JINI LOOKUP DISCOVERY SERVICE, version 1.1 161

After acquiring references to the targeted lookup services, the lookup discovery
service would pass those references to the entity, providing the entity with access
to the services registered with each lookup service. In this way, the entity partici-
pates in the multicast discovery protocols through a proxy relationship with the
lookup discovery service, gaining access not only to lookup services outside of its
own range, but also to all of the services registered with those lookup services.

Note that the scenario just described does not come without restrictions. For
the lookup discovery service to be able to “link” an entity with lookup services in
the way just described, the lookup discovery service must be registered with a
lookup service having a location that either is known to the entity or is within the
multicast radius of the entity. Furthermore, the lookup discovery service must be
running on a host that is located within the multicast radius of the lookup services
with which the entity wishes to be linked. That is, the entity must be able to find
the lookup discovery service, and the lookup discovery service must be able to
find the other desired lookup services.

To address these scenarios, the lookup discovery service participates in both
the multicast discovery protocols and the unicast discovery protocol on behalf of a
registered discovering entity or cl/ient. This service will listen for and process mul-
ticast announcement packets from Jini lookup services and will, until successful,
repeatedly attempt to discover specific lookup services that the client is interested
in finding.

Upon discovery of a previously undiscovered lookup service of interest, the
lookup discovery service notifies all entities that have requested the discovery of
that lookup service that such an event has occurred. The event mechanism
employed by the lookup discovery service satisfies the requirements defined in
The Jini Technology Core Platform Specification, “Distributed Events”. Note that
the entity that receives such an event notification does not have to be the client of
the lookup discovery service; it may be a third-party event-handling service such
as an event mailbox service. Once a client is notified of the discovery of a lookup
service, it is left to the client to define the semantics of how it interacts with that
lookup service. For example, the client may wish to join the lookup service, sim-
ply query it for other useful services, or both.

The lookup discovery service must be implemented as a well-behaved Jini
service and must comply with all of the policies embodied in the Jini technology
programming model. Thus, the resources granted by this service are leased, and
implementations of this service must adhere to the distributed leasing model for
Jini technology as defined in The Jini Technology Core Platform Specification,
“Distributed Leasing”. That is, the lookup discovery service will grant its ser-
vices for only a limited period of time without an active expression of continuing
interest on the part of the client.

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

171

162

LD.1.1 Goals and Requirements

INTRODUCTION

The requirements of the interfaces and classes specified in this document are:

+ To define a service that not only employs the Jini discovery protocols to dis-
cover, by way of either group association or LookupLocator association,
lookup services in which clients have registered interest, but that also noti-

fies its clients of the discovery of those lookup services

+ To provide this service in such a way that it can be used by entities that deac-
tivate

+ To comply with the policies of the Jini technology programming model

The goals of this document are as follows:

To describe the lookup discovery service

& To provide guidance in the use and deployment of services that implement
the LookupDiscoveryService interface and related classes and interfaces

LD.1.2 Other Types

The types defined in the specification of the LookupDiscoveryService interface
are in the net.jini.discovery package. The following object types may be ref-
erenced in this chapter. Whenever referenced, these object types will be refer-
enced in unqualified form:

net.
net.
net.
net.
net.
net.
net.
net.
net.
java
java
java
java
java

jini
jini
jini
jini
jini
jini
jini
jini
jini

.core.discovery.LookupLocator
.core.event.EventRegistration
.core.event.RemoteEventListener
.core.lease.lLease
.core.lookup.ServicelD
.core.lookup.ServiceRegistrar
.discovery.DiscoveryEvent
.discovery.DiscoveryGroupManagement
.discovery.DiscoverylListener

.i0.I0Exception

.rmi.
.rmi.
.rmi.

MarshalledObject
NoSuchObjectException
RemoteException

.util.Map

172

JINI LOOKUP DISCOVERY SERVICE, version 1.1 163

LD.2 The Interface

THE LookupDiscoveryService interface defines the service—referred to as the
lookup discovery service—previously introduced in this specification. Through
this interface, other Jini services and clients may request that discovery processing
be performed on their behalf. This interface belongs to the net.jini.discovery
package, and any service implementing this interface must comply with the defi-
nition of a Jini service. This interface is not a remote interface; each implementa-
tion of this service exports a front-end proxy object that implements this interface
local to the client, using an implementation-specific protocol to communicate with
the actual remote server (the back end). All of the proxy methods must obey nor-
mal Java Remote Method Invocation (RMI) remote interface semantics except
where explicitly noted. Two proxy objects are equal (using the equals method) if
they are proxies for the same lookup discovery service.

The one method defined in this interface throws a RemoteException, and
requires only the default serialization semantics so that this interface can be
implemented directly using Java RMI.

package net.jini.discovery;

public interface LookupDiscoveryService {

public LookupDiscoveryRegistration register(
String[] groups,
LookupLocator[] Tocators,
RemoteEventListener Tistener,
MarshalledObject handback,
Tong TeaseDuration)

throws RemoteException;

}

When requesting a registration with the lookup discovery service, the client
indicates the lookup services it is interested in discovering by submitting two sets
of objects. Each set may contain zero or more elements. One set consists of the
names of the groups whose members are lookup services the client wishes to be

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

173

164

THE INTERFACE

discovered. The other set consists of LookupLocator objects, each corresponding
to a specific lookup service the client wishes to be discovered.

