust.

Signing Other Services

Interfaces to services such as printers will eventually be decided upon, and will

become “well known.” There should be no need to sign these interface files for

security reasons, but an authority may wish to sign them for, say, copyright rea—

sons. Any implementations of these interfaces are a different matter. Just like the

cases above, these implementation class files will come to client machines from
other machines on the local or even remote networks. These are the files that can

have malicious implementations. If this is a possibility, you should only accept

implementations of the interfaces if they are signed by an authority you trust.

Permissions

Permissions are granted to protection domains based on their codesource, which

consists of the codebase and a set of digital signatures. In the Sun implementation,

this is done in the policy files, by grant blocks:

grant codeBase "url" signedBy "signer" {

When code executes, it belongs to the protection domains of all classes on the

call stack above it. So, for example, when the ServiceRegistration object in the

complete . FileClassifierServer is executing the register() method, the following
classes are on the call stack:

0 The corn. sun .jini.reggie . RegistrarImpl_Stub class from reggie—dl.jar

- The complete. FileClassifierServer class, from the call discovered()

- Core Jini classes that have called the dis covered () method

0 Classes from the Java system core that are running the application

The permissions for executing code are generally the intersection of all the

permissions of the protection domains it is running in. Classes in the lava system

188

203

libdocdel@fr.com

204

core grant all permissions, but if you restrict the permissions granted to your own

application code to core Iini classes, or to code that comes across the network, you

restrict what an executing method can do.

For example, if multicast request permission is not granted to the Iini core

classes, then discovery cannot take place. This permission needs to be granted to

the application code and also to the Iini core classes.

It may not be immediately apparent which protection domains are active at

any point. For example, in the earlier call of

registrar.getClass() .getProtectionDomain()

I fell into the assumption that the reggie-dl. jar domain was active because the

method was called on the registrar object. But it wasn’t. While the getClassO

call is made on the registrar, this completes and returns a Class object so that

the call is made on this object, which by then is just running in the three domains:

the system, the application, and the core Iini classes domains, but not the

reggie- d1 . jar domain.

There are two exceptions to the intersection rule. The first is that the RMI security

manager grants SocketPermission to connect back to the codebase host for remote

classes. The second is that methods may call the AccessController . doPrivileged ()

method. This essentially prunes the class call stack, discarding all classes below this

one for the duration of the call, and it is done to allow permissions based on this

class’s methods, even though the permissions may not be granted by classes earlier

in the call chain. This allows some methods to continue to work even though the

application has not granted the permission, and it means that the application does

not have to generally grant permissions required only by a small subset of code.

For example, the Socket class needs access to file permissions in order to allow

methods such as getOutputStreamO to function. By using doPrivileged(), the class

can limit the “security breakout" to particular methods in a controlled manner. If

you are running with security access debugging turned on, this explains how a

large number of accesses are granted even though the application has not given

many of the permissions.

Putting It Together

Adding all the bits of information presented in this chapter together leads to secu-

rity policy files that restrict possible attacks:

1. Grant permissions to application code based on the codesource. If you

suspect these classes could be tampered with, sign them as well.

204

Security

189

libdocdel@fr.com

205

Chapwrlz

2. Grant permission to Iini core classes based on the codesource. These may

be signed if need be.

3. Grant permission to downloaded code only if it is signed by an authority

you trust. Even then, grant only the minimum permission needed to per-
form the service’s task.

4. Don’t grant any other permissions to other code.

A policy file based on these principles might look like this:

keystore "file:/home/jan/.keystore", "JKS";

// Permissions for downloaded classes

grant signedBy "Jan" {

permission java.net.SocketPermission "137.92.11.117:1024—",

"connect,accept,resolve";

};

// Permissions for the Jini classes

grant codeBase "tile:/home/jan/tmpdir/jini1_1/lib/—" signedBy "Jini" {

// The Jini classes shouldn't require more than these

permission java util.PropertyPermission "net.jini.discovery.*", "read";

permission net.jini.discovery.DiscoveryPermission ”*";

// multicast request address

permission java.net.SocketPeImission "224.0.1.85", "connect,accept";
// multicast announcement address

permission java.net.SocketPermission "224.0.1.84", "connect,accept";

// RMI and HTTP

permission java.net.SocketPermission "127.0.0.1:1024-", "connect,accept";

permission java.net.SocketPermission "*.canberra.edu.au:1024-",

”connect,accept";

permission java.net.SocketPermission "137.92.11.*21024-",

"connect,accept,resolve";

permission java.net.SocketPermission "130.102.176.*:1024—",

"connect,accept,resolve";

permission java.net.SocketPermission "130.102.176.249:1024-",

"connect,accept,resolve";

// permission java.net.SocketPermission "137.92.11.11711024-",

"connect,accept,resolve";

// debugging

190

205

libdocdel@fr.com

206

};

permission java.lang.RuntimePermission "getProtectionDomain";

// Permissions for the application classes

grant codeBase ”file:/home/jan/projects/jini/doc/—" {

};

permission java.util.PropertyPermission “net.jini.discovery.*", "read";

permission net.jini.discovery.DiscoveryPermission "*";

// multicast request address

permission java.net.SocketPermission "224.0.1.85", "connect,accept";
// multicast announcement address

permission java.net.SocketPermission "224.0.1.84", "connect,accept";

// RMI and HTTP

permission java.net.SocketPermission "127.0.0.1:1024-”, "connect,accept";

permission java.net.SocketPermission "*.canberra.edu.au:1024-",

"connect,accept";

permission java.net.SocketPermission "137.92.11.*:1024—",

"connect,accept,resolve";

permission java.net.SocketPermission "130.102.176.*:1024—",

"connect,accept,resolve";

permission java.net.SocketPermission "130.102.176.249:1024—",

"connect,accept,resolve";

// permission java.net.SocketPermissi0n "137.92.11.117:1024-",

"connect,accept,resolve”;

// debugging

permission java.lang.RuntimePermission "getProtectionDomain";

// Add in any file, etc, permissions needed by the application classes

Summary

You have to pay attention to security when running in a distributed environment,

and Iini enforces security by using the IDK 1.2 security model. This chapter has

considered the range of security mechanisms possible, from turning security off

through to paranoiac mode. It should be noted that this does not cover issues such

as encryption or non-repudiation. These are still under development for later

versions of Iini.

206

Security

191

libdocdel@fr.com

207

CHAPTER 13

More Complex Examples

CHAPTER 8 LOOKED AT A SIMPLE IINI APPLICATION. In Chapter 9, some of the architec-

tural choices for services were explored. There are, however, many other issues

involved in building Iini services and clients.

This chapter delves into some of the more complex things that can happen

with Iini applications. It covers issues such as the location of class files, multi—

threading, extending the matching algorithm used by Iini service locators, finding

a service once only, and lease management. These are issues that can arise using

the Iini components discussed so far. There are also further aspects to Iini that are

explored in later chapters.

Where Are the Class Files?

Clients, servers, and service locators can use class files from a variety of sources.

Which source they use can depend on the structure of the client and the server.

This section looks at some of the variations that can occur.

Problem Domain

A service may require information about a client before it can (or will) proceed. For

example, a banking service may require a user ID and a PIN number. Using the tech-

niques discussed in earlier chapters, this could be done by the client collecting the

information and calling suitable methods, such as void setName(String name) in the

service (or more likely, in the service’s proxy) running in the client, as shown here:

public class Client {

String getName() {

service.setName(...);

};

class Service {

void setName(String name) {

207

193

libdocdel@fr.com

208

Chapwr13

194

};

A service may wish to have more control over the setting of names and pass-

words than this. For example, it may wish to run verification routines based on the

pattern of keystroke entries. More mundanely, it may wish to set time limits on the

period between entering the name and the password. Or it may wish to enforce

some particular user interface to collect this information. In any case, the service

proxy may perform some sort of input processing on the client side before com-

municating with the real service. The service proxy may need to find extra classes

in order to perform this processing.

A standalone application that gets a user name might use a GUI interface as

shown in Figure 13- 1.

Figure 13-]. User interfacefor name entry

The implementation for this name entry user interface might look like this:

package standalone;

import java.awt.*;

import java.awt.event.*;

/**

* NameEntry.java
*/

public class NameEntry extends Frame {

public NameEntry() {

supeI("Name Entry");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

l);

Label label = new Labe1("Name");

TextField name new TextFie1d(20);

208

libdocdel@fr.com

209

More Complex Examples

add(labe1, BorderLayout.WEST);

add(name, BorderLayout.CENTER);

name.addActionListeneI(new NameHandleI());

Pack();

public static void main(StIing[l aIgs) {

NameEntry f = new NameEntry();

+.setVisible(tIue);

}

} // NameEntry

class NameHandler implements ActionListener {

public void actionPer-Formed(ActionEvent evt) {

System.out.println("Name was: " + evt.getActionCommand());

The classes used in this implementation are these:

0 A set of standard classes: Frame, Label, Text Field, Action Listener,

ActionEvent, BordeILayout, WindowEvent, and System

0 A couple of new classes: NameEntIy and NameHandler

At compile time, and at runtime, these will need to be accessible.

NameEntry Interface

A standalone application needs to have all the class files available to it. In a Iini

system, we have already seen that different components may only need access to a

subset of the total set of classes. The simple application just shown used a large set

of classes. If this is used to form part of a Iini system then some parts of this appli-

cation will end up in Iini clients, and some will end up in Iini services. Each of

them will have requirements about which classes they have access to, and this will

depend on how the components are distributed.

We don’t want to be overly concerned about the program logic ofwhat is done

with the user name once it has been entered—the interesting part is the location

195

209

libdocdel@fr.com

210

Chapwrls

of the classes. All possible ways of distributing this application into services and

clients will need an interface definition, which we can make as follows:

package common;

/**

* NameEntIy.java
*/

public interface NameEntIy {

public void show();

} // NameEntIy

Then the client can call upon an implementation to simply show() itself and

collect information in whatever way it chooses.

NOTE We don't want to get in volued here in the ongoing discussion about the

most appropriate interface definirionfor GUI classes—{his topic is taken up

in (Simmer 19.

Naive Implementation

A simple implementation of this NameEntry interface is as follows:

package complex;

import java .awt . *;

import java.awt.event.*;

import javax. swing.*;

import com.sun.jini.lookupJoinManager;

import net.jini.core.lookup.SericeID;

import com.sun.jini.lookup.ServiceIDListener;

import com.sun.jini.lease.LeaseRenewalManager;

/**

* NameEntryImpll.java
*/

196 libdocdel@fr.com

210

libdocdel@fr.com

211

More Complex Examples

public class NameEntIyImpll extends Frame implements common.NameEntry,

ActionListener, java.io Serializable {

public NameEntryImp11() {

super("Name Entry");
/*

addwindowListeneI(new WindowAdapter() {

public void windowClosing(NindowEvent e) {System.exit(o);}

public void windowOpened(WindowEvent e) {}});
*/

setLayout(new BorderLayout());

Label label = new Label("Name");

add(label, BorderLayout.WEST);

TextField name = new TextField(20);

add(name, BordeILayout.CENTER);

name.addActionListener(this);

// don't do this here!

// pack();

/**

* method invoked on pressing <Ieturn> in the TextField
*/

public void actionPeIformed(ActionEvent evt) {

System.out.println(”Name was: " + evt.getActionCommand());

public void show() {

Pack();

super.show();

} // NameEntryImpll

This implementation of the user interface creates the GUI elements in the con-

structor. When exported, this entire user interface will be serialized and exported.

The instance data isn’t too big in this case (about 2,100 bytes), but that is because the

example is small. A GUI with several hundred objects will be much larger. This is

overhead, which could be avoided by deferring creation to the client side.

Figure 13-2 shows which instances are running in which IVM.

197

211

libdocdel@fr.com

212

Chapter 13

198

client JVM server JVM

TextField
Figure 13—2. IVM objectsfor the naive implementation ofthe user interface

Another problem with this code is that it first creates an object on the server

that has heavy reliance on environmental factors on the server. It then removes

itself from that environment and has to reestablish itself on the target client

environment.

On my current system, this dependence on environments shows up as a

_TextField complaining that it cannot find a whole bunch of fonts on my server. Of

course, that doesn’t matter because it gets moved to the client machine. (As it hap-

pens, the fonts aren’t available on my client machine either, so I end up with two

batches of complaint messages, from the server and from the client. I should only

get the client complaints.) It could matter if the service died because of missing

pieces on the server side that exist on the client.

What Files Need to Be Where?

The client needs to know the NameEntry interface class. This must be in its
CLASSPATH.

The server needs to know the class files for

. NameEntry

- Serverl

. NameEntryImpll

These must be in its CLASSPATH.

The HTTP server needs to know the class files for NameEntIyImpll. This must be

in the directory of documents for this server.

212

libdocdel@fr.com

213

More Complex Examples

Factory Implementation

The second implementation minimizes the amount of serialized code that must

be shipped around by creating as much as possible on the client side. We don’t

even need to declare the class as a subclass of Frame, because that class also exists

on the client side. The client calls the show() interface method, and all the GUI cre-

ation is moved to there. Essentially, what is created on the server side is a factory

object, and this object is moved to the client. The client than makes calls on this

factory to create the user interface.

package complex;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import com.sun.jini.lookup.JoinManager;

import net.jini.core.lookup.ServiceID;

import com.sun.jini.lookup.ServiceIDListeneI;

import com.sun.jini.lease.LeaseRenewalManager;

lid:

* NameEntryImp12.java
*/

public class NameEntryImplz implements common.NameEntry,

ActionListener, java.io.Serializable {

public NameEntryImp12() {

}

/**

* method invoked on pressing <return> in the TextField
*/

public void actionPerformed(ActionEvent evt) {

+ evt.getActionCommand());

ll

System.out.println("Name was:

public void show() {

Frame tr : new Frame("Name Entry");

fr.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

public void windowOpened(NindowEvent e) {}});

199

213

libdocdel@fr.com

214

Chapter 13

200

fr.setLayout(new BorderLayout());

Label label = new Label("Name");

fr.add(labe1, BordeILayout.WEST);

TextField name new TextField(20);

fr.add(name, BordeILayout.CENTER);

name.addActionListeneI(this);

fr.pack();

fr.show();

} // NameEntIyImplz

Figure 13—3 shows which instances are running in which IVM.

client JVM

NameEntry

lmpl2

server JVM

NameEntry

Imp|2
TextField

Figure 13-3. JVM objectsfor thefactory implementation ofthe user interface

There are some standard classes that cannot be serialized: one example is the

Swing JTextArea class (as of Swing 1.1). This has frequently been logged as a bug

against Swing. Until this is fixed, the only way one ofthese objects can be used by a

service is to create it on the client.

NOTE Swing is ”H" at)! ni'nxr'r interfircte classes I'mmdm'm' as pm? offlw fm-‘ri
l-lnmdnmm (filtrates in HJK 1.2

libdocde|@fr.com

214

libdocdel@fr.com

215

What Files Need to Be Where?

For this implementation, the client needs to know the NameEntIy interface class.
The server needs to know the class files for

- NameEntIy

. ServeIZ

. NameEntIyImplz

- NameEntIyImp12$1

The last class in the list is an anonymous class that acts as the WindowListener. The

class file is produced by the compiler. In the naive implementation earlier in the

chapter, this part of the code was commented out for simplicity.

The HTTP server needs to know the class files for

- NameEntIyImplz

o NameEntIyImp12$1

Using Multiple Class Files

Apart from the standard classes and a common interface, the previous implemen-

tations just used a single class that was uploaded to the lookup service and then

passed on to the client. A more realistic situation might require the uploaded ser-

vice to access a number of other classes that could not be expected to be on the

client machine. That is, the server might upload an object from a single class to the

lookup service and from there to a client. However, when the object runs, it needs

to create other objects using class files that are not known to the client.

For example, the listener object of the last implementation could belong to a

separate NameHandleI class. The code looks like this:

package complex;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import com.sun.jini.lookup.JoinManager;

import net.jini.core.lookup.ServiceID;

import com.sun.jini.lookup.ServiceIDListeneI;

215

More Complex Examples

201

libdocdel@fr.com

216

Chapmr13

import com.sun.jini.lease.LeaseRenewalManager;

/**

* NameEntryImp13.java
*/

public class NameEntryImpl3 implements common.NameEntry,

java.io.SeIializable {

public NameEntryImp13() {

}

public void show() {

Frame tr = new Frame("Name Entry");

fr.addwindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

public void windowOpened(WindowEvent e) {}})3

fI.setLayout(new BorderLayout());

Label label = new Label("Name");

tr.add(label, BorderLayout.WEST);

TextField name = new TextField(20);

fr.add(name, BorderLayout.CENTER);

name.addActionListeneI(new NameHandleI());

fr.pack();

fr.show();

} // NameEntIyImpl3

class NameHandler implements ActionListeneI {
/**

* method invoked on pressing <Ieturn> in the TextField
*/

public void actionPerformed(ActionEvent evt) {

System.out.println("Name was: + evt.getActionCommand());

}

} // NameHandler

This version of the user interface implementation uses a NameHandler class that

only exists on the server machine. When the client attempts to deserialize the

202

216

libdocdel@fr.com

217

More Complex Examples

NameEntryImpl3 instance, it will fail to find this class and be unable to complete

deserialization. How is this resolved? Well, in the same way as before, by making it

available through the HTTP server.

Figure 13—4 shows which instances are running in which JVM.

client JVM

instance sewer JVM

‘ N data

NameEntry

lmpl3

\ HTTP NameEntryImpl3.class
597V“ NameHandler.class

Figure 13-4. IVM objectsfor multiple classfiles implementation

NameEntry
Impl3

What Files Need to Be Where?

The client needs to know the NameEntry interface class.

The server needs to know the class files for

- NameEntry

o Server3

- NameEntIyImpl3

~ NameEntryImpl3$1

- NameHandler

The NameHandler class file is another one produced by the compiler.

The HTTP server needs to know the class files for

. NameEntryImpl3

. NameEntryImpl3$1

- NameHandler

203

217

libdocdel@fr.com

218

Chapwr13

204

Running Threads from Discovery

The previous section looked at issues involving the location of classes in order to

reduce network traffic and to improve the speed and responses of clients and ser-

vices. Within a client or service, other techniques, such as multithreading, can also

be used to improve responsiveness.

In all of the examples using explicit registration (such as those in Chapters 8

and 9), a single thread was used. That is, as a service locator was discovered, the

registration process commenced in the same thread. This registration may take

some time, and during this time, new lookup services may be discovered. To avoid

the possibility of these new services timing out and being missed, all registration

processing should be carried out in a separate thread, rather than possibly holding

up the discovery thread.

Server Threads

Running another thread is not a difficult procedure. Basically we have to define a

new class that extends Thread, and move most of the registration into its run

method. This is done in the following version of the file classifier server, which is

based on the server in Chapter 3 that uploads a complete service. In this version,

the registration code is moved to a separate thread, which is implemented using
an inner class:

package complex;

import complete.FileClassifierImpl;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoverEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.1ookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.1ease.Lease;

// import com.sun.jini.lease.LeaseRenewalManager;

// import com.sun.jini.lease.LeaseListener;

// import com.sun.jini.lease.LeaseRenewalEvent;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini.1ease.LeaseRenewalEvent;

218

libdocdel@fr.com

219

More Complex Examples

/**

* FileClassifierServer.java
*/

public class FileClassifierServer implements DiscoveryListener,

LeaseListener {

protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

public static void main(String argv[]) {

new FileClassifierServeI();

// keep server running forever to

// - allow time for locator discovery and

// — keep re-registering the lease

Object keepAlive new Object();

synchronized(keepAlive) {

try {

keepAlive.wait();

} catch(InterruptedExcepticn e) {

// do nothing

public FileClassifierServer() {

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

205

219

libdocdel@fr.com

220

Chapter 13

new RegisterThread(registrar).start();

public void discarded(DiscoveryEvent evt) {

public void notify(LeaseRenewalEvent evt) {

System.out.println("Lease expired " + evt.toString());

/**

* an inner class to register the service in its own thread
*/

class RegisterThread extends Thread {

ServiceRegistrar registrar;

RegisterThread(ServiceRegistrar registrar) {

this.registrar : registrar;

public void run() {

ServiceItem item = new ServiceItem(null,

new FileClassitierImpl(),

null);

ServiceRegistration reg = null;

try {

reg = registrar.register(item, Lease.FOREVER);

} catch(java.rmi.RemoteException e) {

System.err.println("Register exception: + e.toString());

return;

}

System.out.println("service registered");

// set lease renewal in place

leaseManager.renewUntil(reg.getLeaSE(), Lease.FOREVER,

FileClassifierServer.this);

}

} // FileClassifierServer

206

220

libdocdel@fr.com

221

More Complex Examples

Join Manager Threads

If you use a JoinManager to handle lookup and registration, then it essentially does

this for you: it creates a new thread to handle registration. Thus, the examples in

Chapter 1 1 do not need any modification, as the JoinManager already uses the con—

cepts of this section.

Client Threads

It is probably more important to use threads in the client than in the server, because

the client will actually perform some computation (which may be lengthy) based on

the service it discovers. Again, this is a simple matter of moving code into a new

class that implements Thread. Doing this to the multicast client TestFileClassifier

of Chapter 3 results in the following code:

package client;

import common.FileClassitier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscover;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.$erviceRegistrar;

import net.jini.core.lookup.SericeTemplate;

/**

* TestFileClassifierThread.java
*/

public class TestFileClassifierThread implements DiscoveryListener {

public static void main(String argv[]) {

new TestFileClassifierThread();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(10000L);

} catch(java.lang.InterruptedException e) {

// do nothing

207

221

libdocdel@fr.com

222

Chapwr13

public TestFileClassifierThread() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this)3

public void discovered(DiscoverEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

System.out.println("5ervice found");

ServiceRegistrar registrar = registrars[n];

new LookupThread(registrar).start();

public void discarded(DiscoveryEvent evt) {

// empty

class LookupThread extends Thread {

ServiceRegistrar registrar;

LookupThread(ServiceRegistrar registrar) {

this.registrar = registrar;

public void run() {

208

222

libdocdel@fr.com

223

Class[] classes = new Class[] {FileClassifier.class};

FileClassifier classifier = null;

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

try {

classifier = (FileClassifieI) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

return;

}

if (classifier == null) {

System.out.println(“Classifier null");

return;

}

MIMEType type;

try {

type = classifier.getMIMEType("file1.txt");

System.out.println("Type is + type.toString());

} catch(java.rmi.RemoteException e) {

System.err.println(e.toString());

} // TestFileClassifier

Inexact Service Matching

Suppose you have a printer service that prints at 30 pages per minute. A client

wishes to find a printer that will print at least 24 pages per minute. How will this

client find the service? The standard Iini pattern matching will either be for an

exact match on an attribute or an ignored match on an attribute, so the only way a

client can find this printer is to ignore the speed attribute and perform a later

selection among all the printers that it sees.

