
223

[TRANSAarrow SPECIFICA TION

erializability might be violated. When a subtransaction commits, its
erited by the parent transaction.

In addition to locks, transactional operations can be defined in terms of object
I, "-0,, and deletion visibility. If an object is defined to be created under a trans-
J then the existence of the object is visible only within that transaction and
whims, but will disappear if the transaction aborts. If an object is defined to

leted under a transaction, then the object is not visible to any transaction
mg the deleting transaction) but will reappear if the transaction aborts.

- a nested transaction commits, visibility state is inherited by the parent

then S

are inh

t '1

tion.

rice a transaction reaches the VOTING stage, if all execution under the trans-
n (and its subtransactions) has finished, then the only reasons the transaction
bort are:

The manager crashes (or has crashed)

it One or more participants crash (or have crashed)

c' There is an explicit abort

Transaction deadlocks are not guaranteed to be prevented or even detected,
managers and participants are permitted to break known deadlocks by aborte

An active transaction is an orphan if it or one of its ancestors is guaranteed to
This can occur because an ancestor has explicitly aborted or because some

manager of the transaction or an ancestor has crashed. Orphans are

>guaranteed to be detected by the system, so programmers using transactions
i-bc aware that orphans can see internally inconsistent state and take appropri-
:t tiOl'i.

ausal ordering information about transactions is not guaranteed to be propa-
First, given two sibling transactions (at any level), it is not possible to tell

' er they were created concurrently or sequentially (or in what order). Sec-
lf two transactions are causally ordered and the earlier transaction has com-

. the outcome of the earlier transaction is not guaranteed to be known at
[participant used by the later transaction, unless the client is successful in
the variant of commit or abo r't that takes a timeout parameter. Programmers

nan-blocking forms of operations must take this into account.
3' long as a transaction persists in attempting to acquire a lock. that conflicts
another transaction, the participant will persist in attempting to resolve the
the of the transaction that holds the conflicting lock. Attempts to acquire a

include making a blocking call, continuing to make non-blocking calls, and
listing for event notification under a transaction.

223

224

TX.3.6 Serialized Forms

Class

Transaction.Created

Nestab1eTransaction.Created

TransactionManager.Created

ServerTransaction

NestabieServerTransaction

Transactianxception

CannotAbortException

CannotComwitException

CannotloinException

CannotNestException

TimeoutExpiredException

UnknownTransactionException

CrashCountException

seria'lVer-si onUID

—5199291723008952986L

72979247545926318953L

—4233846033773471113L

4552277137549765374L

73438419132543972925L

—5009935764793203986L

3597101646737510009L

—4497341152359563957L

556839304393?204939L

3409604500491735434L

3918773760682958000L

443798629936327009L

4299226125245015671L

224

Serialized Fields

ailpublicfieids

allpnbiicfields

ailpnblicfields

ail pnblicfields

all pubh‘c fields

none

none

none

none

none

all public fields

none

H0116

225

$853393$45

225

226

 n.7F—Flfi—.&Tmmnlvn#‘q‘—il.rc :1;er _ .. =_=.=u=

The Jini Lookup service
Specification

LU.1 Introduction
THE Jini Lookup service is a fundamental part of the federation infrastructure
for a djinn, the group of devices, resources, and users that are joined by the Jim
software infrastructure. The lockup service provides a central registry of services

available within the djinn. This lookup service is a primary means for programs to

find services within the djinn, and is the foundation for providing user interfaces

through which users and administrators can discover and interact with services in

the djinn.

Although the primary purpose of this specification is to define the interface to
the djinn’s central service registry, the interfaces defined here can readily be used
in other service registries.

LU.1.1 The Lookup Service Model

The lockup service maintains a flat collection of service items. Each service item
represents an instance of a service available within the djinn. The item contains
the RMI stub (if the service is implemented as a remote object) or other object (if

the service makes use of a local proxy) that programs use to access the service,
and an extensible collection of attributes that describe the service or provide sec—

ondary interfaces to the service.

When a new service is created (for example, when a new device is added to

the djinn), the service registers itself with the djinn’s lookup service, providing an
initial collection of attributes. For example, a printer might include attributes indi-

217

226

227

218

A'ITRIBUT‘ES

eating speed (in pages per minute), resolution (in dots per inch), and whether

duplex printing is supported. Among the attributes might be an indicator that the

service is new and needs to be configured.

An administrator uses the event mechanism of the lookup service to receive

notifications as new services are registered. To configure the service, the adminis-

trator might look for an attribute that provides an applet for this purpose. The

administrator might also use an applet to add new attributes, such as the physical
location of the service and a common name for it; the service would receive these

attribute change requests from the applet and respond by making the changes at
the lookup service.

Programs (including other services) that need a particular type of service can

use the lookup service to find an instance. A match can be made based on the spe-

cific data types For the Java programming language implemented by the service as

well as the specific attributes attached to the service. For example, a program that

needs to make use of transactions might look for a service that supports the type

net . ji ni' . co re . transaction . serve r .TransactionManage r and might further

qualify the match by desired location.

Although the collection of service items is flat, a wide variety of hierarchical

views can be imposed on the collection by aggregating items according to service

types and attributes. The lookup service provides a set of methods to enable incre-

mental exploration of the collection, and a variety of user interfaces can be built

by using these methods, allowing users and administrators to browse. Once an

appropriate service is found, the user might interact with the service by loading a
user interface applet, attached as another attribute on the item.

If a service encounters some problem that needs administrative attention, such

as a printer running out of toner, the service can add an attribute that indicates

what the problem is. Administrators again use the event mechanism to receive

notification of such problems.

LU.1.2 Attributes

The attributes of a service item are represented as a set of attribute sets. An indi—

vidual attribute set is represented as an instance of some class for the Java plat-
form, each attribute being a public field of that class. The class provides strong
typing of both the set and the individual attributes. A service item can contain

multiple instances of the same class with different attribute values, as well as mul—

tiple instances of different classes. For example, an item might have multiple
instances of a Name class, each giving the common name of the service in a differ-
ent language, plus an instance of a Location class, an Owner class, and various

service-specific classes. The schema used for attributes is not constrained by this

227

228

THE JIN! LOOKUP SERVICE SPECIFICATION

specification, but a standard foundation schema for Jini systems is defined in the
Jini Looktip Attribute Schema Specification.

Concretely, a set of attributes is implemented with a class that correctly imple-
ments the interface net. j 1' ni .core . entry. Entry, as described in the Jini Entry

Specification. Operations on the lockup service are defined in terms of template
matching, using the same semantics as in the Jini Entry Specification, but the def-
inition is augmented to deal with sets of entries and sets of templates. A set of
entries matches a set of templates if there is at least one matching entry for every

template (with every entry usable as the match for more than one template).

LU.1.3 Dependencies

This specification relies on the following other specifications:

¢ Java Remote Method Invocation Specification

0 Java Object Serialization Specification

9 Jini Entry Specification

9 .iini Distributed Event Specification

9 Jini Distributed Leasing Specification

9 flat Discovery and Join Specification

228

219

229

fl

THE JIM LOOKUP SER VICE SPECH-"ICA new 22 l

LU.2 The Servi ceRegi st r'ar'

fil?HEtypcsdefinedinthisspedficafionzneinthenet.jini.core.lookuppack—
age. The following types are imported from other packages and are referenced in

unqualified form in the rest ofthis specification:

java.rmi.Marshalledobject

java.rmi.RemoteException

java.rmi.UnmarshalException

java.io.Serializable

java.io.DataInput

java.io.Data0utput

java.io.IOException

net.jini.core.discovery.LookupLocator .

net.jini.core.entry.Entry i
net.jini.core.lease.Lease

net.jini.core.event.RemoteEvent

net.jini.core.event.EventRegistration

net.jini.core.event.RemoteEventListener

LU.2.1 Se r'vi ceID

Every service is assigned a universally unique identifier (UUID), represented as an
instance of the Se rvi ceID class.

public final class ServiceID implements Serializable {

public ServiceID(long mostSig, long leastSig) {m}

public ServiceIDCDataInput in) throws IOException {m}

public void writeBytesCDataOutput out) throws IOException
{m}

public long getMostSignificantBitsC) {m}

public long getLeastSignificantBits() {m}

229

230

a

222 Servi ceItem

A service [D is a 128-bit value. Service IDs are equal (using the equals
method) if they represent the same 128-bit value. For simplicity and reliability,
service IDs are intended to be generated only by lookup services, not by clients.
As such, the Servi ceID constructor merely takes 128 bits of data, to be computed
in an implementation-dependent manner by the lookup service. The writeBytes
method writes out 16 bytes in standard network byte order. The second construc—
tor reads in 16 bytes in standard network byte order.

The most significant long can be decomposed into the following unsignedfields:

GXFFFFFFFFBBGQOGOO time_l ow

@xOGGQGOBGFFFFDGBG ti meJni d

@xBOBGGGGDBBGBFGOG version

@xOBGGOGGQfiBGGfiFFF ti me_hi

The least significant long can be decomposed into the following unsigned fields:
BXCBBBBQQGGGOOQOBO variant

BXBFFFBOOBGQGGGGQQ clock_seq
oxeeeeFFFFFFFFFFFF node

The variant field must be 0x2. The version field must be either 0x1 or 0x4. If
the version field is 0x4, then the most significant bit of the node field must be set
to 1, and the remaining fields are set to values produced by a cryptographically
strong pseudo-random number generator. If the version field is 0x], then the
node field is set to an IEEE 802 address, the clock_seq field is set to a 14-bit ran-
dom number, and the time_l ow, time_mi d, and ti me_hi fields are set to the least,
middle, and most significant bits (respectively) of a 60—bit timestamp measured in
IOU—nanosecond units since midnight, October 15, 1582 UTC.

The toStri ng method returns a 36-character string of six fields separated by
hyphens, each field represented in lowercase hexadecimal with the same number
of digits as in the field. The order of fields is: time_l ow, time_mi at, version and
timefihi treated as a single field, variant and cl ock_seq treated as a single field,
and node.

LU.2.2 Se rvi cel‘tem

Items are stored in the lookup service using instances of the Se rvi ceItem class.

public class ServiceItem implements Serializable {
public ServicelteMSer-viceID serviceID,

Object service,

230

231

*

THE JINI LOOKUP SERVICE SPECIFICA TION 223

Entry[] attributeSets) {...}

public ServiceID serviceID;

public Object service;

public Entryll attributeSets;
}

The constructor simply assigns each parameter to the corresponding field.
Each Entry represents an attribute set. The class must have a public no-arg

constructor, and all non-static, non-final, non-transient public fields must be
declared with reference types, holding serializable objects. Each such field is seri-

alized separately as a MarshalledObject, and field equality is defined by
MarshalledObject.equals. The only relationship constraint on attribute sets

within an item is that exact duplicates are eliminated; other than that, multiple
attribute sets of the same type are permitted, multiple attribute set types can have a
common superclass, and so on. '

The net.jini.core.entry.UnusableEntryException is not used in the

lookup service; alternate semantics for individual operations are defined later in
this section.

LU.2.3 ServiceTempl ate and Item Matching

Items in the lookup service are matched using instances of the Se rvi ceTempl ate 5
class.

public class ServiceTemplate implements Serializable { i
public ServiceTemplateCServiceID serviceID,

ClassE] serviceTypes, !

Entry[] attributeSetTemplates) {m} l

public Servi ceID serviceID; !
public Class[] serviceTypes; i

public Entryl] attributeSetTemplates;
}

The constructor simply assigns each parameter to the corresponding field. A ser-
vice item (item) matches a service template (tmp'l) if:

9 item. servi ceID equals tmpl .serviceID (or iftmpl .servi ceID is null),
and

o item.servi ce is an instance of every type in tmpl .serviceTypes, and

o i tem.attribute5ets contains at least one matching entry for each entry
template in tmpl .attributeSetTemplates.

231

232

.._fa

224 OTHER SUPPORTING trans

An entry matches an entry template if the class of the template is the same as,
or a superclass of, the class of the entry, and every non-null field in the template
equals the corresponding field of the entry. Every entry can be used to match more
than one template. For both service types and entry classes. type matching is
based simply on fully qualified class names. Note that in a service template, for
servi ceTypes and attri buteSetTemplates, a null field is equivalent to an
empty array; both represent a wildcard.

LU.2.4 Other Supporting Types

The Servi ceMatches class is used for the return value when looking up mul-
tiple items.

public class ServiceMatches implements Serializable {
public ServiceMatches(ServiceItemfl items,

int totalMatches) {..r}

public ServiceItem[] items;
public int totalMatches;

}

The constructor simply assigns each parameter to the corresponding field.
A Servi ceEvent extends RemoteEvent with methods to obtain the service ID

of the matched item, the transition that triggered the event, and the new state of
the matched item.

public abstract class ServiceEvent extends RemoteEvent {
public ServiceEventCObject source,

long eventID,

long seqNum,

MarshalledObject handback,

ServiceID serviceID,

int transition) {m}
public ServiceID getServiceID() {m}
public int getTransition() {m}

public abstract ServceItem getServiceItemC) {m}
}

The getServiceID and getTransition methods return the value of the corre-
sponding constructor parameter. The remaining constructor parameters are the
same as in the RemoteEvent constructor.

The rest of the semantics of both these classes is explained in the next section.

232

233

THE 11m LOOKUP sea VICE SPECIFICATION 225

LU.2.5 Se r-vi ceRegi strar i

TheServiceRegistrardefinesthenueflacetothelookupsendce.Thehnen . _
face is not a remote interface; each implementation of the lookup service exports ‘ !
proxy objects that implement the Servi ceRegi st rar interface local to the client,
using an implementation-specific protocol to communicate with the actual remote

server. All of the proxy methods obey normal RMI remote interface semantics i
except where explicitly noted. Two proxy objects are equal (using the equals ' 5

method) if they are proxies for the same lookup service. !
Methods are provided to register service items, find items that match a tem-

plate, receive event notifications when items are modified, and incrementally
explore the collection of items along the three major axes: entry class, attribute
value, and service type.

public inter-Face ServiceRegistrar {

ServiceRegistration registerCServiceItem item,

long leaseDuration)
th rows Remote Exception;

Object lookup(ServiceTemplate tmpl)

throws RemoteException;

ServiceMatches

lookupCServiceTemplate tmpl, int maxMatches)

throws RemoteException; l

int TRANSITION_MATCH_NOMATCH 1 << 0;

int TRANSITIDN_NOMATCH_MATCH 1 << 1;

int TRANSITION_MATCH_MATCH = 1 << 2;

EventRegistration notify(ServiceTemplate tmpl,

int transitions,

RemoteEventListener listener

MarshalledObject handback,

long leaseDuration)

throws RemoteException;

Class[] getEntryClasses(ServiceTemplate tmpl)
throws RemoteException;

0bject[] getFieldValuesCServiceTemplate tmpl.

233

234

—

226 ServiceRegistrar

int setIndex,

String field)

throws NoSuchFieldException. RemoteException;

C1ass[] getServi ceTypesCServiceTemp‘late tmpl,
String prefix)

throws RemoteException;

ServiceID getServi ceIDO;

LookupLocator getLocatorO throws RemoteException;

String[] getGroupsO throws RemoteException;
1-

Every method invocation on Servi ceReg‘istr'ar and ServiceRegistration is
atomic with respect to other invocations.

The register method is used to register a new service and to re-register an
existing service. The method is defined so that it can be used in an idempotent
fashion. Specifically, if a call to register results in a RemoteExcept‘ion (in
which case the item might or might not have been registered), the caller can sim“
ply repeat the call to register with the same parameters, until it succeeds.

To register a new service, item.serviceID should be null. In that case, if

item. service does not equal (using MarshalledObject.equa1 5) any existing
item’s service object, then a new service ID will be assigned and included in the
returned Se rvi ce Regi strati on (described in the next section). The service ID is

unique over time and Space with respect to all other service IDs generated by all
lockup services. If item. service does equal an existing item’s service Object, the
existing item is first deleted from the lookup service (even if it has different
attributes) and its lease is cancelled, but that item’s service ID is reused for the
newly registered item.