For each successful registration the lookup discovery service will manage
both the set of group names and the set of locators submitted. These sets will be
referred to as the managed set of groups and the managed set of locators, respec-
tively. The managed set of groups associated with a particular registration con-
tains the names of the groups whose members consist of lookup services that the
client wishes to be discovered through multicast discovery. Similarly, the man-
aged set of locators contains instances of LookupLocator, each corresponding to
a specific lookup service that the client wishes to be discovered through unicast
discovery. The references to the lookup services that have been discovered will be
maintained in a set referred to as the managed set of lookup services (or managed
set of registrars).

Note that when the general term managed set is used, it should be clear from
the context whether groups, locators, or registrars are being discussed. Further-
more, when the term group discovery or locator discovery is used, it should be
taken to mean, respectively, the employment of either the multicast discovery pro-
tocols or the unicast discovery protocol to discover lookup services that corre-
spond to members of the appropriate managed set.

174

JINI LOOKUP DISCOVERY SERVICE, version 1.1 165

LD.3 The Semantics

TO employ the lookup discovery service to perform discovery on its behalf, a
client must first register with the lookup discovery service by invoking the
register method defined in the LookupDiscoveryService interface. The
register method is the only method specified by this interface.

LD.3.1 Registration Semantics

An invocation of the register method produces an object—referred to as a regis-
tration object (or simply a registration)—that is mutable. That is, the registration
object contains methods through which it may be changed. Because registrations
are mutable, each invocation of the register method produces a new registration
object. Thus, the register method is not idempotent.

The register method may throw a RemoteException. Typically, this excep-
tion occurs when there is a communication failure between the client and the
lookup discovery service. When this exception does occur, the registration may or
may not have been successful.

Each registration with the lookup discovery service is persistent across
restarts (or crashes) of the lookup discovery service until the lease on the registra-
tion expires or is cancelled.

The register method takes the following as arguments:

& A String array, none of whose elements may be nul1, consisting of zero or
more elements in which each element is the name of a group whose mem-
bers are lookup services that the client requesting the registration wishes to
be discovered via group discovery

& An array of LookupLocator objects, none of whose elements may be nul1l,
consisting of zero or more elements in which each element corresponds to a
specific lookup service that the client requesting the registration wishes to
be discovered via locator discovery

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

175

166 THE SEMANTICS

¢ A non-null RemoteEventListener object which specifies the entity that
will receive events notifying the registration when a lookup service of inter-
est 1s discovered or discarded

Either nul11 or an instance of MarshalledObject specifying an object that
will be included in the notification event that the lookup discovery service
sends to the registered listener

& A long value representing the amount of time (in milliseconds) for which
the resources of the lookup discovery service are being requested

The register method returns an object that implements the
LookupDiscoveryRegistration interface. It is through this returned object that
the client interacts with the lookup discovery service. This interaction includes
activities such as group and locator management, state retrieval, and discarding
discovered but unavailable lookup services so that they are eligible for rediscovery
(see Section LD.4.1, “The LookupDiscoveryRegistration Interface” for definition
of the semantics of the methods of the LookupDiscoveryRegistration inter-
face).

The groups argument takes a String array, none of whose elements may be
null. Although it is acceptable to specify null (which is equivalent to
DiscoveryGroupManagement .ALL_GROUPS) for the groups argument itself, if the
argument contains one or more null elements, a Nul1PointerException is
thrown. If the value is nu11, the lookup discovery service will attempt to discover
all lookup services located within the multicast radius of the host on which the
lookup discovery service is running. If an empty array (equivalent to
DiscoveryGroupManagement .NO_GROUPS) is passed in, then no group discovery
will be performed for the associated registration until the client, through the regis-
tration’s setGroups or addGroups method, changes the contents of the managed
set of groups to either a non-empty set of group names or nulT.

The Tocators argument takes an array of LookupLocator objects, none of
whose elements may be nul1. If either the empty array or nul1 is passed in as the
locators argument, then no locator discovery will be performed for the associ-
ated registration until the client, through the registration’s addLocators or
setLocators method, changes the managed set of locators to a non-empty set of
locators. Although it is acceptable to input nu11 for the Tocators argument itself,
if the argument contains one or more nul1 elements, a Nul1PointerException is
thrown.

If the register method is invoked with a set of group names and a set of
locators in which either or both sets contain duplicate elements (where duplicate
locators are determined by LookupLocator.equals), the invocation is equivalent
to constructing this class with no duplicates in either set.

176

JINI LOOKUP DISCOVERY SERVICE, version 1.1

Upon discovery of a lookup service, through either group discovery or locator
discovery, the lookup discovery service will send an event, referred to as a discov-
ered event, to the listener associated with the registration produced by the call to
register.

After initial discovery of a lookup service, the lookup discovery service will
continue to monitor the group membership state reflected in the multicast
announcements from that lookup service. Depending on the lookup service’s cur-
rent group membership, the lookup discovery service may send either a discov-
ered event or an event referred to as a discarded event. The conditions under
which either a discovered event or a discarded event will be sent are as follows:

If the multicast announcements from an already discovered lookup service
indicate that the lookup service is a member of a new group, a discovered
event will be sent to the listener of each registration that has yet to receive a
discovered event for that lookup service, but that has previously registered
interest in the new group.

o If the multicast announcements from an already discovered lookup service
indicate that the lookup service has changed its group membership in such a
way that the lookup service is no longer of interest to one or more of the reg-
istrations that previously registered interest in the groups of that lookup ser-
vice, a discarded event will be sent to the listener of each such registration.
This type of discarded event is sometimes referred to as a passive no-interest
discarded event (“passive” because the lookup discovery service, rather than
the client, initiated the discard process).