We can define a simple printer interface that will allow us to print documents

and also allow us to access the printer speed as follows:

package common;

import java.io.Serializable;

223

More Complex Examples

209

libdocdel@fr.com

224

Chapwrls

/**

* Printer.java
*/

public interface Printer extends Serializable {

public void print(String str);

public int getSpeed();

} // Printer

I don’t want to delve here into the complexities ofbuilding a real printer service.

A “fake” printer implementation that takes its speed from a parameter in the con—

structor can be written as a complete uploadable service (see Chapter 3) as follows:

package printer;

/**

* PrinterImpl.java
*/

public class PrinterImpl implements common.Printer, java.io.Serializable {

protected int speed;

public PrinterImpl(int sp) {

speed = sp;

public void print(String str) {
// fake stuff:

System.out.println(“I'm the '

System.out.println(str);

}

+ speed + ' pages/min printer");

public int getSpeed() {

return speed;

} // PrinterImpl

Printer implementations can be created and made available using server imple-

mentations of earlier chapters.

210

224

libdocdel@fr.com

225

More Complex Examples

Given this, a client can choose a suitably fast printer in a two-step process:

1. Find a service using the lookup exact/ ignore match algorithm.

2. Query the service to see if it satisfies other types of Boolean conditions.

The following program shows how you can find a printer that is “fast enough":

package client;

import common.Printer;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoverEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceMatches;

/**

* TestPrinteISpeed.java
*/

public class TestPrinterSpeed implements DiscoverListener {

public TestPIinteISpeed() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscover discover = null;

try {

discover = new LookupDiscover(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

211

225

libdocdel@fr.com

226

ChaperS

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

Class[] classes = new Class[] {Printer.class};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

for (int n = O; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];

ServiceMatches matches;

try {

matches = registrar.lookup(template, 10);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

continue;

}

// NB: matches.totalMatches may be greater than matches.items.length

for (int m = 0; m < matches.items.length; m++) {

Printer printer = (Printer) matches.items[m].service;

// Inexact matching is not performed by lookup()

// we have to do it ourselves on each printer

// we get

int speed = printer.get$peed();

it (speed >= 24) {

// this one is okay, use its print() method

printer.print("tast enough printer");

} else {

// we can't use this printer, so just say so

System.out.println("Printer too slow at " + speed);

public void discarded(DiscoveryEvent evt) {

// empty

public static void main(String[] args) {

212

226

libdocdel@fr.com

227

TestPrinteISpeed 1‘ = new TestPrinterSpeedO;

// stay around long enough to receive replies

try{

Thread.currentThread() . sleep(10000L);

} catch(java.lang.InterruptedException e) {

// do nothing

} // TestPrinterSpeed

Matching Using Local Services

When a user connects their laptop into a brand—new network, they will probably

know little about the environment they have joined. If they want to use services in

this network, they will probably want to use general terms and have them trans-

lated into specific terms for this new environment. For example, the user may

want to print a file on a nearby printer. In this situation, there is little likelihood

that the new user knows how to work out the distance between themselves and the

printers. However, a local service could be running which does know how to calcu-

late physical distances between objects on the network.

Finding a “close enoug ” printer then becomes a matter of querying service

locators both for printers and for a distance service. As each printer is found, the

distance service can be asked to calculate the distance between itself and the lap—

top (or camera, or any other device that wants to print).

The complexity of the task to be done by clients is growing: a Client has to find

two sets of services, and when it finds one (a printer) invoke the other (the dis-

tance service). This calls for lookup processing to be handled in separate threads.

In addition, as each locator is found, it may know about printers, it may know

about distance services, it may know both, or it may know none!When the client

starts up, it will be discovering these services in an arbitrary order, and the code

must be structured to deal with this.

These are some of the cases that may arise:

0 A printer may be discovered before any distance service has been found. In

this case, the printer must be stored for later distance checking.

0 A printer may be discovered after a distance service has been found. It can

be checked immediately.

227

More Complex Examples

213

libdocdel@fr.com

228

Chapwr13

214

0 A distance service is found after some printers have been found. This saved

set of printers should be checked at this point.

In this problem, we only need to find one distance service, but possibly many

printers. The client code given shortly will save printers in a Vector, and save a dis—

tance service in a single variable.

In searching for printers, we only want to find those that have location infor-

mation. However, we do not want to match on any particular values. The client will

have to use wildcard patterns in a location object. The location information of a

printer will need to be retrieved along with the printer so it can be used. Therefore,

instead ofjust storing printers, we need to store ServiceItem objects, which carry

the attribute information as well as the objects.

Of course, for this to work, the client also needs to know where it is! This could

be done, for example, by popping up a dialog box asking the user to locate

themselves.

A client satisfying these requirements is given in the following program. (The

location of the client is hard-coded into the getMyLocation () method for simplicity.)

package client;

import common . Printer;

import common.Distance;

import java.util.Vector5

import java.rmi.RMISecurityManageI;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.lookup.entry.Location;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceMatches;

import net.jini.core.entry.Entry;

/**

* TestPrinterDistance.java
*/

public class TestPrinterDistance implements DiscoveryListener {

protected Distance distance = null;

protected Object distanceLock = new Object();

228

libdocdel@fr.com

229

More Complex Examples

protected Vector printers = new Vector();

public static void main(String argv[]) {

new TestPrinterDistance();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(10000L);

} catch(java.lang.InterruptedException e) {

// do nothing

public TestPrinterDistance() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscover.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = O; n < registrars.length; n++) {

System.out.println("Service found");

ServiceRegistrar registrar = registrars[n];

new LookupThread(Iegistrar).start();

public void discarded(Disc0veryEvent evt) {

// empty

215

229

libdocdel@fr.com

230

Chapmr13

class LookupThread extends Thread {

ServiceRegistrar registrar;

LookupThread(ServiceRegistrar registrar) {

this.registrar = registrar;

public void run() {

synchronized(distanceLock) {

// only look for one distance service

if (distance == null) {

lookupDistance();

}

it (distance != null) {

// found a new distance service

// process any previously found printers

synchronized(printers) {

for (int n = 0; n < printers.size(); n++) {

ServiceItem item = (ServiceItem) printers.elementAt(n);

reportDistance(item);

ServiceMatches matches = lookupPrinteIs();

for (int n = o; n < matches.items.length; n++) {

if (matches.items[n] != null) {

synchronized(distanceLock) {

if (distance != null) {

reportDistance(matches.items[n]);

} else {

synchronized(printers) {

printers.addElement(matches.items[n]);

216

230

libdocdel@fr.com

231

More Complex Examples

/*

* We must be protected by the lock on distanceLock here
*/

void lookupDistance() {

// If we don't have a distance service, see if this

// locator knows of one

Class[] classes = new Class[] {Distance.class};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

try {

distance = (Distance) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

ServiceMatches lookupPrinters() {

// look for printers with

// wildcard matching on all fields of Location

Entry[] entries = new Entry[] {new Location(null, null, null)};

new Class[l];Class[] classes

try {

classes[0] = Class.forName("common.Printer");

} catch(ClassNotFoundException e) {

System.err.println("Class not found");

System.exit(1);

}

ServiceTemplate template = new ServiceTemplate(null, classes,

entries);

ServiceMatches matches = null;

try {
matches registrar.lookup(template, 10);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

}

return matches;

/**

* report on the distance of the printer from
* this client

217

231

libdocdel@fr.com

232

ChapmrJB

*/

void reportDistance(ServiceItem item) {

Location whereAmI = getMyLocation();

Location whereIsPrinter = getPrinterLocation(item);

it (whereIsPrinter != null) {

int dist = distance.getDistance(whereAmI, whereIsPrinter);

System.out.println("Found a printer at “ + dist +

" units of length away");

Location getMyLocation() {

return new Location("1", ”1", "Building 1");

Location getPrinterLocation(ServiceItem item) {

Entry[] entries = item.attributeSets;

for (int n = 0; n < entries.length; n++) {

if (entries[n] instanceot Location) {

return (Location) entries[n];

}

return null;

} // TestFileClassifier

A number of services will need to be running. At least one distance service will

be needed, implementing the interface Distance:

package common;

import net.jini.lookup.entry.Location;

/**

* Distance.java
*/

public interface Distance extends java.io.5erializable {

int getDistance(Location loc1, Location locz);

} // Distance

218

232

libdocdel@fr.com

233

More Complex Examples

The following is an example implementation of a distance service:

package complex;

import net.jini.1ookup.entry.Location;

/**

* DistanceImpl.java
*/

public class Distancelmpl implements common.Distance {

public Distancelmpl() {

/**

* A very naive distance metric
*/

public int getDistance(Location loc1, Location locz) {

int rooml, roomz;

room1 = Integer.parseInt(loc1.room);

r00m2 = Integer.parseInt(loc2.room);

} catch(Exception e) {

return —1;

}

int value = rooml - roomz;

return (value > 0 ? value : —value);

} // DistanceImpl

Earlier in this chapter we gave the code for PrinterImpl. A simple program to

start up a distance service and two printers is as follows:

package complex;

import printer.PrinterImpl;

import printer.PrinterImpl;

import complex.DistanceImpl;

// import com.sun.jini.lookup.]oinManager;

import net.jini.lookup.JoinManager;

219

233

libdocdel@fr.com

234

ChapmrJB

import net.jini.core.lookup.ServiceID;

// import com.sun.jini.lookup.ServiceIDListener;

// import com.sun.jini.lease.LeaseRenewalManager;

import net.jini.lookup.ServiceIDListener;

import net.jini.lease.LeaseRenewalManager;

import net.jini.discovery.LookupDiscover;

import net.jini.lookup.entry.Location;

import net.jini.core.entry.Entry;

import net.jini.discovery.LookupDiscoveryManager;

/**

* PrinterServerLocation.java
*/

public class PIinterServerLocation implements ServiceIDListeneI {

public static void main(String argv[]) {

new PrinterServerLocation();

// run forever

Object keepAlive = new 0bject();

synchronized(keepAlive) {

try {

keepAlive. wa it 0;

} catch(InterruptedException e) {

// do nothing

public PrinterServerLocation() {

JoinManager joinMgr = null;

try {

LookupDiscoveryManager mgr =

new LookupDiscoveryManager(LookupDiscover.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListener */);
// distance service

joinMgr = new JoinManager(new Distancelmpl(),

null,

this,

mgr,

new LeaseRenewalManager());

220

234

libdocdel@fr.com

235

// slow printer in room 120

joinMgr = new JoinManager(new PrinterImp1(20),

new Entry[] {new Location("1", "120",

"Building 1“)},

this,

mgr,

new LeaseRenewalManager());

// fast printer in room 130

joinMgr = new JoinManager(new PrinterImpl(30),

new Entry[] {new Location("1", "130",

"Building 1")},

this,

mgr,

new LeaseRenewalManager());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

public void serviceIDNotify(ServiceID serviceID) {

System.out println("got service ID " + serviceID toString());

} // PrinterServerLocation

Finding a Service Once Only

There may be many lookup services on the local network, perhaps specializing in

certain groups of services. There could be many lookup services running on the

Internet, which could act as global repositories of information. For example, there

is a lookup service running at http: //www.jini. ca nberra . edu . an that acts as a pub-

licly available lookup service for those who wish to experiment with Iini. One may

expect to find lookup services acting in a “portal” role, listing all of the public clock

services, the real estate services, and so on.

A service will probably register with as many service locators as it can to

improve its chances of being found. On the other hand, clients looking for a ser-

vice may be content to find just a single suitable implementation, or may wish to

235

More Complex Examples

221

libdocdel@fr.com

236

Chapter 13

222

find all service implementations. This second case can cause some uniqueness

problems: if a client finds every service that has been registered with multiple

locators, then it will probably find the same service more than once.

Why is this a problem? Well, suppose the client wants to find all power drills in

the factory and ask them to drill exactly one hole each. Or suppose it finds all

backup services for the system, and wants each one to perform a single backup. In

that case, it needs to know the identity of each service so that it can tell when it is

getting a duplicate copy from another locator source. Otherwise, each drill might

make six holes because the client got a copy of each drill from six service locators,

or you might get six backups of the same data. Whenever a service can perform a

non-idempotent service He, one in which repeating the action has a different

effect each time), then duplicate copies on the client side must be avoided.

Iini has a concept of a service being a “good citizen." This concept includes

having a single identity across all lookup services, which allows clients to tell

whether they have come across multiple copies of the same service or have

encountered a different implementation of the service. The behavior on the part of

services is contained in the Iini “Lookup Service” specification, and it hinges on
the use of the ServiceID.

A ServiceID can be specified when registering a service with a service locator.

If this is the first time this service has ever been registered, then the ServiceID

should be null. The service locator will then generate a non-null ServiceID that

can be used in future to identify this service. This object is specified to be unique,

so that a service locator cannot generate the same ServiceID for two different ser-

vices, and two different locators cannot generate the same ServiceID. This provides

a unique identifier that can be used to identify duplicates.

The procedure for a service to follow when it is registering itself with service
locators is as follows:

1. The very first time a service is registered, use null as the serviceID value of

the Serviceltem in ServiceRegistrar. register().

2. The returned ServiceRegistration has a getServiceID() method for

retrieving the ServiceID. This ServiceID should then be used in any future

registrations both with this service locator and with any others. This

ensures that the service has a unique identity across all lookup services. It

should be noted that JoinManager already does this, although this is not

stated in its documentation. We have done this in earlier examples, such

as the server in Chapter 8.

3. The client has a choice of two lookup() methods to use with its

ServiceRegistrar object: the first just returns a single object, and the sec-

ond returns an array of ServiceMatches objects. This second one is more

236

libdocdel@fr.com

237

useful here, as it can give the array of ServiceItem objects, and the
ServiceID can be extracted from there.

4. The client should maintain a list of service IDs that it has seen, and com-

pare any new ones against it—then it can check whether a service is a new

one or a previously seen one.

5. The service should save its ID in persistent storage so that if it dies and

restarts, it can use the same ID—after all, it is the same service. (This may

involve subtle considerations: it should only use the same ServiceID if it

really is the same service. For example, if the service maintains state that

is lost in a crash, then it isn’t the same service!)

In Chapter 8 we gave the code for a multicast client that looked for a service,

used it, and exited. A modified client that looks for all unique services and uses
each one is as follows:

package unique;

import common.FileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceMatches;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceID;

import java.util.Vector;

/**

* TestFileClassifier.java
*/

public class TestFileClassifier implements DiscoveryListener {

protected Vector serviceIDs = new Vector();

public static void main(String argv[]) {

new TestFileClassitier();

237

More Complex Examples

223

libdocdel@fr.com

238

Chapwr13

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(1ooooL);

} catch(java.lang.InterruptedException e) {

// do nothing

public TestFileClassitier() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

Class [] classes = new Class[] {FileClassitier.class};

FileClassifier classifier = null;

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

for (int n = 0; n < registrars.length; n++) {

System.out.println("Service found");

ServiceRegistrar registrar = registrars[n];

ServiceMatches matches = null;

try {

matches = registrar.lookup(template, 10);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

continue;

ServiceItem[] items = matches.items;

224

238

libdocdel@fr.com

239

for (int m = 0; m < items.length; m++) {

ServiceID id = items[m].serviceID;

if (serviceIDs.indexOf(id) != -1) {

// found a new serviceID - record it and use it

classifier = (FileClassiiier) items[m].service;

if (classifier == null) {

System.out.println("Classifier null");

continue;

serviceIDs.add(id);

MIMEType type;

try{

type

System.out.println("Type is

} catch(java.rmi.RemoteException e) {

System.err.println(e.toString());

classifier.getMIMEType(”file1.txt");

+ type.toString());

public void discarded(DiscoveryEvent evt) {

// empty

}

} // TestFileClassifier

Leasing Changes to a Service

Sometimes a service may allow changes to be made to its state by external (remote)

objects. This happens all the time to service locators, which have services added

and removed. A service may wish to behave in the same manner as the locators,

and just grant a lease for the change. After the lease has expired, the service will

remove the change. Such a situation may occur with file classification, where a

new service that can handle a particular MIME type starts: it can register the file-

name mapping with a file classifier service. However, the file Classifier service will

just time out the mapping unless the new service keeps it renewed.

The example in this section follows the “Grantng and Handling Leases” sec-

tion of Chapter 7. It gives a concrete illustration of that section, now that there is

enough background to do so.

239

More Complex Examples

225

libdocdel@fr.com

240

ChaperB

Leased FileClassifier

A dynamically extensible version of a file classifier will have methods to add and

remove MIME mappings:

package common;

import java.io.Serializable;

/**

* LeaseFileClassifier.java

*/

import net.jini.core.lease.Lease;

public interface LeaseFileClassifier extends Serializable {

public MIMEType getMIMEType(StIing fileName)

throws java.rmi.RemoteException;

* Add the MIME type for the given suffix.

* The suffix does not contain e.g. "gif".

* @exception net.jini.core.lease.LeaseDeniedException

* a previous MIME type for that suffix exists.

* This type is removed on expiration or cancellation
* of the lease.

*/

public Lease addType(String suffix, MIMEType type)

throws java.rmi.RemoteException,

net.jini.core.lease.LeaseDeniedException;

/**

* Remove the MIME type for the suffix.

*/

public void removeType(String suffix)

throws java.rmi.RemoteException;

} // LeaseFileClasssifier

The addType() method returns a lease.We shall use the landlord leasing system

discussed in Chapter 7. The client and the service will be in different IavaVMs, prob-

ably on different machines. Figure 13-5 gives the object structure on the service side.

226

240

libdocdel@fr.com

241

This should be compared to Figure 7-3 where we considered the “foo” implementa-

tion of landlord leasing.

|mp| Server

1

LeaseDuration

Policy

1

1 1

FileClassifier LandlordLease.

LeaseMana - er Factory
1

Figure 13-5. Class diagramfor leasing on the server

1

FileClassifier

LeasedResource

On the client side, the lease object will be a copy of the lease created on the

server (normally RMI semantics), but the other objects from the service will be

stubs that call into the real objects on the service. This is shown in Figure 13—6.

FileClassifier

lmpl_Stub
TestFile

ClassifierLease

FileClassifier

Landlord_Stub

Figure 13-6. Class diagramfor leasing 0n the client

241

More Complex Examples

227

libdocdel@fr.com

242

Chapwr13

The FileClassifierLeasedResource Class

The Fi1eClassifierLeasedResource class acts as a wrapper around the actual

resource, adding cookie and time expiration fields around the resource. It adds a

unique cookie mechanism, in addition to making the wrapped resource Visible.

/**

* FileClassifierLeasedResource.java
*/

package lease;

import common.LeaseFileClassifier;

import com.sun.jini.lease.landlord.LeasedResource;

public class FileClassifierLeasedResource implements LeasedResource {

static protected int cookie = 0;

protected int thisCookie;

protected LeaseFileClassifier fileClassifier;

protected long expiration = 0;

protected String suffix = null;

public FileClassifierLeasedResource(LeaseFileClassifier fileClassifier,

String suffix) {

this.fileC1assifier = fileClassifier;

this.suffix = suffix;

thisCookie = cookie++;

public void setExpiration(long newExpiration) {

this.expiration = newExpiration;

public long getExpiration() {

return expiration;

}

public Object getCookie() {

return new Integer(thisCookie);

public LeaseFileClassifier getFileClassifier() {

return fileClassifier;

228

242

libdocdel@fr.com

243

public String getSutfix() {

}

return suffix;

} // FileClassitierLeasedResource

The FileClassifierLeaseManager Class

The FileClassifierLeaseManager class is very similar to the code given for the

FooLeaseManager in Chapter 7:

/**

* FileClassifierLeaseManager.java
*/

package lease;

import

import

import

import

import

import

import

import

import

public

java.util.*;

common.LeaseFileClassifier;

net.jini.core.lease.Lease;

com.sun.jini.lease.landlord.LeaseManager;

com.sun.jini.lease.landlord.LeasedResource;

com.sun.jini.lease.1andlord.LeaseDurationPolicy;

com.sun.jini.lease.landlord.Landlord;

com.sun.jini.lease.landlord.LandlordLease;

com.sun.jini.lease.landlord.LeasePolicy;

class FileClassitierLeaseManager implements LeaseManager {

protected static long DEFAULT_TIME = 30*1000L;

protected Vector fileClassitierResources = new Vector();

protected LeaseDurationPolicy policy;

public FileClassifierLeaseManager(Landlord landlord) {

policy = new LeaseDurationPolicy(Lease.FOREVER,

new LeaseReaper().start();

DEFAULT_TIME,

landlord,

this,

new LandlordLease.Factory());

public void register(LeasedResource I, long duration) {

243

More Complex Examples

229

libdocdel@fr.com

244

Chapwr13

fileClassifierResources.add(r);

public void renewed(LeasedResource I, long duration, long olddur) {

// no smarts in the scheduling, so do nothing

public void cancelAll(0bject[] cookies) {

for (int n c00kies.length; --n >= 0;) {

cancel(cookies[n]);

public void cancel(0bject cookie) {

for (int n fileClassitierResources.size(); ——n >= 0;) {

FileClassifierLeasedResource r = (FileClassifierLeasedResource)

fileClassifierResources.elementAt(n);

it (!policy.ensureCurrent(r)) {

System.out.println("Lease expired for cookie = " +

r.getCookie());

try {

r.getFileClassitier().removeType(r.getSu+fix());

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

}

fileClassitierResources.removeElementAt(n);

public LeasePolicy getPolicy() {

return policy;

public LeasedResource getResource(0bject cookie) {

for (int n = tileClassifierResources.size(); ~—n >= 0;) {

FileClassifierLeasedResource I = (FileClassitierLeasedResource)

fileClassifierResources.elementAt(n);

it (r.getCookie().equals(cookie)) {

return I;

}

return null;

230

244

libdocdel@fr.com

245

More Complex Examples

class LeaseReaper extends Thread {

public void run() {

while (true) {

try {

Thread.sleep(DEFAULT_TIME) ;

}

catch (InterruptedException e) {

}

for (int n = fileClassifierResources.size()-1; n >= 0; n—-) {

FileClassifierLeasedResource I = (FileClassifierLeasedResource)

fileClassifierResources.elementAt(n)

if (!policy.ensureCurrent(r)) {

System.out.println("Lease expired for cookie = " +

I.getCookie()) ;

Uy{

I.getFileClassifier().removeType(r.getSuf+ix());

} catch(java.Imi.RemoteException e) {

e.printStackTrace();

}

fileClassifierResources.removeElementAt(n);

} // FileClassifierLeaseManageI

The FileClassifierLandlord Class

The FileClassifierLandlord class is very similar to the FooLandlord in Chapter 7:

/**

* FileClassifieILandlord.java
*/

package lease;

import common.LeaseFileClassifier;

231

245

libdocdel@fr.com

246

Chaer13

import com.sun.jini.lease.landlord.*;

import net.jini.core.lease.LeaseDeniedException;

import net.jini.core.lease.Lease;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.Remote;

public class FileClassifierLandlord extends UnicastRemoteObject implements Land—

lord, Remote {

FileClassifierLeaseManager manager = null;

public FileClassifierLandlord() throws java.rmi.RemoteException {

manager = new FileClassifierLeaseManager(this)3

public void cancel(0bject cookie) {

manager.cancel(cookie);

public void cancelAll(Object[] cookies) {

manager.cancelAll(cookies);

public long renew(java.lang.0bject cookie,

long extension)

throws net.jini.core.lease.LeaseDeniedException,

net.jini.core.lease.UnknownLeaseException {

LeasedResource resource = manager.getResource(cookie);

if (resource != null) {

return manager.getPolicy().renew(resource, extension);

}

return —1;

public Lease newFileClassifierLease(LeaseFileClassifier fileClassifier,

String suffixKey, long duration)

throws LeaseDeniedException {
FileClassifierLeasedResource r = new

FileClassitierLeasedResource(fileClassifier,

sutfixKey);

return manager.getPolicy().1easeFor(r, duration);

public Landlord.RenewResults renewAll(java.lang.0bject[] cookie,

232

246

libdocdel@fr.com

247

More Complex Examples

longl] extension) {

return null;

}

} // FileClassifierLandlord

Summary

Jini provides a framework for building distributed applications. Nevertheless,

there is still room for variation in how services and clients are written, and some of

these are better than others. This chapter has looked at some of the variations that
can occur and how to deal with them.