To re-register an existing service, or to register the service in any other lockup
service, item . servi ceID should be set to the same service ID that was returned

by the initial registration. If an item is already registered under the same service
ID, the existing item is first deleted (even if it has different attributes or a different

service instance) and its lease is cancelled by the lookup service. Note that service
object equality is not checked in this case, to allow for reasonable evolution of the

service (for example, the serialized form of the stub changes or the service imple-
ments a new interface).

Any duplicate attribute sets that are included in a service item are eliminated

in the stored representation of the item. The lease duration request (specified in
milliseconds) is not exact; the returned lease is allowed to have a shorter (but not

234

235

THE .IINI LOOKUF SERVICE SPECIFICATION

longer) duration than what was requested. The registration is persisrent across

restarts (crashes) of the lockup service until the lease expires or is cancelled.

The single-parameter form of lockup returns the service object (i.e., just

Se rvi ceItem.servi ce) from an item matching the template or null if there is

no match. If multiple items match the template, it is arbitrary as to which service

object is returned by the invocation. If the returned object cannot be deserialized,
an Unmarshal Exception is thrown with the standard RMI semantics.

The two—parameter form of lockup returns at most maxi/latches items match-

ing the template and the total number of items that match the template. The return

value is never null, and the returned items array is null only if maxMatches is

zero. For each returned item, if the service object cannot be deserialized, the

service field of the item is set to null and no exception is thrown. Similarly, if

an attribute set cannot be deserialized, that element of the uni buteSets array is

set to null and no exception is thrown.

The notify method is used to register for event notification. The registration

is leased; the lease duration request (specified in milliseconds) is not exact. The

registration is persistent across restarts (crashes) of the lookup service untii the

lease expires or is cancelled. The event ID in the returned EventRegi' stration is

unique at least with respect to all other active event registrations at this lockup ser-

vice with different service templates or transitions.

While the event registration is in effect, a Servi ce Event is sent to the speci-

fied listener whenever a register, lease cancellation or expiration, or attribute

change operation results in an item changing state in a way that satisfies the tem-

plate and transition combination. The transitions parameter is the bitwise OR

of any non—empty set of transition values:

9 TRANSITION_MATCH_NOMATCH: An event is sent when the changed item

matches the template before the operation, but doesn't match the template

after the operation (this includes deletion of the item).

o TRANSITIONANOMATCHnMATCH: An event is sent when the changed item

doesn’t match the template before the operation (this includes not existing),

but does match the template after the operation.

0 TRANSITION_MATCH_MATCH: An event is sent when the changed item

matches the template both before and after the operation.

The getTransiticn method of Se rvi ceEvent returns the singleton transi—

tion value that triggered the match.

The getServiceItem method of Serv‘i ceEvent returns the new state of the

item (the state after the operation) or null if the item was deleted by the opera-

tion. Note that this method is declared abstract; a lockup service uses a subclass
of Se rv-i ceEvent to transmit the new state of the item however it chooses.

235

227

236

-—fi———fi

228 Serviceflegfsrrar

Sequence numbers for a given event ID are strictly increasing. If there is no
gap between two sequence numbers, no events have been missed; if there is a gap,
events might (but might not) have been missed. For example, a gap might occur if
the lockup service crashes, even if no events are lost due to the crash.

As mentioned earlier, users are allowed to explore a collection of items down

each of the major axes: entry class, attribute value, and service type.
The getEntryCl asses method looks at all service items that match the spec-

ified template, finds every entry (among those service items) that either doesn’t

match any entry templates or is a subclass of at least one matching entry template,
and returns the set of the (most specific) classes of these entries. Duplicate classes
are eliminated, and the order of classes within the returned array is arbitrary. A
null reference (not an empty array) is returned if there are no such entries or no

matching items. If a returned class cannot be deserialized, that element of the

returned array is set to null and no exception is thrown.

The get FieldVal ues method looks at all service items that match the speci—
fied template, finds every entry (among these service items) that matches
tmpl an m" buteSetTempl ates [setIndex], and returns the set of values of the

specified field of these entries. Duplicate values are eliminated, and the order of

values within the returned array is arbitrary. a null reference (not an empty array)
is returned if there are no matching items. If a returned value cannot be deserial-

ized, that element of the returned array is set to null and no exception is thrown.
NcSuchFieldException is thrown if field does not name a field of the entry
template.

The getServi ceTypes method looks at all service items that match the spec-
ified template and, for every service item, finds the most specific type (class or
interface) or types the service item is an instance of that are neither equal to, nor a
superclass of, any of the service types in the template and that have names that

start with the specified prefix, and returns the set of all such types. Duplicate types
are eliminated, and the order of types within the returned array is arbitrary. A
null reference (not an empty array) is returned if there are no such types. If a
returned type cannot be deserialized, that element of the returned array is set to
null and no exception is thrown.

Every lockup service assigns itself a service ID when it is first created; this
service ID is returned by the getServiceID method. (Note that this does not
make a remote call.) A lockup service is always registered with itself under this

service ID, and if a lockup service is configured to register itself with other lockup
services, it will register with all of them using this same service ID.

The getLocatcr' method returns a Lookuchcator that can be used if neces-

sary for unicast discovery of the lockup service. The definition of this class is

given in the Jini Technology Discovery and Join Specification.

236

237

*. J

THE JINI LOOKUP SERVICE SPECIFICATION 229

The getGroups method returns the set of groups that this lookup service is
currently a member of. The semantics of these groups is defined in the Jim Tech-
nology Discovery and Join Specification.

LILZfi ServiceRegistration

A registered service item is manipulated using a Servi ceRegi strati on instance.

public interface Servi ceRegistration {
ServiceID getServiceIDO;

Lease getLeaset);

void addAttributescEntry[] attrSets)
throws UnknownLeaseException, RemoteException:

void modifyAttributesCEntry[] attrSetTemplates,
EntryE] attrSets)

th rows UnknownLeaseExcepti on, RemoteExcepti on ;

void setAttributesCEntryU attrSets)

throws UnknownLeaseException. RemoteException;

} i

Like ServiceRegistrar. this is not a remote interface; each implementation of .:
the lookup service exports proxy objects that implement this interface local to the
client. The proxy methods obey normal RMI remote interface semantics.

The getServi 0310 method returns the service 1D for this service. (Note that
this does not make a remote call.)

The get Lease method returns the lease that controls the service registration,
allowing the lease to be renewed or cancelled. (Note that getLease does not make
a remote call.)

The addAttri butes method adds the specified attribute sets (those that aren’t
duplicates of existing attribute sets) to the registered service item. Note that this
operation has no effect on existing attribute sets of the service item and can be __
repeated in an idempotent fashion. UnknownLeaseExcepti on is thrown if the reg-
istration lease has expired or been cancelled. '

The modi fyAttri butes method is used to modify existing attribute sets. The
lengths of the attrSetTempl ates and attrSets arrays must be equal, or
IT 1 egal ArgumentExce pt‘i on is thrown. The service item’s attribute sets are mod-
ified as follows. For each array index i: if attrSetsEi] is nul i, then every entry
that matches attrSetTemp'l ates[i] is deleted; otherwise, for every non-null
field in attrSets [i]. the value of that field is stored into the corresponding field

i _ of every entry that matches attrSetTemplates[i]. The class of attrSets [i]
i must be the same as, or a superclass of. the class of attrSetTemp'l atesEi], or

237

238

, I

230 SERIAIJZED FORMS

I'I'IegalArgumentException is thrown. If the modifications result in duplicate
entries within the service item, the duplicates are eliminated. An

UnknownLeaseExcepti on is thrown if the registration lease has expired or been
cancelled.

Note that it is possible to use modi 'FyAttributes in ways that are not idem-
potent. The attribute schema should be designed in such a way that all intended
uses of this method can be performed in an idempotent fashion. Also note that

merit fyAttributes does not provide a means for setting a field to null; it is
assumed that the attribute schema is designed in such a way that this is not neces~
sary.

The setAttr-i butes method deletes all of the service item’s existing
attributes and replaces them with the specified attribute sets. Any duplicate
attribute sets are eliminated in the stored representation of the item.

UnknownLeaseExcept‘ion is thrown if the registration lease has expired or been
cancelled.

LU.2.7 Serialized Forms

Class I serial VersionUID Serialized Fields

Servi ceID —7803375959559762239L long mostS‘ig

long 'Ieastsi'g

Se r‘vi ceItem 717395451032330758L ailpublicfieids

Servi ceTempl ate 7854483807886483216L all publicfieids

Se rvi ceMatches “551828034353739939814 all pubit‘cfields

ServiceEvent 13049972740968427011. ServiceID serviceID
- int transition

238

239

239

240

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION defines a set ofattributes
that u loco! administrator might choose to place on a. service. These are

“serving suggestions ”—nobody is required to use these
attribute definitions, but they give a starting pointfor

a people who need such attributes to either use directly
or use for inspiration. This also describes the common

U stylefor entry design, including the eanonieai way to
present your entry as o. Jo voBean object.

INIT”

240

241

:1

The Jini Lookup Attribute
Schema Specification

LS.1 Introduction

THE Jini Lookup service provides facilities for services to advertise their avail-
ability and for would-be clients to obtain references to those services based on the

attributes they provide. The mechanism that it provides for registering and query-
ing based on attributes is centered on the Java platform type system, and is based
on the notion of an entry.

An entry is a class that contains a number of public fields of object type. Ser~
vices provide concrete values for each of these fields; each value acts as an

attribute. Entries thus provide aggregation of attributes into sets; a service may
provide several entries when registering itself in the lookup service, which means
that attributes on each service are provided in a set of sets.

The purpose of this document is to provide a framework in which services and

their would—be clients can interoperate. This framework takes two parts:

0 We describe a set of common predefined entries that span much of the basic

functionality that is needed both by services registering themselves and by
entities that are searching for services.

0 Since we cannot anticipate all of the future needs of clients of the lookup ser-
vice, we provide a set of guidelines and design patterns for extending, using,
and imitating this set in ways that are consistent and predictable. We also

construct some examples that illustrate the use of these patterns.

241

233

242

234 TERMINOLOGY

LS.1.1 Terminology

Throughout this document, we will use the following terms in consistent ways:

0 Service—a service that has registered, or will register, itself with the lookup
service

9 Client—an entity that performs queries on the lockup service, in order to
find particular services

LS.1.2 Design Issues

Several factors influence and constrain the design of the lockup service schema.

Matching Cannot Always Be Automated

No matter how much information it has at its disposal, a client of the lookup ser-
vice will not always be able to find a single unique match without assistance when
it performs a lockup. In many instances we expect that more than one service will
match a particular query. Accordingly, both the lookup service and the attribute
schema are geared toward reducing the number of matches that are returned on a
given lockup to a minimum, and not necessarily to just one.

Attributes Are Mostly Static

We have designed the schema for the lookup service with the assumption that
most attributes will not need to be changed frequently. For example, we do not
expect attributes to change more often than once every minute or so. This decision
is based on our expectation that clients that need to make a choice of service based
on more frequently updated attributes will be able to talk to whatever small set of
services the lookup service returns for a query, and on our belief that the benefit of
updating attributes frequently at the lookup service is outweighed by the cost in
network traffic and processing.

Humans Need to Understand Most Attributes

A corollary of the idea that matching cannot always be automated is that
humans—whether they be users or administrators of services—must be able to
understand and interpret attributes. This has several implications:

242

243

——————_

THE JEN] LOOKUP AITRIBUI'E SCHEMA SPECIFIC/lHON 235

0 We must provide a mechanism to deal with localization of attributes

o Multiple—valued attributes must provide a way for humans to see only one
value (see Section L52)

We will cover human accessibility of attributes soon.

Attributes Can Be Changed by Services or Humans, But Not Both

For any given attribute class we expect that attributes within that class will all be

set or modified either by the service, or via human intervention, but not both.

What do we mean by this? A service is unlikely to be able to determine that it has

been moved from one room to another: for example, so we would not expect the
fields of a “location” attribute class to be changed by the service itself. Similarly,
we do not expect that a human operator will need to change the name of the ven-
dor of a particular service.

This idea has implications for our approach to ensuring that the values of
attributes are valid.

Attributes Must Interoperate with JavaBeans Components

The JavaBeans specification provides a number of facilities relating to the local-
ized display and modification of properties, and has been widely adopted. It is to
our advantage to provide a familiar set of mechanisms for manipulating attributes
in these ways.

U)
_.—-., P'.‘

i" 5(0
a.» gN dunner]

LS.1.3 Dependencies

This document relies on the following other specifications:

0 Jim' Entity Specification

0 flat Entry Utilities Specy‘icatt’on

6 JavaBeaiis Speafication i

243

244

P————_

THE MN! LOOKUP A ITRIB UTE SCHEMA SPECIFICA "HON 237

LS.2 Human Access to Attributes . |

LS.2.1 Providing a Single View of an Attribute’s Value

CONSIDER the following entry class:
public class Foo implements net.jini.core.entr‘y.Entr‘y {

public Bar baz;

}

public class Bar {

int quux;

boolean zot;

}

A visual search tool is going to have a difficult time rendering the value of an
instance of class Bar in a manner that is comprehensible to humans. Accordingly,
to avoid such situations, entry class implementors should use the following guide
lines when designing a class that is to act as a value for an attribute:

9 Provide a property editor class of the appropriate type, as described in Sec—
tion 9.2 of the JavrrBeans Specification.

O Extend the java . awt .Componen 1: class; this allows a value to be represented

by a JavaBeans component or some other “active” object.

9 Provide either a non-default implementation of the Object . toStri ng
method or inherit directly or indirectly from a class that does so (since the
default implementation of Object . toSt ri ng is not useful).

One of the above guidelines should be followed for all attribute value classes.

Authors of entry classes should assume that any attribute value that does not sat—
isfy one of these guidelines will be ignored by some or all user interfaces.

244

245

5*

THE JIM LOOKUP ATTRIBUTE SCHEMA SPECIFICATION 239

LS.3 JavaBeans Components and Design

Patterns r

LS.3.1 Allowing Display and Modification of Attributes

‘ l E use JavaBeans components to provide a layer of abstraction on top of the
individual classes that implement the net.jinr‘ .core.entry.Entry interface.

This provides us with several benefits:

0 This approach uses an existing standard and thus reduces the amount of

unfamiliar material for programmers.

o lavaBeans components provide mechanisms for localized display of

attribute values and descriptions.

o Modification of attributes is also handled, via property editors.
LS.3.1.1 Using JavaBeans Components with Entry Classes

Many, if not most, entry classes should have a bean class associated with them.

Our use of JavaBeans components provides a familiar mechanism for authors of

browse/search tools to represent information about a service’s attributes, such as

its icons and appropriately localized descriptions of the meanings and values of its I

attributes. JavaBeans components also play a role in permitting administrators of a

service to modify some of its attributes. as they can manipulate the values of its

attributes using standard lavaBeans component mechanisms.

For example, obtaining a java . beans . BeanDescrr‘ ptor for a JavaBeans

component that is linked to a “location” entry object for a particular service allows

a programmer to obtain an icon that gives a visual indication of what that entry

class is for, along with a short textual description of the class and the values of the

individual attributes in the location object. it also permits an administrative tool to

view and change certain fields in the location, such as the floor number.

245

246

_—

240 ' ASSOCIATTNG IA VABEANS COMPONENTS WITH ENTRY CLASSES

LS.3.2 Associating JavaBeans Components with Entry Classes

The pattern for establishing a link between an entry object and an instance of its
JavaBeans component is simple enough, as this example illustrates:

package org.example.foo;

import java.io.5erializable;

import net.jini.lookup.entry.EntryBean;

import net.jini.entry.AbstractEntry;

public class Size {

public int value;
}

public class Cavenewt extends AbstractEntry {
public Cavenewt() {
}

public Cavenewt£5ize anvilSize) {

this.anvilSize = anvilSize;
}

public Size anvilSize;
}

public class Cavenethean implements EntryBean, Serializable {
protected Cavenewt assoc;

public CavenetheanC) {
super():

assoc = new CavenewtC);
}

public void setAnvilSizeCSize x) {
assoc.anvilSize = x;

}

public Size getAnvilSize() {

return assoc.anvilSize;
}

public void makeLink(Entry obj) {
assoc = (Cavenewt) obj;

}

public Entry followLinkC) {
return assoc;

}

246

247

THE 11m L00KUP ATTRIB UTE SCHEMA SPECIFICA TION 241

From the above, the pattern should be relatively clear:

9 The name of a JavaBeans component is derived by taking the fully qualified

entry class name and appending the string Bean; for example, the name of

the JavaBeans component associated with the entry class foobar. Baz is

foo . bar .BazBean. This implies that an entry class and its associated Java-

Beans component must reside in the same package.