If the multicast announcements from an already discovered lookup service
are no longer being received, a discarded event will be sent to the listener of
each registration that previously registered interest in one or more of that
lookup service’s member groups. This type of discarded event is sometimes
referred to as a passive communication discarded event.

It is important to note that when the lookup discovery service (passively) dis-
cards a lookup service, due to group membership changes (lost interest) or
unavailability (communication failure), the discarded event will be sent to only
the listeners of those registrations that have previously requested that the affected
lookup service be discovered through at least group discovery. That is, the listener
of any registration that is interested in the affected lookup service through only
locator discovery will not be sent either type of passive discarded event. This is
because the semantics of the lookup discovery service assume that since the cli-
ent, through the registration request, expressed no interest in discovering the

167

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

177

168

THE SEMANTICS

lookup service through its group membership, the client must also have no interest
in any group-related changes in that lookup service’s state.

A more detailed discussion of the event semantics of the lookup discovery
service is presented in Section LD.3.2, “Event Semantics”.

A valid parameter must be passed as the 1istener argument of the register
method. If a nu11 value is input to this argument, then a NuT1PointerException
will be thrown and the registration fails.

Note that if an indefinite exception occurs while attempting to send a discov-
ered or discarded event to a registration’s listener, the lookup discovery service
will continue to attempt to send the event until either the event is successfully
delivered or the client’s lease on that registration expires. If an
UnknownEventException, a bad object exception, or a bad invocation exception
occurs while attempting to send a discovered or discarded event to a registration’s
listener, the lookup discovery service assumes that the client is in an unknown,
possibly corrupt state, and will cancel the lease on the registration and clear the
registration from its managed set.

The state information maintained by the lookup discovery service includes the
set of group names, locators, and listeners submitted by each client through each
invocation of the register method, with duplicates eliminated. This state infor-
mation contains no knowledge of the clients that register with the lookup discov-
ery service. Thus, there is no requirement that a client identify itself during the
registration process.

LD.3.2 Event Semantics

For each registration created by the lookup discovery service, an event identifier
will be generated that uniquely maps the registration to the listener as well as to
the registration’s managed set of groups and managed set of locators. This event
identifier is returned as a part of the returned registration object and is unique
across all other active registrations with the lookup discovery service.

Whenever the lookup discovery service finds a lookup service matching the
discovery criteria of one or more of its registrations, it sends an instance of
RemoteDiscoveryEvent (a subclass of RemoteEvent) to the listener correspond-
ing to each such registration. The event sent to each listener will contain the
appropriate event identifier.

Once an event signaling the discovery (by group or locator) of a desired
lookup service has been sent, no other discovered events for that lookup service
will be sent to a registration’s listener until the lookup service is discarded (either
actively, by the client through the registration, or passively by the lookup discov-
ery service) and then rediscovered. Note that more information about what it

178

JINI LOOKUP DISCOVERY SERVICE, version 1.1

means for a lookup service to be discarded is presented in Section LD.3.1, “Regis-
tration Semantics” and the section of this specification titled “Discarding Lookup
Services”.

If, between the time a lookup service is discarded and the time it is rediscov-
ered, a new registration is requested having parameters indicating interest in that
lookup service, upon rediscovery of the lookup service an event will also be sent
to that new registration’s listener.

The sequence numbers for a given event identifier are strictly increasing (as
defined in The Jini Technology Core Platform Specification, “Distributed
Events”), which means that when any two such successive events have sequence
numbers that differ by only a value of 1, then no events have been missed. On the
other hand, when the set of received events is viewed in order, if the difference
between the sequence numbers of two successive events is greater than 1, then one
or more events may or may not have been missed. For example, a difference
greater than 1 could occur if the lookup discovery service crashes, even if no
events are lost because of the crash. When two such successive events have
sequence numbers whose difference is greater than 1, there is said to be a gap
between the events.

When a gap occurs between events, the local state (on the client) related to the
discovered lookup services may or may not fall out of sync with the correspond-
ing remote state maintained by the lookup discovery service. For example, if the
gap corresponds to a missed event representing the (initial) discovery of a targeted
lookup service, the remote state will reflect this discovery, whereas the client’s
local state will not. To allow clients to identify and correct such a situation, each
registration object provides a method that returns a set consisting of the proxies to
the lookup services that have been discovered for that registration. With this infor-
mation the client can update its local state.

When requesting a registration with the lookup discovery service, a client
may also supply (as a parameter to the register method) a reference to an object,
wrapped in a MarshalledObject, referred to as a handback. When the lookup
discovery service sends an event to a registration’s listener, the event will also
contain a reference to this handback object. The lookup discovery service will not
change the handback object. That is, the handback object contained in the event
sent by the lookup discovery service will be identical to the handback object regis-
tered by the client with the event mechanism.

The semantics of the object input to the handback argument are left to each
client to define, although nul1 may be input to this argument. The role of the
handback object in the remote event mechanism is detailed in The Jini Technol-
ogy Core Platform Specification, “Distributed Events”.