233

247

libdocdel@fr.com

248

CHAPTER 14

Remote Events

COMPONENTS OF A SYSTEM CAN CHANGE STATE and may need to inform other compo-

nents that this change has happened. Java Beans and user-interface elements such

as AWT or Swing objects use events to signal these changes. Iini also has an event

mechanism, and this chapter looks at the distributed event model that is part of

Iini. It looks at how remote event listeners are registered with objects, and how

these objects notify their listeners of changes. Event listeners may disappear, and

so the lini event mechanism uses leases to manage listener lists.

This chapter also looks at how leases are managed by event sources. Finally,

we’ll look at how events can be used by applications to monitor when services are

registered or discarded from service locators.

Event Models

lava has a number of event models, differing in various subtle ways. All of these

involve an object (an event source) generating an event in response to some

change of state, either in the object itself (for example, if someone has changed a

field), or in the external environment (such as when a user moves the mouse). At

some earlier stage, a listener (or set of listeners) will have registered interest in this

event. When the event source generates an event, it will call suitable methods on

the listeners with the event as parameter. The event models all have their origin

in the Observer pattern from Design Patterns, by Eric Gamma et al., but this is mod-

ified by other pressures, such as Java Beans.

There are low-level input events, which are generated by user actions when

they control an application with a graphical user interface. These events—of type

KeyEvent and MouseEvent—are placed in an event queue. They are removed from the

queue by a separate thread and dispatched to the relevant objects. In this case, the

object that is responsible for generating the event is not responsible for dispatching

it to listeners, and the creation and dispatch of events occurs in different threads.

Input events are a special case caused by the need to listen to user interactions

and always deal with them without losing response time. Most events are dealt

with in a simpler manner: an object maintains its own list of listeners, generates its

own events, and dispatches them directly to its listeners. In this category fall all the

semantic events generated by the AWT and Swing toolkits, such as Act ionEvent,

ListSelectionEvent, etc. There is a large range of these event types, and they all call

248

235

libdocdel@fr.com

249

Chapter 14

236

different methods in the listeners, based on the event name. For example, an

ActionEvent is used in a listener’s actionPerformed () method of an ActionListener.

There are naming conventions involved in this, specified by Java Beans.

Java Beans is also the influence behind PropertyChange events, which get deliv-

ered whenever a Bean changes a “bound” or “constrained” property value. These

are delivered by the event source calling the listener’s PropertyChangeListener’s

propertyChange() method or the VetoableChangeListener's vetoableChange()

method. These are usually used to signal a change in a field of an object, where this

change may be of interest to the listeners either for information or for vetoing.

Iini objects may also be interested in changes in other Iini objects, and might

like to be listeners for such changes. The networked nature of Iini has led to a

particular event model that differs slightly from the other models already in Java.

The differences are caused by several factors:

- Network delivery is unreliable—messages may be lost. Synchronous methods

requiring a reply may not work here.

0 Network delivery is time—dependent—messages may arrive at different

times to different listeners. As a result, the state of an object as perceived by

a listener at any time may be inconsistent with the state of that object as

perceived by others. Passing complex object state across the network may

be more complex to manage than passing simpler information.

- A remote listener may have disappeared by the time the event occurs.

Listeners have to be allowed to time out, like services do.

0 Java Beans can require method names and event types that vary and can use

many classes. This requires a large number of classes to be available across

the network, which is more complex than a single class with a single method

with a single event type as parameter (the original Observer pattern used a

single class with only one method, for simplicity).

Remote Events

Unlike the large number of event classes in the AWT and Swing, for example, Iini uses

events of one type, the RemoteEvent, or a small number of subclasses of RemoteEvent.

The RemoteEvent class has these public methods [and some inherited methods):

package net.jini.core.event;

public class RemoteEvent implements java.io.SeIializable {

public long getID();

public long getSequenceNumberO;

249

libdocdel@fr.com

250

public java . rmi .MarshalledObject getRegistrationObject ();

Events in Beans and AWT convey complex object state information, and this is

enough for the listeners to act with full knowledge of the changes that have caused

the event to be generated. Iini events avoid this, and convey just enough informa-

tion to allow state information to be found ifneeded. A remote event is serializable

and is moved around the network to its listeners. The listeners then have to decide

whether or not they need more detailed information than the simple information

in each remote event. If they do need more information, they will have to contact

the event source to get it.

AWT events, such as MouseEvent, contain an id field that is set to values such as

MOUSEgPRESSED or MOUSE_RE LEASED. These are not seen by the AWT programmer

because the AWT event dispatch system uses the id field to choose appropriate

methods, such as mousePressed() or mouseReleased (). Iini does not make these

assumptions about event dispatch, and just gives you the identifier. Either the

source or the listener (or both) will know what this value means. For example, a file

classifier that can update its knowledge of MIME types could have message types

ADD_TYPE and REMOVE_TYPE to reflect the sort of changes it is going through.

In a synchronous system with no losses, both sides of an interaction can keep

consistent ideas of state and order of events. In a network system this is not so

easy. Iini makes no assumptions about guarantees of delivery and does not even

assume that events are delivered in order. The Jini event mechanism does not

specify how events get from producer to listener—it could be by RMI calls, but it

may be through an unreliable third party. The event source supplies a sequence

number that could be used to construct state and ordering information if needed,

and this generalizes things such as time—stamps on mouse events. For example, a

message with id of ADD_TYPE and sequence number of 10 could correspond to the

state change “added MIME type text/xml for files with suffix .xml.” Another event

with id of REMOVE_TYPE and sequence number of 11 would be taken as a later event,

even if it arrived earlier. The listener will receive the event with id and sequence

number only. Either this will be meaningful to the listener, or it will need to contact

the event source and ask for more information about that sequence number. The

event source should be able to supply state information upon request, given the

sequence number.

An idea borrowed from systems such as the Xt Intrinsics and Motif is called

handback data. This is a piece of data that is given by the listener to the event

source at the time it registers itself for events. The event source records this hand-
back and then returns it to the listener with each event. This handback can be a

reminder of listener state at the time of registration.

This can be a little difficult to understand at first. The listener is basically

saying to the event source that it wants to be told whenever something interesting

happens, but when that does happen, the listener may have forgotten why it was

250

Remote Events

237

libdocdel@fr.com

251

Chapmr14

238

interested in the first place, or what it intended to do with the information. So the

listener also the gives the event source some extra information that it wants
returned as a “reminder.”

For example, a Iini taxi-driver might register interest in taxi-booking events

from the base station while passing through a geographical area. It registers itself

as a listener for booking events, and as part of its registration, it could include its

current location. Then, when it receives a booking event, it is told its old location,

and it could check to see if it is still interested in events from that old location. A

more novel possibility is that one object could register a different object for events,

so your stockbroker could register you for events about stock movements, and

when you receive an event, you would also get a reminder about who registered

your interest (plus a request for commission...).

Event Registration

Iini does not say how to register listeners with objects that can generate events.

This is unlike other event models in Java that specify methods, like this

public void addActionListener(ActionListener listener);

for ActionEvent generators. What Iini does do is to specify a convenience class as a

return value from this registration. This is the convenience class EventRegistration:

package net.jini.core.event;

import net.jini.core.1ease.Lease;

public class EventRegistration implements java.io.Serializable {

public EventRegistration(1ong eventID, Object source,

Lease lease, long seqNum);

public long getID();

public Object getSource();

public Lease getLease();

public long getSequenceNumber();

This return object contains information that may be ofvalue to the object that

registered a listener. Each registration will typically only be for a limited amount of

time, and this information may be returned in the Lease object. If the event regis-

tration was for a particular type, this may be returned in the id field. A sequence

number may also be given. The meaning of these values may depend on the par-

ticular system—in other words, Iini gives you a class that is optional in use, and

whose fields are not tightly specified. This gives you the freedom to choose your

own meanings to some extent.

251

libdocdel@fr.com

252

Remote Events

This means that as the programmer of a event producer, you have to define

(and implement) methods such as these:

public EventRegistration addRemoteEventListener(RemoteEventListener listener);

There is no standard interface for this.

Listener List

Each listener for remote events must implement the RemoteEventListener

interface:

public interface RemoteEventListener

extends java.rmi.Remote, java.util.EventListener {

public void notify(RemoteEvent theEvent)

throws UnknownEventException,

java.rmi.RemoteException;

Because it extends Remote, the listener will most likely be something like an RMI

stub for a remote object, so that calling not ify() will result in a call on the remote

object, with the event being passed across to it.

In event generators, there are multiple implementations for handling lists of

event listeners all the way through the lava core and extensions. There is no public

API for dealing with event-listener lists, and so the programmer has to reinvent (or

copy) code to pass events to listeners. There are basically two cases:

0 Only one listener can be in the list.

0 Any number of listeners can be in the list.

Single Listener

The case where there is only one listener allowed in the list can be implemented by

using a single—valued variable, as shown in Figure 14-1.

This is the simplest case of event registration:

protected RemoteEventListeneI listener = null;

public EventRegistration addRemoteListener(RemoteEventListener listener)

throws java.util.TooManyListenersException {

239

252

libdocdel@fr.com

253

Chapmr14

 EventGenerator

listener

RemoteEventListener

 addRemoteListenerO

Figure 14-1. A single listener

if (this.listener == null {

this.listener = listener;

} else {

throw new java.util.TooManyListenersException();

l

return new EventRegistIation(0L, this, null, 0L);

This is close to the ordinary lava event registration—no really useful informa-

tion is returned that wasn’t known before. In particular, there is no lease object, so

you could probably assume that the lease is being granted “forever,” as would be

the case with non-networked objects.

When an event occurs, the listener can be informed by the event generator

calling fireNot ify():

protected void fireNotify(long eventID,

long seqNum) {

if (listener == null) {

return;

RemoteEvent remoteEvent = new RemoteEvent(this, eventID,

seqNum, null);

listener.notify(remoteEvent);

It is easy to add a handback to this: just add another field to the object, and set

and return this object in the registration and notify methods. Far more complex is

adding a non-null lease. Firstly, the event source has to decide on a lease policy,

that is, for what periods of time it will grant leases. Then it has to implement a

timeout mechanism to discard listeners when their leases expire. And finally, it has

to handle lease renewal and cancellation requests, possibly using its lease policy

again to make decisions. The landlord package would be of use here.

240

253

libdocdel@fr.com

254

Multiple Listeners

For the case where there can be any number of listeners, the convenience class

javax. swing . event . EventListenerList can be used. The object delegates some of

the list handling to the convenience class, as shown in Figure 14—2.

 EventGenerator

listenerList

 addRemoteListenerO

Figure 14-2. Multiple listeners

A version of event registration suitable for ordinary events is as follows:

import javax.swing.event.EventListenerList;

EventListenerList listenerList = new EventListenerList();

public EventRegistration addRemoteListener(RemoteEventListener l) {

listenerList.add(RemoteListener.class, 1);

return new EventRegistration(0L, this, null, 0L);

public void removeRemoteListener(RemoteEventListener l) {

listenerList.remove(RemoteListener.class, l);

// Notify all listeners that have registered interest for

// notification on this event type. The event instance

// is lazily created using the parameters passed into
// the fire method.

protected void tireNotity(long eventID,

long seqNum) {

RemoteEvent remoteEvent = null;

// Guaranteed to return a non—null array

Object[] listeners = listenerList.getListenerList();

// Process the listeners last to first, notifying
// those that are interested in this event

254

RemoteEventListener

Remote Events

241

libdocdel@fr.com

255

Chapwr14

242

for (int n = listeners.1ength — 2; n >= 0; n -= 2) {

if (listeners[n] == RemoteEventListener.class) {
RemoteEventListener listener =

(RemoteEventListener) listeners[n+1];

if (remoteEvent == null) {

remoteEvent = new RemoteEvent(this, eventID,

seqNum, null);

}

try {

listener.notify(remoteEvent);

} catch(UnknownEventException e) {

e.printStackTrace();

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

In this case, a source object need only call fireNotifyo to send the event to all

listeners. (You may decide that it is easier to simply use a Vector of listeners.)

It is again straightforward to add handbacks to this. The only tricky point is

that each listener can have its own handback, so they will need to be stored in

some kind of map (say a HashMap) keyed on the listener. Then, before not ify() is

called for each listener, the handback Will need to be retrieved for the listener and

a new remote event created with that handback.

Listener Source

The ordinary Java event model has all objects in a single address space, so that

registration of event listeners and notifying these listeners all takes place using

objects in the one space. We have already seen that this is not the case with Jini.

Iini is a networked federation of objects, and in many cases one is dealing with

proxy objects, not the real objects.

This is the same with remote events, except that in this case we often have the

direction of proxies reversed. To see what I mean by this, consider what happens if

a client wants to monitor any changes in the service. The client will already have a

proxy object for the service, and it will use this proxy to register itself as a listener.

However, the service proxy will most likely just hand this listener back off to the

service itself (that is what proxies, such as RMI proxies, do). So we need to get a

proxyforthechentovertothesendce

255

libdocdel@fr.com

256

Consider the file classification problems we looked at in earlier chapters. The

file classifier had a hard-coded set of filename extensions built in. However, it

would be possible to extend these, if applications come along that know how to

define (and maybe handle) such extensions. For example, an application would

locate the file classification server, and using an exported method from the file

classification interface would add the new MIME type and file extension. This is

no departure from any standard Java or earlier Iini stuff. It only affects the imple-

mentation level of the file classifier, changing it from a static list of filename

extensions to a more dynamic one.

What it does affect is the poor application that has been blocked (and is prob—

ably sleeping) on an unknown filename extension. When the classifier installs a

new file type, it can send an event saying so. The blocked application could then

try again to see if the extension is now known. If so, it uses it, and if not, it blocks

again. Note that we don’t bother with identifying the actual state change, since it is

just as easy to make another query once you know that the state has changed.

More complex situations may require more information to be maintained. How—

ever, in order to get to this situation, the application must have registered its

interest in events, and the event producer must be able to find the listener.

How this gets resolved is for the client to first find the service in the same way

as we discussed in Chapter 6. The client ends up with a proxy object for the service

in the client’s address space. One of the methods on the proxy will add an event lis-

tener, and this method will be called by the client.

For simplicity, assume that the client is being added as a listener to the service.

The client will call the add listener method of the proxy, with the client as parame—

ter. The proxy will then call the real object’s add listener method, back on its server

side. But in doing this, we have made a remote call across the network, and the cli-

ent, which was local to the call on the proxy, is now remote to the real object, so

what the real object is getting is a proxy to the client. When the service makes noti-

fication calls to the proxy listeners, the client’s proxy can make a remote call back

to the client itself. These proxies are shown in Figure 14-3.

Client Service

Service

proxy
Figure 14-3. Proxiesfor services and listeners

256

Remote Events

243

libdocdel@fr.com

257

Chapmr14

244

File Classifier with Events

Let’s make this discussion more concrete by looking at a new file classifier applica-

tion that can have its set of mappings dynamically updated.

The first thing to be modified is the FileClassifier interface. This needs to be

extended to a MutableFileClassifier interface, known to all objects. This new

interface adds methods that will add and remove types, and that will also register

listeners for events. The event types are labeled with two constants. The listener

model is simple, and does not include handbacks or leases. The sequence identifier

must be increasing, so we just add 1 on each event generation, although we don’t

really need it here: it is easy for a listener to just make MIME type queries again.

package common;

import java.io.Serializable;

/**

* MutableFileClassifier.java
*/

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.EventRegistration;

public interface MutableFileClassifier extends FileClassifier {

static final public long ADD_TYPE = 1;

static final public long REMOVE_TYPE = 2;

/*

* Add the MIME type for the given suffix.

* The suffix does not contain ' ' e.g. "gif".

* Overrides any previous MIME type for that suffix
*/

public void addType(StIing suffix, MIMEType type)

throws java.rmi.RemoteException;

/*

* Delete the MIME type for the given suffix.

* The suffix does not contain ' ' e.g. "gif".

* Does nothing if the suffix is not known
*/

public void removeMIMEType(String suffix, MIMEType type)

throws java.rmi.RemoteException;

257

libdocdel@fr.com

258

public EventRegistration addRemoteListener(RemoteEventListener listener)

throws java.rmi.RemoteException;

} // MutableFileClasssifier

The RemoteFileClassifier interface is known only to services, and it just

changes its package and inheritance for any service implementation:

package mutable;

import common.MutableFileClassifier;

import java.rmi.Remote;

/**

* RemoteFileClassifier.java
*/

public interface RemoteFileClassifier extends MutableFileClassifier, Remote {

} // RemoteFileClasssifier

Previous implementations of file classifier services (such as in Chapter 8) use a

static list of if . . .then statements because they deal with a fixed set of types. For

this implementation, where the set ofmappings can change, we change the imple-

mentation to a dynamic map keyed on file suffixes. It manages the event listener

list for multiple listeners in the simple way discussed earlier in this chapter, and it

generates events whenever a new suffix/ type is added or successfully removed.

The following code is an implementation of the file classifier service with this

alternative implementation and an event list:

package mutable;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.Marshalled0bject;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.EventRegistration;

import java.rmi.RemoteException;

import net.jini.core.event.UnknownEventException ;

import javax.swing.event.EventListenerList;

import common.MIMEType;

258

Remote Events

245

libdocdel@fr.com

259

Chapmvl4

import common.MutableFileClassifier;

import java.util.Map;

import java.util.HashMap;

/**

* FileClassifierImpl.java
*/

public class FileClassifierImpl extends UnicastRemoteObject

implements RemoteFileClassifier {

/**

* Map of String extensions to MIME types
*/

protected Map map = new HashMap();

/**

* Listeners for change events

*/

protected EventListenerList listenerList = new EventListenerList();

protected long seqNum = 0L;

public MIMEType getMIMEType(String fileName)

throws java.rmi.RemoteException {

System.out.println("Called with " + fileName);

MIMEType type;

String fileExtension;

int dotIndex = fileName.lastIndexOf('.');

if (dotIndex == -1 || dotIndex + 1 == fileName.length()) {
// can't find suitable suffix

return null;

fileExtension= fileName.substring(dotIndex + 1);

type = (MIMEType) map.get(fileExtension);

return type;

public void addType(String suffix, MIMEType type)

throws java.rmi.RemoteException {

246

259

libdocdel@fr.com

260

Remote Events

map.put(suffix, type);

fireNotify(ADD_TYPE);

public void removeMIMEType(String suffix, MIMEType type)

throws java.rmi.RemoteException {

if (map.remove(suffix) != null) {

fireNotify(REMOVE_TYPE);

public EventRegistration addRemoteListener(RemoteEventListener listener)

throws java.rmi.RemoteException {

listenerList.add(RemoteEventListener.class, listener);

return new EventRegistration(0, this, null, 0);

// Notify all listeners that have registered interest for

// notification on this event type. The event instance

// is lazily created using the parameters passed into
// the fire method.

protected void fireNotify(long eventID) {

RemoteEvent remoteEvent = null;

// Guaranteed to return a non-null array

0bject[] listeners = listenerList.getListenerList()3

// Process the listeners last to first, notifying

// those that are interested in this event

for (int i = listeners.length - 2; 1 >= 0; i -= 2) {

if (listeners[i] == RemoteEventListener.class) {

RemoteEventListener listener = (RemoteEventListener) listeners[i+1];

if (remoteEvent == null) {

remoteEvent = new RemoteEvent(this, eventID,

seqNum++, null);

}

try {

listener.notify(IemoteEvent);

} catch(UnknownEventException e) {

e.printStackTIace();

} catch(RemoteException e) {

e.printStackTrace();

247

260

libdocdel@fr.com

261

Chapmr14

public FileClassifieIImpl() throws java.Imi.RemoteException {

// load a predefined set of MIME type mappings

map.put("gif", new MIMEType("image", "gif"));

map.put("jpeg", new MIMEType("image“, "jpeg"));

map.put("mpg", new MIMEType(“video", "mpeg"));

map.put("txt", new MIMEType("text", "plain"));

map.put(“html", new MIMEType("text", "html"));

}

} // FileClassifierImpl

The proxy changes its inheritance, and as a result has more methods to imple-

ment, which it just delegates to its server object. The following class is for the proxy:

package mutable;

import common.MutableFileClassifier;

import common.MIMEType;

import java.io.Serializable;

import java.io.IOException;

import java.Imi.Naming;

import net.jini.core.event.EventRegistration;

import net.jini.core.event.RemoteEventListener;

/>M<

* FileClassifieIPony
*/

public class FileClassifierPony implements MutableFileClassifieI, Serializable {

RemoteFileClassitier server = null;

public FileClassifierPony(FileClassitierImpl ser) {

this.serveI = serv;

if (serv==null) System.err.println("server is null");

public MIMEType getMIMEType(StIing fileName)

248

261

libdocdel@fr.com

262

throws java.rmi.RemoteException {

return server.getMIMEType(fileName);

public void addType(String suffix, MIMEType type)

throws java.rmi.RemoteException {

server.addType(suffix, type);

public void removeMIMEType(String suffix, MIMEType type)

throws java.rmi.RemoteException {

server.removeMIMEType(suffix, type);

public EventRegistration addRemoteListener(RemoteEventListener listener)

throws java.rmi.RemoteException {

return server.addRemoteListener(listener);

} // FileClassifierProxy

Monitoring Changes in Services

Services will start and stop. When they start, they will inform the lookup services,

and sometime after they stop, they will be removed from the lookup services. How-

ever, there are a lot of times when other services or clients will want to know when

services start or are removed. For example, an editor may want to know if a disk

service has started so that it can save its file; a graphics display program may want

to know when printer services start up; the user interface for a camera may want

to track changes in disk and printer services so that it can update the Save and
Print buttons.