0 The class has both a public no-arg constructor and a public constnictor that

takes each public object field of the class and its superclasses as parameter.

The former constructs an empty instance of the class, and the latter initial-

izes each field of the new instance to the given parameter.

E
.i
"l|

0 The class implements the net . j'l n-i . core . entry. Entry interface, prefera-
bly by extending the net . ji n1' .ent ry .AbstractEntry class, and the Java-

Beans component implements the net.jini .lookup.entry. EntryBean
interface.

0 There is a one—to—one link between a JavaBeans component and a particular

entry object. The makeLi nk method establishes this link and will throw an

exception if the association is with an entry class of the wrong type. The

FollowL'i nk method returns the entry object associated with a particular

JavaBeans component.
(S'I) mumps

ro
o
77‘
:

"cl0 The no—arg public constructor for a JavaBeans component creates and makes

a link to an empty entry object.
4. For each public object field fee in an entry class, there exist both a setFoo

and a getFoo method in the associated JavaBeans component. The setFoo

method takes a single argument of the same type as the foo field in the asso—

ciated entry and sets the value of that field to its argument. The getFoo
method returns the value of that field.

LS.3.3 Supporting Interfaces and Classes

The following classes and interfaces provide facilities for handling entry classes

and their associated JavaBeans components.

package net . ji ni .lookup.entry;

public class EntryBeans {

public static EntryBean createBeanfiEntry e)

throws ClassNotFoundException, java.io.IOException {...}

247

248

a

242 SUPPORTING INTERFACES AND CLASSES

public static Class getBeanClassCClass C)
throws _C'| assNotFoundException {...}

public interface EntryBean {

void makeLink(Entry e);

Entry followLinkO;
}

The EntryBeans class cannot be instantiated. lts sole method, createBean, cre-
ates and initializes a new JavaBeans component and links it to the entry object it is
passed. If a problem occurs creating the JavaBeans component, the method throws
either java . io . IOExcept'i on or Cl assNotFoundExcepti on.

The createBean method uses the same mechanism for instantiating a Java—
Beans component as the java.beans.Beans.‘instantiate method. It will ini—
tially try to instantiate the JavaBeans component using the same class loader as
the entry it is passed. If that fails, it will fall back to using the default class loader.

The getBeanC'l ass method returns the class of the JavaBeans component
associated with the given attribute class. If the class passed in does not implement
the net.jini .core.entry. Entry interface, an I'I'Iega'lArgumentException is
thrown. If the given attribute class cannot be found, a ClassNotFoundExcepti on
is thrown.

The EntryBean interface must be implemented by all JavaBeans components
that are intended to be linked to entry objects. The makeLi nk method establishes a
link between a JavaBeans component object and an entry object, and the
fol ‘lowLi nk method returns the entry objecr linked to by a particular JavaBeans
component. Note that objects that implement the EntryBean interface should not
be assumed to perform any internal synchronization in their implementations of
the makeLi nk or followLi nk methods, or in the setFoo or getFoo patterns.

248

249

THE JIM LOOKUP ATTRIBUTE SCHEMA SPECIFICATION

LS.4 Generic Attribute Classes

E b B will now describe some attribute classes that are generic to many or all ser—
vices, and the Javchans components that are associated with each. Unless other-

wise stated, all classes defined here live in the net . jini .lookup . entry

package. The definitions assume the fol]owing classes to have been imported:

java.io.Serializabl e

net . ji ni .entry .AbstractEntry

LS.4.1 Indicating User Modifiability

To indicate that certain entry classes should only be modified by the service that

registered itself with instances of these entry classes, we annotate them with the
Se rvi ceControl l ed interface.

public interface ServiceControlled {

}

Authors of administrative tools that modify fields of attribute objects at the lookup

service should not permit users to either modify any fields or add any new

instances of objects that implement this interface.

LS.4.2 Basic Service Information

The Se rvi ceInfo attribute class provides some basic information about a service.

public Class ServiceIni‘o extends AbstractEntry

implements Servi ceControlled

public ServiceInfoO {...}

public Servicelnfo(5tring name, String manufacturer,

String vendor. String version,

String model, String serialNumber) {...}

249

243

i

250

——

244 BASIC SERwas INFOWTION

public String name;

public String manufacturer;

public String vendor;

public String version;

public String model;

public String serialNumber;

public class ServiceInFoBean

implements EntryBean, Serializable
{

public String getNameC) {m}

public void setName(String s) {m}

public String getManufacturerC) {m}

public void setManufacturer(String s) {m}

public String getVendor() {m}

public void setVendor(String s) {m}

public String getVersion() {m}

public void setVersionCString s) {m}

public String getModelfl) {m}

public void setModel(String s) {m}

public String getSeriaTNumber() {m}

public void setSerialNumberCString 5) {m}
}

Each service should register itself with only one instance of this class. The fields

of the Se rvi ceInfo class have the following meanings:

o The name field contains a specific product name, such as "Ultra 30" (for a
particular workstation) or " JavaSafe" (for a specific configuration manage-
ment service). This string should not include the name of the manufacturer
or vendor.

o The manufactu rer field provides the name of the company that “built” this
service. This might be a hardware manufacturer or a software authoring
company.

0 The vendor field contains the name of the company that sells the software
or hardware that provides this service. This may be the same name as is in
the manufactu rer field, or it could be the name of a reseller. This field exists

so that in cases in which resellers relabel products built by other companies,
users will be able to search based on either name.

250

251

THE JJNI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION

c The version field provides information abOut the version of this service. it
is a free-form field, though we expect that service implementors will follow
normal versionrnaming conventions in using it.

o The model field contains the specific model name or number of the product,

if any.

0 The ser'i al Number field provides the serial number of this instance of the

service, if any.

LS.4.3 More Specific Information

The Se rvi ceType class allows an author of a service to deliver information that is
specific to a particular instance of a service, rather than to services in general.

public class ServiceType extends AbstractEntr‘y

implements ServiceControlled

{

public ServiceTypeO {...}

public java.awt.Image getIcon(int iconKind) {...}

public String getDisplayNameO {...}

public String getShortDescriptionO {...}
}

Each service may register itself with multiple instances of this class, usually with
one instance for each type of service interface it implements.

This class has no public fields and, as a result, has no associated JavaBeans
component.

The getIcon method returns an icon of the appropriate kind for the service; it
works in the same way as the getIcon method in the java.beans.BeanInfc
interface, with the value of i conKi nd being taken from the possibilities defined in
that interface. The getD". spl ayName and getShortDescr‘i pti on methods return
a localized human-readable name and description for the service, in the same

manner as their counterparts in the java. beans . FeatureDescri ptor class. Each
of these methods returns null if no information of the appropriate kind is defined.

In case the distinction between the information this class provides and that

provided by a J avaBeans component’s metainformation is unclear, the class
Se rvi ceType is meant to be used in the lookup service as one of the entry classes
with which a service registers itself, and so it can be customized on a per—service
basis. By contrast, the FeatureDescri ptor and BeanInfo objects for all
Ent r'yBean classes provide only generic information about those classes and none
about specific instances of those classes.

251

245

(ST) Bumps
L'“o
o
77‘
a

"U

252

246 NAMINU A SEE VICE

LS.4.4 Naming a Service

People like to associate names with particular services and may do so using the
Name class.

public class Name extends AbstractEntry -[
public NameO {...}

public Name(String name) {...}

public String name;

public class NameBean implements EntryBean, Serializable {
public String getNameC) {...}

public void setName(String s) {...}
}

Services may register themselves with multiple instances of this class, and either
services or administrators may add, modify, or remove instances of this class from
the attribute set under which a service is registered.

The name field provides a short name for a particular instance of a service (for
example, “Bob ’ s toaster”).

LS.4.5 Adding a Comment to a Service

In cases in which some kind of comment is appropriate for a service (for example,
“this toaster tends to burn bagel s”), the Comment class provides an appro-
priate facility.

public class Comment extends AbstractEntry {
public CommentO {...}

public CommentCString comment) {...}

public String comment;

public class CommentBean implements EntryBean, Serializable {
public String getCommentO {...}

public void setComment(String s) L}

252

253

THE JEN! LOOKUP AIYRIBUTE SCHEMA SPECIFICATION

A service may have more than one comment associated with it, and comments

may be added, removed: or edited by either a service itself, administrators, or
users.

LS.4.6 Physical Location

The Location and Address classes provide information about the physical loca-

tion of a particular service.

Since many services have no physical location, some have one, and a few may

have more than one, it might make sense for a service to register itself with zero or

more instances of either of these classes, depending on its nature.

The Location class is intended to provide information about the physical

location of a service in a single building or on a small, unified campus. The

Address class provides more information and may be appropriate for use with the

Location class in a larger, more geographically distributed organization.

public class Location extends AbstractEntry {

public LocationO {m}

public LocationCString floor, String room,

String building) {.._}

public String floor;

public String room;

public String building;

}

public class LocationBean implements EntryBean, Serializable {

public String getFloorC) {m}

public void setFloor(String s) {m}

public String getRoomC) {m}

public void setRoom(String s) {m}

public String getBuilding() {m}

public void setBuilding(String s) {m}

public class Address extends AbstractEntry {

public AddressO {...}

public AddresstString street, String organization,

String organizationalUnit, String locality,

String stateOrProvince, String postalCode,

253

247

254

—fi

248 STATUS INFORMATION

String country) -{...}

public String street;

public String organization;

public String organizationalUnit;

public String locality;

public String stateOrProvince;

public String postalCode;

public String country;

public class AddressBean implements EntryBean, Serializable {
public String getStreet() {m}

public void setStreet£String s) {m}

public String getOrganizationC) {m}

public void setOrganizationtString s) {m}

public String getOrganizationalUnitC) {m}

public void setOrganizationalUnitCString s) {m}

public String gettocality() {m}

public void setLocalityCString s) {m}

public String getStateOrProvinceC) {m}

public void setStateOrProvince(String s) {m}
public String getPostalCode() {m}

public void setPostalCode(String s) {m}

public String getCountry() {m}

public void setCountry(String s) {m}
}

We believe the fields of these classes to be self—explanatory, with the possible
exception of the locality field of the Address class, which would typically hold
memmmofadw.

LS.4.7 Status Information

Some attributes of a service may constitute long-lived status, such as an indication

that a printer is out of paper. We provide a class, Status= that implementors can
use as a base for providing status—related entry classes.

public abstract class Status extends AbstractEntry {
protected StatusO {...}

protected Status(StatusType severity) {m}

254

255

*

THE JINI LOOKUP AWRIBUTE SCHEMA SPECIFICATYON 249

public StatusType seve r'i ty;
}

public class StatusType implements Serializable {
private final 'int typE;

private StatusTypeClnt t) { tYPE = ti }
public static final StatusType ERROR = new StatusTyDECl);
public static final StatusType WARNING =

new StatusTypeQ):

DUblic static final StatusTyPe NOTICE = new StatusTyp6(3):
public static final StatusType NORMAL = new StatusTYPeC4); |

} I

public abstract class StatusBean

implements EntryBean, Serializab'le I
{

public StatusType getSeverityO {...}
public void setSeverityCStatusType i) {...}

 }

. U3 t"
We define a separate StatusType class to make it poss1ble to wnte a property ed1— F g. g
tor that will work with the StatusBean class (we do not currently provide a prop- 33 g g

. . . I-l
erty ed1t0r Implementation). :a '5

LS.4.8 Serialized Forms

Class seri a'l VersionUID Serialized Fields

Address 2896136903322046578L all publicfields

Add ressBean 4491500432084550577L Address asoc

Comment 7138608904371928208L all publicfields

CommentBean 5272583409036504625L Comment asoc

Location -3275276677967431315L all pubiicfields

Locati onBean 4182591284470292829L Location asoc

Name 2743215148071307201L all publiefieids

NameBean —6026791845102735793L Name asoc '
Servi ceImCo —l116664185758541509L allpubiicfields

255

256

__-_-------IIII-IIIIIIIIIIIII-II-ll-I-IIIIIIIIIIII

250 SERMLEHIIFORMS

K Class 52H 31 VersionUID Serialized Fields
ServiceInfoBean 8352546663361067804L ServiceInfo asoc

Servi ceType —644380972| 367395836L all pubficflelds

Status —5193075846115040838L aflpubhcfiekfi

StatusBean —1975539395914887503L Status asoc

StatusType —8268735508512712203L int type

256

257

251

Hoax—Emagma.»FE

257

258

THE JAVASPACES SPECIFICATION describes the JavaSpaces service defined in the

package net. j in 1' . javaSpace. A .IavaSpaces service provides a simple

yet powerful persistent coordination tool for

transactionaiiy governed cooperation between loosely

a coupled players in distributed protocois.
U

INI”

258

259

The JavaSpaces Specification

J8.1 Introduction

DISTRIBUTED systems are hard to build. They require careful thinking about
problems that do not occur in local computation. The primary problems are those

of partial failure, greatly increased latency, and language compatibility. The Java
programming language has a remote method invocation system called RMl that

lets you approach general distributed computation in the Java programming lan—

guage using techniques natural to the Java programming language and application
environment. This is layered on the Java platform’s object serialization mecha-

nism to marshal parameters of remote methods into a form that can be shipped
across the wire and unmarshalled in a remote server’s Java virtual machine (JVM).

This specification describes the architecture of JavaSpaces technology, which

is designed to help you solve two related problems: distributed persistence and the

design of distributed algorithms. JavaSpaces services use RMI and the serializa-
tion feature of the Java programming language to accomplish these goals.

JS.1.1 The JavaSpaces Application Model and Terms

A JavaSpaces service holds entries. An entry is a typed group of objects,

expressed in a class for the Java platform that implements the interface
net.jini .co re.entry.Entry. Entries are described in detail in the Jini Entry

Specification.

An entry can be written. into a JavaS paces service, which creates a copy of

that entry in the space1 that can be used in future lookup operations.

The term “space" is used to reter to a JavaSpaccs service implementation.

259

253

t?
AS-
'35:
JP.G

Ufi
'4}.

s93BdSBABf

260

254 THE .M VASPACES APPLICATION MODEL AND TERMS

You can look up entries in a JavaSpaces service using tempiates, which are

entry objects that have some or all of its fields set to specified values that must be
matched exactly. Remaining fields are left as wildcards—these fields are not used

in the lookup.

There are two kinds of lookup operations: read and take. A read request to a

space returns either an entry that matches the template on which the read is done,
or an indication that no match was found. A take request operates like a read, but

if a match is found, the matching entry is removed from the space.

You can request a J avaSpaces service to notrfi; you when an entry that

matches a specified template is written. This is done using the distributed event
model contained in the package net . j'i n-i .core.event and described in the Jim

Distributed Event Specification.

All operations that modify a JavaSpaces service are performed in a transac-

tionally secure manner with respect to that space. That is, if a write operation
returns successfully, that entry was written into the space (although an intervening

take may remove it from the space before a subsequent lookup of yours). And if a
take operation returns an entry, that entry has been removed from the space, and
no future operation will read or take the same entry. .In other words, each entry in

the space can be taken at most once. Note, however, that two or more entries in a

space may have exactly the same value.
The architecture of JavaSpaces technology supports a simple transaction

mechanism that allows multi-operation andfor multispace updates to complete

atomically. This is done using the two-phase commit model under the default
transaction semantics, as defined in the package net.jini .cor‘e.transact‘ion

and described in the Jini Transaction Specification.