169

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

179

170

THE SEMANTICS
LD.3.3 Leasing Semantics

When a client registers with the lookup discovery service, it is effectively request-
ing a lease on the resources provided by that service. The initial duration of the
lease granted to a client by the lookup discovery service will be less than or equal
to the requested duration reflected in the value input to the TeaseDuration argu-
ment. That value must be positive, Lease.FOREVER, or Lease.ANY. If any other
value is input to this argument, an I11egalArgumentException will be thrown.
The client may obtain a reference to the Lease object granted by the lookup dis-
covery service through the associated registration returned by the service (see
Section LD.4.1, “The LookupDiscoveryRegistration Interface”).

180

JINI LOOKUP DISCOVERY SERVICE, version 1.1 171

LD.4 Supporting Interfaces and Classes

THE lookup discovery service depends on the LookupDiscoveryRegistration
interface, as well as on the concrete classes RemoteDiscoveryEvent and
LookupUnmarshalException.

LD.4.1 The LookupDiscoveryRegistration Interface

When a client requests a registration with the lookup discovery service, an object
that implements the LookupDiscoveryRegistration interface is returned. It is
through this interface that the client manages the state of its registration with the
lookup discovery service.

package net.jini.discovery;

public interface LookupDiscoveryRegistration {
public EventRegistration getEventRegistration();
public Lease getlLease();
public ServiceRegistrar[] getRegistrars()
throws LookupUnmarshalException,
RemoteException;
public String[] getGroups() throws RemoteException;
public LookuplLocator[] getlLocators()
throws RemoteException;
public void addGroups(String[] groups)
throws RemoteException;
public void setGroups(String[] groups)
throws RemoteException;
public void removeGroups(String[] groups)
throws RemoteException;
public void addLocators(LookupLocator[] locators)
throws RemoteException;
public void setlLocators(LookuplLocator[] locators)

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

181

172

SUPPORTING INTERFACES AND CLASSES

throws RemoteException;
public void removelLocators(LookuplLocator[] Tocators)

throws RemoteException;
public void discard(ServiceRegistrar registrar)

throws RemoteException;

}

As with the LookupDiscoveryService interface, the
LookupDiscoveryRegistration interface is not a remote interface. Each imple-
mentation of the lookup discovery service exports proxy objects that implement
this interface local to the client, using an implementation-specific protocol to
communicate with the actual remote server. All of the proxy methods must obey
normal Java RMI remote interface semantics except where explicitly noted. Two
proxy objects are equal (using the equals method) if they are proxies for the same
registration created by the same lookup discovery service.

The discovery facility of the lookup discovery service, together with its event
mechanism, make up the set of resources clients register to use. Because the
resources of the lookup discovery service are leased, access is granted for only a
limited period of time unless there is an active expression of continuing interest on
the part of the client.

When a client uses the registration process to request that a lookup discovery
service perform discovery of a set of desired lookup services, the client is also
registered with the service’s event mechanism. Because of this implicit registra-
tion with the event mechanism, the lookup discovery service “bundles” both
resources under a single lease. When that lease expires, both discovery processing
and event notifications will cease with respect to the registration that resulted from
the client’s request.

To facilitate lease management and event handling, the
LookupDiscoveryRegistration interface defines methods that allow the client
to retrieve its event registration information. Additional methods defined by this
interface allow the client to retrieve references to the registration’s currently dis-
covered lookup services, as well as to modify the managed sets of groups and
locators.

If the client’s registration with the lookup discovery service has expired or
been cancelled, then any invocation of a remote method defined in this interface
will result in a NoSuchObjectException. That is, any method that communicates
with the back end server of the lookup discovery service will throw a
NoSuchObjectException if the registration on which the method is invoked no
longer exists. Note that if a client receives a NoSuchObjectException as a result
of an invocation of such a method, although the client can assume that the regis-

182

JINI LOOKUP DISCOVERY SERVICE, version 1.1

tration no longer exists, the client cannot assume that the lookup discovery service
itself no longer exists.

Each remote method of this interface may throw a RemoteException. Typi-
cally, this exception occurs when there is a communication failure between the
client and the lookup discovery service. Whenever this exception occurs as a
result of the invocation of one of these methods, the method may or may not have
completed its processing successfully.

LD.4.1.1 The Semantics

The methods defined by this interface are organized into a set of accessor meth-
ods, a set of group mutator methods, a set of locator mutator methods, and the
discard method. Through the accessor methods, various elements of a registra-
tion’s state can be retrieved. The mutator methods provide a mechanism for
changing the set of groups and locators to be discovered for the registration.
Through the discard method, a particular lookup service may be made eligible
for rediscovery.

The Accessor Methods

The getEventRegistration method returns an EventRegistration object that
encapsulates the information the client needs to identify a notification sent by the
lookup discovery service to the registration’s listener. This method is not remote
and takes no arguments.

The getLease method returns the Lease object that controls a client’s regis-
tration with the lookup discovery service. It is through the Lease object returned
by this method that the client requests the renewal or cancellation of the registra-
tion with the lookup discovery service. This method is not remote and takes no
arguments.

Note that the object returned by the getEventRegistration method also
provides a getLease method. That method and the getLease method defined by
the LookupDiscoveryRegistration interface both return the same Lease object.
The getLease method defined here is provided as a convenience to avoid the indi-
rection associated with the getLease method on the EventRegistration object,
as well as to avoid the overhead of making two method calls.

The getRegistrars method returns a set of instances of the
ServiceRegistrar interface. Each element in the set is a proxy to one of the
lookup services that have already been discovered for the registration. Addition-
ally, each element in the set will be unique with respect to all other elements in the
set, as determined by the equals method provided by each element. The contents

173

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

183

174

SUPPORTING INTERFACES AND CLASSES

of the set make up the current remote state of the set of lookup services discovered
for the registration. This method returns a new array on each invocation.