A service registrar acts as a generator of ServiceEvent type events, which sub-

class from RemoteEvent. These events are generated in response to changes in the

state of services that match (or fail to match) a template pattern for services. This

event type has three categories from the ServiceEvent . getTransition() method:

- TRANSITION_NOMATCH_MATCH: A service has changed state so that whereas it

previously did not match the template, now it does. In particular, if it didn’t

exist before, now it does. This transition type can be used to spot new ser-

vices starting or to spot wanted changes in the attributes of an existing

registered service; for example, an offline printer can change attributes to

being online, which now makes it a useful service.

262

Remote Events

249

libdocdel@fr.com

263

Chapter 14

250

- TRANSITION_MATCH_NOMATCH: A service has changed state so that whereas it

previously did match the template, now it doesn’t. This can be used to detect

when services are removed from a lookup service. This transition can also be

used to spot changes in the attributes of an existing registered service that

are not wanted; for example, an online printer can change attributes to

being offline.

0 TRANSITION_MATCH_MATCH: A service has changed state, but it matched both

before and after. This typically happens when an Entry value changes, and it

is used to monitor changes of state, such as a printer running out of paper,

or a piece of hardware signaling that it is due for maintenance work.

A client that wants to monitor changes of services on a lookup service must

first create a template for the types of services it is interested in. A client that wants

to monitor all changes could prepare a template such as this:

new ServiceTemplate(null, null, null); // or

new ServiceTemplate(null, new Class[] {}, new Entry[] {});

ServiceTemplate templ

ServiceTemplate templ

// or

ServiceTemplate templ

null);

new ServiceTemplate(null, new Class[] {Object.class},

It then sets up a transition mask as a bit-wise OR of the three service transi—

tions, and then calls notify() on the ServiceRegistrar object. The following is a

program to monitor all changes.

/**

* RegistrarObserver.java
*/

package observer;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.lookup.ServiceEvent;

import net.jini.core.lookup.ServiceRegistIar;

import net.jini.core.lease.Lease;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceID;

import net.jini.core.event.EventRegistration;

// import com.sun.jini.lease.LeaseRenewalManageI; // Jini 1.0

import net.jini.lease.LeaseRenewalManageI; // Jini 1.1

import net.jini.core.lookup.ServiceMatches;

import java.rmi.RemoteException;

263

libdocdel@fr.com

264

Remote Events

import java.rmi.server.UnicastRemoteObject;

import net.jini.core.entry.Entry;

import net.jini.core.event.UnknownEventException;

public class RegistrarObserver extends UnicastRemoteObject implements

RemoteEventListener {

protected static LeaseRenewalManager leaseManager = new LeaseRenewalManager();

protected ServiceRegistrar registrar;

protected final int transitions = ServiceRegistrar.TRANSITION_MATCH_NOMATCH |

ServiceRegistrar.TRANSITION_NOMATCH_MATCH |

ServiceRegistrar.TRANSITION_MATCH_MATCH;

public RegistrarObserveI() throws RemoteException {

}

public Registrarobserver(ServiceRegistrar registrar) throws RemoteException {

this.registrar = registrar;

ServiceTemplate templ = new ServiceTemplate(null, null, null);

EventRegistration reg = null;

try {

// eventCatcher = new MyEventListener();

reg = registrar.notity(templ,

transitions,

this,

null,

Lease .ANY);

System.out.println("notified id " + reg.getID());

} catch(RemoteException e) {

e.printStackTrace();

}

leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, null);

public void notity(RemoteEvent evt)

throws RemoteException, UnknownEventException {

try {

ServiceEvent sevt = (ServiceEvent) evt;

int transition = sevt.getTransition();

System.out.println("transition + transition);

switch (transition) {

case ServiceRegistrar.TRANSITION_NOMATCH_MATCH:

System.out.println("nomatch —> match");

251

264

libdocdel@fr.com

265

Chapwr14

break;

case ServiceRegistIaI.TRANSITIONHMATCH_MATCH:

System.out.print1n("match -> match");

break;

case ServiceRegistrar.TRANSITION_MATCH_NOMATCH:

System.out.println("match —> nomatch“);

break;

}

System.out.pIintln(sevt.toStIing());

if (sevt.getServiceItem() == null) {

System.out.println("now null");

} else {

Object service = sevt.getServiceItem().serice;

System.out.println("Service is + service.to$tring());

}

} catch(Exception e) {

e.printStackTIace();

} // RegistrarObserver

The following is a suitable driver for the preceding observer class:

package client;

import java.rmi.RMISecurityManageI;

import java.rmi.RemoteException;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoverListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.$erviceRegistraI;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.SericeMatches;

import java.util.Vector;

import observer.RegistrarObserver;

/**

* ReggieMonitor.java
*/

public class ReggieMonitor implements DiscoveryListener {

252

265

libdocdel@fr.com

266

Remote Events

protected Vector observers = new Vector();

public static void main(String argv[]) {

new ReggieMonitor();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(100000L);

} catch(java.lang.InterruptedException e) {

// do nothing

public ReggieMonitor() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover : new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.print1n(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

System.out.println("Service lookup found");

ServiceRegistrar registrar = registrars[n];

if (registrar == null) {

System.out.println("registrar null");

continue;

}

try {

System.out.println("Lookup service at " +

registrar.getLocator().getHost());

} catch(RemoteException e) {

253

266

libdocdel@fr.com

267

Chapmr14

System.out.println("Lookup service info unavailable");

try{

observers.add(new RegistrarObserver(registrar));

} catch(Rem0teException e) {

System.out.println("adding observer failed");

ServiceTemplate templ = new ServiceTemplate(null, new Class[]

{Object.class}, null);
ServiceMatches matches

tIy{

matches = registrar.lookup(temp1, 10);

} catch(RemoteException e) {

System out.println("lookup failed");

null;

for (int m = 0; m < matches.items.length; m++) {

if (matches.items[m] != null && matches.items[m].service != null) {

System.out.println("Reg knows about " + matches.items[m].ser—

vice.toString() +

" with id " + matches.items[m].serviceID);

public void discarded(DiscoveryEvent evt) {
// remove observer

}

} // ReggieMonitor

Summary

This chapter has looked at how the remote event differs from the other event

models in lava and at how to create and use them. Iini events allow distributed

components to inform other components when they change state and to supply

enough support information for listeners to determine the nature of the change.

This adds an asynchronous state-change mechanism to Iini, which can allow

more flexible systems to be built.

254

267

libdocdel@fr.com

268

CHAPTER 15

ServiceDiscoveryManager

BOTH CLIENTS AND SERVICES NEED TO FIND lookup services. Both can do this using

low-level core classes, or discovery utilities such aS LookupDiscoveryManager. Once a

lookup service is found, a service just needs to register with it and try to keep the

lease alive for as long as it wants to. A service can make use of the JoinManager
class for this.

The ServiceDiscoveryManager class performs client-side functions similar to

that of JoinManager for services, and simplifies the task of finding services. The

ServiceDiscoveryManager class is only available in Iini 1.1.

ServiceDiscoverManager Interface

The ServiceDiscoveryManager class is a utility class designed to help in the various

client—side lookup cases that can occur:

0 A client may wish to use a service immediately or later.

- A client may want to use multiple services.

0 A client will want to find services by their interfaces, but may also want to

apply additional criteria, such aS being a “fast enough" printer.

0 A client may just wish to use a service if it is available at the time of the

request, but alternatively may want to be informed of new services becom—

ing available and to respond to this new availability (for example, a service

browser).

Due to the variety of possible cases, the ServiceDiscoveryManager class is more

complex than JoinManager. Its interface includes the following:

package net.jini.lookup;

public class ServiceDiscoveryManageI {

public ServiceDiscoveryManager(DiscoveryManagement discoverMgr,

LeaseRenewalManager leaseMgI)

throws IOException;

268

255

libdocdel@fr.com

269

ChaperS

256

LookupCache createLookupCache(ServiceTemplate tmpl,

ServiceItemFilter filter,

ServiceDiscoveryListener listener);

ServiceItem[] lookup(ServiceTemp1ate tmpl,

int maxMatches, ServiceItemFilter filter);

ServiceItem lookup(ServiceTemplate tmpl,

ServiceItemFilteI filter);

ServiceItem lookup(ServiceTemplate tmpl,

ServiceItemFilter filter, long wait);

ServiceItem[] lookup(ServiceTemplate tmpl,

int minMaxMatch, int maxMatches,

ServiceItemFilter filter, long wait);

void terminate();

ServiceItemFilter Interface

Most methods of the client lookup manager require a ServiceItemFilter. This is a

simple interface designed to be an additional filter on the client side to help in

finding services. The primary way for a client to find a service is to ask for an

instance of an interface, possibly with additional entry attributes. This matching is

performed on the lookup service, and it only involves a form of exact pattern

matching. It allows the client to ask for a toaster that will handle two slices of toast

exactly, but not for one that will toast two or more.

Performing arbitrary Boolean matching on the lookup service raises a security

issue as it would involve running some code from the client or service in the

lookup service, and it also raises a possible performance issue for the lookup ser-

vice. This means that enhancing the matching process in the lookup service is

unlikely to ever occur, so any more sophisticated matching must be done by the

client. The ServiceItemFilter allows additional Boolean filtering to be performed

on the client side, by client code, so these issues are local to the client only.
The ServiceItemFilter interface is as follows:

package net.jini.lookup;

public interface ServiceItemFilter {

boolean check(ServiceItem item);

269

libdocdel@fr.com

270

ServiceDiscoveryManager

A client filter will implement this interface to perform additional checking.

Client-side filtering will not solve all of the problems of locating the “best” ser-

vice. Some situations will still require other services that know “local” information,

such as distances in a building.

Finding a Service Immediately

The simplest scenario for a client is that it wants to find a service immediately,

use it, and then (perhaps) terminate. The client will be prepared to wait a certain

amount of time before giving up. All issues of discovery can be given to the

ServiceDiscoveryManager, and the task of finding a service can be given to a method

such as lookup () with a wa it parameter. The lookup() method will block until a

suitable service is found or the time limit is reached. If the time limit is reached, a

null object will be returned; otherwise a non-null service object will be returned.

package client;

import common.FileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceTemp1ate;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.1ookup.ServiceDiscoveryManager;

import net.jini.core.lookup.SericeItem;

import net.jini.lease.LeaseRenewalManager;

/**

* ImmediateClientLookup.java
*/

public class ImmediateClientLookup {

private static final long WAITFOR = 100000L;

public static void main(String argv[]) {

new ImmediateClientLookup();

// stay around long enough to receive replies

try {

Thread . currentThread() . sleep(2*WAITFOR);

257

270

libdocdel@fr.com

271

ChapWrIS

258

} catch(java.lang.InterruptedException e) {

// do nothing

public ImmediateClientLookup() {

ServiceDiscoveryManager clientMgr = null;

System.setSecurityManager(new RMISecurityManager());

try {

LookupDiscoveryManager mgr =

new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListener */);

clientMgr = new ServiceDiscoveryManager(mgr,

new LeaseRenewalManager());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

Class [] classes = new Class[] {FileClassifier.class};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

ServiceItem item = null;

// Try to find the service, blocking till timeout if necessary

try {

item = clientMgr.lookup(template,

null, /* no filter */

WAITFOR /* timeout */);

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

}

if (item == null) {
// couldn't find a service in time

System.out.println(“no service");

System.exit(1);

// Get the service

FileClassifier classifier = (FileClassifier) item.service;

271

libdocdel@fr.com

272

Servude$coveryAfiznager

it (classifier == null) {

System.out.println("Classi+ier null");

System.exit(1);

// Now we have a suitable service, use it

MIMEType type;

try {

String tileName;

// Try several file types: .txt, .rtf, .abc

fileName = "file1.txt";

type classifier.getMIMEType(tileName);

printType(fileName, type);

fileName = "file2.rtf";

type = classifier.getMIMEType(tileName);

printType(+ileName, type);

fileName = "file3.abc";

type = classifier.getMIMEType(tileName);

printType(fileName, type);

} catch(java.rmi.RemoteException e) {

System.err.println(e.toString())5

}

System.exit(o);

private void printType(String fileName, MIMEType type) {

System.out.print("Type of " + tileName + “ is ");

it (type == null) {

System.out.println("null");

} else {

System.out.println(type.toString());

}

} // ImmediateClientLookup

Using a Filter

An example in Chapter 13 discussed how to select aprinter with a speed greater than a

certain value. This type of problem is well suited to the ServiceDiscoveryManager

259

272

libdocdel@fr.com

273

Chapmrls

using a ServiceItemFilter, The ServiceItemFilter interface has a check() method,

which is called on the client side to perform additional filtering of services. This

method can accept or reject a service based on criteria supplied by the client.

The following program illustrates how this check() method can be used to

select only printer services with a speed greater than 24 pages per minute:

package client;

import common.PIinter;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.discovery.LookupDiscoverManager;

import net.jini.lookup.ServiceDiscoverManager;

import net.jini.core.lookup.SericeItem;

import net.jini.lease.LeaseRenewalManageI;

import net.jini.lookup.ServiceItemFilter;
/**

* TestPrinteISpeedFilteI.java
*/

public class TestPIinteISpeedFilter implements ServiceItemFilter {

private static final long WAITFOR = 100000L;

public TestPIinterSpeedFilteI() {

ServiceDiscoverManager clientMgr
I)

null;

System.setSecurityManager(new RMISecurityManager());

try {

LookupDiscoveryManager mgr =

new LookupDiscoverManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListener */);

clientMgr = new ServiceDiscoveryManager(mgr,

new LeaseRenewalManageI());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

Class[] classes = new Class[] {Printer.class};

260

273

libdocdel@fr.com

274

ServiceDiscoverManager

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

ServiceItem item = null;

try {

item = clientMgr.lookup(template,

this, /* filter */

WAITFOR /* timeout */);

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

}

if (item == null) {

// couldn't find a service in time

System.exit(1);

Printer printer = (Printer) item.service;

// Now use the printer
// ...

public boolean check(ServiceItem item) {
// This is the filter

Printer printer = (Printer) item.service;

if (printer.getSpeed() > 24) {

return true;

} else {

return false;

public static void main(String[] args) {

TestPrinterSpeed t = new TestPrinterSpeed();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(2*NAITFOR);

} catch(java.lang.InterruptedException e) {

// do nothing

} // TestPrinterSpeed

261

274

libdocdel@fr.com

275

ChapmrlS

262

Building a Cache of Services

A client may wish to make use of a service multiple times. If the client simply

found a suitable reference to a service, then before each use it would have to check

whether the reference was still valid, and if not, it would need to find another one.

The client may also want to use minor variants of a service, such as a fast printer

one time and a slow one the next. While this management can be done easily

enough in each case, the ServiceDiscoveryManager can supply a cache of services

that will do this work for you. This cache will monitor lookup services to keep the

cache as up-to—date as possible.

The cache is defined as an interface:

package net.jini.lookup;

public interface LookupCache {

public Serviceltem lookup(ServiceItemFilter filter);

public Serviceltem[] lookup(ServiceItemFilter filter,

int maxMatches);

public void addListener(ServiceDiscoveryListener 1);

public void removeListener(ServiceDiscoveryListener 1);

public void discard(0bject serviceReference);

void terminate();

A suitable implementation object can be created by the ServiceDiscoveryManager
method:

LookupCache createLookupCache(ServiceTemplate tmpl,

ServiceItemFilter filter,

ServiceDiscoveryListener listener);

We will ignore the ServiceDiscoveryListener until the next section of this chapter.

It can be set to null in createLookupCache().

The LookupCache created by create Looku pCache() takes a template for matching

against interface and entry attributes. In addition, it also takes a filter to perform

additional client-side Boolean filtering of services. The cache will then maintain a

set of references to services matching the template and passing the filter. These

references are all local to the client and consist of the service proxies and their

attributes downloaded to the client. Searching for a service can then be done by

local methods: LookupCache . lookup(). These can take an additional filter that can
be used to further refine the set of services returned to the client.

The search in the cache is done directly on the proxy services and attributes

already found by the client, and does not involve querying lookup services.

275

libdocdel@fr.com

276

Essentially, this involves a tradeoff of lookup service activity while the client is

idle to produce fast local response when the client is active.

There are versions of ServiceDiscoverManager . lookup() with a time parameter,

which block until a service is found or the method times out. These methods do

not use polling, but instead use event notification because they are trying to find

services based on remote calls to lookup services. The lookup() methods of

LookupCache do not implement such a blocking call because the methods run

purely locally, and it is reasonable to poll the cache for a short time if need be.

Here is a version of the file classifier client that creates and examines the cache

for a suitable service:

package client;

import common.FileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.discovery.LookupDiscoverManageI;

import net.jini.lookup.ServiceDiscoveryManageI;

import net.jini.lookup.LookupCache;

import net.jini.core.lookup.ServiceItem;

import net.jini.lease.LeaseRenewalManager;

/**

* CachedClientLookup.java
*/

public class CachedClientLookup {

private static final long NAITFOR = 100000L;

public static void main(String aIgv[]) {

new CachedClientLookup();

// stay around long enough to receive replies

try {

Thread.currentThIead().sleep(NAITFOR);

} catch(java.lang.InterruptedException e) {

// do nothing

276

ServiceDiscoveryManager

263

libdocdel@fr.com

277

Chapwr15

264

public CachedClientLookup() {

ServiceDiscoveryManager clientMgr = null;

LookupCache cache = null;

System.setSecurityManager(new RMISecurityManageI());

try {

LookupDiscoveryManager mgr =

new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListener */);

clientMgr = new ServiceDiscoveryManager(mgr,

new LeaseRenewalManager());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

Class [] classes = new Class[] {FileClassifier.class};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

try {

cache = clientMgI.createLookupCache(template,

null, /* no filter */

null /* no listener */);

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

// loop until we find a service

ServiceItem item = null;

while (item == null) {

System.out.println("no service yet");

try {

Thread.currentThread().sleep(1000);

} catch(java.lang.InterruptedException e) {

// do nothing

}

// see if a service is there now

item = cache.1ookup(null);

}

FileClassifier classifier = (FileClassifier) item.service;

277

libdocdel@fr.com

278

ServiceDiscoveryManager

if (classifier == null) {

System.out.println("Classifier null");

System.exit(1);

// Now we have a suitable service, use it

MIMEType type;

try {

String fileName;

fileName = "file1.txt";

type = classifier.getMIMEType(fileName);

printType(tileName, type);

fileName = "file2.Itf";

type = classifier.getMIMEType(fileName);

printType(+ileName, type);

fileName = "file3.abc";

type = classifier.getMIMEType(fileName);

pIintType(fileName, type);

} catch(java.Imi.RemoteException e) {

System.err.println(e.to$tring());

}

System.exit(0);

private void printType(String fileName, MIMEType type) {

System.out.print("Type of " + tileName + " is ")3

if (type == null) {

System.out.println("null");

} else {

System.out.println(type.toString());

}

} // CachedClientLookup

Running the CachedClientLookup

While it is okay to poll the local cache, the cache itselfmust get its contents from

lookup services, and in general it is not okay to poll these because that involves pos—

sibly heavy network traffic. The cache itself gets its information by registering itself

as a listener for service events from the lookup services (as explained in Chapter 14).

265

278

libdocdel@fr.com

279

Chapmr15

266

The lookup services will then call notify() on the cache listener. This call is a remote

call from the remote lookup service to the local cache, done (probably) using an RMI

stub. In fact, the Sun implementation of ServiceDiscoveryManager uses a nested class,

ServiceDiscoveryManager . LookupCacheImpl. LookupListener, which has an RMI stub.

In order for the cache to actually work, it is necessary to set the RMI codebase

property, java . rmi . server . codebase, to a suitable location for the class files (such as

an HTTP server), and to make sure that the class net/j ini/ lookup/ ServiceDiscov-

eryManager$LookupCacheImp1$LookupListener_Stub .class is accessible from this

codebase. The stub file may be found in the lib/j ini-ext . jar library in the Jini 1.1

distribution. It has to be extracted from there and placed in the codebase using a

command such as this:

unzip jini-ext.jar 'net/jini/lookup/ServiceDiscoveryManager$LookupCache-

Impl$LookupListener_Stub.class' -d /home/NWW/htdocs/classes

Note that the specification just says that this type of thing has to be done but does

not descend to details about the class name—that is left to the documentation of

the ServiceDiscoveryManager as implemented by Sun. If another implementation is

made of the Iini classes, then it would probably use a different remote class.

Monitoring Changes to the Cache

The cache uses remote events to monitor the state of lookup services. It includes

a local mechanism to pass some of these changes to a client by means of the

ServiceDiscoveryListener interface:

package net.jini.lookup;

interface ServiceDiscoveryListener {

void serviceAdded(ServiceDiscoveryEvent event);

void serviceChanged(ServiceDiscoveryEvent event);

void serviceRemoved(ServiceDiscoveryEvent event);

The ServiceDiscoveryListener methods take a parameter of type

ServiceDiscoveryEvent. This class has methods:

package net.jini.lookup;

class ServiceDiscoveryEvent extends EventObject {

ServiceItem getPostEventServiceItem();

ServiceItem getPreEventServiceItem();

279

libdocdel@fr.com

280

Clients are not likely to be interested in all events generated by lookup

services, even for the services in which they are interested. For example, if a new

service registers itself with ten lookup services, they will all generate transition

events from NO_MATCH to MATCH, but the client will usually only be interested in

seeing the first of these—the other nine are just repeated information. Similarly, if

a service’s lease expires from one lookup service, then that doesn’t matter much;

but if it expires from all lookup services that the client knows of, then it does mat—

ter, because the service is no longer available to it. The cache consequently prunes

events so that the client gets information about the real services rather than infor-

mation about the lookup services.