Entries written into a JavaSpaccs service are governed by a lease, as defined

in the package net. j'ini . core . lease and described in the Jini Distributed Lease

Specification.

JSJJJ Distributed Persistence

Implementations of JavaSpaces technology provide a mechanism for storing a

group of related objects and retrieving them based on a value-matching lookup for

specified fields. This allows a JavaSpaces service to be used to store and retrieve

objects on a remote system.

JS.1.1.2 Distributed Algorithms as Flows of Objects

Many distributed algorithms can be modeled as a flow of objects between partici-

pants. This is different from the traditional way of approaching distributed com-

260

261

THE IAVASPA CES SPECIFICATION

puting, which is to create method-invocation—style protocols between participants.
In this architecture’s “flow of objects” approach, protocols are based on the move-

ment of objects into and out of implementations of JavaSpaces technology.
For example, a book-ordering system might look like this:

4» A book buyer wants to buy 100 copies of a book. The buyer writes a request
for bids into a particular public JavaSpaces service.

9 The broker runs a server that takes those requests out of the space and writes

them into a JavaSpaces service for each book seller who registered with the
broker for that service.

9 A server at each book seller removes the requests from its JavaSpaces ser—

vice, presents the request to a human to prepare a bid, and writes the bid into
the space specified in the book buyer’s request for bids.

0 When the bidding period closes, the buyer takes all the bids from the space

and presents them to a human to select the winning bid.

A method-invocation-style design would create particular remote interfaces for
these interactions. With a “flow of objects" approach, only one interface is

required: the net . j 1' hi .space . JavaSpace interface.
In general, the JavaSpaces application world looks like this:

Identities

4

JavaSpaces
service

JavaSpaces
service

JavaSpaces
service

261

255

.A
Li

3 Kfiolouqoal sooedgeaef

262

—

256 Havana‘s

Clients perform operations that map entries or templates onto JavaSpaces ser—
vices. These can be singleton operations (as with the upper client), or contained in
transactions (as with the lower client) so that all or none of the operations take
place. A single client can interact with as many spaces as it needs to. Identities are
accessed from the security subsystem and passed as parameters to method invoca-

tions. Notifications go to event catchers, which may be clients themselves or prox-
ies for a client (such as a store—and—forward mailbox).

J5.1.2 Benefits

JavaSpaces services are tools for building distributed protocols. They are designed
to work with applications that can model themselves as flows of objects through
one or more servers. If your application can be modeled this way, JavaSpaces
technology will provide many benefits.

JavaSpaces services can provide a reliable distributed storage system for the
objects. In the book-buying example, the designer of the system had to define the
protocol for the participants and design the various kinds of entries that must be

passed around. This effort is akin to designing the remote interfaces that an equiv—
alent customized service would require. Both the JavaSpaces system solution and
the customized solution would require someone to write the code that presented
requests and bids to humans in a GUI. And in both systems, someone would have
to write code to handle the seller’s registrations of interest with the broker.

The server for the model that uses the JavaSpaces API Would be implemented
at that point.

The customized system would need to implement the servers. These servers
would have to handle concurrent access from multiple clients. Someone would
need to design and implement a reliable storage strategy that guaranteed the
entries written to the server would not be lost in an unrecoverable or undetectable

way. If multiple bids needed to be made atomically, a distributed transaction sys-
tem would have to be implemented.

All these concerns are solved in JavaSpaces services. They handle concurrent
access. They store and retrieve entries atomically. And they provide an implemen—
tation of the distributed transaction mechanism.

This is the power of the JavaSpaces technology architecture—many common
needs are addressed in a simple platform that can be easily understood and used in
powerful ways.

JavaSpaces services also help with data that would traditionally be stored in a
file system, such as user preferences, e-mail messages, and images. Actually, this
is not a different use of a JavaSpaces service. Such uses of a file system can
equally be viewed as passing objects that contain state from one external object

262

263

THE M. VASPA CES SPEECH“) CA WON

(the image editor) to another (the window system that uses the image as a screen

background). And JavaSpaces services enhance this functionality because they
store objects, notjust data, so the image can have abstract behavior, not just inforr
mation that must be interpreted by some external application(s).

JavaSpaces services can provide distributed object persistence with objects in
the Java programming language. Because code written in the Java programing
language is downloadable, entries can store objects whose behavior will be trans-
mitted from the writer to the readers, just as in an RM] using Java technology. An

entry in a space may, when fetched, cause some active behavior in the reading cli-
ent. This is the benefit of storing objects, not just data, in an accessible repository

for distributed cooperative computing.

J8.1.3 JavaSpaces Technology and Databases

A JavaSpaces service can store persistent data which is later searehable. But a
JavaSpaces service is not a relational or object database. JavaSpaces services are
designed to help solve problems in distributed computing, not to be used primarily
as a data repository (although there are many data storage uses for JavaSpaces

applications). Some important differences are:

c Relational databases understand the data they store and manipulate it

directly via query languages. JavaSpaces services store entries that they
understand only by type and the serialized form of each field. There are no

general queries in the IavaSpaces application design, only “exact match” or
“don’t care” for a given field. You design your flow of objects so that this is

sufficient and powerful.

9 Object databases provide an object oriented image of stored data that can be
modified and used, nearly as if it were transient memory. JavaSpaces sys—

tems do not provide a nearly transparent persistent/transient layer, and work

only on cepies of entries.

These differences exist because JavaSpaces services are designed for a differ-

ent purpose than either relational or object databases. A JavaSpaces service can be
used for simple persistent storage, such as storing a user’s preferences that can be
looked up by the user’s 1D or name. JavaSpaces service functionality is some
where between that of a filesystem and a database, but it is neither.

263

257

(Sf) i‘fiolouqoal saaedgeaef

264

—_—fi

253 JA VASPA CES SYSTEM DESIGN AND LINDA SYSTEMS

JS.1.4 JavaSpaces System Design and Linda2 Systems

The JavaSpaces system design is strongly influenced by Linda systems, which
support a similar model of entry-based shared concurrent processing. In Section
JS.4.I you will find several references that describe Linda-style systems.

No knowledge of Linda systems is required to understand this specification.
This section discusses the relationship of JavaSpaces systems with respect to
Linda systems for the benefit of those already familiar with Linda programming.
Other readers should feel free to skip ahead.

JavaSpaces systems are similar to Linda systems in that they store collections
of information for future computation and are driven by value~based lookup. They
differ in some important ways:

0 Linda systems have not used rich typing. JavaSpaces systems take a deep
concern with typing from the Java platform type—safe environment. In Java-
Spaces systems, entries themselves, not just their fields, are typed—two dif-
ferent entries with the same field types but with different data types for the
Java programming language are different entry types. For example, an entry
that had a string and two double values could be either a named point or a
named vector. In JavaSpaees systems these tWo entry types would have spe-
cific different classes for the Java platform, and templates for one type would
never match the other, even if the values were compatible.

9 Entries are typed as objects in the Java programming language, so they may
have methods associated with them. This provides a way of associating
behavior with entries.

0 As another result of typed entries, JavaSpaces services allow matching of
subtypes—a template match can return a type that is a subtype of the tem-
plate type. This means that the read or take may return more states than
anticipated. In combination with the previous point, this means that entry
behavior can be polymorphic in the usual object-oriented style that the Java
platform provides.

0 The fields of entries are objects in the Java programming language. Any
object data type for the Java programming language can be used as a tem~
plate for matching entry lookups as long as it has certain properties. This
means that computing systems constructed using the JavaSpaces API are

2 ”Linda” is the name of a public domain technology originally propounded by Dr. David Gelemter of
Yale University. “Linda" is also claimed as a trademark for certain goods by Scientific Computing As—
sociates, Inc. This discussion refers to the public domain “Linda" technology.

264

265

THE JAVASPACES SPECIFICATIUN 259

object—oriented from top to bottom, and behavior—based (agentelike) applica-
tions can use JavaSpaces services for co—ordination.

0 Most environments will have more than one JavaSpaces service. Most Linda

tuple spaces have one tuple space for all cooperating threads. So transactions
in the JavaSp'aces system can span multiple spaces (and even non-Java-

Spaces system transaction participants).

9 Entries written into a JavaSpaces service are leased. This helps keep the

space free of debris left behind due to system crashes and network failures.

0 The JavaSpaces API does not provide an equivalent of “eval” because it
would require the service to execute arbitrary computation on behalf of the
client. Such a general compute service has its own large number of require—
ments (such as security and fairness). |

On the nomenclature side, the JavaSpaces technology API uses a more acces-

sible set of terms than the traditional Linda terms. The term mappings are “entry” ;|

for “tuple”, “value” for “actual”, “wildcard” for “formal”, “write” for “out”, and I
“take” for “in”. So the Linda sentence “When you ‘out‘ a tuple make sure that 3|
aetuals and formals in ‘in’ and ‘read’ can do appropriate matching" would be I

translated to “When you write an entry make sure that values and wildcards in
‘take’ and ‘read‘ can do appropriate matching.”

J8.1.5 Goals and Requirements

The goals for the design of JavaSpaces technology are:

9 Provide a platform for designing distributed computing systems that simpli-
fies the design and implementation of those systems.

0 The client side should have few classes, both to keep the client—side model

simple and to make downloading of the client classes quick.

0 The client side should have a small footprint, because it will run on comput—

ers with limited local memory.

6 A variety of implementations should be possible, including relational data-
base storage and object—oriented database storage.

#n
..—. :-H '

m 3~_-‘ _
c
N
'4:

saaedgeaef
o It should be possible to create a replicated JavaSpaces service.

265

266

260 DEPENDENCE?

The requirements for JavaSpaces application clients are:

o It must be possible to write a client purely in the Java programming lan-
guage.

e Clients must be oblivious to the implementation details of the service. The
same entries and templates must work in the same ways no matter which
implementation is used.

JS.1.6 Dependencies

This document relies upon the following other specifications:

0 Java Remote Method Invocation Specification

9 Java Object Serialization Specification

9 Jini Entry Specification

0 Jini Entry Utilities Specification

0 Jini Distributed Event Specification

9 Jini Distributed Leasing Specification

0 Jini Transaction Specification

266

267

THE M VASPACES SPECIFICHTIUN

J8.2 Operations

THERE are four primary kinds of operations that you can invoke on a Java-
Spaces service. Each operation has parameters that are entries, including some

that are templates, which are a kind of entry. This chapter describes entries, tem—

plates, and the details of the operations, which are:

0 write: Write the given entry into this JavaSpaces service.

0 read: Read an entry from this JavaSpaccs service that matches the given

template.

0 take: Read an entry from this JavaSpaces service that matches the given

template, removing it from this space.

0 noti fy: Notify a specified object when entries that match the given template

are written into this JavaSpaces service.

As used in this document, the term “operation” refers to a single invocation of

a method; for example, two different take operations may have different tem-

plates.

J8.2.1 Entries

The types Entry and Unusabl eEnt r‘yExcept'i on that are used in this specification

are from the package net.jini .core.entry and are described in detail in the

Jim? Entry Specification. In the terminology of that specification wri te is a store

operation; read and take are combination search and fetch operations; and

notify sets up repeated search operations as entries are written to the space.

261

eO

a s
E} c:c

tn:
'4.

saoedgnaaf

267

268

_

262 net.jini . spaceJavaSpace

JS.2.2 net . j i ni . space. JavaSpace

All operations are invoked on an object that implements the JavaSpace interface.

For example, the following code fragment would write an entry of type

AttrEntry into the JavaSpaces service referred to by the identifier space:

JavaSpace space = getSpaceC);

AttrEntry e = new AttrEntry();

e name = "Duke";

e.value = new GIFImage(“dukeWave.gif");

space.write(e, null, 60 * 68 * l@@@);// one hour

// lease is ignored -~ one hour will be enough

The JavaSpace interface is:

package net.jini.space;

hmwtjwamm.fi

import net.jini.core.event.*;

import net.jini.core.transaction.*;

import net.jini.core.lease.*;

public interface JavaSpace {

Lease write(Entry e. Transaction txn, long lease)

throws RemoteException, TransactionException;

public final long N0_WAIT = 0: // don’t wait at all

Entry read(Entry tmpl. Transaction txn, long timeout)

throws TransactionException, UnusableEntryException.

RemoteException, InterruptedException;

Entry readIfExistsCEntry tmpl, Transaction txn,

long timeout)

throws TransactionException, UnusableEntryException.

RemoteException, InterruptedException;

Entry takeCEntry tmpl, Transaction txn, long timeout)

throws TransactionException, UnusableEntryException,

RemoteException, InterruptedException;

Entry takeIfExists(Entry tmpl, Transaction txnl

long timeout)

throws TransactionException, UnusableEntryException,

RemoteException. InterruptedException;

EventRegistration notify(Entry tmpl. Transaction txn,

RemoteEventListener listener, long lease,

268

269

THE JA VASPA CES SPECIFIC/4 TION

MarshalledObject handback)

throws RemoteException, TransactionException;

Entry snapshot£Entry e) throws RemoteException;

}

The Transaction and Transacti onException types in the above signatures are

imported from net . jini .core.transaction. The Lease type is imported from

net . ji ni .core . l ease. The RemoteEventLi stener and EventRegi stration

types are imported from net. ji ni .core.event.

In all methods that have the parameter, txn may be null, which means that no

Transaction object is managing the operation (see Section JS.3).

The JavaSpace interface is not a remote interface. Each implementation of a

JavaSpaces service exports proxy objects that implement the JavaSpace interface

locally on the client, talking to the actual JavaSpaces service through an imple—

mentation—specific interface. An implementation of any JavaSpace method may

communicate with a remote JavaSpaces service to accomplish its goal; hence,

each method throws RemoteExcepti on to allow for possible failures. Unless

noted otherwise in this specification, when you invoke JavaSpace methods you

should expect RemoteExcepti ons on method calls in the same cases in which you

would expect them for methods invoked directly on an RMI remote reference. For

example. invoking snapshot might require talking to the remote JavaSpaces

server, and so might get a RemoteExcepti on if the server crashes during the oper-
ation.

The details of each JavaSpace method are given in the sections that follow.

JS.2.2.1 InternalSpaceException

The exception Internal SpaceException may be thrown by a JavaSpaces service

that encounters an inconsistency in its own internal state or is unable to process a

request because of internal limitations (such as storage space being exhausted).

This exception is a subclass of RuntimeExcepti on. The exception has two con-

structors: one that takes a String description and another that takes a String and

a nested exception; both constructors simply invoke the Ru ntimeExcepti on con-

structor that takes a String argument.

package net.jini.space;

public class InternalSpaceException extends RuntimeException {

public final Throwable nestedException;

public InternalSpaceException(String msg) {...}

public InternalSpaceException(String msg, Throwable e} {...}

269

263

fi
A 9
9 =
$2G

4'.
seat:([5BABE

270

fi

264 wri' te

public printStackTraceO {...}

public pr'intStackTrace(Pr‘intStream out) {._.}
public printStackTraceCPrintWr‘iter out) {...}

}

The nestedException field is the one passed to the second constructor, or null if
the first constructor was used. The overridden printStackTr‘ace methods print
out the stack trace of the exception and, if nestedException is not null, print
out that stack trace as well.

JS.2.3 wr-i te

A write places a copy of an entry into the given JavaSpaces service. The Entry
passed to the write is not affected by the operation. Each wri te Operation places
a new entry into the specmed space, even if the same Entry object is used in more
than one wri' te.

Each write invocation returns a Lease object that is lease milliseconds long.
If the requested time is longer than the Space is willing to grant, you will get a
lease with a reduced time. When the lease expires, the entry is removed from the
space. You will get an 11 legalArgumentExcepti on if the lease time requested is
negative.

It a write returns without throwing an exception, that entry is committed to
the space, possibly within a transaction {see Section J83). If a RemoteException
is thrown, the write may or may not have been successful. If any other exception
is thrown, the entry was not written into the space.

Writing an entry into a space might generate notifications to registered objects
(see Section JS.2.7).

JS.2.4 readIfExists and read

The two forms of the read request search the JavaSpaces service for an entry that
matches the template provided as an Entry. If a match is found, a reference to a
copy of the matching entry is returned. If no match is found, null is returned.
Passing a null reference for the template will match any entry.