This method can be used to maintain synchronization between the set of dis-
covered lookup services making up a registration’s local state on the client and the
registration’s corresponding remote state maintained by the lookup discovery ser-
vice. The local state can become unsynchronized with the remote state when a gap
occurs in the events received by the registration’s listener.

According to the event semantics of the lookup discovery service, if there is
no gap between two sequence numbers, no events have been missed and the states
remain synchronized with each other; if there is a gap, events may or may not
have been missed. Therefore, upon finding gaps in the sequence of events, the cli-
ent can invoke this method and use the returned information to synchronize the
local state with the remote state.

To construct its return set, the getRegistrars method retrieves from the
lookup discovery service the set of lookup service proxies making up the registra-
tion’s current remote state. When the lookup discovery service sends the
requested set of proxies, the set is sent as a set of marshalled instances of the
ServiceRegistrar interface. The lookup discovery service individually marshals
each proxy in the set that it sends because if it were not to do so, any deserializa-
tion failure on the set would result in an IOException, and failure would be
declared for the whole deserialization process, not just an individual element. This
would mean that all elements of the set sent by the lookup discovery service—
even those that were successfully deserialized—would be unavailable to the cli-
ent. Individually marshalling each element in the set minimizes the “all or noth-
ing” aspect of the deserialization process, allowing the client to recover those
proxies that can be successfully unmarshalled and to proceed with processing that
might not be possible otherwise.

When constructing the return set, this method attempts to unmarshal each ele-
ment of the set of marshalled proxy objects sent by the lookup discovery service.
When failure occurs while attempting to unmarshal any of those elements, this
method throws an exception of type LookupUnmarshalException (described
later). It is through the contents of that exception that the client can recover any
available proxies and perform error handling related to the unavailable proxies.
The contents of the LookupUnmarshalException provide the client with the fol-
lowing useful information:

& The knowledge that a problem has occurred while unmarshalling at least one

of the elements making up the remote state of the registration’s discovered
lookup services

184

JINI LOOKUP DISCOVERY SERVICE, version 1.1 175

¢ The set of proxy objects that were successfully unmarshalled by the
getRegistrars method

& The set of marshalled proxy objects that could not be unmarshalled by the
getRegistrars method

+ The set of exceptions corresponding to each failed attempt at unmarshalling

The type of exception that occurs when attempting to unmarshal an element
of the set sent by the lookup discovery service is typically an IOException or a
ClassNotFoundException (usually the more common of the two). A
ClassNotFoundException occurs whenever a remote object on which the mar-
shalled proxy depends cannot be retrieved and loaded, usually because the code-
base of one of the object’s classes or interfaces is currently “down.” To address
this situation, the client may wish to proceed with its processing using the suc-
cessfully unmarshalled proxies, and attempt to unmarshal the unavailable proxies
(or re-invoke this method) at some later time.

If the getRegistrars method returns successfully without throwing a
LookupUnmarshalException, the client is guaranteed that all marshalled proxies
belonging to the set sent by the lookup discovery service have each been success-
fully unmarshalled; the client then has a snapshot—relative to the point in time
when this method is invoked—of the remote state of the lookup services discov-
ered for the associated registration.

The getGroups method returns an array consisting of the group names from
the registration’s managed set; that is, the names of the groups the lookup discov-
ery service is currently configured to discover for the associated registration. If the
managed set of groups is empty, this method returns the empty array. If there is no
managed set of groups associated with the registration (that is, the lookup discov-
ery service is configured to discover DiscoveryGroupManagement.ALL_GROUPS
for the registration), then nul11 is returned.

The getLocators method returns an array consisting of the LookupLocator
objects from the registration’s managed set; that is, the locators of the specific
lookup services the lookup discovery service is currently configured to discover
for the associated registration. If the managed set of locators is empty, this method
returns the empty array.

The Group Mutator Methods
With respect to a particular registration, the groups to be discovered may be mod-
ified using the methods described in this section. In each case, a set of groups is

represented as a String array, none of whose elements may be nul1. If any set of
groups input to one of these methods contains one or more null elements, a

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

185

176

SUPPORTING INTERFACES AND CLASSES

NullPointerException is thrown. The empty set is denoted by the empty array
(DiscoveryGroupManagement .NO_GROUPS), and “no set” is indicated by null
(DiscoveryGroupManagement .ALL_GROUPS). No set indicates that all lookup ser-
vices within the multicast radius should be discovered, regardless of group mem-
bership. Invoking any of these methods with an input set of groups that contains
duplicate names is equivalent to performing the invocation with the duplicate
group names removed from the input set.

The addGroups method adds a set of group names to the registration’s man-
aged set. This method takes one argument: a String array consisting of the set of
group names with which to augment the registration’s managed set.

If the registration has no current managed set of groups to augment, this
method throws an UnsupportedOperationException. If the parameter value is
null, this method throws a NulTPointerException. If the parameter value is the
empty array, then the registration’s managed set of groups will not change.

The setGroups method replaces all of the group names in the registration’s
managed set with names from a new set. This method takes one argument: a
String array consisting of the set of group names with which to replace the cur-
rent names in the registration’s managed set.

If nul11 is passed to setGroups, the lookup discovery service will attempt to
discover any undiscovered lookup services located within range of the lookup dis-
covery service, regardless of group membership.