In Chapter 14, an example was given on monitoring changes to services from

a lookup service viewpoint, reporting each change to lookup services. A client-

oriented view just monitors changes in services themselves, which can be done

easily using ServiceDiscoveryEvent objects:

package client;

import java.Imi.RMISecurityManager;

import net.jini.discovery.LookupDiscover;

import net.jini.lookup.ServiceDiscoveryListener;

import net.jini.lookup.ServiceDiscoveryEvent;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceItem;

import net.jini.lookup.ServiceDiscoveryManageI;

import net.jini.discovery.LookupDiscoveryManageI;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lookup.LookupCache;

/**

* ServiceMonitor.java
*/

public class ServiceMonitor implements ServiceDiscoverListener {

public static void main(String argv[]) {

new ServiceMonitor();

// stay around long enough to receive replies

try {

Thread.currentThIead().sleep(100000L);

} catch(java.lang.InterruptedException e) {

// do nothing

280

ServiceDiscoverManager

267

libdocdel@fr.com

281

ChapmrIS

268

public ServiceMonitor() {

ServiceDiscoveryManager clientMgI = null;

LookupCache cache null;

System.setSecurityManager(new RMISecurityManager());

try {

LookupDiscoveryManageI mgr =

new LookupDiscoverManageI(LookupDiscover.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListener */);

clientMgr = new ServiceDiscoverManager(mgr,

new LeaseRenewalManageI());

} catch(Exception e) {

e.printStackTrace();

System.exit(1);

ServiceTemplate template = new ServiceTemplate(null, null,

null);

try {

cache = clientMgr.createLookupCache(template,

null, /* no filter */

this /* listener */);

} catch(Exception e) {

e.printStackTIace();

System.exit(1);

// methods for ServiceDiscoverListeneI

public void serviceAdded(ServiceDiscoverEvent evt) {

// evt.getPIeEventServiceItem() == null

ServiceItem postItem = evt.getPostEventServiceItem();

System.out.println("Service appeared: " +

postItem.service.getC1ass().toString());

public void serviceChanged(ServiceDiscoveryEvent evt) {

ServiceItem preItem = evt.getPostEventServiceItem();

ServiceItem postItem = evt.getPIeEventSericeItem() ;

System.out.println("Service changed: " +

postItem.service.getClass().toString());

281

libdocdel@fr.com

282

ServiceDiscoveryManager

}

public void serviceRemoved(ServiceDiscoverEvent evt) {

// evt.getPostEventServiceItem() == null

Serviceltem preItem = evt.getPreEventServiceItem();

System.out.println("Service disappeared: " +

pIeItem. service.getClass() .toStIingO);

} // ServiceMonitor

Summary

The client lockup manager can handle a variety ofcommon situations that arise as
clients need to find services under different situations.

269

282

libdocdel@fr.com

283

CHAPTER 16

Transactions

TRANSACTIONS ARE A NECESSARY PART of many distributed operations. Frequently

two or more objects may need to synchronize changes of state so that they all

occur, or none occur. This happens in situations such as control of ownership,

where one party has to give up ownership at the same time as another asserts

ownership. What has to be avoided is only one party performing the action, which

could result in the property having either no owners or two owners.

The theory of transactions often includes mention of the “ACID” properties:

- Atomicity: All the operations of a transaction must take place, or none of
them do.

0 Consistency. The completion ofa transaction must leave the participants in

a “consistent” state, whatever that means. For example, the number of own-
ers of a resource must remain at one.

- Isolation: The activities of one transaction must not affect any other
transactions.

0 Durability: The results of a transaction must be persistent.

The practice of transactions is that they use the two-phase commit protocol.

This requires that participants in a transaction are asked to “vote” on a transac-

tion. If all participants agree to go ahead, then the transaction “commits,” which is

binding on all the participants. If any “abort” during this voting stage, this forces

abortion of the transaction for all participants.

Iini has adopted the syntax of the two—phase commit method. It is up to the

clients and services within a transaction to observe the ACID properties if they

choose to do so. Jini essentially supplies the mechanism of two—phase commit and

leaves the policy to the participants in a transaction.

Transaction Identifiers

Restricting Jini transactions to a two—phase commit model without associating a

particular semantics to it means that a transaction can be represented in a simple

way, as a long identifier. This identifier is obtained from a transaction manager and

283

271

libdocdel@fr.com

284

ChaperG

272

will uniquely label the transaction to that manager. (It is not guaranteed to be

unique between managers, though—unlike service IDs.) All participants in the

transaction communicate with the transaction manager using this identifier to

label which transaction they belong to.

The participants in a transaction may disappear, or the transaction manager

may disappear. As a result, transactions are managed by a lease, which will expire

unless it is renewed. When a transaction manager is asked for a new transaction, it

returns a Transact ionManager . Created object, which contains the transaction iden-
tifier and lease:

public interface TransactionManager {

public static class Created {

public final long id;

public final Lease lease;

A Created object may be passed around between participants in the lease, and

one of them will need to look after lease renewals. All the participants will use the

transaction identifier in communication with the transaction manager.

TransactionManager

A transaction manager looks after the two-phase commit protocol for all the par-

ticipants in a transaction. It is responsible for creating a new transaction with its

create () method. Any of the participants can force the transaction to abort by call-

ing abort (), or they can force it to the two-phase commit stage by calling commit().

public interface TransactionManager {

Created create(long leaseFor) throws ...;

void join(long id, TransactionParticipant part,

long crashCount) throws ...;

void commit(long id) throws ...;

void abort(long id) throws ...;

When a participant joins a transaction, it registers a listener of type

Transaction Participant. If any participant calls commit (), the transaction manager

starts the voting process using all of these listeners. If all of these are prepared to

284

libdocdel@fr.com

285

commit, then the manager moves all of these listeners to the commit stage. Alterna—

tively, any of the participants can call abort(), which forces all of the listeners to abort.

TransactionParticipant

When an object becomes a participant listener in a transaction, it allows the trans—

action manager to call various methods:

public interface TransactionParticipant ... {

int prepare(TransactionManager mgr, long id) throws ...;

void commit(TransactionManager mgr, long id) throws ...;

void abort(TransactionManager mgr, long id) throws ...;

int prepareAndCommit(TransactionManager mgr, long id) throws ...;

These methods are triggered by calls made upon the transaction manager. For

example, if one client calls the transaction manager to abort, then the transaction

manager calls all the listeners to abort.

The “normal” mode of operation (that is, when nothing goes wrong with the

transaction) is for a call to be made on the transaction manager to commit. It then

enters the two-phase commit stage where it asks each participant listener to first

prepare() and then to either commit() or abort().

Mahalo

Mahalo is a transaction manager supplied by Sun as part of the Iini distribution. It

can be used without any changes. It runs as a Iini service, like reggie, and like all

Iini services it has two parts: the part that runs as a server, needing its own set of

class files in mahalo. jar, and the set of class files that need to be available to clients

in mahalo-dl . jar. It also needs a security policy, an HTTP server, and log files.

Mahalo can be started using a command line like this:

java -Djava.security.policy:policy.all \

—Dcom.sun.jini.mahalo.managerName=TransactionManager \

~jar /home/jan/tmpdir/jinil_O/lib/mahalo.jar \

http://‘hostname':8080/mahalo-d1.jar \

/home/jan/projects/jini/doc/policy.all \

/tmp/mahalo_log public &

285

Transactions

273

libdocdel@fr.com

286

Chapter 16

A Transaction Example

The classic use of transactions is to handle money transfers between accounts. In

this scenario there are two accounts, one ofwhich is debited and the other credited.

This is not a very exciting example, so we shall try a more complex situation.

Suppose a service decides to charge for its use. If a client decides this cost is reason-

able, it will first credit the service and then request that the service be performed.

The actual accounts will be managed by an Accounts service, which will need

to be informed of the credits and debits that occur. A simple Accounts model is

one in which the service gets some sort of customer ID from the client, and passes

its own ID and the customer ID to the Accounts service, which manages both

accounts. This is simple, it is prone to all sorts of e-commerce issues that we will

not go into, and it is similar to the way credit cards work!

Figure 16-1 shows the messages in a normal sequence diagram. The client

makes a getCost() call to the service and receives the cost in return. It then makes

a credit() call on the service, which makes a cred itDebit () call on the Accounts

service before returning. The client then makes a final requestService() call on

the service and gets back a result.

Client Service Accounts

getCostO

creditDebit

requestServiceO
Figure 16-]. Sequence diagramfor credit/debit example

There are a number ofproblems with the sequence of steps that can benefit by

using a transaction model. The steps of credit () and cred itDebit() should cer—

tainly be performed either both together or not at all. But in addition there is the

274

286

libdocdel@fr.com

287

issue of the quality of the service—suppose the client is not happy with the results

from the service and would like to reclaim its money, or better yet, not spend it in

the first case! If we include the delivery of the service in the transaction, then there

is the opportunity for the client to abort the transaction before it is committed.

Figure 16-2 shows the larger set of messages in the sequence diagram for nor-

mal execution. As before, the client requests the cost from the service, and after

getting this, it asks the transaction manager to create a transaction and receives

back the transaction ID. It then joins the transaction itself. When it asks the service

to credit an amount, the service also joins the transaction. The service then asks

the account to creditDebit() the amount, and as part of this, the account also joins

the transaction. The client then requests the service and gets the result. If all is

fine, it then asks the transaction manager to commit() , which triggers the prepare—

and-commit phase. The transaction manager asks each participant to prepare(),

and if it gets satisfactory replies from each, it then asks each one to commit().

Client Service Accounts Tnganager
etCost

COSt

create

transactionlD

credit

creditDebit

req uestService
result commit

ureare

_

nreare _

—i-_
—__

- commit
Figure 16-2. Sequence diagramfor credit/debit example with transactions

commit

commit

287

Transactions

275

libdocdel@fr.com

288

Chapmr16

276

There are several points of failure in this transaction:

0 The cost may be too high for the client. However, at this stage the client has

not created or joined a transaction, so this doesn’t matter.

- The client may offer too little by way ofpayment to the service. The service

can signal this by joining the transaction and then aborting it. This will

ensure that the client has to roll back the transaction. (Of course, it could

instead throw a NotEnoughPayment exception—joining and aborting is used

for illustrating transaction possibilities.)

- There may be a time delay between finding the price and asking for the ser-

vice. The price may have gone up in the meantime! The service would then

abort the transaction, forcing the client and the accounts to roll back.

0 After the service is performed, the client may decide that the result was not

good enough, and refuse to pay. Aborting the transaction at this stage would
cause the service and accounts to roll back.

0 The Accounts service may abort the transaction if sufficient client funds are
unavailable.

PayableFileClassifierImpl

The service we will use here is a version of the familiar file classifier that requires a

payment before it will divulge the MIME type for a filename. A bit unrealistic, per-

haps, but that doesn’t matter for our purposes here.

There will be a PayableFileClassifier interface, which extends the

F ileClassifier interface. We will also make it extend the Payable interface, just in

case we want to charge for other services. In line with other interfaces, we shall

extend this to a RemotePayableFileClassifier and then implement this with a

PayableFileClassifierImpl.

The PayableFileClassifierImpl can use the implementation of the

rmi.FileC1assifierImp1, so we shall make it extend this class. We also want it to be

a participant in a transaction, so it must implement the TransactionParticipant

interface. This leads to the inheritance diagram shown in Figure 16-3, which isn’t

really as complex as it looks.

The first new element in this hierarchy is the interface Payable:

package common;

import java.io.SeIializable;

288

libdocdel@fr.com

289

Transactions

PayableFile

Classifierlmpl

Figure 16-3. Class diagramfor transaction participant

import net.jini.core.transaction.server.TransactionManager;

/**

* Payable.java
*/

public interface Payable extends Serializable {

void credit(long amount, long accountID,

TransactionManager mgr,

long transactionID)

throws java . Imi . Remote Exception ;

long getCost() throws java.rmi.RemoteException;

} // Payable

Extending Payable is the PayableFileClassifier interface:

package common;

/*$

* PayableFileClassifier.java
*/

277

289

libdocdel@fr.com

290

Chapwr16

278

public interface PayableFileClassifier extends FileClassifier, Payable {

} // PayableFileClassifier

PayableFileClassifier will be used by the client to search for the service. The ser-

vice will use a RemotePayableFileClassifier, which is a simple extension to this:

package txn;

import common.PayableFileClassifier;

import java.rmi.Remote;

/**

* RemotePayableFileClassifier.java
*/

public interface RemotePayableFileclassifier extends PayableFileClassitier, Remote

{

} // RemotePayableFileClasssifier

The implementation of this service joins the transaction, finds an Accounts

service from a known location (using unicast lookup), registers the money trans-

fer, and then performs the service. This implementation doesn’t keep any state

information that can be altered by the transaction. When asked to prepare () by the

transaction manager it can just return NOTCHANGED. If there was state, the prepare()

and commit() methods would have more content. The prepareAndCommit () method

can be called by a transaction manager as an optimization, and the version given

in this example follows the specification given in the “Iini Transaction" chapter of

The Jini Specification by Ken Arnold et al. The following program gives this service

implementation:

package txn;

import common.MIMEType;

import common.Accounts;

import rmi.FileClassifierImp1;

//import common.PayableFileClassifier;

//import common.Payable;

import net.jini.core.transaction.server.TransactionManager;

import net.jini.core.transaction.server.TransactionParticipant;

import net.jini.core.transaction.server.TransactionConstants;

import net.jini.core.transaction.UnknownTransactionException;

290

libdocdel@fr.com

291

import

import

import

import

import

import

import

import

/**

net.jini.core.transaction.CannotJoinException;

net.jini.core.transaction.CannotAbortException;

net.jini.core.transaction.server.CrashCountException;

net.jini.core.lookup.SericeTemplate;

net.jini.core.lookup.ServiceRegistrar;

net.jini.core.discovery.LookupLocator;

java.rmi.RemoteException;

java.rmi.RMISecurityManager;

* PayableFileClassifierImpl.java
*/

public class PayableFileClassifierImpl extends FileClassifierImpl

implements RemotePayableFileClassifier, TransactionParticipant {

protected TransactionManager mgr = null;

protected Accounts accts = null;

protected long crashCount = 0; // ???

protected long cost = 10;

protected final long myID : 54321;

public PayableFileClassifierImpl() throws java.rmi.RemoteException {

super();

System.setSecurityManager(new RMISecurityManager());

public void credit(long amount, long accountID,

TransactionManager mgr,

long transactionID) {

System.out.println("crediting");

this.mgr = mgr;

// before findAccounts

System.out.println("]oining txn");

try {

mgr.join(transactionID, this, crashCount);

} catch(UnknownTransactionException e) {

e.pIintStackTrace();

} catch(CannotJoinException e) {

e.printStackTrace();

} catch(CrashCountException e) {

291

Transactions

279

libdocdel@fr.com

292

Chapmr16

e.printStackTrace();

} catch(RemoteException e) {

e.printStackTrace();

}

System.out.println("Joined txn");

findAccounts();

if (accts == null) {

try {

mgr.abort(transactionID);

} catch(UnknownTransactionException e) {

e.printStackTrace();

} catch(CannotAbortException e) {

e.printStackTrace();

} catch(RemoteException e) {

e.printStackTrace();

}

}

try {

accts.creditDebit(amount, accountID, myID,

transactionID, mgr);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

public long getCost() {

return cost;

protected void findAccounts() {
// find a known account service

LookupLocator lockup = null;

ServiceRegistrar registrar = null;

try {

lookup = new LookupLocat0r("jini://localhost");

} catch(java.net.MalformedURLException e) {!

System.err.println("Lookup failed: ' + e.toString());

280

292

libdocdel@fr.com

293

Transactions

System.exit(1);

tIy {

registrar = lookup.getRegistrar();

} catch (java.io.IOException e) {

System.err.println("Registrar search failed: + e.toString());

System.exit(1);

} catch (java.lang.ClassNotFoundException e) {

System.err.println("Registrar search tailed:

System.exit(1);

+ e.toString());

}

System.out.println("Registrar tound");

new C1ass[] {Accounts.class};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

C1ass[] classes

try {

accts = (Accounts) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

System.exit(2);

public MIMEType getMIMEType(String fileName) throws RemoteException {

if (mgr == null) {

// don't process the request

return null;

return super.getMIMEType(fileName);

public int prepare(TransactionManager mgr, long id) {

System.out.println("Preparing...");

return TransactionConstants.PREPARED;

public void commit(TransactionManager mgr, long id) {

System.out.println("committing");

281

293

libdocdel@fr.com

294

ChaperG

282

public void abort(TransactionManager mgr, long id) {

System.out . println ("aborting");

public int prepareAndCommit(TransactionManager mgr, long id) {

int result = prepare(mgr, id);

if (result == TransactionConstants.PREPARED) {

commit(mgr, id);

result = TransactionConstants.COMMITTED;

}

return result;

} // PayableFileClassifierImpl

AccountsImpl

We shall assume that all accounts in this example are managed by a single Accounts

service that knows about all accounts by using a long identifier. These should be

stored in permanent form, and there should be proper crash-recovery mechanisms,

etc. For simplicity, we shall just use a hash table of accounts, with uncommitted

transactions kept in a “pending” list. When commitment occurs, the pending

transaction takes place.

Figure 16-4 shows the Accounts class diagram.

A A
| _________ I

I

Object A Participant
A I

Accountslmpl

Figure 16-4. Class diagramforAccounts

294

libdocdel@fr.com

295

Ytansacfions

The Accounts interface looks like this:

/**

* Accounts.java
*/

package common;

import net.jini.core.transaction.server.TransactionManager;

public interface Accounts {

void creditDebit(long amount, long creditorID,

long debitorID, long transactionID,

TransactionManageI tm)

throws java.rmi.RemoteException;

} // Accounts

and this is the implementation:

/**

* AccountsImpl.java
*/

package txn;

// import common.Accounts;

import net.jini.core.transaction.server.TransactionManager;

import net.jini.core.transaction.server.TransactionParticipant;

import net.jini.core.transaction.server.TransactionConstants;

import java.rmi.server.UnicastRemoteObject;

import java.util.Hashtable;

// import java.Imi.RMISecurityManageI;

// debug

import net.jini.core.lookup.SericeTemplate;

import net.jini.core.lookup.SericeRegistraI;

import net.jini.core.discovery.LookupLocator;

// end debug

public class AccountsImpl extends UnicastRemoteObject

implements RemoteAccounts, TransactionParticipant, java.io.5erializable {

protected long crashCount = O; // value??

283

295

libdocdel@fr.com

296

ChaperG

protected Hashtable accountBalances = new Hashtable();

protected Hashtable pendingCreditDebit = new Hashtable();

public Accountslmpl() throws java.rmi.RemoteException {

// System.setSecurityManageI(new RMISecurityManageI());

public void creditDebit(long amount, long creditorID,

long debitorID, long transactionID,

TransactionManager mgr) {

// Ensure stub class is loaded by getting its class object.

// It has to be loaded from the same place as this object

java.rmi.Remote stub = null;

try {

stub = toStub(this);

} catch(Exception e) {

System.out.println("To stub failed");

e.printStackTrace();

}

System.out.println("To stub found");

String annote =

java.Imi.serer.RMIClassLoader.getClassAnnotation(stub.getClass());

+ annote);System.out.println("from

try {

Class cl = java.Imi.serveI.RMIClassLoader.loadClass(annote,

"txn.AccountsImpl_Stub“);

} catch(Exception e) {

System.out.println("To stub class failed");

e.printStackTrace();

}

System.out.println("To stub class 0k");

// mgr = findManageI();

try {

System.out.println("Trying to join");

mgr.join(transacti0nID, this, crashCount);

} catch(net.jini.core.transaction.UnknownTransactionException e) {

e.pIintStackTrace();

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

} catch(net.jini.core.transaction.server.CrashCountException e) {

e.printStackTrace();

} catch(net.jini.core.transaction.CannotJoinException e) {

284

296

libdocdel@fr.com

297

e.printStackTrace();

}

System.out.println("joined");

pendingCreditDebit.put(new TransactionPair(mgI,

transactionID),

new CreditDebit(amount, creditorID,

debitorID));

// tindmanager debug hack

protected TransactionManager findManager() {
// find a known account service

LookupLocator lookup = null;

ServiceRegistrar registrar = null;

TransactionManager mgr = null;

try {

lookup = new LookupLocator("jini://localhost");

} catch(java.net.MalformedURLException e) {

System.err.println("Lookup failed: '

System.exit(1);

+ e.toString());

tIy {

registrar = lookup.getRegistrar();

} catch (java.io.IOException e) {

System.err.println("Registrar search failed:

System.exit(1);

} catch (java.lang.ClassNotFoundException e) {

System.err.println("Registrar search failed:

System.exit(1);

}

System.out.println("Registrar found");

Class[] classes = new Class[] {TransactionManager.class};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

try {

mgr = (TransactionManager) registrar.lookup(template)3

} catch(java.rmi.RemoteException e) {

System.exit(2);

}

return mgr;

297

+ e.toString());

+ e.toString());

Ihansacfions

285

libdocdel@fr.com

298

ChaperG

public int prepare(TransactionManager mgr, long id) {

System.out.println("Preparing...");

return TransactionConstants.PREPARED;

public void commit(TransactionManager mgr, long id) {

System.out.println("committing");

public void abort(TransactionManager mgr, long id) {

System.out.println("aborting”);

public int prepareAndCommit(TransactionManager mgr, long id) {

int result = prepare(mgr, id);

if (result == TransactionConstants.PREPARED) {

commit(mgr, id);

result = TransactionConstants.COMMITTED;

}

return result;

class CreditDebit {

long amount;

long creditorID;

long debitorID;

CreditDebit(long a, long c, long d) {

amount = a;

creditorID = c;

debitorID = d;

class TransactionPair {

TransactionPair(TransactionManager mgr, long id) {

}

} // AccountsImpl

286

298

libdocdel@fr.com

299

Client

The final component in this application is the client that starts the transaction.

The simplest code for this would just use the blocking lookup() method of

ClientLookupManager to find first the service and then the transaction manager. We

will use the longer way to show various ways of doing things.

This implementation uses a nested class that extends Thread. Because of this, it

cannot extend UnicastRemoteObj ect and so is not automatically exported. In order to

export itself, it has to call the UnicastRemoteObject . exportObj ect () method. This must

be done before the call to join the transaction, which expects a remote object.

package client;

import common.PayableFileClassifier;

import common.MIMEType;

import java.Imi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.SericeRegistraI;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.transaction.server.TransactionManager;

import net.jini.core.transaction.server.TransactionConstants;

import net.jini.core.transaction.server.TransactionParticipant;

// import com.sun.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseRenewalManager;

import net.jini.core.lease.Lease;

import net.jini.1ookup.entry.Name;

import net.jini.core.entry.Entry;

import java.Imi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

/**

* Testhn.java
*/

public class Testhn implements DiscoveryListener {

PayableFileClassifier classifier = null;

TransactionManageI mgr = null;

long myClientID; // my account id

299

Yinnsacfions

287

libdocdel@fr.com

300

Chapwrls

public static void main(String argv[]) {

new Testhn();

// stay around long enough to receive replies

try {

Thread.currentThread().sleep(100000L);

} catch(java.lang.InterruptedException e) {

// do nothing

public Testhn() {

System.setSecurityManager(new RMISecurityManageI());

LookupDiscover discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS)5

} catch(Exception e) {

System.err.println(e.toString());

System.exit(1);

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

for (int n = 0; n < registrars.length; n++) {

System.out.println("Service found");

ServiceRegistrar registrar = registrars[n];

new LookupThread(registrar).start();

// System.exit(0);

public void discarded(DiscoveryEvent evt) {

// empty

288

300

libdocdel@fr.com

301

Transactions

public class LookupThread extends Thread implements TransactionParticipant,

java.io.Serializab1e {

ServiceRegistrar registrar;

long crashCount = 0; // ???