Any matching entry can be returned. Successive read requests with the same

of read may return a new object even if the same entry is matched in the Java—
Spaces service.

270

271

THE .121 VASPACES SPECIFICATION 265

A readIfExi sts request will return a matching entry, or null if there is cur~

rently no matching entry in the space. If the only possible matches for the tem-

plate have conflicting locks from one or more other transactions, 'the timeout

value specifies how long the client is willing to wait for interfering transactions to

settle before returning a value. If at the end of that time no value can be returned

that would not interfere with transactional state, null is returned. Note that, due to

the remote nature of JavaSpaces services, read and readIfExi sts may throw a

RemoteExcepti on if the network or server fails prior to the timeout expiration

A read request acts like a readIfExists except that it will wait until a

matching entry is found or until transactions settle, whichever is longer, up to the

timeout period. .

In both read methods, a timeout of NOMAIT means to return immediately,

with no waiting, which is equivalent to using a zero timeout.

JS.2.5 takeIfEx-ists and take

The take requests perform exactly like the corresponding read requests (see Sec-

tion J 5.2.4), except that the matching entry is removed from the space. Two take

operations will never return copies of the same entry, although if two equivalent

entries were in the JavaSpaces service the two take operations could return equiv—
alent entries.

If a take returns a non-null value, the entry has been removed from the

space, possibly within a transaction (see Section J8.3). This modifies the claims to

once-only retrieval: A take is considered to be successful only if all enclosing

transactions commit successfully. If a Remote-Exception is thrown, the take may

or may not have been successful. If an UnusableEntryExcept'i on is thrown, the

take removed the unusable entry from the space; the contents of the exception are

as described in the Jim? Entry Specification. If any other exception is thrown, the

take did not occur, and no entry was removed from the space.

With a RemoteException, an entry can be removed from a space and yet

never returned to the client that performed the take, thus losing the entry in

between. In circumstances in which this is unacceptable, the take can be wrapped

inside a transaction that is conunitted by the client when it has the requested entry
in hand.

”C KfiolouqaqL saoedgene1'
J8.2.6 snapshot

The process of serializing an entry for transmission to a JavaSpaces service will

it

i

be identical if the same entry is used twice. This is most likely to be an issue with l

271

272

'—_—V

266 noti fy

templates that are used repeatedly to search for entries with read or take. The cli-

ent—side implementations of read and take cannot reasonably avoid this dupli-

cated effort. since they have no efficient way of checking whether the same

template is being used without intervening modification.

The snapshot method gives the IavaSpaces service implementor a way to

reduce the impact of repeated use of the same entry. Invoking snapshot with an

Entry will return another Entry object that contains a snapshot of the original

entry. Using the returned snapshot entry is equivalent to using the unmodified

original entry in all operations on the same JavaSpaces service. Modifications to

the original entry will not affect the snapshot. You can snapshot a null template;

snapshot may or may not return null given a null template.

The entry returned from snapshot will be guaranteed equivalent to the origi—

nal unmodified object only when used with the space. Using the snapshot with any
other JavaSpaces service will generate an IllegalArgumentExcepti‘on unless

the other space can use it because of knowledge about the JavaSpaces service that

generated the snapshot. The snapshot will be a different object from the original,

may or may not have the same hash code, and equals may or may not return t rue

when invoked with the original object, even if the original object is unmodified.
A snapshot is guaranteed to work only within the virtual machine in which it

was generated. If a snapshot is passed to another virtual machine (for example, in

a parameter of an RMI call), using it—even with the same JavaSpaces service—-
may generate an Il l egalArgumentException.

We expect that an implementation of JavaSpaces technology will return a spe—

cialized Entry object that represents a pre—serialized version of the object, either

in the object itself or as an identifier for the entry that has been cached on the

server. Although the client may cache the snapshot on the server, it must guaran-

tee that the snapshot returned to the client code is always valid. The implementae

tion may not throw any exception that indicates that the snapshot has become

invalid because it has been evicted from a cache. An implementation that uses a

server-side cache must therefore guarantee that the snapshot is valid as long as it

is reachable (not garbage) in the client, such as by storing enough information in

the client to be able to re-insert the snapshot into the server-side cache.

N0 other method returns a snapshot. Specifically, the return values of the read

and take methods are not snapshots and are usable with any implementation of
JavaSpaces technology.

JS.2.7 notify

A notify request registers interest in future incoming entries to the JavaSpaces
service that match the specified template. Matching is done as it is for read. The

272

273

THE JA VA SPA CES SPECIF1CA TION 267

notify method is a particular registration method under the Jini Distributed

Event Specification. When matching entries are written. the specified

RemoteEventLi stener will eventually be notified. When you invoke notify you

provide an upper bound on the lease time, which is how long you want the regis-
tration to be remembered by the JavaSpaces service. The service decides the

actual time for the lease. You will get an 11 ‘I ega'l ArgumentExcepti on if the lease

time requested is not Lease .ANY and is negative. The lease time is expressed in
the standard millisecond units, although actual lease times will usually be of much

larger granularity. A lease time of Lease. FOREVER is a request for an indefinite

lease; if the service chooses not to grant an indefinite lease, it will return a

bounded (non-zero) lease.

Each notify returns a net. jini . co r'e . event. EventRegi strati on object.

When an object is written that matches the template supplied in the noti fy invo—
cation, the listener’s not'i Fy method is eventually invoked: with a RemoteEvent

object whose :2le is the value returned by the EventRegistration object's
getEventID method, fromWhom being the JavaSpaces service, seqNo being a

monotonically increasing number, and whose getRegi st rati onObject being

that passed as the handback parameter to noti fy. If you get a notification with a

sequence number of 103 and the EventRegID obj ect’s current sequence number is
100, there will have been three matching entries written since you invoked

notify. You may or may not have received notification of the previous entries due
to network failures or the space compressing multiple matching entry events into a

single call.

If the transaction parameter is null, the listener will be notified when match—

ing entries are written either under a null transaction or when a transaction com-

mits. If an entry is written under a transaction and then taken under that same
transaction before the transaction is committed, listeners registered under a null

transaction will not be notified of that entry.

If the transaction parameter is not nul 1, the listener will be notified of match-

ing entries written under that transaction in addition to the notifications it would
receive under a nuli transaction. A not": Fy made with a non-null transaction is

implicitly dropped when the transaction completes.

The request specified by a successful noti Fy is as persistent as the entries of

the space. They will be remembered as long as an untaken entry would be, until

the lease expires, or until any governing transaction completes, whichever is
shorter.

The service will make a “best effort" attempt to deliver notifications. The ser-

vice will retry at most until the notification request’s lease expires. Notifications

may be delivered in any order.

See the Jini Distributed Event Specification for details on the event types.

a
A 3
a:
We

3at:
'4:

saoedgeaef

273

274

_' "' F—-*

268 OPERA TION ORDERING

J8.2.8 Operation Ordering

Operations on a space are unordered. The only View of operation order can be a

thread’s View of the order of the operations it performs. A View of inter-thread

order can be imposed only by cooperating threads that use an application-specific
protocol to prevent two or more Operations being in progress at a single time on a

single JavaSpaces service. Such means are outside the purview of this specifica-
tion.

For example, given two threads T and U, if Tperforms a write operation and

U performs a read with a template that would match the written entry, the read

may not find the written entry even if the write returns before the read. Only if T
and U cooperate to ensure that the write returns before the read commences

would the read be ensured the opportunity to find the entry written by T (although

it still might not do so because of an intervening take from a third entity).

J8.2.9 Serialized Form

Class ser‘ia'lVer'sionUID Serialized Fields———..___._._—_—_

Internal SpaceEx-cept‘i on 4167507833 172939849L all publicfieids

274

275

INF. J'A VASPA CES SPECIFICATION 269

J8.3 Transactions

THE JavaSpaces API uses the package net.jin1‘ .core.transaction to pro—
vide basic atomic transactions that group multiple operations across multiple

JavaSpaces services into a bundle that acts as a single atomic operation. Java—

Spaces services are actors in these transactions; the client can be an actor as well, i

as can any remote object that implements the appropriate interfaces. i

Transactions wrap together multiple operations. Either all modifications '

within the transactions will be applied or none will, whether the transaction spans

one or more operations andfor one or more JavaSpaccs services.
The transaction semantics described here conform to the default transaction

semantics defined in the Jim' Transaction Specification.

J8.3.1 Operations under Transactions

Any read, write, or take operations that have a null transaction act as if they

were in a committed transaction that contained exactly that operation. For exam;

ple, a take with a null transaction parameter performs as if a transaction was cre-

ated, the take performed under that transaction, and then the transaction was

committed. Any notify operations with a null transaction apply to write opera-

tions that are committed to the entire space.

Transactions affect operations in the following ways:

a
a

‘53" 5-... ac.
FIG
'14.

saaedsenef
9 wt to: An entry that is written is not visible outside its transaction until the

transaction successfully commits. If the entry is taken within the transaction,

the entry will never be visible outside the transaction and will not be added

to the space when the transaction commits. Specifically, the entry will not

generate notifications to listeners that are not registered under the writing
transaction. Entries written under a transaction that aborts are discarded.

0 read: A read may match any entry written under that transaction or in the

entire space. A J'avaSpaces service is not required to prefer matching entries

written inside the transaction to those in the entire space. When read, an

275

276

———v

270 rmstsacnoivs moxie-m Paritprsnss‘

entry is added to the set of entries read by the provided transaction. Such an

entry may be read in any other transaction to which the entry is visible, but
cannot be taken in another transaction.

0 take: A take matches like a read with the same template. When taken, an

entry is added to the set of entries taken by the provided transaction. Such
an entry may not be read or taken by any other transaction.

9 notify: A notify performed under a null transaction applies to write
operations that are committed to the entire space. A notify performed
under a non-null transaction additionally provides notification of writes

performed within that transaction. When a transaction completes, any regis-
trations under that transaction are implicitly dropped. When a transaction

commits, any entries that were written under the transaction (and not taken}
will cause appropriate notifications for registrations that were made under a
null transaction.

If a transaction aborts while an operation is in progress under that transaction,
the operation will terminate with a Transact‘i onExcepti on. Any statement made
in this chapter about read or take apply equally to readIfExi 51:5 or
takeIfExi sts, respectively.

JS.3.2 Transactions and ACID Properties

The AClD properties traditionally offered by database transactions are preserved
in transactions on JavaSpaees systems. The ACID properties are:

0 Atomicity.‘ All the operations grouped under a transaction occur or none of
them do.

9 Consistency: The completion of a transaction must leave the system in a
consistent state. Consistency includes issues known only to humans, such as
that an employee should always have a manager. The enforcement of con-
sistency is outside of the transaction—a transaction is a tool to allow consis-

tency guarantees, and not itself a guarantor of consistency.

9 Isolation: Ongoing transactions should not affect each other. Any observer
should be able to see other transactions executing in some sequential order
(although different observers may see different orders).

9 Durability: The results of a transaction should be as persistent as the entity
on which the transaction commits.

276

277

THE JA VASPACES SPECIFICH NOW

The timeout values in read and take allow a client to trade full isolation for

liveness. For example, if a read request has only one matching entry and that

entry is currently locked in a take from another transaction, read would block

indefinitely if the client wanted to preserve isolation. Since completing the trans—
action could take an indefinite amount of time, a client may choose instead to put

an upper bound on how long it is willing to wait for such isolation guarantees, and

instead proceed to either abort its own transaction or ask the user whether to con-

tinue or whatever else is appropriate for the client.

Persistence is not a required property of JavaSpaces technology implementa-

tions. A transient implementation that does not preserve its contents between sys-

tern crashes is a proper implementation of the JavaSpace interfaee’s contract, and

may be quite useful. If you choose to perform operations on such a space, your

transactions will guarantee as much durability as the JavaSpaces service allows

for all its data, which is all that any transaction system can guarantee.

277

271

§
a2.“.

EB
:92D

Em
L4

sooedgeaef

278

278

279

—

me JA vases ces SPECH-‘iCATiflN 273

J8.4 Further Reading

J8.4.1 Linda Systems

1. How to Write Parallel Programs: A Guide to the Perplexed, Nicholas Car—
riero and David Gelernler, ACM Computing Surveys, Sept, 1989.

2. Generative Communication in Linda. David Gelernter, ACM Transactions
on Programming Languages and Systems, Vol. 7, No. 1, pp. 80-112 (Jane
uary 1985).

3. Persistent Linda: Linda + Transactions +_Que_ry_Ptocessing. Brian G.
Anderson and Dennis Shasha, Proceedings of the 13th Symposium on
Fatiii-Toierant Distributed Systems, 1994.

E 4. Adding Fault-tolerant Transaction Processing to LINDA, Scott R. Cannon
, and David Dunn, Srjtware—Practice and Experience, Vol. 24(5), Pp.

449—446 (May 1994).

5. ActorSpaces: An Open Distributed Programming Paradigm, Gul Agha,
Christian J. Callsen, University of Illinois at Urbana—Champaign, UILU-
ENG—9291846.

('SI') iifioiouqoaj, saoedseaef
J8.4.2 The Java Platform

6. The Java Programming Language, Second Edition, Ken Arnold and James
Gosling, Addison Wesley, 1998.

7. The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
Addison Wesley, 1996.

8. The Java Virtue! Machine Specification, Second Edition, Tim Lindholm
and Frank Yellin, Addison Wesley, 1999.

9. The Java Class Libraries, Second Edition, Patrick Chan, Rosanna Lee, and
Doug Kramer, Addison Wesley, 1998.

279

280

—

274 015mm UTED COMPUTING

J8.4.3 Distributed Computing

10. Distributed Systems, Sape Mullender, Addison Wesley, 1993.

11. Distributed Systems: Concepts and Design, George Coulouris, Jean Dolli-

more, and Tim Kindberg, Addison Wesley, 1998.

12. Disiribmed Algorithms, Nancy A. Lynch, Morgan Kaufmann Publishers,
I997.

280

281

57..2

.EqmmumnmmHag—53$Cm.“

281

282

THE JINI DEVICE ARCHITECTURE SPECIFICATION describes several ways in which

a device (or any other service) can participate in a .lini system without the

device (or service) being a general Jini service. The

possibilities listed are not exhaustive—there could be

A other interesting models as well. The main point to pay
attention to here is that any service can participate in

the Jini architecture, even with no modification of the

service provider itself This “device architecture” applies

equally well to legacy systems and other software services.

282

283

The Jini Device Architecture

Specification

DA.1 Introduction

THE Jini technology infrastructure is built around the model of clients looking
for services. The notion of a service encompasses access to information, computa-

tion, software that performs particular tasks, and in general any component that

helps a user accomplish some goal. Services can themselves be clients of other
services, and can be grouped together to provide higher-level functionality,

The Jini architecture requires a service to be defined in terms of a data type for

the Java programming language that can then be implemented in different ways by
different instances of the service. A service can be a member of many different

types, allowing a single service instance to provide a variety of functionality to
clients. This is a standard practice in object-oriented software. However, the dis-

tributed nature of the Jini system allows data types for the Java programming lan-

guage to be implemented in a combination of software and hardware in a way that
is unique.

The core of the idea that enables this implementation flexibility is quite sim—

ple. Services are defined via an interface, and the implementation of a proxy sup-
porting the interface that will be seen by the service client will be uploaded into

the lookup service by the service provider. This implementatiorl is then down?

loaded into the client as part of that client finding the service. This service-specific

implementation needs to be code written in the Java programming language (to
ensure portability). However, since this code comes from the actual instance of the

service being used, it can know in great detail the specifics of the particular ser-
vice impiementation for which it is the proxy. Not only can the code that is down—
loaded know about the software used to implement the service, the code can know

283

277

G
E
.3.

3:-

E..'—a‘
=3a:

aE.1
o:

33!A3

284

——

278 REQUIREMEN1‘5 FROM THE JL’W LOOKUP SERVICE

specifics about the hardware on which the service resides. In the limit case of this,
the hardware could be all that there is to the service, and the downloaded software

could act as a network-level device driver, taking method calls in the Java pro—
gramming language from the client and generating specific, hard—coded requests
to the hardware on the other end of the network wire.