If the empty set is passed to setGroups, then group discovery will be halted
until the registration’s managed set of groups is changed—through a subsequent
call to this method or to addGroups—to a set that is either a non-empty set of
group names or null.

The removeGroups method deletes a set of group names from the registra-
tion’s managed set. This method takes one argument: a String array containing
the set of group names to remove from the registration’s managed set.

If the registration has no current managed set of groups from which to remove
elements, this method throws an UnsupportedOperationException. If null is
input, this method throws a NulTPointerException. If the registration does have
a managed set of groups from which to remove elements, but either the input set is
empty or none of the elements in the input set match any element in the managed
set, then the registration’s managed set of groups will not change.

Once a new group name has been placed in the registration’s managed set as a
result of an invocation of either addGroups or setGroups, if there are lookup ser-
vices belonging to that group that have already been discovered for that registra-
tion, no event will be sent to the registration’s listener for those particular lookup
services. However, attempts to discover any undiscovered lookup services belong-
ing to that group will continue to be made on behalf of the registration.

186

JINI LOOKUP DISCOVERY SERVICE, version 1.1 177

Any already discovered lookup service that is a member of one or more of the
groups removed from the registration’s managed set as a result of an invocation of
either setGroups or removeGroups will be discarded and will no longer be eligi-
ble for discovery (for that registration), but only if that lookup service satisfies
both of the following conditions:

The lookup service is not a member of any group in the registration’s new
managed set resulting from the invocation of setGroups or removeGroups

& With respect to the registration, the lookup service is not currently eligible
for discovery through locator discovery; that is, the lookup service does not
correspond to any element in the registration’s managed set of locators.

The Locator Mutator Methods

With respect to a particular registration, the set of locators to discover may be
modified using the methods described in this section. In each case, a set of loca-
tors is represented as an array of LookupLocator objects, none of whose elements
may be null. If any set of locators input to one of these methods contains one of
more null elements, a Nul1PointerException is thrown. Invoking any of these
methods with a set of locators that contains duplicate locators (as determined by
LookupLocator.equals) is equivalent to performing the invocation with the
duplicates removed from the input set.

The addLocators method adds a set of LookupLocator objects to the regis-
tration’s managed set. This method takes one argument: an array consisting of the
set of locators with which to augment the registration’s managed set.

If nul1 is passed to addLocators, a Nul1PointerException will be thrown.
If the parameter value is the empty array, the registration’s managed set of loca-
tors will not change.

The setLocators method replaces all of the locators in the registration’s
managed set with LookupLocator objects from a new set. This method takes one
argument: an array consisting of the set of locators with which to replace the cur-
rent locators in the registration’s managed set.

If nu11 is passed to setLocators, a Nul1PointerException will be thrown.

If the empty set is passed to setLocators, then locator discovery will be
halted until the registration’s managed set of locators is changed—through a sub-
sequent call to this method or to addLocators—to a set that is non-nu11 and non-
empty.

The removelLocators method deletes a set of LookupLocator objects from
the registration’s managed set. This method takes one argument: an array contain-

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

187

178

SUPPORTING INTERFACES AND CLASSES

ing the set of LookupLocator objects to remove from the registration’s managed
set.

If null is passed to removelLocators, a NullPointerException will be
thrown. If any element of the set of locators to remove is not contained in the reg-
istration’s managed set, removelLocators takes no action with respect to that ele-
ment. If the parameter value is the empty array, the managed set of locators will
not change.

Whenever a new locator is placed in the managed set as a result of an invoca-
tion of one of the locator mutator methods and that new locator equals none of the
previously discovered locators (across all registrations), the lookup discovery ser-
vice will attempt unicast discovery of the lookup service associated with the new
locator.

If locator discovery is attempted for a registration, such discovery attempts
will be repeated until one of the following events occurs:

& The lookup service is discovered
& The client’s lease on the registration expires

The client explicitly removes the locator from the registration’s managed set

Upon discovery of the lookup service corresponding to the new locator, or upon
finding a match between the new locator and a previously discovered lookup ser-
vice, a discovered event will be sent to the registration’s listener, unless that
lookup service was previously discovered for that registration through group dis-
covery.

Any already discovered lookup service corresponding to a locator that is
removed from the registration’s managed set as a result of an invocation of either
setLocators or removelLocators will be discarded and will no longer be eligible
for discovery, but only if it is not currently eligible for discovery through group
discovery—that is, only if the lookup service is not also a member of one or more
of the groups in the registration’s managed set of groups.

Discarding Lookup Services

When the lookup discovery service removes an already discovered lookup service
from a registration’s managed set of lookup services, the lookup service is said to
be discarded.

There are a number of situations in which the lookup discovery service will
discard a lookup service:

188

JINI LOOKUP DISCOVERY SERVICE, version 1.1 179

In response to a discard request resulting from an invocation of a registra-
tion’s discard method

In response to a declaration—via an invocation of one of the mutator meth-
ods on a registration—that there is no longer any interest in one or more of
the registration’s already discovered lookup services

In response to the determination that the multicast announcements from an
already discovered lookup service indicate that the lookup service has
changed its group membership in such a way that the lookup service is no
longer of interest to one or more of the registrations that previously regis-
tered interest in the groups of that lookup service

In response to the determination that the multicast announcements from an
already discovered lookup service are no longer being received

For each of these cases, whenever the lookup discovery service discards a
lookup service, it will send an event to the registration’s listener to notify it that
the lookup service has been discarded.