LookupThread(ServiceRegistrar registrar) {

this.registrar = registrar;

public void run() {

long cost = O;

// try to find a classifier if we haven't already got one

if (classifier == null) {

System.out.println("Searching for classifier");

Class[] classes = new Class[] {PayableFileClassifier.class};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

try {

Object obj = registrar.lookup(template);

System.out.println(obj.getClass().toString());

Class cls = obj.getC1ass();

Class[] clss = cls.getInterfaces();

for (int n = 0; n < clss.length; n++) {

System.out. println(clss[n] .toString());

}

classifier = (PayableFileClassifier) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

System.exit(2);

}

if (classifier == null) {

System.out.print1n("Classifier null");

} else {

System.out.println("0etting cost");

try {

cost = classifier.getCost();

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

}

if (cost > 20) {

289

301

libdocdel@fr.com

302

Chapwr16

290

System.out.println("Costs too much: ' + cost);

classifier = null;

// try to find a transaction manager if we haven't already got one

if (mgr == null) {

System.out.println("Searching for txnmgr");

Class[] classes = new Class[] {TransactionManager.class};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

/*

Entry[] entries = {new Name("TransactionManager")};

ServiceTemplate template = new ServiceTemplate(null, null,

entries);

*/

try {

mgr = (TransactionManager) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

System.exit(2);

}

if (mgr == null) {

System.out.print1n("Manager null");

return;

if (classifier != null && mgr != null) {

System.out.println("Found both");

TransactionManager.Created tcs = null;

System.out.println(”Creating transaction");

try {

tcs = mgr.create(Lease.FOREVER);

302

libdocdel@fr.com

303

1tansacfions

} catch(java.rmi.RemoteException e) {

mgr = null;

return;

} catch(net.jini.core.lease.LeaseDeniedException e) {

mgr = null;

return;

long transactionID = tcs.id;

// join in ourselves

System.out.print1n("Joining transaction”);

// but first, export ourselves since we

// don't extend UnicastRemoteObject

try {

UnicastRemoteObject.exportObject(this);

} catch(RemoteException e) {

e.printStackTrace();

try {

mgr.join(transactionID, this, crashCount);

} catch(net.jini.core.transaction.UnknownTransactionException e) {

e.printStackTrace();

} catch(java.Imi.RemoteException e) {

e.printStackTrace();

} catch(net.jini.core.transaction.server.CrashCountException e) {

e.printStackTrace();

} catch(net.jini.core.transaction.CannotJoinException e) {

e.printStackTrace();

new LeaseRenewalManager().renewUntil(tcs.lease,

Lease.FOREVER,

null);

System.out.println("crediting...");

try{

classifier.credit(cost, myClientID,

mgr, transactionID);

} catch(Exception e) {

System.err.println(e.toString());

291

303

libdocdel@fr.com

304

Chapkr16

System.out.println("classifying...”);

MIMEType type = null;

try {

type = classifier.getMIMEType("tile1.txt");

} catch(java.Imi.RemoteException e) {

System.err.println(e.toString());

// it we get a good result, commit, else abort

if (type != null) {

System.out.print1n("Type is + type.toString());

System.out.print1n("Calling commit");

// new CommitThread(mgI, transactionID).Iun();

try {

System.out.println("mgr state " +

mgr.getState(transactionID));

mgr.commit(transacti0nID);

} catch(Exception e) {

e.printStackTIace();

mgr.abort(transactionID);

} catch(java.rmi.RemoteException e) {

} catch(net.jini.core.transaction.CannotAbortException e) {

} catch(net.jini.core.transacti0n.UnknownTransactionException

e){

public int prepare(TransactionManageI mgr, long id) {

System.out.println("Preparing...");

return TransactionConstants.PREPARED;

public void commit(TransactionManager mgr, long id) {

System.out.println("committing");

292

304

libdocdel@fr.com

305

Iransacfions

public void abort(TransactionManager mgr, long id) {

System.out.println("aborting");

public int prepareAndCommit(TransactionManager mgr, long id) {

int result = prepare(mgr, id);

it (result == TransactionConstants.PREPARED) {

commit(mgr, id);

result = TransactionConstants.COMMITTED;

}

return result;

} // LookupThread

class CommitThread extends Thread {

TransactionManager mgr;

long transactionID;

public CommitThread(TransactionManager m, long id) {

mgr = m;

transactionID = id;

try {

Thread.sleep(1000);

} catch(Exception e) {

}

public void run() {

try {

mgr.abort(transactionID);

} catch(Exception e) {

e.printStackTrace();

}

} // CommitThread

} // Testhn

293

305

libdocdel@fr.com

306

Chapter 16

Summary

Transactions are needed to coordinate changes of state across multiple clients and

services. The Jini transaction model uses a simple model of transactions, with

details of semantics being left to the clients and services. The Jini distribution

supplies a transaction manager, called Mahalo, that can be used.

294

306

libdocdel@fr.com

307

CHAPTER 17

LEGO MINDSTORMS

LEGO MINDSTORMS IS A “ROBOTICS INVENTION SYSTEM” that allows you to

build LEGO toys with a programmable computer. This chapter looks at the issues

involved in interfacing with a specialized hardware device, using MINDSTORMS

as an example.

Making Hardware into Jini Services

Hardware devices and preexisting software applications can equally be turned into

Iini services. A legacy piece Of software can have a “wrapper” placed around it, and

this wrapper can act as a Iini service. Remote method calls into this service can

then make calls into the application. Hardware devices are a little more complex

because they are defined at a lower level, and often have resource constraints that

do not apply to software.

There are two major categories of hardware services: those that can run a Iava

virtual machine, and those that do not have enough memory or an adequate pro-

cessor. For example, an 8086 with 20-bit addressing and only 1 MB of addressable

memory would not be an adequate processor, while the owner of a Palm handheld

might not wish to squander too many of its limited resources running a IVM.

Devices capable of running a IVM may be further subdivided into those that are

capable of running a standard IDK 1.2 WM and core libraries, and those that have

to run some stripped-down version. At the time of writing, the lightweight JVM

under development by Sun Microsystems called KVM does not support the fea—

tures of JDK 1.2 required to run Iini.

Iini does not require all the core Java classes to run a service. For example, for

a service that engages in discovery and registration does not require the AWT.

However, it does require support for the newer RMI features found in IDK 1.2, and

it does require enough of the standard language features. Again, this is not inclu-

sive of all parts of Java; for example, floating point numbers are not required.

Because many of the current embedded or small IVMs have removed features and

standard core libraries, at present none of them have enough support for IDK 1.2

features to run Iini.

The current developments for embedded or small IVMs start with a minimal

set of features and classes and incrementally allow more to be added, up to the

307

295

libdocdel@fr.com

308

Chapter 1 7

296

level of a full IDK 1.2 with Iini. In any case, a device capable of running Iini will

have 8 MB of RAM or more, with networking capabilities, on a 32-bit processor.

If the device cannot run a IVM, then something else must run the WM and act

as a proxy for the device. Your blender is unlikely to have 32 MB of RAM, but your

home control center (possibly located on the front of the fridge) may have this

capability. In that case, the blender service would be located in this WM, and the

fridge would have some means of sending commands to the blender.

MINDSTORMS

LEGO MINDSTORMS (http: / /www. LEGOMINDSTORMS . com) is a Robotics Invention Sys-

tem that consists of a number of LEGO parts, a microcomputer called the RCX, an

infrared transmitter (connected to the serial port of an ordinary computer), and

various sensors and motors. Using this system, one can build an almost infinite

variety of LEGO robots that can be controlled by the RCX. This RCX computer can

be sent “immediate” commands, or can have a (small) program downloaded and
then run.

MINDSTORMS is a pretty cool system that can be driven at a number of levels.

A primary audience for programming this system is children, and there is a visual

programming environment to help in this. This visual environment only runs on

Windows or Macintosh machines, which are connected to the RCX by their serial

port and the infrared transmitter. Behind this environment is aVisual Basic set of

procedures captured in an OCX, and behind that is the machine code of the RCX,

which can be sent as byte codes on the serial port.

The RCX computer is completely incapable of running Iini. It is a 16-bit

processor with a mere 32 K of RAM, and the default firmware will only allow

32 variables. It can only be driven by a service running on, say, an ordinary PC.

MINDSTORMS as a Jini Service

As previously mentioned, a MINDSTORMS robot can be programmed and run

from an infrared transmitter attached to the serial port of a computer. There is no

security or real location for the RCX—it will accept commands from any transmit-

ter in range. We will assume that a robot is controlled by a single computer, and

that it always stays in range of this computer.

There must be a way of communicating with any hardware device. For a

MINDSTORMS robot, this is done via the serial port, but other devices may have

different mechanisms. Communication may be by Java code or by the native code

of the device. Even if Java code is used, at some stage it must drop down to the

native code level in order to communicate with the device~the only question is

308

libdocdel@fr.com

309

whether you write the native code or someone else does it for you and wraps it up

in Java object methods.

For the serial port, Sun has an extension package—the commAPI—to talk to serial

and parallel ports (http : //java . sun . com/products/j avacomm/index. html). This pack—

age includes platform-independent Java code, and also platform-specific native

code libraries supplied as DLLS for Windows and Solaris. I am running Linux on

my laptop, so I am using a Linux version of the DLL. This has been made by Trent

Jarvi (trentjarvi@yahoo . com) and can be found at

http: //www.frii . com/”jarvi/rxth The native code part ofcommunicating with the

device has been done for us, and it is all wrapped up in a set of portable Java classes.

The RCX expects particular message formats that start with standard headers,

and so on. A Java package that makes generating messages in the correct format

easier has been created by Dario Laverde and is available at

http: //www. escape . com/“dario/java/rcx. There are other packages that will do the

same thing—see the “LEGO MINDSTORMS Internals” Web page by Russell Nelson

at http : //www. cryan. com/LEGO—robotics/.

With this as background, we can look at how to make an RCX into a Iini ser-

vice. It will involve constructing an RCX program on a client and sending this

program back to the server where it can be sent on to the RCX via the serial port.

This program will then allow a client to control a MINDSTORMS robot remotely.

The Jini part is pretty easy—the hard part was tracking down all the bits and

pieces needed to drive the RCX from Java. With your own lumps of hardware, the

hard part will be writing the low-level code (probably using the Java Native Inter-

face,]NI) and Java code to drive it.

RCXPOIt

Version 1.1 of the rcx package by Dario Laverde defines various classes, of which

the most important is RCXPort:

package ch,‘

public class RCXPort {

public RCXPort(String port);

public void addRCXListeneI(RCXListener 11);

public boolean open();

public void close();

public boolean isOpen();

public OutputStream getOutputStream();

public InputStream getInputStream();

public synchronized boolean write(byte[] bArray);

public String getLastEIror();

309

LEGO MINDSTORMS

297

libdocdel@fr.com

310

Chapmr]?

The RCXOpcode class has a useful static method for creating byte code:

package rcx ;

public class RCXOpcode {

public static byte[] parseString(String str);

The relevant methods for this project are the following:

0 The constructor RCXPort (). This takes the name of a port as parameter,

which should be something like com for Windows and /dev/tty50 for Linux.

- The write() method is used to send an array of opcodes and their argu—

ments to the RCX. This is machine code, and you can only read it with a

disassembler or a Unix tool like octal dump (od —t xC).

0 The static parseString() method of RCXOpcode can be used to translate a

string of instructions in readable form to an array of bytes for sending to the

RCX. It isn’t as good as an assembler, because you have to give strings such

as " 21 81" to start the A motor. To use this method for Iini, we will have to

use a non—static method in our interface, because static methods are not

allowed.

0 To handle responses from the RCX, a listener may be added with

addRCXListener(). The listener must implement this interface:

package rcx;

import java .util.*;

/*

* RCXListener

* @author Dario Laverde

* @version 1.1

* Copyright 1999 Dario Laverde, under terms of GNU LGPL
*/

public interface RCXListener extends EventListener {

public void receivedMessage(byte[] message);

public void receivedError(StIing error);

298

310

libdocdel@fr.com

311

RCX Programs

At the lowest level, the RCX is controlled by machine-code programs sent via the

infrared link. It will respond to these programs by stopping and starting motors,

changing speed, and so on. As it completes commands or receives information

from sensors, it can send replies back to the host computer. The RCX can handle

instructions sent directly or have a program downloaded into firmware and run
from there.

Kekoa Proudfoot has produced a list of the opcodes understood by the RCX,

and it is available at http : //graphics . stanford . edu/~kekoa/rcx/. Using these and

the rcx package from Dario Laverde, we can control the RCX from a computer by

standalone programs such as this:

/**

* TestRCX.java
*/

package standalone;

import rcx.*;

public class TestRCX implements RCXListener {

static final String PORT_NAME = "/dev/ttySO"; // Linux

public TestRCX() {

RCXPort port = new RCXPort(PORT_NAME);

port.addRCXListener(this);

byte[] byteArray;

// send ping message, reply should be e7 or ef

byteArray = RCXOpcode.parseString("10"); // Alive

port.write(byteArray);

// beep twice

byteArray = RCXOpcode.parseString("51 01"); // Play sound

port.write(byteArray);

// turn motor A on (forwards)

byteArray = RCXOpcode.parseString("e1 81"); // Set motor direction

port.write(byteArray);

byteArIay = RCXOpcode.parseString("21 81"); // Set motor on

port.write(byteArIay);

311

LEGOAHNDSFOMMS

299

libdocdel@fr.com

312

Chapmrl?

try {

Thread.currentThread().sleep(1000);

} catch(Exception e) {

}

// turn motor A off

byteArray = RCXOpcode.parseString("21 41"); // Set motor oft

port.write(byteArray);

// turn motor A on (backwards)

byteArray = RCXOpcode.parseString("e1 41"); // Set motor direction

port.write(byteArray);

byteArray = RCXOpcode.parseString(“21 81"); // Set motor on

port.write(byteArray);

try {

Thread.currentThread().sleep(1000);

} catch(Exception e) {

}

// turn motor A off

byteArray = RCXOpcode.parseString("21 41"); // Set motor off

port.write(byteArray);

/**

* listener method for messages from the RCX
*/

public void receivedMessage(byte[] message) {

it (message == null) {

return;

}

StringBufter sbuffer = new StringBufter();

for(int n = o; n < message.length; n++) {

int newbyte = (int) message[n];

it (newbyte < o) {

newbyte += 256;

}

shutter.append(Integer.toHexString(newbyte) + " ");

}

System.out.println("response: " + sbuffer.toString());

}

/**

* listener method for error messages from the RCX

300

312

libdocdel@fr.com

313

*/

public void receivedError(String error) {

System.eII.print1n("Err0I: " + error);

}

public static void main(String[] args) {

new TestRCX();

}

} // TestRCX

Jini Classes

A simple Jini service can use an RMI proxy, where the service just remains in the

server and the client makes remote method calls on it. The service will hold an

RCXPort and will feed the messages through it. This involves constructing the hier-

archy of classes shown in Figure 17-1.

Figure 17-1. Class diagramfor MINDSTORMS with RMI proxies

The RCXPortInterface just defines the methods we will be making available

from the Iini service. It doesn’t have to follow the RCXPort methods completely,

because these will be wrapped up in implementation classes, such as RCXPortImpl.
The interface is defined as follows:

/**

* RCXPortInterface.java

313

LEGOAflAEETORAfi

301

libdocdel@fr.com

314

Chapwr17

*/

package rcx.jini;

import net.jini.core.event.RemoteEventListener;

public interface RCXPortInterface extends java.io.Serializable {

/**

* constants to distinguish message types
*/

public final long ERROR_EVENT = 1;

public final long MESSAGE_EVENT = 2;

/**

* Write an array of bytes that are RCX commands
* to the remote RCX.

*/

public boolean write(byte[] byteCommand) throws java.rmi.RemoteException;

/**

* Parse a string into a set of RCX command bytes
*/

public byte[] parseString(String command) throws java.rmi.RemoteException;

/**

* Add a RemoteEvent listener to the RCX for messages and errors
*/

public void addListener(RemoteEventListener listener)

throws java.rmi.RemoteException;

/**

* The last message from the RCX
*/

public byte[] getMessage(long seqNo)

throws java.rmi.RemoteException;

/**

* The error message from the RCX
*/

public String getError(long seqNo)

throws java.Imi.RemoteException;

} // RCXPortInterface

302

314

libdocdel@fr.com

315

We have chosen to make a subpackage of the rcx package and to place the

preceding class in this package to make its role clearer. Note that the

RCXPortInterface has no static methods, but makes parseString() into an ordi—

nary instance method.

This interface contains two types of methods: those used to prepare and

send messages to the RCX (write() and parseString()), and those used to handle

messages sent from the RCX (addListener(), getMessage(), and getError()). Any

listener that is added will be informed of events generated by implementations

of this interface by having the listener’s notify() method called. However, a

RemoteEvent does not contain detailed information about what has happened, as it

only contains an event type (MESSAGE_EVENT or ERROR_EVENT). It is up to the listener

to make queries back into the object to discover what the event meant, which it

does with getMessageO and getEIrorO.

The RemoteRCXPort interface just adds the Remote interface:

/**

* RemoteRCXPort .java
*/

package ch.jini;

import java.rmi.Remote;

public interface RemoteRCXPort extends RCXPortInterface, Remote {

} // RemoteRCXPort

The RCXPortImpl constructs its own RCXPort object and feeds methods, such as

write(), through to it. Since it extends UnicastRemoteObject, it also adds exceptions

to each method, which cannot be done to the original RCXPort class. In addition, it

picks up the value of the port name from the port property. (This follows the exam-

ple of the RCXLoader in the rcx package, which provides a GUI interface for driving

the RCX.) It looks for this port property in the parameters.txt file, which should
have lines such as this:

port=/dev/tty50

Note that the parameters file exists on the server side—no client would know this
information!

The RCXPortImpl also acts as a listener for “ordinary” RCX events signaling

messages from the RCX. It uses the callback methods receivedMessage() and

receivedEIroro to create a new RemoteEvent object and send it to the implementa-

tion’s listener object (if there is one) by calling its notify() method.

315

L1R3C)A4HV1)STCHQAIS

303

libdocdel@fr.com

316

Chapwr17

304

The implementation looks like this:

/**

* RCXPortImpl.java
*/

package rcx.jini

import java.rmi.

import net.jini.

import net.jini.

import rcx.*;

import java.io.*

J

server.UnicastRemoteObject;

core.event.RemoteEvent;

core.event.RemoteEventListener;

.
J

import java.util.*;

public class RCXPortImpl extends UnicastRemoteObject

implements RemoteRCXPort, RCXListener {

protected String error = null;

protected byte[] message = null;

protected RCXPort port = null;

protected RemoteEventListener listener = null;

protected long messageSeqNo, errorSeqNo;

public RCXPortImpl()

throws j ava.rmi.RemoteException {

Properties parameters;

String portName = null;
File f = new File("parameters.txt");

it (yf.exist5()) {
f:

}

new File(System.getProperty("user.dir")

+ System.getPIoperty("path.separator")

+ "parameters.txt");

if (t.exists()) {

try

} ca

} else {

{

FileInputStream fis = new FileInputStream(f);

parameters = new Properties();

parameters.load(+is);

fis.close();

portName = parameters.getProperty("port");

tch (IOException e) { }

316

libdocdel@fr.com

317

Ilfl3()A47Afl)SlllRA48

System.err.println("Can't find parameters.txt

with \"port=. .\" specified");

System.exit(1);

port = new RCXPort(portName);

port.addRCXListener(this);

public boolean write(byte[] byteCommands)

throws java.rmi.RemoteException {

return port.write(byteCommands);

public byte[] parseString(String command)

throws java.rmi.RemoteException {

return RCXOpcode.parseString(command);

/**

* Received a message from the RCX.
* Send it to the listener

*/

public void receivedMessage(byte[] message) {

this.message = message;

// Send it out to listener

it (listener == null) {

return;

RemoteEvent evt = new RemoteEvent(this, MESSAGEgEVENT,

messageSeqNo++, null);

try {

listener.notity(evt);

} catch(net.jini.core.event.UnknownEventException e) {

e.printStackTrace();

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

305

317

libdocdel@fr.com

318

Chapfl717

/**

* Received an error message from the RCX.
* Send it to the listener

*/

public void receivedError(String error) {

// System.err.print1n(error);

// Send it out to listener

if (listener == null) {

return;

}

this.error = error;

RemoteEvent evt = new RemoteEvent(this, ERROR_EVENT, errorSeqNo, null);

try {

1istener.notify(evt);

} catch(net.jini.core.event.UnknownEventException e) {

e.printStackTrace();

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

/**

* Expected use: the RCX has returned a message,

* and we have informed the listeners. They query

* this method to find the message for the message

* sequence number they were given in the RemoteEvent.

* We could use this as an index into a table of messages.
*/

public byte[] getMessage(long msgSeqNo) {

return message;

/**

* Expected use: the RCX has returned an error message,

* and we have informed the listeners. They query

* this method to find the error message for the error message

* sequence number they were given in the RemoteEvent.

* We could use this as an index into a table of messages.
*/

public String getError(long errSeqNo) {

return error;

306

318

libdocdel@fr.com

319

/**

* Add a listener for RCX messages.

* Should allow more than one, or throw

* TooManyListeners if more than one registers
*/

public void addListener(RemoteEventListener listener) {

this.listener = listener;

messageSeqNo = O;

errorSeqNo = 0;

}

} // RCXPortImpl

Getting It Running

To make use of these classes, we need to provide a server to get the service put

onto the network, and we need some clients to make use of the service. This sec-

tion will just look at a simple way of doing this, and later sections in this chapter

Will put in more structure.