This approach to services requires that there be a pieCe of code written in the
Java programming language that can be downloaded by the client of the service
and some hardware that ultimately runs the service. Between these two points,
however, there are a number of options concerning the software structure, hard—
ware structure, and location of components that can be chosen by the service pro-
vider. These options allow trade—offs to be made in the functionality provided and
the cost of the underlying hardware.

In what follows we begin by discussing in more detail the requirements
placed on a service to be part of the Jini system. We then discuss some examples
of combinations of software and hardware that can be used to implement Jini-
capable services once the Specialized implementations in hardware begin to play a
role.

DA.1.1 Requirements from the Jini Lookup Service

The actual offering of a service places very few requirements on the entity that
makes the offer; indeed, it is possible to implement a device using Jini software
services that offers a service in such a way that the code written in the Java pro-
gramming language that is downloaded by the client transmits bit patterns to the
hardware that are directly interpreted. In such cases the amount of intelligence
needed for a Jini device is minimal. The code written in the Java programming
language could talk directly to the device controller in much the same way that the
device Would be talked to if it were on the local computer’s bus (with, of course,
some modifications for dealing with the network-centric aspects of the communi-
cation).

Unfortunately, providing a service is only part of what is needed to be a Jini

service. To be part of a Jini system grouping, a service must also be able to partic-
ipate in the Jini Discovery protocol and register itself into the local Jini Lookup
service. This is how a service makes itself known to the djinn, and how the service
is accessed by other members of the djinn.

These two requirements are intimately connected. The major goal of the Jini
Discovery protocol is to allow a device or service to obtain a Java Remote Method
Invocation (RMI) reference to the local Jini Lookup service. Once this reference
has been obtained, the service needs to register itself in that Jini Lookup service,
allowing other participants in the djinn to find and use the service.

284

285

THE JINI DEVICE ARCHITECTURE SPECIFICATION

The interface to the Jini Lookup service is a full RM] interface, and the imple—
mentation of that service uses all of the mechanisms of RN". including the distrib-

uted garbage collection and the dynamic downloading of code. As such, there is
an implicit assumption that the service that holds a reference to the J ini Lookup
service lives inside a full Java“M virtual machine (JVM) that is at least capable of

running the full RMt system.

This assumption is most evident if we consider the possibility of alternate

implementations of the Jini Lookup service, which might support remote inter—
faces beyond that speeified by the Iini Lookup service itself (currently the inter-
face net . jini .cor'e . 'I ookup . Servi ceRegi strar). Such an implementation

would have a different RMI proxy than the current implementation, which would
be downloaded if the device had a full WM and RMI runtime. Devices without a

full JVM and RMI runtime would need a different way of dealing with such implei
mentations of the service.

In addition to the need to download the stub code for the Jini Lookup service,

registering with the service requires the creation of an object of type
net. ji ni .core . lookup.Servi ceItem, which is itself made up of a set of

objects in the Java programming language. Maintenance of these entries in the
Jini Lookup service can require the creation of other objects in the Java program—

ming language of the type net. ji ni . core . entry . Entry. All of these objects are
most easily constructed by using a running JVM.

Finally, registrations with the Jini Lookup service are leased, with the lease
that is returned requiring renewal for the service to continue to be shown in the
lookup service. The specification of the lookup service does not include a specifi-
cation of the lease object that is returned by a registration. All that is specified is

an interface written in the Java programming language that must be supported by

the (local) object that is returned as the lease. Thus the design of the Jini Lookup

service requires that the code that implements the class that in turn implements the
net. jini . core. 1 ease. Lease interface be downloaded into the service that reg—
isters so that the lease can be renewed.

285

279

‘5
P:

:9"1
O
:1"~-
,.,
(D
OH

e,(b

com-.30

286

THE JINI DEVICE ARCHITECTURE SPECIFICATION

DA.2 Basic Device Architecture Examples

NOW we will look at three different approaches for implementing a Jini service
in hardware. Each of the approaches will look the same to a client of the service.

Each approach takes a different route to interacting with the Jini Lookup service

and in providing an interface written in the Java programming language to clients
of that service. In each case, a different trade-off was made between the complex—

ity of the device, the flexibility of the device, and the directness of the communi-

cation between the client wanting to use the service and the device that

implements the service.

All but the first of the examples make use of interposition, that is, the ability

of a service to add a proxy between itself and the client of the service. The service

can use this proxy as an agent to the Jini technology infrastructure, off-loading

from the service some of the work needed to join the Jini system federation.

The examples given in this chapter are not the only options available to the

service designer who wishes to produce a service that includes a hardware compo-

nent. Rather, the examples are meant to show some samples of the range of imple-

mentation possibilities that are open to such designers. in effect, this document is
meant to show that, within the overall Jini architecture, there is no single Jini

device architecture. Instead, the device space is freed up, allowing different ser-

vices to have hardware implementations with different price, performance, funcr

tionality, and flexibility design points.

DA.2.1 Devices with Resident Java Virtual Machines

An obvious design for a device that can become part of a Jioi system federation is

one that includes the computing power, memory, and nonvolatile store necessary

to have a full WM and those parts of the J ava application environment necessary

to support the Jini infrastructure (in particular, those parts needed for code load-
ing, RMI, and any required security). This would make the device into a speeiai—

ized computing entity, with part of the device dedicated to the parts of the Java

API required by the Jini architecture. On this approach, the hardware implementa-
tion is abstracted behind a device—local software abstraction, which in turn is

286

281

(VG) 9.11119911quV

287

m

282 DEVICES WITH RESIDEM' JA VA WR TUAL M4 CHINES

abstracted behind the proxy code used by the client to contact the service. This

sort of architecture is shown in Figure DA.2.1.

Service Client Service Provider

-‘ Hardware
I Implementation

Client : Private
 . Protocol

Proxy ‘
. Java VM

Network i Y (Communication via RMI protocol)

FIGURE DA.2.1: A Full Jim-Capable Device

Such a device would be able to make full use of Jini and Java technology,

uploading code that is used to communicate with the device and downloading

code that might be needed for the service provided by the device. Such a device

can make use of the native RMI protocol for communication over the network, and

has a loose tie between the communication protocol and the particular software

protocol governing the running of the device itself. On this approach, the device

becomes a specialized network appliance offering a particular service (or set of

services) via an embedded Java platform.

In effect, this approach uses a hardware implementation for the local imple-

mentation of an RMI server. isolating the hardware behind two levels of indirec-

tion. The first is that provided by the local proxy code that is uploaded into the Jini

Lookup service and then downloaded into the client of the service. Additionally,

the local JVM and code written in the Java programming language resident on the

service device allow mediation between the client proxy and the hardware itself.

A device that took this approach could easily have multiple services imple~

merited on the device in a way that was mediated by the JVM on the device. Fur-

ther, such a device could be evolved with no impact on the client or the network

287

288

THE JINI DEVICE ARCHITECTURE SPECIFICATION

protocol used between the client and the service, since any change in the hardware
would be seen only by the JVM and any server-side code that talked directly to the
hardware.

While simple and flexible, this approach does add some cost to the device. In

particular, the device would need to have a microprocessor capable of running the
JVM, some memory in which to create and store classes, and some nonvolatile
store (either disk or NVRAM) from which to load the JVM and JavaTM Develop-

ment Kit (JDK) software classes. All of these are in addition to the hardware

needed to implement the Jini service that the device provides. This extra hardware
will increase the cost of producing the device.

Meeting these requirements does not call for a hosted version of the JVM or a
full version of the IDK running on the device. The J VM could run on any form of

microkernel or directly on the hardware of the device. Further, there are large

parts of the JDK that would not be required for the minimal device—such things
as the graphics and user interface classes, which form a significant chunk of the
current release, would not be needed. Other parts of that release could also be

dropped, allowing a stripped-down JDK to suffice for Jini devices. It would be
worthwhile to determine the exact definitiori of such a subset of the JDK and size

that component; it would be something close to the definition of embedded Java
technology with the additional classes needed to support RMI.

What is important for this kind of approach is for the device to be able to

download any code written in the Java programming language (although whether
that code is run could depend on the local security manager), utilize the RMI com-

munication system, and handle the requirements of a general virtual machine. By
presenting a standard JVM, the device gets full membership in a Jini system feder-
ation and complete flexibility in the ways in which the machine communicates

between the proxy it provides other members of the federation and the device
itself.

DA.2.2 Devices Using Specialized Virtual Machines

We can lower the barrier to entry for a device manufacturer if that manufacturer is

willing to give up some of the flexibility given by the Jini distribution architecture.
This can be done by allowing the device to become part of a Jini system federation

with a specialized virtual machine that is tuned to allow only those operations.
needed by the Jini Discovery protocol and Jini Lookup service.

To do this, the device manufacturer would need to implement the interfaces to

the Jini Discovery and Jini Lookup service in the device itself, include specialized
knowledge of the kind of leases that are handed out by the Jini Lookup service
and be able to renew those leases directly, and have sufficient functionality to

288

283

I?
I»"If 3.1111331;thV

289

—

284 CLUSTERING DEVICES WITH A SHARED VIRTUAL MA carve {PHKS‘ICA r. orrrorv)

download and use the stubs for these services. This is a particular set of function-

alities that is considerably smaller than that required by the whole of the WM, and

should be possible to implement in much less code. For example, such a IVM
would not need to contain a security manager, a code verifier, or a number of the
other components that are required for a full JVM.

Such a device would contain a JVM Specialized for the Jini environment,

allowing the Jini Discovery and Jini Lookup services to be accessed and leases of

a particular sort to be renewed. This would limit the flexibility of such a device, as

the device would not be able to have software changes made over time to the pro-
tocol used by the proxy for the device. The specialized knowledge of the kind of
lease that is handed out by the lookup service would also tie such a device to a

particular implementation of the lookup service. However. this penalty in service-
ability might not outweigh the simplicity of the overall device.

DA.2.3 Clustering Devices with a Shared Virtual Machine

(Physical Option)

A third approach uses a full IVM, but amortizes the cost of the JVM (both software

and hardware) over a number of different devices. In this approach, a group of
devices each uses a physically co-located JVM as an intermediate layer between
the device and the Jini system grouping. The device loads code written in the Java

programming language into this local virtual machine, allowing that local
machine to interact with the device, and then delegates to the local JVM the

requirements of interacting with the Jini Lookup service, Jini Discovery, and Jini
Leasing.

This approach is very much like the first one discussed in this section, except
that the JVM used by the devices is shared. It is still a full JVM, allowing the
downloading of code and complete Java platform functionality. However, the most

likely implementation of such a device would allow multiple (and perhaps differ-
ent) kinds of physical devices to be plugged into the overall device to get the shar-
ing of the Java application environment.

Such a device might best be thought of as a “Jini device bay.” This bay could
provide power, a network connection, and a processor running a JVM and appro-
pri ate parts of the JDK. Physical devices that are used to provide a particular kind
of Jini service could be plugged into the device bay and announce themselves to

the bay in whatever way the two decided was appropriate. This could be using a
proprietary protocol (allowing a device manufacturer to produce both the basic

device or devices and the device bay) or some other industry standard, local-
device identification scheme.

289

290

i'HE JINI DEVICE ARCHITECTURE SPECIFICATION 285

As part of the local announcement, a new device would tell the device bay
where to find the code written in the Java programming language that is needed by

a client of the service, and (possibly) where to find code that would allow the

device bay to interact with the device. This allows devices to carry their own
“drivers,” both for the local machine and at the network level.

Upon detection of the new local device, the Jini device bay would register the
services provided by the new device (previously known by the device bay) with
the Jini Lookup service. It would be the role of the device bay to renew leases on
the Jini Lookup service entries, and to detect removal of any of the devices for
which it was acting as proxy. The device bay would provide the Jim Lookup ser-
vice with the code handed to it by the device so that service clients could down-
load that code. ‘

The client of the device service would believe that it is talking to the device l

registered in the Jini Lookup service, but would actually be talking to the device ‘
bay. The device bay would act as a dispatcher to the particu1ar device for which it
was acting as a proxy, along with any translation of protocol between the network 1
protocol used by the service proxy and the protocol used between the device bay i
and the actual device. Graphically, the architecture of such an approach is shown I
in Figure DA.2.2.

,
a?'i

'2?s;'."'

4.__‘ |

I

L. _ Java VM ,

Service Client Service Providers

l‘ _ ._ _ _ I _ .____. ,

I dev ‘ dev dev , l
| Java ‘ l 2 3

Device | i
l ‘ Bay .

:- a:I ' n

_ A . . ! Ex 5, i
Network 1 Y (Communicatlon v1a RMT protocol) : .5, E g '
_f __:‘ ._ ,:—_—__— ----- _--------- 9—»? _‘ ' _ a

FIGURE DA.2.2; Clustering Multiple Devices With a Single Proxy in One Device

290

291

—

286 CLUSTERING DEVICES WITH a SHARED VIRTUAL MACHINE (NETWORK omrorv)

The savings for the device manufacturer in this case comes from the ability of
multiple physical devices to share a device bay, which contains the intelligence,
memory, and perhaps other components (such as the power supply). By sharing
these resources among multiple devices, the extra cost and engineering needed to
interact with the Jini system federation can be amortized over a large number of
devices.

The cost of this approach to the device manufacturers is that the protocol
between the device acting as the Jini device bay and the devices that are placed in
that bay must be defined in advance and cannot change over time. Because there is

no way of introducing dynamic behavior in the particular devices, the pairing of.
device and Jini device bay must be controlled and known beforehand.

It should be noted that the Jini device bay itself is a Jini device, which can be

thought of as providing services to those devices housed within it. As such, it
could be a revenue item in its own right. Variations in the implementation could be
provided to support various internal announcement protocols (device bay, jetsend,
etc.) or hardware buses (including network—like buses such as firewire).

DA.2.4 Clustering Devices with a Shared Virtual Machine

(Network Option)

A variation on the device bay approach uses the network rather than a physical
enclosure and backplane. On this alternative, a proxy for the JVM used by the var-
ious service devices would exist on the network. Service devices could be added

to the network, discover the existence of such a proxy device, and register with
that proxy. Such a registration could include the code written in the Java program-
ming language needed by a client of the device (either directly or as a URL to use
to obtain the code) and code needed by the proxy to communicate with the service
device.

When a service device registers with such a network proxy, the proxy device
would register with the Jini Lookup service on behalf of the service device, thus
allowing the service device to become a part of the Jini system federation.
Requests to the new service would go first to the proxy for that device, which
could then forward the requests (after appropriate protocol translation) to the par—
ticular service device. In addition, the proxy could handle the Jim-specific tasks
such as renewing leases for the service. This alternative is shown in Figure
DA.2.3.

291

292

THE JFNI DEVICE ARCHITECTURE SPECIFICA TION

Service Client

I U 7 l

i Network Proxy

l_, i
l.__ __I.

I

I l Eprivate

I : [protocols

, 1
Network I Y (Communication—VIE! Wipfvmcou 'l i ? _

_ _ ;""""--'"""_{i'_tr ' II '
J ;I &

?__ _?_,___ :L.

dev | I dev , i dev l
1 I 2 | 3

Service Providers

FIGURE DA.2.3: Clustering Devices With a Jim-capable Proxy on the Network

This alternative requires somewhat more hardware for the individual device,
as it requires each service device using such a proxy to be able to be placed on the
network and have its own power supply and network connection. However, the
devices would not need individual CPUs, memory, or persistent store; all of that

would be provided by the networked Jini device proxy.
Devices using this option would need to havexa protocol parallel to the Jini

Discovery protocol between the individual service devices and the network proxy
for those devices. This could be a specialized code on the network, known in

advance, that the devices can use to identify themselves to the network proxy. This
will have to be particular to the device and the proxy for that device. However,
once this protocol has been decided upon, no other intelligence needs to be built
into the device. All of the intelligence can be built into the network proxy, perhaps

uploaded into the proxy by the service device (which could easily carry code writ
ten in the Java programming language, even though it cannot execute that code).