The discard method provides a mechanism for registered clients to inform
the lookup discovery service of the existence of an unavailable—or unreach-
able—lookup service, and to request that the lookup discovery service discard
that lookup service and make it eligible for rediscovery.

The discard method takes a single argument: the proxy to the lookup service
to discard. This method takes no action if the parameter to this method equals
none of the proxies reflected in the managed set (using proxy equality as defined
in The Jini Technology Core Platform Specification, “Lookup Service”. If nul1 is
passed to discard, a Nul1PointerException is thrown.

Although the lookup discovery service monitors the multicast announcements
from all discovered lookup services for indications of unavailability, it should be
noted that there are conditions under which the lookup discovery service will not
discard such a lookup service, even when the lookup service is found to be
unreachable. Whether or not the lookup discovery service discards such an
unreachable lookup service is dependent on how each registration is configured
for discovery with respect to that lookup service. If every registration that is con-
figured to discover the unreachable lookup service is configured to discover it
through locator discovery only, the lookup discovery service will not discard the
lookup service. In other words, in order for the lookup discovery service to dis-
card a lookup service it has determined is unreachable, at least one registration
must be configured for discovery of at least one group in which that lookup ser-
vice is a member.

Thus, whenever a client determines that a previously discovered lookup ser-
vice has become unreachable, it should not rely on the lookup discovery service to
discard the lookup service. Instead, the client should inform the lookup discovery

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

189

180

SUPPORTING INTERFACES AND CLASSES

service—through the invocation of the registration’s discard method—that the
previously discovered lookup service is no longer available and that attempts
should be made to rediscover that lookup service for the registration. Typically, a
client determines that a lookup service is unavailable when the client attempts to
use the lookup service but receives an indefinite exception, a bad object exception,
or a bad invocation exception as a result of the attempt.

Note that the lookup discovery service may be acting on behalf of numerous
clients that have access to the same lookup service. If that lookup service becomes
unavailable, many of those clients may invoke discard between the time the
lookup service becomes unavailable and the time it 1s rediscovered. Upon the first
invocation of discard, the lookup discovery service will re-initiate discovery of
the relevant lookup service for the registration of the client that made the invoca-
tion. For all other invocations made prior to rediscovery, the registrations through
which the invocation is made are sent a discarded event, and added to the list of
registrations that will be notified when rediscovery of the lookup service does
occur. That is, upon rediscovery of the lookup service, only those registrations
through which the discard method was invoked will be notified.

Upon successful completion of the discard method, the proxy requested to
be discarded is guaranteed to have been removed from the managed set of the reg-
istration through which the invocation was made. No such guarantee is made with
respect to when the discarded event is sent to each such registration’s listener.
That is, the event notifying the listeners that the lookup service has been discarded
may or may not be sent asynchronously.

LD.4.2 The RemoteDiscoveryEvent Class

When the lookup discovery service discovers or discards a lookup service match-
ing the criteria established through one of its registrations, the lookup discovery
service sends an instance of the RemoteDiscoveryEvent class to the
RemoteEventListener implemented by the client and registered with the lookup
discovery service.

package net.jini.discovery;

public class RemoteDiscoveryEvent extends RemoteEvent {
public RemoteDiscoveryEvent(Object source,
Tong eventID,
Tong seqNum,
MarshalledObject handback,
boolean discarded,

190

JINI LOOKUP DISCOVERY SERVICE, version 1.1 181

Map groups)
throws IOException {.}

public boolean isDiscarded() {.}
public ServiceRegistrar[] getRegistrars()

throws LookupUnmarshalException {..}
public Map getGroups() {.}

The RemoteDiscoveryEvent class provides an encapsulation of event infor-
mation that the lookup discovery service uses to notify a registration of the occur-
rence of an event involving one or more ServiceRegistrar objects (lookup
services) in which the registration has registered interest. The lookup discovery
service passes an instance of this class to the registration’s discovery listener when
one of the following events occurs:

& Each lookup service referenced in the event has been discovered for the first
time or rediscovered after having been discarded.

¢ Each lookup service referenced in the event has been either actively or pas-
sively discarded.

RemoteDiscoveryEvent is a subclass of RemoteEvent, adding the following
additional items of abstract state:

¢ A boolean indicating whether the lookup services referenced by the event
have been discovered or discarded

A set of marshalled instances of the ServiceRegistrar interface having the
characteristic that when each element is unmarshalled, the result is a proxy
to one of the discovered or discarded lookup services referenced by the event

& A Map instance in which the elements of the map’s key set are the instances
of ServicelD that correspond to each lookup service reference returned in
the event, and the map’s value set contains the corresponding member
groups of each lookup service reference

Methods are defined through which this additional state may be retrieved
upon receipt of an instance of this class.

Clients need to know not only when a targeted lookup service has been dis-
covered, but also when it has been discarded. The lookup discovery service uses
an instance of RemoteDiscoveryEvent to notify a registration when either of
these events occurs, as indicated by the value of the boolean state variable. When

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

191

182

SUPPORTING INTERFACES AND CLASSES

the value of that variable i1s true, the event is referred to as a discarded event;
when false, it is referred to as a discovered event.