The following is a simple server that follows the earlier examples of servers

using RMI proxies (such as in Chapter 9), just substituting RCXPort for

FileClassifier and using a JoinManager. It creates an RCXPortImpl object and

registers it (or rather, the RMI proxy) with lookup services:

package rcx.jini;

import java.Imi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.core.lookup.5erviceID;

// import com.sun.jini.lease.LeaseRenewalManager;

// import com.sun.jini.lookup.]oinManager;

// import com.sun.jini.lookup.ServiceIDListener;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lookup.JoinManager;

import net.jini.lookup.ServiceIDListener;

/**

* RCXServer.java
*/

public class RCXServer implements ServiceIDListeneI {

protected RCXPortImpl impl;

319

LEGOAHNDSNWWWS

307

libdocdel@fr.com

320

Chapmr]?

protected LeaseRenewalManager leaseManager = new LeaseRenewalManager()3

public static void main(String argv[]) {

new RCXServer();

// remember to keepalive

public RCXServer() {

try {

impl = new RCXPortImpl();

} catch(Exception e) {

System.err.println("New impl: " + e.toString());

System.exit(1);

// set RMI security manager

System.setSecurityManager(new RMISecurityManager());

// find, register, lease, etc

try {

LookupDiscoveryManager mgr =

new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

null /* unicast locators */,

null /* DiscoveryListener */);

JoinManager joinMgr = new JoinManager(impl,

null,

this,

mgr,

new LeaseRenewalManager());

} catch(java.io.IOException e) {

e.printStackTrace();

public void servicelDNotify(ServiceID serviceID) {

System.out.println("Got service ID " + serviceID.toString());

}

} // RCXServer

Why is this example simplistic as a service? Well, it doesn’t contain any infor-

mation to allow a client to distinguish one LEGO MINDSTORMS robot from

another, so that if there are many robots on the network, then a client could ask

the wrong one to do things!

308

320

libdocdel@fr.com

321

An equally simplistic client that makes the RCX perform a few actions is given

below. In addition to sending a set of commands to the RCX, the client must also

listen for replies from the RCX. I have separated out this listener as an EventHandler

for readability. The listener will act as a remote event listener, with its noti+y()

method called from the server. This can be done by letting it run an RMI stub on

the server, so I have subclassed it from UnicastRemoteObject.

This particular client is designed to drive a particular robot: the “RoverBot,”

described in the LEGO MINDSTORMS “Constructopedia” (the instruction manual

that comes with each MINDSTORMS set), is pictured in Figure 17-2.

Figure 1 7-2. RoverBot MINDSTORMS robot

The RoverBot has motors to drive tracks or wheels on either side. The client

can send instructions to make the RoverBot move forward or backward, stop, or

turn to the left or right. The set of commands (and their implementation as RCX

instructions) depends on the robot, and on what you want to do with it.

Here is the client code:

package client;

import ch.jini.*;

import java.awt.*;

import java.awt.event.*;

import javax. swing. *;

import java.rmi.RMISecurityManager;

|idecde|@fr.com

321

LEGO MINDSTORMS

309

libdocdel@fr.com

322

Chapwr17

310

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.UnknownEventException;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;
/**

* TestRCX.java
*/

public class TestRCX implements DiscoveryListener {

public static final int STOPPED = 1;

public static final int FORWARDS = 2;

public static final int BACKWARDS = 4;

protected int state = STOPPED;

public static void main(String argv[]) {

new TestRCX();

// stay around long enough to receive replies

tI)! {

Thread.currentThread().sleep(10000L);

} catch(java.lang.InterruptedException e) {

// do nothing

public TestRCX() {

System.setSecurityManager(new RMISecurityManager());

LookupDiscovery discover = null;

try {

discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

} catch(Exception e) {

System.err.println(e.toStIing());

System.exit(1);

322

libdocdel@fr.com

323

discover.addDiscoveryListener(this);

public void discovered(DiscoveryEvent evt) {

ServiceRegistrar[] registrars = evt.getRegistrars();

Class [] classes = new Class[] {RCXPortInterface.class};

RCXPortInterface port = null;

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

for (int n = 0; n < registrars.length; n++) {

System.out.println("Service found");

ServiceRegistrar registrar = registrars[n];

try {

port = (RCXPortInterface) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

System.exit(2);

}

if (port == null) {

System.out.println("port null");

continue;

// add an EventHandler as an RCX Port listener

try {

port.addListener(new EventHandler(port));

} catch(Exception e) {

e.printStackTrace();

public void discarded(DiscoveryEvent evt) {

// empty

class EventHandler extends UnicastRemoteObject

implements RemoteEventListener, ActionListener {

protected RCXPortIntertace port = null;

323

LLK}C)A1UVIISIZ)RA48

311

libdocdel@fr.com

324

Chapwr17

312

JFIame frame;

JTextArea text;

public EventHandler(RCXPortIntertace port) throws RemoteException {

SUPEIO ;

this.port = port;

frame = new JFrame("LEGO MINDSTORMS”);

Container content = frame.getContentPane();

JLabel label = new JLabel(new ImageIcon("images/MINDSTORMS.ps"));

JPanel pane = new JPanel();

pane setLayout(new GridLayout(2, 3));

content.add(label, "North");

content.add(pane, "CenteI");

JButton btn = new JButton("Forward");

pane.add(btn);

btn.addActionListeneI(this);

btn = new JButton("Stop");

pane.add(btn);

btn.addActionListener(this);

btn = new JButton("Back");

pane.add(btn);

btn.addActionListener(this);

btn = new JButton("Left");

pane.add(btn);

btn.addActionListeneI(this)3

label = new lLabel("");

pane.add(label);

btn = new JButton("Right");

pane.add(btn);

btn.addActionListener(this);

frame.pack();

frame.setVisible(tIue);

public void sendCommand(String comm) {

324

libdocdel@fr.com

325

LEGOAHNDSFORMS

byte[] command;

try {

command = port.parseStIing(comm);

if (! port.write(command)) {

System.err.println("command failed");

}

} catch(RemoteException e) {

e.printStackTIace();

public void forwards() {

sendCommand("e1 85");

sendCommand("21 85");

state = FORWARDS;

public void backwards() {

sendCommand("e1 45");

sendCommand("21 85");

state = BACKWARDS;

public void stop() {

sendCommand("21 45");

state = STOPPED;

public void restoreState() {

if (state == FORWARDS)

forwards();

else if (state == BACKWARDS)

backwards();

else

5t0P();

public void actionPeIformed(ActionEvent evt) {

String name = evt.getActionCommand();

if (name.equals("F0IwaId")) {

forwards();

} else if (name.equals("Stop")) {

5t0P();

313

325

libdocdel@fr.com

326

Chapwr17

314

} else if (name.equals("Back")) {

backwards();

} else if (name.equals(“Left")) {

sendCommand(“e1 84");

sendCommand(“21 84");

sendCommand("21 41");

try {

Thread.sleep(100);

} catch(InterruptedException e) {

}

restoreState();

} else if (name.equals(”Right")) {

sendCommand("e1 81");

sendCommand("21 81");

sendCommand(”21 44");

try {

Thread.sleep(100);

} catch(InterruptedException e) {

}

restoreState();

public void notify(RemoteEvent evt) throws UnknownEventException,

java.Imi.RemoteException {

// System.out.println(evt.toStIing());

long id = evt.getID();

long seqNo = evt.getSequenceNumber();

if (id 2: RCXPortInteIface.MESSAGE_EVENT) {

byte[] message = port.getMessage(seqNo);

StringBuffer sbuffer new StringBuffer();

for(int n = O; n < message.length; n++) {

int newbyte = (int) message[n];

if (newbyte < 0) {

newbyte += 256;

}

sbuffer.append(Integer.toHexString(newbyte) + " ");

}

System.out.print1n("MESSAGE2 " + sbuffer.to$tring());

} else if (id == RCXPortInterface.ERROR_EVENT) {

System.out.print1n("ERROR: " + port.getError(seqNo));

} else {

326

libdocdel@fr.com

327

throw new UnknownEventException("Unknown message " + evt.getID());

}

} // TestRCX

Why is this a simplistic client? It tries to find all robots on the local network,

and creates a top-level window for each of them. If a robot has registered with, say,

half— a— dozen service locators, and the client finds all of these, then it will create six

top-level windows, one for each copy of the same robot. Some smarts are needed

here, such as using the Client LookupManager of Chapter 15.

Entry Objects for a Robot

The RCX was not designed for network visibility. It has no concept of identity or

location. The closest it comes to this is when it communicates to other RCXs by the

infrared transmitter—then one RCX may have to decide whether it is the master,

which it does by setting a local variable to “master" if it broadcasts before it

receives, and the other RCXs will set the variable to “slave" if they receive before

broadcasting. Then each waits for a random amount of time before broadcasting.

Crude, but it works.

In a Iini environment, there may be many RCX devices. These devices are not

tied to any particular computer, as they will respond to any infrared transmitter on

the correct frequency talking the right protocol. All the devices within range of a

transmitter will accept signals from the transmitter, although this can cause prob-

lems, because the source computers tend to assume that there is only one target at

a time, and they can get confused by responses from multiple RCXs. The solution

is to turn off all but one RCX when a program is being downloaded, to avoid this

confusion. Then turn on the next, and download to it, and so on. Not very elegant,
but it works.

An RCX may also be mobile—it can control motors, so if it is placed in a

mobile robot, it can drive itself out of the range of one PC and (maybe) into the

range of another. There are no mechanisms to signal either passing out of range or

coming into range.

The RCX is a poorly behaved animal from a network viewpoint. However, we

will need to distinguish between different RCXs in order to drive the correct ones.

An Entry class for distinguishing them should contain information such as this:

0 An identifier for robot type, such as “Robo 1”, “Acrobot 1”, etc. This will allow

the robot that the RCX is built into to be identified. The RCX will have no

knowledge of its identifier—it must be externally supplied.

327

LEGO MINDSTORMS

315

libdocdel@fr.com

328

Chapmrl?

316

o The RCX can be driven by direct commands or by executing a program

already downloaded (there may be up to five of these). An identifier for each

downloaded program should be available.

0 The RCX will have some sort of location, although it may move around to a

limited extent. This location information may be available from the control-

ling computer, using the Iini Location or Address classes.

There may be other useful attributes, and there are certainly issues to be

resolved about how the information could be stored and accessed from an RCX.

However, they stray beyond the bounds of this chapter.

A Client-Side RCX Class

In the simplistic client given earlier, there were many steps that will be the same

for all clients that can drive the RCX. Just as JoinManager simplifies repetitive code

on the server side, we can define a “convenience" class for the RCX that will do the

same on the client side. The aim is to supply a class that will make remote RCX

programming as easy as local RCX programming.

A class that encapsulates client-side behavior may as well look as much as

possible like the local RCXPort class. We define its (public) methods as follows:

public class JiniRCXPort {

public JiniRCXPort();

public void addRCXListener(RCXListener 1);

public boolean write(byte[] bArray);

public byte[] parseString(String str);

This class should have some control over how it looks for services by including

entry information, group information about locators, and any specific locators it

should try. There are a variety ofpossible constructors, all ending up calling a con-
structor that looks like this:

public JiniRCXPort(Entry[] entries,

java.lang.String[] groups,

LookupLocator[] locators)

The class is also concerned with uniqueness issues, as it should not attempt to

send the same instructions to an RCX more than once. However, it could send the

same instructions to more than one RCX if they match the search criteria. There-

fore, this class maintains a list of RCXs and does not add to the list if it has already

328

libdocdel@fr.com

329

seen the RCX from another service locator. This requires that a single RCX should

be registered using the same ServiceID with all locators, which will be the case

because the RCX server uses JoinManager.

Higher-Level Mechanisms: Not Quite C

“Not Quite C" (nqc) is a language and a compiler from David Baum, designed for

the RCX. It defines a language with C-like syntax that defines tasks that can be exe—

cuted concurrently. The RCX API also defines a number of constants, functions,

and macros targeted specifically to the RCX. These include constants such as OUT_A

(for output A) and functions such as Oand to turn a motor on forwards.

The following is a trivial nqc program to turn motor A on for 1 second (units

are N 100th of a second):

task main() {

0and(OUT_A);

Wait(100);

o+f(0UT_A);

Writing programs using a higher-level language such as this is clearly preferable to

writing in Assembler!

nqc is not the only higher—level language for programming the RCX There

are links to many others on the alternative MINDSTORMS site

(http : //www. crynwr. com/LEGO-robotics/). It is one of the earliest and more

popular ones, though, and it is a typical example of a standalone, non-GUI

program written in a language other than Java that can still be used as a Iini
service.

The nqc compiler is written in C++ and needs to be compiled for each platform

that it will run on. Precompiled versions are available for a number of systems,

such as Windows and Linux. Once compiled, it is tied to a particular computer (at

least, to computers with a particular OS and shared library configuration). It is

software, not hardware like the MINDSTORMS robots, but it is nevertheless not

mobile. It cannot be moved around like Java code can. However, it can be turned

into a lini service in exactly the same way as MINDSTORMS, by wrapping it in a

Java class that can be exported as a Jini service. This also fits the RMI proxy model,

with the client side using a thin proxy that makes calls to a service that invokes the

nqc compiler.

The class diagram follows other RMI proxy diagrams and is shown in Figure 17-3.

329

LEGO MINDSTORMS

317

libdocdel@fr.com

330

Chapn717

NotQuiteC

AL AAA
J

______ .1 __ _. _. _.._

RemoteNotQuiteC

AI

UnicastRemoteObject

AL

NotOuiteClmpI NotOuiteClmpLStub

Figure 17-3. Class diagramfor nqc with RMI proxy

The NotQuiteC and RemoteNotQuiteC interfaces are defined by

/**

* NotQuiteC.java
*/

package rcx.jini;

import java.rmi.RemoteException;

import java.io.Serializable;

public interface NotQuiteC extends Serializable {

public byte[] compile(5tring program)

throws RemoteException, CompileException;

} // NotQuiteC

and by

/**

* RemoteNotQuiteC.java

*/

package rcx.jini;

import java.rmi.Remote;

public interface RemoteNotQuiteC extends NotQuiteC, Remote {

318

330

libdocdel@fr.com

331

LEGOAflNDSRMWWS

} // RemoteNotQuiteC

The compile exception is thrown when things go wrong:

/**

* CompileException.java
*/

package rcx.jini;

public class CompileException extends Exception {

protected String error;

public CompileException(String err) {
error = err;

public String toString() {

return error;

}

} // CompileException

An implementation of the RemoteNotQuiteC interface needs to encapsulate a

traditional application running in an environment ofjust reading and writing files.

GUI applications, or those nuisance Unix ones that insist on using an interactive

terminal (such as telnet), will need more complex encapsulation methods. The

nqc type of application will read from standard input or from a file, often depend—

ing on command line flags. Similarly, it will write to a file or to standard output,

again depending on command line flags. Applications either succeed or fail in

their task; this should be indicated by what is known as an exit code, which by con-

vention is 0 for success and some other integer value for failure. If a failure occurs,

an application will usually write diagnostic output to the standard error channel.

The current version of nqc (version 2.0.2) is badly behaved for reading from

standard input (it crashes) and writing to standard output (no way of doing this).

So we can’t create a Process to run nqc and feed into its input and output. Instead,

we need to create temporary files and write to and read from these files so that the

Iini wrapper can communicate with nqc. These files also need to be cleaned up on

termination, whether the normal or exception routes are followed. On the other

hand, if errors occur, they will be reported on the error channel of the process, and

this needs to be captured in some way—in this example, we will do it via an excep—
tion constructor.

319

331

libdocdel@fr.com

332

Chapwr17

The hard part in this example is plowing your way through the Java I/O maze,

and deciding exactly how to hook up I/ O streams and/or files to the external pro—

cess. The following code uses temporary files for ordinary I/ O with the process

(the current version I have of nqc has a bug with pipelines) and the standard error

stream for compile errors.

/**

* NotQuiteCImp1.java
*/

package rcx.jini;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import java.io.*;

public class NotQuiteCImpl extends UnicastRemoteObject

implements RemoteNotQuiteC {

protected final int SIZE = 1<<15; // 32k — the size of the RCX memory

public NotQuiteCImpl() throws RemoteException {

}

public byte[] compile(String program)

throws CompileException {

// This is the input file we read from - it is the output from nqc

File inFile = null;

// This is the output file that we write to — it is the input to nqc

File outFile = null;

byte[] buff = new byte[SIZE];

O C('9' '1'! [-4. ,._.. (D II

File.createTempFile("jini", ".nqc“);

inFile = File.createTempFile("jini", ".rcx");

OutputStreamWriter out = new 0utputStreamWriter(

new FileOutputStream(

outFile));

out.write(program);

out.close();

Process p = Runtime.getRuntime().exec("nqc -O" +

320

332

libdocdel@fr.com

333

llfl3()A41AU)SYI)RAlS

inFile.getAbsolutePath() +

" " + outFile.getAbsolutePath())5

int status = p.waitFor();

if (status I: 0) {

BufferedReader err = new BufferedReader(

new InputStreamReader(p.

getErrorStream()));

StringBuffer errBuft = new StringBuffer();

String line;

while ((line = err.readLine()) != null) {

errBuft.append(line + '\n');

}

throw new CompileException(errBuff.toString());

DataInputStream compiled = new DataInputStream(new

FileInputStream(outFile));

int nread = compiled.read(buft);

byte[] result = new byte[nread];

System.arraycopy(buff, 0, result, 0, nread);

return result;

} catch(IOException e) {

throw new CompileException(e.toString());

} catch(InterruptedException e) {

throw new CompileException(e.toString());

} finally {

// clean up files even it exceptions thrown

it (inFile != null) {

inFile.delete();

}

it (outFile != null) {

outFile.delete();

}

public static void main(String[] argv) {

String program = "task main() {\n" +

" Oand(OUT_A);\n" +

" Wait(100);\n" +

" Off(0UT_A);\n" +II II_J

NotQuiteCImpl compiler = null;

321

333

libdocdel@fr.com

334

Chapwr17

322

try {

compiler = new NotQuiteCImp1();

byte[] bytes = compiler.compile(program);

} catch(Exception e) {

e.print$tackTIace();

}

}

} // NotQuiteCImpl

This section does not give server and client implementations—the server is

the same as servers delivering other RMI services. A client will make a call on this

service, specifying the program to be compiled. It can then write the byte stream

to the RCX using the classes given earlier.

Summary

This chapter has considered some of the issues involved in using a piece of hard-

ware with a Iini service. This was illustrated with LEGO MINDSTORMS, where a

large part of the base work of native code libraries and encapsulation in Java

classes has already been done. Even then, there is much work involved in making

it a suitable Iini service, and these have been discussed. This work is not yet com-

plete, and more remains to be done for LEGO MINDSTORMS.

334

libdocdel@fr.com

335

CHAPTER 18

CORBA and Jini

THERE ARE MANY DIFFERENT DISTRIBUTED SYSTEM ARCHITECTURES in addition to Iini.

Many have only limited use, but some such as DCOM and CORBA are widely used,

and there are many systems that have been built using these other distributed

frameworks. This chapter looks at the similarities and differences between Iini and

CORBA and shows how services built using one architecture can be used by another.

CORBA

Like Iini, CORBA is an infrastructure for distributed systems. CORBA was designed

out of a different background than Iini, and there are some minor and major dif-
ferences between the two.

0 CORBA allows for specification of objects that can be distributed. The con-

centration is on distributed objects rather than on distributed services.

- CORBA is language-independent, using an Interface Definition Language

(IDL) for specifying interfaces.

- CORBA objects can be implemented in a number of languages, including C,

C++, SmallTalk, and Java

0 Current versions of CORBA pass remote object references, rather than com-

plete object instances. Each CORBA object lives within a server, and the

object can only act within this server. This is more restricted than Iini,

where an object can have instance data and class files sent to a remote

location to execute there. This limitation in CORBA may change in future

with pass-by—value parameters to methods.

IDL is a language that allows the programmer to specify the interfaces of a

distributed object system. The syntax is similar to C++ but does not include any

implementation-level constructs, so it allows definitions of data types (such as

structures and unions], constants, enumerated types, exceptions, and interfaces.

Within interfaces, it allows the declaration of attributes and operations (methods).

The complete IDL specification can be found on the Object Management Group

(OMG) Web site (http: //www. 0mg . org/).

335

323

libdocdel@fr.com

336

ChapmrlB

324

The bookJava Programming with CORBA by Andreas Vogel and Keith Duddy

(http : //www.wiley. com/compbooks /vogel) contains an example of a room-booking

service specified in CORBA IDL and implemented in Java. This defines interfaces for

Meeting, a MeetingFactory factory to produce them, and a Room. A room may have a

number of meetings in slots (hourly throughout the day), and there are support con—

stants, enumerations, and typedefs to support this. In addition, exceptions may be

thrown under various error conditions. The IDL that follows differs slightly from that

given in the book, in that definitions of some data types that occur within interfaces

have been “lifted” to a more global level, because the mapping from IDL t0 lava has

changed slightly for elements nested within interfaces since that book was written.

The following is the modified IDL for the room-booking service:

module corba {

module RoomBooking {

interface Meeting {

// A meeting has two read—only attributes that describe

// the purpose and the participants of that meeting.

readonly attribute string purpose;

readonly attribute string participants;

oneway void destroy();

};

interface MeetingFactory {

// A meeting factory creates meeting objects.

Meeting CreateMeeting(in string purpose, in string participants);

};

// Meetings can be held between the usual business hours.

// For the sake of simplicity there are 8 slots at which meetings

// can take place.

enum Slot { am9, am10, am11, pm12, pml, pm2, pm3, pm4 };

// since IDL does not provide means to determine the cardinality

// of an enum, a corresponding MaxSlots constant is defined.

const short MaxSlots = 8;

336

libdocdel@fr.com

337

CORBAandfini

exception NoMeetingInThisSlot {};

exception SlotAlreadyTaken {};

interface Room {

// A Room provides operations to view, make, and cancel bookings.

// Making a booking means associating a meeting with a time slot

// (for this particular room).

// Meetings associates all meetings (of a day) with time slots
// for a room.

typedet Meeting Meetings[MaxSlots];

// The attribute name names a room.

readonly attribute string name;

// View returns the bookings of a room.

// For simplicity, the implementation handles only bookings

// for one day.

Meetings View();

void Book(in Slot a_slot, in Meeting a_meeting)

raises(SlotAlreadyTaken);

void Cancel(in Slot a_slot)

raises(NoMeetingInThisSlot);

CORBA to Java Mapping

CORBA has bindings to a number of languages. That is, there is a translation from

IDL to each language, and there is a runtime environment that supports objects

written in these languages. A recent addition is Java, and this binding is still under

active development (that is, the core is basically settled, but some parts are still

325

337

libdocdel@fr.com

338

Chapter 18

changing). This binding must cover all elements of IDL. Here is a horribly brief

summary of the CORBA translations:

- Module—A module is translated to a Java package. All elements within the

module becomes classes or interfaces within the package.

- Basic types—Most of the basic types map in a straightforward manner—a

CORBA int becomes a Java int, a CORBA string becomes a Java

java .1ang. String, and so on. Some are a little tricky, such as the unsigned

types, which have no lava equivalent.

0 Constant—Constants within a CORBA IDL interface are mapped to con-

stants within the corresponding lava interface. Constants that are “global”

have no direct equivalent in Java, and so are mapped to Java interfaces with

a single field that is the value.

- Enum—Enumerated types have no direct Java equivalent, and so are

mapped into a Java interface with the enumeration as a set of integer
constants.