292

237

aminofilmy?

guinea

293

§

288 JINI SOFJWARE SER WCES OVER Nil? INTEIGVET IrVfiER—OPERABHJTY PROTOCOL

The protocol the network proxy uses to talk to the devices for which it is a proxy
also needs to be statically defined in advance and cannot be changed. However, it
can be any protocol the particular device needs.

In this approach, the individual devices will be more complex than they would
be in the Jini device bay approach. However, the number of devices that can be.
served by a network available proxy is not limited by the physical constraints of
the proxy device. Nor is there any requirement that the devices and the proxy
device he co—located, which is a requirement on the physical clustering scheme.

This is also the approach that can be taken to build “gateways” between the
Jini devices and other network-managed devices. Such devices, which already
speak a particular protocol, can be Spliced into the Jini system federation by pro-
viding a network proxy that Speaks the Jini protocol on behalf of such devices,
and the existing specialized protocol to such devices. This is the approach that can
be used to add consumer electronic devices, factory controls, or home environ-
ment controls into the Jini system grouping.

DA.2.5 Jini Software Services over the Internet
Inter-Operability Protocol

A final method for connecting devices or services that are not purely based on
Java software into a Jini system centers on using the Object Management Group
(OMG)’s Internet Inter—Operability Protocol (IIOP). This protocol defines a stan—
dard for data transmission that will be supported by a subset of RMI.

This approach relies on the ability of a device to read an IIOP stream directly,
either because the device includes an implementation of a Common Object
Request Broker Architecture (CORBA) Object Request Broker (ORB) or because
the device knows what HOP streams to expect and can interpret streams of these
known forrns directly.

This approach requires the Jini Lookup service to supply implementations of
its interfaces over both the native RMI protocol and the HOP protocol. This is sup-
ported by RMI over HOP as long as the interfaces conform to any subsetting
requirements established by the OMG. At the present time it appears that the Jim
Lookup service interfaces are in conformance with the RMI over IIOP subset.

Devices that contain a CORBA ORB could directly interact with the Jim
Lookup service using the IIOP protocol. The fact that the Jini Lookup service gen-
erated this protocol via RMI would be transparent to the service itself, and the fact
that the service was using a method other than RMI to reply to the J ini Lookup ser
vice (to renew leases, for example) would be transparent to the Jini Lookup ser—
vice. Current differences between the RMI programming model and the CORBA
programming model would need to be dealt with by the device itself; for example,

293

294

THE JINI DEWCEARCHITECTURE SPECIFICATION

the device would not be able to download the implementation of the stub for the

Jini Lookup service, and would need an implementation of the Jim Lease class
used by the Jini Lookup service.

Devices that do not include a CORBA ORB could directly interpret the HOP

stream and attempt to interact with the Jini Lookup service. This approach

requires very little software support on the side of the device (since the bitstream
from the wire is being directly interpreted). However, it is an approach that will
work only with known versions of the Jini Lookup service that exports known
implementations of a Jini Lease. Any alteration of either the Jini Lease implemen-
tation or the protocol used by the Jini Lookup service, even those that would be
invisible to other clients of the service, would make it impossible for the device

directly interpreting the HOP protocol to interact with the new version of the ser—
vice. Hence this altemative, while lowest in cost with respect to the hardware and

software needed by the device, is also the least reliable in the face of implementa-
tions that can change over time or that are open to alternate implementations.

294

289

3

3"'1fl
5'_I
H-
(D
hH

5a.

.

13.:

g:E
a

E.-

295

PART 3

Supplemental
Material

295

296

The Jini Technology Glossary

activation

The process of transforming a passive object into an active object. Activae
tion requires that an object be associated with a JavaTM virtual machine

(JVM), which may entail loading the class for that object into a JVM and the

object restoring its persistent state (if any). (Java Remote Method Invoca—

tion Specification, Section 7.1.1)

activation descriptor

A class instance that holds an aetivatable object’s group identifier (specifies

the JVM in which it is activated), the object’s class name, a location from

where to load the object’s class code, and object-specific initialization data

in marshalled form. (Java Remote Method Invocation Specification, Section
7.2)

activation group

The entity that receives a request to activate an object in the JVM and

returns the activated object back to the activator. (Java Remote Method

Invocation Specification, Section 7.2) A separate IVM is spawned for each

activation group. (Section 7.4.7)

activator

The entity that supervises activation by being both (1) a database of infor-

mation that maps activation identifiers to the information necessary to aeti-

vate an object and (2) a manager of JVMs, that starts up a JVM (when

necessary) and forwards requests for object activation (along with the nec—

essary information) to the correct activation group inside a remote JVM.

There is usually only one activator per host, started by r'm'i d. (Java Remote

Method Invocation Specification, Section 7.2)

296

297

—

294 in}? J'HW recnrvoroor GLOSSARY

active object

A remote object that is instantiated and exported in a JVM on some sys~
tem.(Jo.vo Remote Method Invocation Specification, Section 7.1.1)

ancestor transaction

A transaction that is the parent of a specific nested transaction (a transac-
tion in which all its operations are contained, or executed, from within

another transaction), or the parent of such a parent, recursively (a grand-
parent, a greatugrandparent, and so on). (Jini Transaction Specification,
Section TX.3.5)

attribute set

A strongly-typed set of fields in a service item (represented by a
net . ji ni .co re. entry. Ent ry) that describes the service or provide second-

ary interfaces to the service. A single attribute is a public field of an Entry.
(Jini Looknp Service Specification, Section LU. 1 .2)

channel

The abstraction for a conduit between two address spaces in the RMI trans-

port layer. As such, it is responsible for managing connections between the

local address space and the remote address space for which it is a channel.
[Java Remote Met/tori Invocation Specification, Section 3.5)

connection

The stream-oriented (Java Remote Method invocation Specyication, Sec-

tion 3.4) abstraction for transferring data (performing inputfoutput) in the
RMI transport layer. (Section 3.5)

discovering entity

One or more cooperating objects in the Java programming language on the
same host that are about to start, or are in the process of, obtaining refer-
ences to one or more Jini Lookup services. (Jini Discovery and Join Speci-
fication. Section D] . l . 1)

discovery request service

A service that runs on a host in the djinn and accepts requests for a remote
reference to an instance of the Jini Lookup service. There are really two
discovery request services; one accepts multicast requests, and the other
accepts unieast requests. Both instances of the discovery request service are

present on every system in a djinn that hosts an instance of the Jini Lookup
service.

297

298

THE JINJ' TECHNOLOGY GLOSSARY

discovery response service
A remote object that runs on a discovering entity and accepts references to
instances of the Jini Lookup service. An instance of the discovery response
service is hosted on every system that wishes to establish communications

with a djinn.

distributed event adapter

An event adapter in which the event generator and the event listener
instances may exist in different virtual machines, possibly on different
hosts. The distributed event adapter is at least a remote event listener, but

may also be a remote event generator (see local event, remote event). (Jim'
Distributed Event Specification, Section EV.3)

djinn (pronounced “gin”)
The group of devices, resources, and users joined by the Jini software infra—
structure. (Jini Lookttp Service Specificatitin, Section LU.1.1) This group,
controlled by the Jini system, agrees on basic notions of trust, administra-
tion, identification, and policy.

dynamic class loading
The capability of the Java application environment to download files
(classes for the Java platform, audio, and images) from an HTTP server at
runtime if they are not already available to the client JVM. Dynamic class
loading may be used by the RMI runtime to download: stub classes; skele—
ton classes; classes that are passed as subtypes of declared method parame-
ters; and classes that are passed as subtypes of declared method return
types. (See dynamic stub loading)

dynamic stub loading
A subset of dynamic class loading, used to support client-side stubs that
implement the same set of remote interfaces as a remote object itself. (Java
Remote Method Invocation Specification, Section 3.1)

endpoint
The abstraction used to denote an address space or JVM in the RMI trans-

port layer. In the implementation an endpoint can be mapped to its trans—
port. That is, given an endpoint, a specific transport instance can be
obtained. (Java Remote Method Invocation Specification, Section 3.5)

298

295

299

_

296 THE Javr TECHNOLOGY GLOSSARY

entry

An entry is a typed group of object references, expressed as a class for the

Java platform that implements the net.j1'n'i .core.entry. Entry interface.

Entry fields must all be references to Serializable objects. (Jini Entry
Specification, Section EN. '1)

event

Something that happens in an object, corresponding to some change in the
abstract state of the object. Events are abstract occurrences that are not

directly observed outside of an object, and may not correspond to a change
in the actual state of the object that advertises the ability to register interest
in the event. (Jini Distributed Event Specification, Section EV.2. 1)

event generator

An object that has some kinds of abstract state changes that might be of
interest to other objects and allows other Objects to register interest in those

events. This is the object that will generate notifications when events of this

kind occur, sending these notifications to the event listeners that were indi-

cated as targets in the calls that registered interest in that kind of event. (Jini

Distributed Event Specification, Section EV.2.1)

event listener

An object that has an interest in being notified when a particular event type
occurs. The event listener (I) implements the appropriate interface, and (2)
registers with an event generator. (See remote event iistener)

export, -ed, -ing

The process of making a remote object available to accept incoming calls

on a specific port. An object can be exported (1) if the object is a subclass
of java. rmi .server' . Uni castRemoteObject, through the constructor; (2) if

the object is a Subclass of java. r‘m'i .activat'iori.ACtivatable, through
the constructor; (3) by passing the object to the static exportObject

method of UM castRemoteObject (Java Remote Method Invocation Specifi—
cation, Section 5.3.1); or (4) by passing the object to the static
exportobject method of Activatab'! e. (Section 7.3)

faulting remote reference

A faulting remote reference to a remote object, sometimes referred to as a

fault block, “faults in” the active object’s reference upon the first method

invocation to the object executed via the faulting reference. Each faulting
reference, contained in the remote object’s stub, holds both a persistent

299

300

 THE JINI TECHNOLOGY GLOSSARY

object handle (a java.rmi.activation.ActivationID) and a transient

remote reference to the target remote Object. (Java Remote Method Invoca-

tion Specification, Section 7.1.2)

host

A hardware device that may be connected to one or more networks. An

individual host may house one or more JVMs. (Jint‘ Discovery and Join
Specification, Section DJ. 1.2)

idempotent

A method that is idempotent can be called multiple times and produce only
the result as though it were called only a single time.

inferior transaction

The inverse of the transactional ancestor relationship: Transaction Ti is an
inferior of Ta if and only if Ta is an ancestor of Ti. (Jini Transaction
Specification, Section TX.3.5)

joining entity

One or more cooperating objects in the Java programming language on the

same host that have just received a reference to the Jini Lookup service and
are in the process of obtaining services from, and possibly exporting ser-

vices to, a djinn. (Jini Discovery and Join Specification, Section DJ.1.1)

join protocol

The protocol that allows entities to start communicating usefully with ser-

vices in a djinn, through the Jini Lookup service. (Jini Discovery and Join
Specification, Section D].1 .3)

JVM

A common abbreviation for “Java Virtual Machine."

lazy activation

The activation mechanism that the RMI system uses, which defers activat-

ing an object untii a client’s first use (that is, the first method invocation).

Lazy activation of remote objects is implemented using a faulting remote

reference. (Java Remote Method Invocation Specification, Section 7.1.1)

lease

A grant to use a rescurce, offered by one object in a distributed system, to

another object in that system for a certain period of time. The duration of

300

301

298 THE JIM Tearinoroor GLOSSARY

the lease is negotiated by the two objects when access to the resource is first
requested and given. (Jini Distributed Leasing Specification, Section LE.1)
A lease ensures that the lease holder will have access to some resource for a
period of time. During the period of a lease, a lease can be cancelled by the
entity holding the lease. A lease holder can request that a lease be renewed,
or a lease can expire. (Jini Distributed Leasing Specification, Section
LE.2.I) In the current implementation of RMI, a lease term is not negoti-
ated, as described by the Jini Distributed Leasing Specification; the lease
term is mandated by the implementation server. Another difference is that
in RMI there is no notion of explicit lease cancellation; lease cancellation is
implicit when a remote reference becomes unreferenced by a specific cli-
ent. (Java Remote Method Invocation Specification, Section 9.1)

lease grantor

The object granting access to a resource for some period of time. (Jini Dis-
tributed Leasing Specification, Section LE2)

lease holder

The object asking for the leased resource. (Jini Distributed Leasing Specifi-
cation, Section LE2)

live reference

The concrete representation of a remote object reference (in the RMI trans—
port layer), which consists of an endpoint and an object identifier. Given a
live reference for a remote object, a transport can use the endpoint to set up
a connection to the address space in which the remote object resides. On
the server side, the transport uses the object identifier to look up the target
of the remote call. (Java Remote Method Invocation Specification, Section
3.5)

local event

An event object that is fired from an event generator to an event listener,
where both the generator and the listener instances exist in the same virtual
machine. (See event, remote event) (Jini Distributed Event Speafication,
Section EV. l . 1)

lockup discovery protocol

The protocol that governs the acquisition of a reference to one (or more)
instances of the Jini Lookup service. (Jini Discovery and Join Specification,
Section DJ.I .3)

301

302

THE JINI TECHNOLOGY GLOSSARY 299

lockup service

The Jini Lookup service provides a central registry of service items, repre-

senting services, available within the djinn. This Jini Lookup service is a

primary means for programs to find services Within the djinn, and is the

foundation for providing user interfaces through which users and adminis-

trators can discover and interact with services in the djinn. (Jini Lookup

Service Specification, Section LU. 1)

marshal streams

Input/output streams, used by the RMI remote reference layer, that employ
object serialization to enable objects in the Java programming language to

be transmitted between address spaces. (Java Remote Method Invocation

Specification, Section 3.3)

marshalled object I

A container for an object that allows that object to be passed as a parameter i
in an RMI call, but postpones deserializing the object at the receiver until

the application explicitly requests the object (via a call to the container

object). The seriaiizabie object contained in the Marshal 1 edObject is seri-

alized and deserialized (when requested) with the same semantics as

parameters passed in RMI calls (Java Remote Method Invocation Speczfica-

rion, Section 7.4.8), which means that any remote object in the

MarshalledObject is represented by a serialized instance of its stub. The

object contained by the Marshal 'I edObject may be a remote object, a non-

remote object, or an entire graph of remote and non—remote objects.

notification filter

A distributed event adapter that can be used by either the generator of a

notification or the recipient to intercept notification calls, do processing on

those calls, and act in accord with that processing (perhaps forwarding the

notification, or even generating new notifications). (Jini Distributed Event

Specification, Section EV.3.2) This filter may be used as an event multi-

plexer or demultiplexer.

notification mailbox _

A distributed event adapter that can be used to store the notifications sent to

an object until such time as the object for which the notifications were

intended desires delivery. Such delivery can be in a single batch, with the

mailbox storing any notifications received after the request for delivery

until the next request is given. Alternatively, a notification mailbox can be

viewed as a faucet, with notifications turned on (delivering any that have

302

303

———-——_fi

300 ms JINI racnivorocr crossqar

arrived since the notifications were last turned off) and then delivering any

subsequent notifications to an object immediately, until told to hold the

notifications. (Jini Distributed Event Specification, Section EV.3.3)

object serialization

The system that allows a bytestream to be produced from a graph of

objects, sent out of the Java application environment (either saved to disk or

sent over the network) and then used to re—create an equivalent set of

objects with the same state. (Java Object Serialization Specg‘ication, Sec—

tion A. 1) In RMI, objects transmitted using the object serialization system

are passed by copy to the remote address space, unless they are remote

Objects, in which case they are passed by reference. (Java Remote Method

Invocation Specification, Section 3.3)

passive object

A remote object that is not yet instantiated (or exported) in a JVM, but that

can be brought into an active state (see active object). (Java Remote Method

Invocation Specification, Section 7.1.1)

pure transaction

A transaction in which all access to shared mutable state is performed under

transactional control. (Jini Transaction Specification, Section TX.3.5)

reference list

A reference list for a remote object is a list of client JVMs that hold refer—

ences to that remote object. A client JVM is removed from the object’s ref-

erence list when that client no longer references that object. (Java Remote

Method Invocation Specification, Section 9.1)

registry

A remote object that maps names to remote objects. The java. rm-i .Nam‘i ng

class provides methods for lookup, binding, rebinding, unbinding, and list-

ing the contents of a registry. A registry can be used in a virtual machine
shared with other server classes or in a standalone JVM. The methods of

java. rmi . registry. LocateRegi stry may be used to get a registry operat-

ing on a particular host or host and port. (Java Remote Method Invocation

Specification, Section 6)

remote event

An ObjeCt that is passed from an event generator to a remote event listener

to indicate that an event of a particular kind has occurred. The remote event

303

304

THE JEN! TECHNOLOGY GLOSSARY 301

generator and the remote event listener instances may exist in different vir-

tual machines, possibly on different hosts. (Jini Distributed Event Specifi-

cation, Section EV_2. l)

remote event generator

An object that is the source of remote events.

remote event listener

An Object implementing the net. j'i n'i .core .event. RemoteEventListener

interface, which is interested in the occurrence of remote events in some

other object. The major function of a remote event listener is to receive

notifications of the occurrence of a remote event in some other object (or

set of objects). (Jini Distributed Event Specification, Section EVE-.1)

remote interface

An interface written in the Java programming language that extends

java. rmi .Remote, either directly or indirectly, which declares the methods

of a remote object. (Java Remote Method Invocation Specification, Section

2.1) l

remote method invocation (RMI) ‘
The action of invoking a method of a remote interface on a remote object.