LD.4.2.1 The Semantics

The constructor of the RemoteDiscoveryEvent class takes the following parame-
ters as input:

A reference to the lookup discovery service that generated the event

The event identifier that maps a particular registration to both its listener and
its targeted groups and locators

The sequence number of the event being constructed
The client-defined handback (which may be nul1T)

+ A flag indicating whether the event being constructed is a discovered event
or a discarded event

¢ A Map whose key set contains the proxies to newly discovered or discarded
lookup service(s) the event is to reference, and whose value set contains the
corresponding member groups of each lookup service

If the groups parameter is empty, the constructor will throw an
I17egalArgumentException. If null is input to the groups parameter, the con-
structor will throw a NuT1PointerException. If none of the proxies referenced in
the groups parameter can be successfully serialized, the constructor will throw an
IOException.

The 1isDiscarded method returns a boolean that indicates whether the event
is a discovered event or a discarded event. If the event is a discovered event, then
this method returns false. If the event is a discarded event, true is retuned.

The getRegistrars method returns an array consisting of instances of the
ServiceRegistrar interface. Each element in the returned set is a proxy to one
of the newly discovered or discarded lookup services that caused a
RemoteDiscoveryEvent to be sent. Additionally, each element in the returned set
will be unique with respect to all other elements in the set, as determined by the
equals method provided by each element. This method does not make a remote
call. With respect to multiple invocations of this method, each invocation will
return a new array.

When the lookup discovery service sends an instance of
RemoteDiscoveryEvent to the listener of a client’s registration, the set of lookup
service proxies contained in the event consists of marshalled instances of the
ServiceRegistrar interface. The lookup discovery service individually marshals

192

JINI LOOKUP DISCOVERY SERVICE, version 1.1 183

each proxy associated with the event because if it were not to do so, any deserial-
ization failure on the set would result in an IOException, and failure would be
declared for the whole deserialization process, not just an individual element. This
would mean that all elements of the set sent in the event—even those that can be
successfully deserialized—would be unavailable to the client through this method.
Just as with the getRegistrars method defined by the
LookupDiscoveryRegistration interface, individually marshalling each ele-
ment in the set minimizes the “all or nothing” aspect of the deserialization pro-
cess, allowing the client to recover those proxies that can be successfully
unmarshalled and to proceed with processing that might not be possible other-
wise.

When constructing the return set, this method attempts to unmarshal each ele-
ment of the set of marshalled proxy objects contained in the event. When failure
occurs while attempting to unmarshal any of the elements of that set, this method
throws an exception of type LookupUnmarshalException. It is through the con-
tents of this exception that the client can recover any available proxies and per-
form error handling with respect to the unavailable proxies.

If the getRegistrars method returns successfully without throwing a
LookupUnmarshalException, the client is guaranteed that all marshalled proxies
sent in the event have each been successfully unmarshalled during that particular
invocation. Furthermore, after the first such successful invocation, no more
unmarshalling attempts will be made (because such attempts are no longer neces-
sary), and all future invocations of this method are guaranteed to return an array
with contents identical to the contents of the array returned by the first successful
invocation.

Note that an array, rather than a single proxy, is returned by the
getRegistrars method so that implementations of the lookup discovery service
can choose to “batch” the information sent to a registration. With respect to dis-
coveries, batching the information may be particularly useful when a client first
registers with the lookup discovery service.

Upon initial registration, multiple lookup services are typically found over a
short period of time, providing the lookup discovery service with the opportunity
to send all of the initially discovered lookup services in only one event. After-
ward, as so-called “late joiner” lookup services are found sporadically, the lookup
discovery service may send events referencing only one lookup service.

Note that the event sequence numbers, as defined earlier in Section LD.3.2,
“Event Semantics”, are strictly increasing, even when the information is batched.

The getGroups method returns a Map in which the elements of the map’s key
set are the instances of ServiceID that correspond to each lookup service for
which the event was constructed and sent. Each element of the returned map’s
value set is a String array containing the names of the member groups of the

A COLLECTION OF JINI™ TECHNOLOGY HELPER UTILITIES AND SERVICES SPECIFICATIONS

193

184 SUPPORTING INTERFACES AND CLASSES

associated lookup service whose ServiceID equals to the corresponding key. This
method does not make a remote call. On each invocation of this method, the same
Map object is returned; that is, a copy is not made.

The Map returned by the getGroups method is keyed by the ServiceID of
each lookup service in the event, rather than by the proxy of each lookup service
to avoid the deserialization issues addressed by the getRegistrars method.
Thus, client’s wishing to retrieve the set of member groups corresponding to any
element of the array returned by the getRegistrars method, must use the
ServicelD of the desired element from that array as the key to the get method of
the Map returned by this method and then cast to String[].

LD.4.2.2 Serialized Forms

Class serialVersionUID Serialized Fields

RemoteDiscoveryEvent -9171289945014585248L boolean discarded
ArrayList marshalledRegs
ServiceRegistrar[] regs
Map groups

LD.4.3 The LookupUnmarshalException Class

Recall that when unmarshalling an instance of MarshalledObject, one of the fol-
lowing checked exceptions is possible:

¢ An IOException, which can occur while deserializing the object from its
internal representation

¢ A ClassNotFoundException, which can occur if, while deserializing the
object from its internal representation, either the class file of the object can-
not be found, or the class file of an interface or class referenced by the object
being deserialized cannot be found. Typically, a ClassNotFoundException
occurs when the codebase from which to retrieve the needed class file is not
currently available

The LookupUnmarshalException class provides a mechanism that clients of
the lookup discovery service may use for efficient handling of the exceptions that
may occur when unmarsh