- Struct—A CORBA IDL structure is implemented as a Java class with instance
variables for all fields.

- Interface—A CORBA IDL interface translates into a Java interface.

0 Exception—A CORBA IDL exception maps to a final Java class.

This mapping does not conform to naming conventions, such as those estab-

lished for Java Beans. For example, the IDL declaration readonly string purpose

becomes the Java accessor method String purpose() rather than

String getPurpose().Where lava code is generated, the generated names will be

used, but in methods that I write, I will use the more accepted naming forms.

Jini Proxies

A Iini service exports a proxy object that acts within the client on behalf of the

service. On the service provider side, there may be service backend objects, com-

pleting the service implementation. The proxy may be fat or thin, depending on
circumstances.

In Chapter 17 the proxy had to be thin: all it does is pass on requests to the

service backend, which is linked to the hardware device, and the service cannot

move, because it has to talk to a particular serial port. (The proxy may have an

extensive user interface, but the Jini community seems to feel that any user

326

338

libdocdel@fr.com

339

interface should be in Entry objects rather than in the proxy itself.) Proxy objects

created as RMI proxies are similarly thin, just passing on method calls to the ser-

vice backend which is implemented as remote objects.

CORBA services can be delivered to any accessible client. Each service is lim—

ited to the server on which it is running, so they are essentially immobile, but they

can be found by a variety of methods, such as a CORBA naming or trading service.

These search methods can be run by any client, anywhere. A search will return a

reference to a remote object, which is essentially a thin proxy to the CORBA ser-

vice. Similarly, if a CORBA method call creates and returns an object, then it will

return a remote reference to that object, and the object will continue to exist on

the server where it was created. (The new CORBA standards will allow objects to

be returned by value. This is not yet commonplace and will probably be restricted

to a few languages, such as C++ and lava.)

The simplest way to make a CORBA object available to a lini federation is to

build a Iini service that is at the same time a CORBA client. The service acts as a

bridge between the two protocols. Really, this is just the same as MINDSTORMS—

anything that talks a different protocol (hardware or software) will require a bridge
between itself and Iini clients.

Most CORBA implementations use a protocol called IIOP (Internet Inter-ORB

Protocol), which is based on TCR The current Iini implementation is also TCP-

based, so there is a confluence of transport methods, which normally would not

occur. A bridge would usually be fixed to a particular piece of hardware, but here it

is not necessary due to this confluence.

A Jini service has a lot of flexibility in implementation and can choose to place

logic in the proxy, in the backend, or anywhere else for that matter. The combina-

tion of Iini flexibility and IIOP allows a larger variety of implementation

possibilities than is possible with fixed pieces ofhardware such as MINDSTORMS.

Here are a couple of examples:

- The Jini proxy could invoke the CORBA naming service lookup to locate the

CORBA service, and then make calls directly on the CORBA service from the

client. This is a fat proxy model in which the proxy contains all of the service

implementation. There is no need for a service backend, and the service

provider just exports the service object as proxy and then keeps the leases

for the lookup services alive.

0 The Iini proxy could be an RMI stub, passing on all method calls to a back-

end service running as an RMI remote object in the service provider. This

is a thin proxy with fat backend, where all service implementation is done

on the backend. The backend uses the CORBA naming service lookup to
find the CORBA service and then makes calls on this CORBA service from

the backend.

339

CORBA andJim

327

libdocdel@fr.com

340

ChapmrIB

328

A Simple CORBA Example

The standard introductory example to any new system is “hello world.” and it

seems to get more complex with every advance that is made in computing tech-

nology! A CORBA version can be defined by the following IDL:

module corba {

module HelloModule {

interface Hello {

string getHelloO;

};

};

};

This code can be compiled into Java using a compiler such as Sun’s idltojava

(or another CORBA 2.2 compliant compiler). This results in a corba.HelloModu1e

package containing a number of classes and interfaces. Hello is an interface that is

used by a CORBA client (in Java).

package corba.HelloModule;

public interface Hello

extends org.omg.CORBA.0bject, org.omg.CORBA.portable.IDLEntity {

String getHello();

CORBA Server in Java

A server for the hello IDL can be written in any language with a CORBA binding,

such as C++. Rather than get diverted into other languages, though, we will stick to a

Java implementation. However, this language choice is not forced on us by CORBA.

The server must create an object that implements the Hello interface. This is

done by creating a servant that inherits from the HelloImplBase and then register-

ing it with the CORBA ORB (Object Request Broker—this is the CORBA backplane,

which acts as the runtime link between different objects in a CORBA system). The

servantis the CORBA term for what we have been calling the “backend service” in

Iini, and this object is created and run by the server. The server must also find a

name server and register the name and the servant implementation. The servant

implements the Hello interface. The server can just sleep to continue existence

after registering the servant.

/**

* CorbaHelloServer.java

340

libdocdel@fr.com

341

CORBAandfini

*/

package corba;

import corba.HelloModule.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

public class CorbaHelloServer {

public CorbaHelloServer() {

public static void main(String[] args) {

try {

// create a Hello implementation object

ORB orb = ORB.init(args, null);

HelloImpl hello = new HelloImpl();

orb.connect(hello);

// get the name server

org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");

NamingContext namingContext = NamingContextHelper.narrow(objRef);

// bind the Hello service to the name server

NameComponent nameComponent = new NameComponent("Hello", "");

NameComponent path[] = {nameComponent};

namingContext.rebind(path, hello);

// sleep

java.lang.0bject sleep = new java.lang.0bject();

synchronized(sleep) {

sleep.wait();

}

} catch(Exception e) {

e.printStackTrace();

} // CorbaHelloServer

class HelloImpl extends _HelloImplBase {

329

341

libdocdel@fr.com

342

Chapwrla

public String getHello() {

return("hello world");

CORBA Client in Java

A standalone client finds a proxy implementing the Hello interface with methods

such as one that looks up a CORBA name server. The name server returns a

org .omg . CORBA.Object, which is cast to the interface type by the HelloHelper

method narrow() (the lava cast method is not used). This proxy object can then

be used to call methods back in the CORBA server.

/**

* CorbaHelloClient.java
*/

package corba;

import corba.HelloModule.*;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

public class CorbaHelloClient {

public CorbaHelloClient() {

public static void main(String[] args) {

try {

ORB orb = ORB.init(args, null);

// get the name server

org.omg.CORBA.Object objRet =

orb.resolve_initial_re+erences("NameService");

NamingContext namingContext = NamingContextHelper.narrow(objRet);

// get the Hello proxy

NameComponent nameComponent = new NameComponent("Hello", "“);

NameComponent path[] = {nameComponent};

org.omg.CORBA.0bject obj = namingContext.Iesolve(path);

Hello hello = HelloHelper.narrow(obj);

330

342

libdocdel@fr.com

343

// now invoke methods on the CORBA proxy

String hello hello.getHello();

System.out.println(hello);

} catch(Exception e) {

e.printStackTrace();

} // CorbaHelloClient

Jini Service

In order to make the CORBA object accessible to the Iini world, it must be turned

into a Iini service. At the same time it must remain in a CORBA server, so that it can

be used by ordinary CORBA clients. So we can do nothing to the CORBA server.

Instead, we need to build a Iini service that will act as a CORBA client. This service

will then be able to deliver the CORBA service to Iini clients.

The Iini service can be implemented as a fat proxy delivered to a Iini client.

The Iini service implementation is moved from the Iini server to a Iini client as the

service object. Once in the client, the service implementation is responsible for

locating the CORBA service by using the CORBA naming service, and it then trans-

lates client calls on the Jini service directly into calls on the CORBA service. The

processes that run in this, with their associated Iini and CORBA objects, are shown

in Figure 18-1.

The Java interface for this service is quite simple and basically just copies the
interface for the CORBA service:

/**

* JiniHello.java
*/

package corba;

import java.io.Serializable;

public interface JiniHello extends Serializable {

public String getHello();

} // JiniHello

The getHello() method for the CORBA IDL returns a string. In the lava bind-

ing this becomes an ordinary lava String, and the Iini service can just use this type.

The next example (in the “Room-Booking Example" section) will show a more

343

CORBAandfini

331

libdocdel@fr.com

344

Chapwrls

Jini
server

CORBA
server

CORBA

HelloServant

Jini lockup
service

CORBA
hello

reference

CORBA
name server

Figure 18—1. CORBA andJinz' services

complex case where CORBA objects may be returned. Note that because this is a

fat service, any implementation will get moved across to a Iini client and will run

there, so the service only needs to implement Serializable, and its methods do not

need to throw Remote exceptions, since they will run locally in the client.

The implementation of this Iini interface will basically act as a CORBA client.

Its getHello() method will contact the CORBA naming service, find a reference to

the CORBA Hello object, and call its getHello() method. The Jim service can just

return the string it gets from the CORBA service.

/**

* JiniHelloImpl.java
*/

package corba;

import org.omg.CosNaming.*3

import org.omg.CORBA.*;

import corba.HelloModule.*;

public class JiniHelloImpl implements JiniHello {

protected Hello hello = null;

protected String[] argv;

332

344

libdocdel@fr.com

345

CORBAandfini

public JiniHelloImpl(StIing[] argv) {

this.argv = argv;

public String getHello() {

it (hello == null) {

hello = getHello();

}

// now invoke methods on the CORBA proxy

String hello = hello.getHello();

return hello;

protected Hello getHello() {

ORB orb = null;

// Act like a CORBA client

try {

orb = 0RB.init(aIgv, null);

// get the CORBA name server

org.omg.CORBA.0bject objRef =

orb.resolve_initial_reterences("NameService");

NamingContext namingContext = NamingContextHelper.narrow(objRe+);

// get the CORBA Hello proxy

NameComponent nameComponent = new NameComponent("Hello", "");

NameComponent path[] = {nameComponent};

org.omg.CORBA.0bject obj = namingContext.resolve(path);

Hello hello = HelloHelper.narrow(obj);

return hello;

} catch(Exception e) {

e.print5tackTrace();

return null;

}

} // JiniHelloImpl

333

345

libdocdel@fr.com

346

Chapkr18

334

Jini Server and Client

The Iini server that exports the service doesn’t contain anything new compared to

the other service providers we have discussed. It creates a new JiniHelloImpl

object and exports it using a JoinManageI:

joinMgI = new JoinManager(new JiniHelloImpl(argv), ...)

Similarly, the Iini client doesn’t contain anything new, except that it catches

CORBA exceptions. After lookup discovery, the code is as follows:

try {

hello = (JiniHello) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

e.printStackTrace();

System.exit(2);

}

if (hello == null) {

System.out.println("hello null”);

return;

}

String msg;

try {

msg = hello.getHello();

System.out.println(msg);

} catch(Exception e) {

// a CORBA runtime error may occur

System.err.print1n(e.to$tring());

Building the Simple CORBA Example

Compared to the Iini-only examples that have been looked at so far, the major

additional step in this CORBA example is to build the Java classes from the IDL

specification. There are a number of CORBA lDL—to-Iava compilers. One of these is

the Sun compiler idltoj ava, which is available from java . sun . com. This (or another

compiler) needs to be run on the IDL file to produce the lava files in the corba.He1-

loModule package. The files that are produced are standard Java files, and they can

be compiled using your normal Java compiler. They may need some CORBA files

in the CLASSPATH if required by your vendor’s implementation of CORBA. Files pro-

duced by idltojava do not need any extra classes.

The Jini server, service, and client are also normal Java files, and they can be

compiled like earlier Iini files, with the CLASSPATH set to include the lini libraries.

346

libdocdel@fr.com

347

CORBAandfini

Running the Simple CORBA Example

There are a large number of elements and processes that must be set running to

get this example working satisfactorily:

1. A CORBA name server must be set running. In the IDK 1.2 distribution is a

server, tnameserv. By default, this runs on TCP port 900. Under Unix,

access to this port is restricted to system supervisors. It can be set running

on this port by a supervisor, or it can be started during boot time. An ordi-

nary user will need to use the option -0RBInitialPort port to run it on a

port above 1024:

tnameserv -ORBInitialPort 1055

All CORBA services and clients should also use this port number.

2. The Java version of the CORBA service can then be started with this

command:

java corba.CorbaHelloServer -ORBInitia1Port 1055

3. Typical Iini support services will need to be running, such as a Iini lookup
service, the RMI daemon mid, and HTTP servers to move class definitions
around.

4. The Iini service can be started with this command:

java corba.JiniHelloServer -ORBInitialPort 1055

5. Finally, the Jini client can be run with this command:

java client.TestCorbaHello -0RBInitia1Port 1055

CORBA Implementations

There are interesting considerations about what is needed in Java to support

CORBA. The example discussed previously uses the CORBA APIs that are part of

the standard OMG binding of CORBA to Java. The packages rooted in org .omg are

in major distributions of IDK 1.2, such as the Sun SDK. This example should com-

pile properly with most Java 1.2 compilers using these OMG classes.

Sun’s JDK 1.2 runtime includes a CORBA ORB, and the example will run as is,

using this ORB. However, there are many implementations of CORBA ORBs, and

they do not always behave in quite the same way. This can affect compilation and

335

347

libdocdel@fr.com

348

Chapwr18

336

runtime results. Which CORBA ORB is used is determined at runtime, based on

properties. If a particular ORB is not specified, then it defaults to the Sun—supplied

ORB (using Sun’s SDK). To use another ORB, such as the Orbacus ORB, the follow-

ing code needs to be inserted before the call to ORB . init():

java.util.Properties props = System.getProperties();

props.put("org.omg.CORBA.ORBC1ass", "com.ooc.CORBA.0RB");

props . put(" org . 0mg . CORBA. ORBSingletonclass " ,

"com.ooc . CORBA.0RBSingleton");

System. setProperties(props);

Similar code is required for the ORBS from IONA and other vendors.

Variations in CORBA implementations could affect the runtime behavior of

the client: if the proxy expects to use a particular ORB other than the default, then
the class files for that ORB must be available to the client or be downloadable

across the network. Alternatively, the proxy could be written to use the default Sun

ORB, and then may need to make inter-ORB calls between the Sun ORB and the

actual ORB used by the CORBA service. Such issues take us beyond the scope of

this chapter, though. Vendor documentation for each CORBA implementation

should give more information on any additional requirements.

Room-Booking Example

The IDL for a room-booking problem was briefly discussed in the introductory

“CORBA" section in this chapter. This room—booking example has a few more com-

plexities than the previous example. The problem here is to have a set of rooms, and

for each room have a set of bookings that can be made for that room. The bookings

may be made on the hour, from 9 am. until 4 pm. (this only covers the bookings for

one day). Bookings may be cancelled after they are made. A room can be queried for

the set ofbookings it has: it returns an array of meetings, which are null if no booking

has been made, or non-null including the details of the participants and the purpose

of the meeting.

There are other things to consider in this example:

0 Each room is implemented as a separate CORBA object. There is also a

“meeting factory” that produces more objects. This is a system with multiple

CORBA objects residing on many CORBA servers. There are several possibil-

ities for implementing a system with multiple objects.

‘ Some of the methods return CORBA objects, and these may need to be

exposed to clients. This is not a problem if the client is a CORBA client, but

here we will have Iini clients.

348

libdocdel@fr.com

349

0 Some of the methods throw user-defined exceptions, in addition to CORBA-

defined exceptions. Both of these need to be handled appropriately.

CORBA Objects

CORBA defines a set of“primitive” types in the IDL, such as integers ofvarious sizes,

chars, etc. The language bindings specify the primitive types in each language that

they are converted into. For example, the CORBA wide character (wchar) becomes a

Java Unicode char. Things are different for non—primitive objects, which depend on

the target language. For example, an IDL object turns into a Java interface.

The room-booking IDL defines CORBA interfaces for Meeting, Meeting Factory,

and Room. These can be implemented in any suitable language and need not be in

Iava———the lava binding will convert these into lava interfaces. A CORBA client writ-

ten in Java will get objects that implement these interfaces, but these objects will

essentially be references to remote CORBA objects. Two things are certain about

these references:

- CORBA interfaces generate lava interfaces, such as Hello. These inherit from

org. omg.CORBA. portable. IDLEntity, which implements Serializable. As a

result, the references can be moved around like Iini objects, but they lose

their link to the CORBA ORB that created them and may end up in a differ-

ent namespace, where the reference makes no sense. Therefore, CORBA

references cannot be usefully moved around. At present, the best way to

move them around is to convert them to “stringified” form and move that

around, though this may change when CORBA pass-by—value objects

become common. Note that the serialization method that gives a string rep—

resentation of a CORBA object is not the same as the lava one: the CORBA

method serializes the remote reference, whereas the Java method serializes

the object’s instance data.

0 The references do not subclass from UnicastRemoteObject or Activatable. The

Java runtime will not use an RMI stub for them.

If a Iini client gets local references to these objects and keeps them local, then

it can use them via their Java interfaces. If they need to be moved around the net—

work, then appropriate “mobile” classes will need to be defined and the infor-

mation copied across to them from the local objects. For example, the CORBA

Meeting interface generates the following Java interface:

/*

* File: ./corba/RoomBooking/Meeting.java

* From: RoomBooking.idl

349

CORBAandfini

337

libdocdel@fr.com

350

ChaperB

* Date: Wed Aug 25 11:30:25 1999

* By: idltojava Java IDL 1.2 Aug 11 1998 02:00:18
*/

package corba.RoomBooking;

public interface Meeting

extends org.omg.CORBA.0bject, org.omg.CORBA.portable.IDLEntity {

String purpose();

String participants();

void destroy()

To make the information from a CORBA Meeting available as a mobile Iini

object, we would need an interface like this:

/**

* JavaMeeting.java
*/

package corba.common;

import java.io.Serializable;

import org.omg.CORBA.*;

import corba.RoomBooking.*;

import java.rmi.RemoteException;

public interface JavaMeeting extends Serializable {

String getPurpose();

String getParticipants();

Meeting getMeeting(ORB orb);

} // JavaMeeting

The first two methods in the preceding interface allow information about a

meeting to be accessible to applications that do not want to contact the CORBA

service. The third allows a CORBA object reference to be reconstructed within a

new ORB. A suitable implementation is as follows:

/**

* JavaMeetingImpl.java
*/

package corba.RoomBookingImpl;

import corba.RoomBooking.*;

import org.omg.CORBA.*;

338

350

libdocdel@fr.com

351

CORBAandfini

import corba.common.*;

/**

* A portable Java object representing a CORBA object.
*/

public class JavaMeetingImpl implements JavaMeeting {

protected String purpose;

protected String participants;

protected String corbaObj;

/**

* get the purpose of a meeting for a Java client
* unaware of CORBA

*/

public String getPurpose() {

return purpose;

/**

* get the participants of a meeting for a Java client
* unaware of CORBA

*/

public String getParticipants() {

return participants;

/**

* reconstruct a meeting using a CORBA orb in the target JVM
*/

public Meeting getMeeting(ORB orb) {

org.omg.CORBA.Object obj = orb.string_to_object(corbaObj);

Meeting m = MeetingHelper.narrow(obj);

return m;

/**

* construct a portable Java representation of the CORBA

* Meeting using the CORBA orb on the source JVM
*/

public JavaMeetingImpl(Meeting m, ORB orb) {

purpose = m.purpose();

participants = m.participants();

corbaObj = orb.object_to_string(m);

339

351

libdocdel@fr.com

352

libdocdel@fr.com

353

libdocdel@fr.com

354

libdocdel@fr.com

355

libdocdel@fr.com

356

libdocdel@fr.com

357

libdocdel@fr.com

358

libdocdel@fr.com

359

libdocdel@fr.com

360

libdocdel@fr.com

361

libdocdel@fr.com

362

libdocdel@fr.com

363

libdocdel@fr.com

364

libdocdel@fr.com

365

libdocdel@fr.com

366

libdocdel@fr.com

367

libdocdel@fr.com

368

libdocdel@fr.com

369

libdocdel@fr.com

370

libdocdel@fr.com

371

libdocdel@fr.com

372

libdocdel@fr.com

373

libdocdel@fr.com

374

libdocdel@fr.com

375

libdocdel@fr.com

376

libdocdel@fr.com

377

libdocdel@fr.com

378

libdocdel@fr.com

379

libdocdel@fr.com

380

libdocdel@fr.com

381

libdocdel@fr.com

382

libdocdel@fr.com

383

libdocdel@fr.com

384

libdocdel@fr.com

385

libdocdel@fr.com

386

libdocdel@fr.com

387

libdocdel@fr.com

388

libdocdel@fr.com

389

libdocdel@fr.com

390

libdocdel@fr.com

391

libdocdel@fr.com

392

libdocdel@fr.com

393

libdocdel@fr.com

394

libdocdel@fr.com

395

libdocdel@fr.com

396

libdocdel@fr.com

397

libdocdel@fr.com

398

libdocdel@fr.com

399

libdocdel@fr.com

400

libdocdel@fr.com

401

libdocdel@fr.com

402

libdocdel@fr.com

403

libdocdel@fr.com

404

libdocdel@fr.com

405

libdocdel@fr.com

406

libdocdel@fr.com

407

libdocdel@fr.com

408

libdocdel@fr.com

409

libdocdel@fr.com

410

libdocdel@fr.com

411

libdocdel@fr.com

412

libdocdel@fr.com

413

libdocdel@fr.com

414

libdocdel@fr.com

415

libdocdel@fr.com

416

libdocdel@fr.com

417

libdocdel@fr.com

418

libdocdel@fr.com

419

libdocdel@fr.com

420

libdocdel@fr.com

421

libdocdel@fr.com

422

libdocdel@fr.com

423

libdocdel@fr.com

424

libdocdel@fr.com

425

libdocdel@fr.com

426

libdocdel@fr.com

427

libdocdel@fr.com

428

libdocdel@fr.com

429

libdocdel@fr.com

430

libdocdel@fr.com

431

libdocdel@fr.com

432

libdocdel@fr.com

433

libdocdel@fr.com

434

libdocdel@fr.com

435

libdocdel@fr.com

436

libdocdel@fr.com

437

libdocdel@fr.com

438

libdocdel@fr.com

439

libdocdel@fr.com

440

libdocdel@fr.com

441

libdocdel@fr.com

442

libdocdel@fr.com

443

libdocdel@fr.com

444

libdocdel@fr.com

445

libdocdel@fr.com

446

libdocdel@fr.com

447

libdocdel@fr.com

448

libdocdel@fr.com

449

libdocdel@fr.com

450

libdocdel@fr.com

451

libdocdel@fr.com

452

libdocdel@fr.com

453

libdocdel@fr.com

454

libdocdel@fr.com

455

libdocdel@fr.com

456

libdocdel@fr.com

457

libdocdel@fr.com

458

libdocdel@fr.com

459

libdocdel@fr.com

460

libdocdel@fr.com

461

libdocdel@fr.com

462

libdocdel@fr.com

463