(Java Remote Method Invocation Specification, Section 2.1)

remote object

An object whose methods can be invoked from another JVM, potentially on

a different host. An object of this type is described by one or more remote

interfaces. (Java Remote Method Invocation Specafication, Section 2.1)

remote reference layer (RRL)

The layer of the RMI system that supports remote reference behavior (such i

as invocation to a single object or to a replicated object) and carries out the '

semantics of method invocation. This layer sits between the RM] stub/skel-

eton layer and the RMI transport layer. Also handled by the remote refer- i

ence layer are the reference semantics for the server. (Java Remote Method :
Invocation Specification, Section 3.2)

rmic

The stub and skeleton compiler used to generate the appropriate stubs and

skeletons for a specific remote object implementation. The compiler is

invoked with the package-qualified class name of the remote object class.

304

305

302 THE Jh‘i] recmvoroor GLOSSARY

The class must previously have been compiled successfully. (Java Remote
Method Invocation Specification, Section 5.1 l)

rmid

The activation system daemon which provides an implementation of the
activation system interfaces. To use activation, you must first run rm'i cl. This

is the J VM with which activation descriptions get registered. (Java Remote
Method Invocation Specification. Section 7.2)

rmiregistry

The RMl system command that provides an implementation of the

java. rm'i . reg'i s t ry . Registry interface. The rmiregistry. run on a remote
host, can be accessed by calling methods of the java. rmi .Nam‘i ng class.

semantic transaction

A transaction with specific, associated semantics, as opposed to the proto—
col Specified by the Transact‘i onManager interface, which does not specify
transaction semantics. A semantic transaction is contractual in nature and

implies a particular usage pattern, so if a program operates within the con-
straints of the contract, assumptions can be safely made about the transac-
tion’s behavior or state. (Jini Transaction Specification, Section TX] .1)

serializable

Any data type that may be read from java.'io.ObjectInputStreams and

written to java.i0.0bject0utput5treams. This includes primitive data
types in the Java programming language, remote objects in the Java pro-
gramming language, and non-remote objects in the Java programming lan-
guage that implement the java. to. Se r'i alizabl e interface. (Java Remote
Method Invocation Specification, Section 2.6)

servtce

Something that can be used by a person, a program, or another service. It
can be computational, storage, a communication channel to another user, or

another service. Examples of services include devices such as printers, dis-
plays, disks, software (such as applications or utilities), information (such

as databases and files), and users of the system. Services will appear pro-
grammatically as objects in the Java programming language, perhaps made
up of other objects in the Java programming language. A service will have

an interface, which defines the operations that can be requested of that ser—
vice. The type of the service determines the interfaces that make up that
service. (Jini Architecture Specification, Section AR.2.1.1)

305

306

THE JJNI TECHNOLOGY GLOSSARY

service items

Each service item represents an inStance of a service available within the

djinn. The item contains the stub (if the service is implemented as a remote

object) or serialized object (if the service makes use of a local proxy) that

programs use to access the service, and an extensible collection of attribute

sets that describe the service or provide secondary interfaces to the service.

A new service item is created in the Jim Lookup service when a new service

is added to the djinn. (Jini Lookup Service Specification, Section LU. 1.1)

service registrar

A synonym for Jini Lookup service. (See lockup service) (Jini Lookap Ser-

vice Specification, Section LU.2.5)

skeleton

The server—Side entity that reads parameters from incoming method

requests and dispatches calls to the actual remote object implementation.

Note that in the Java Development Kit 1.2, skeleton functionality is now

handled by the remote object stub, but skeletons may still be used for com—

patibility with earlier releases of the JDK. (Java Remote Method Invocation

Specification, Section 3.3)

store-and-forward agent

stub

A distributed event adapter that enables the object generating a notification

to hand the actual notification of those who have registered interest off to a

separate object. This agent can implement varioas policies for reliability.

(Jini Distributed Event Specification, Section EV.3.1)

The proxy for a remote object, which implements all the interfaces that are

supported by the remote object implementation and forwards method invo—
cations to the actual remote object instance. (Java Remote Method Invoca-

tion Specification, Section 3.3)

stub/skeleton layer

The layer of the RMI system that aids in carrying out method invocation.

The stub/skeleton layer is the interface between the application layer and

the rest of the RMI system. (Java Remote Method Invocation Specification,

Section 3.3) This layer does not deal with specifics of any transport, but

transmits data to the remote reference layer via the abstraction of marshai

streams. This layer contains client-side stubs (proxies) and server-side skel-

etons. (Section 3.2)

303

306

307

304 THE nnr rscnnoeoor GLOSSARY

template

An entry object that has some or all of its fields set to specified values.
Templates may be used to find matching entries. A template will match an

entry if and only if the template’s non-null public fields match the entry’s
non-null public fields exactly. Remaining fields (those set to null) are not

used in the matching process but are left as wildcat-is. (Jini Entry Specifica—
tion, Section EN.].5)

transaction

In general, a transaction is a tool that allows a set of operations to be

grouped in such a way as to make them all appear to either all succeed or all

fail; further, the operations in the set appear from outside the transaction to

occur simultaneously. In the Iini architecture model, the concrete represen-

tation of a transaction is encapsulated in an object. (Jim' Transaction Speci-
fication, Section TX.1. l)

transaction client

An object that does either or both of the following: (1) requests that a trans-
action manager create a transaction, (2) invokes the commit or abort

method to complete a transaction. A single transaction may have more than

one client, since the object that completes a transaction may be different
from the object that requested its creation. An object that is a transaction

client may also be a transaction manager or participant. (Jint' Transaction
Spec'tfication, Section TX. 1 .l)

transaction manager

An object that (1) services requests from transaction clients to create trans-

actions and (2) tracks and manages the completion state of those transac-

tions by implementing the TransactionManager interface. An object that is

a transaction manager may also be a transaction client or participant. (Jinr'
Transaction Specification, Section TX.l.1)

transaction participant

An object that executes operations of a transaction and is able to interact

with the manager to complete transactions properly. An object providing
this service may implement the Transacti onPartici pant interface. An

object that is a transaction participant may also be a transaction manager or
client. (Jint' Transaction Specification, Section TX.1.I)

307

308

 THE JIN! TECHNOLOGY GLOSSARY

transport

The abstraction that manages channels in the RMI transport layer. Each

channel is a virtual connection between two address spaces. Within a trans-

port, only one channel exists per pair of address spaces (the local address

space and a remote address space). Given an endpoint to a remote address

space, a transport sets up a channel to that address space. The transport

abstraction is also responsible for accepting calls on incoming connections

to the address space, setting up a connection object for the call, and dis-

patching to higher layers in the system. (Java Remote Method Invocation

Specification, Section 3.5)

transport layer

The layer of the RMI system that is responsible for connection set up, con

nection management, and remote object tracking. (Java Remote Method

Invocation Specification, Section 3.2) The transport layer sits below the

remote reference layer

weak reference

When a remote object is not referenced by any client, the RMI runtime

refers to it using a weak reference. The weak reference allows the JVM’S

garbage collector to discard the object if no other strong references to the

object exist. The distributed garbage collection algorithm interacts with the

local JVM‘s garbage collector in the usual ways by holding normal or weak

references to objects; thus, a weak reference allows the RMI runtime to ref-

erence a remote object, but not prevent the object from being garbage col-

lected. (Java Remote Method Invocation Specification, Section 3.7)

308

l

309

NOTE on DISTRIBUTED COMPUTING describes the environmentfor which the Jini
architecture is designed—one (Jfaiiure. characteristics unknown in Zoom?

computing. The Jint architecture takes these dtfi‘erences

into account in its original design principies, which is

a one reason why the overall Jini architecture works.

This note was originally published as a Sun

Miorosystems Laboratories technicai report (SMLI TR-
94—29}. The note has been reformatted .for this book. Two

observations have been added, marked as ['4] and 1' B} in. the

text, and presented at the end of the note.

IN 1'”

309

310

APPENDIX A
_ mu . -_ .- .n ..;_,.:-..-..r.-:--.-:-.- - -;-

A Note on Distributed

Computing

Jim Waldo, Geoff Wyant, Ann Wollrath,
and Sam Kendall

A.1 Introduction

MUCH of the current work in distributed, object-oriented systems is based on
the assumption that objects form a single ontological class. This class consists of

all entities that can be fully described by the specification of the set of interfaces

supported by the object and the semantics of the operations in those interfaces.

The class includes objects that share a single address space, objects that are in sep-

arate address spaces on the same machine, and objects that are in separate address
spaces on different machines (with, perhaps, different architectures). On the View

that all objects are essentially the same kind of entity, these differences in relative

location are merely an aspect of the implementation of the object. Indeed, the

location of an object may change over time, as an object migrates from one

machine to another or the implementation of the object changes.

It is the thesis of this note that this unified View of objects is mistaken. There

are fundamental differences between the interactions of distributed objects and the

interactions of non—distributed objects. Further, work in distributed object-ori-
ented systems that is based on a model that ignores or denies these differences is

doomed to failure, and could easily lead to an industry—wide rejection of the
notion of distributed object-based systems.

310

307

311

a

308 A NOTE ON DrsmrBUrED COMPUTING

A.1.1 Terminology

In what follows, we will talk about local and distributed computing. By local com-

paring (local object invocation, etc), we mean programs that are confined to a sin-

gle address space. In contrast, we will use the term distributed computing (remote

object invocation, etc.) to refer to programs that make calls to other address

spaces, possibly on another machine. In the case of distributed computing, noth-

ing is known about the recipient of the call (other than that it supports a particular
interface). For example, the client of such a distributed object does not know the

hardware architecture on which the recipient of the call is running, or the language
in which the recipient was implemented.

Given the above characterizations of “local” and “distributed” computing, the
categories are not exhaustive. There is a middle ground, in which calls are made

from one address space to another but in which some characteristics of the called

object are known. An important class of this sort consists of calls from one

address space to another on the same machine; we will discuss these later in the
paper.

A.2 The Vision of Unified Objects

There is an overall vision of distributed object—oriented computing in which, from

the programmer‘s point of view, there is no essential distinction between objects
that share an address space and objects that are on two machines with different

architectures located on different continents. While this view can most recently be
seen in such works as the Object Management Group’s Common Object Request
Broker Architecture (CORBAWJ, it has a history that includes such research sys-
tems as Arjunam, Em.erald[3], and Cloudsm.

In such systems, an object, whether local or remote, is defined in terms of a

set of interfaces declared in an interface definition language. The implementation
of the object is independent of the interface and hidden from other objects. While

the underlying mechanisms used to make a method call may differ depending on
the location of the object, those mechanisms are hidden from the programmer who
writes exactly the same code for either type of call, and the system takes care of
delivery.

This vision can be seen as an extension of the goal of remote procedure call

(RFC) systems to the object-oriented paradigm. RPC systems attempt to make
cross-address space function calls look (to the client programmer) like local func-

tion calls. Extending this to the object-oriented programming paradigm allows
papering over not just the marshalling of parameters and the unmarshalling of
results (as is done in RFC systems) but also the locating and connecting to the tar-

311

312

A NOTE ON DISTRIBUTED COMPUTING

get objects. Given the isolation of an object’s implementation from clients of the
object, the use of objects for distributed computing seems natural. Whether a

given object invocation is local or remote is a function of the implementation of
the objects being used, and could possibly change from one method invocation to
another on any given object.

Implicit in this vision is that the system will be “objects all the way down”;
that is, that all current invocations or calls for system services will be eventually

converted into calls that might be to an object residing on some other machine.

There is a single paradigm of object use and communication used no matter what

the location of the object might be.

In actual practice, of course, a local member function call and a cross-conti-

nent object invocation are not the same thing. The vision is that developers write
their applications so that the objects within the application are joined using the

same programmatic glue as objects between applications, but it does not require
that the two kinds of glue be implemented the same way. What is needed is a vari—

ety of implementation techniques, ranging from same-address-space implementa-
tions like Microsoft’s Object Linking and Embedding[51 to typical network RPC;
different needs for speed, security, reliability, and object co-location can be met

by using the right “glue” implementation.

Writing a distributed application in this model proceeds in three phases. The
first phase is to write the application without worrying about where objects are
located and how their communication is implemented. The developer will simply

strive for the natural and correct interface between objects. The system will

choose reasonable defaults for object location, and depending on how perfor-

mance-critical the application is, it may be possible to alpha test it with no further

work. Such an approach will enforce a desirable separation between the abstract
architecture of the application and any needed performance tuning.

The second phase is to tune performance by “concretizing” object locations
and communication methods. At this stage, it may be necessary to use as yet

unavailable tools to allow analysis of the communication patterns between

objects, but it is certainly conceivable that such tools could be produced. Also dur-
ing the second phase, the 11'ght set of interfaces to export to various clients—such
as other applications—can be chosen. There is obviously tremendous flexibility
here for the application developer. This seems to be the sort of development seen
nario that is being advocated in systems like Freseolfil, which claim that the deci-
sion to make an object local or remote can be put off until after initial system

implementation.

The final phase is to test with “real bullets” (cg, networks being partitioned,
machines going down). Interfaces between carefully selected objects can be
beefed up as necessary to deal with these sorts of partial failures introduced by
distribution by adding replication, transactions, or whatever else is needed. The

312

313

——

310 A NOTE ON orsrnraunto COMPUTING

exact set of these services can be determined only by experience that will be
gained during the development of the system and the first applications that will
work on the system.

A central part of the vision is that if an application is built using objects all the
way down, in a proper object-oriented fashion, the right “fault points” at which to
insert process or machine boundaries will emerge naturally. But if you initially
make the wrong choices, they are very easy to change.

One conceptual justification for this vision is that whether a call is local or

remote has no impact on the correctness of a program. If an object supports a par-
ticular interface, and the support of that interface is semantically correct, it makes
no difference to the correctness of the program whether the operation is carried
out within the same address space, on some other machine, or off-line by some
other piece of equipment. Indeed, seeing location as a part of the implementation
of an object and therefore as part of the state that an object hides from the outside
world appears to be a natural extension of the objectmoriented paradigm.

Such a system Would enjoy many advantages. It would allow the task of soft-

ware maintenance to be changed in a fundamental way. The granularity of change,
and therefore of upgrade, could be changed from the level of the entire system
(the current model) to the level of the individual object. As long as the interfaces
between objects remain constant, the implementations of those objects can be
altered at will. Remote services can be moved into an address space, and objects
that share an address space can be split and moved to different machines, as local
requirements and needs dictate. An object can be repaired and the repair installed
without worry that the change will impact the other objects that make up the sys—
tem. Indeed, this model appears to be the best way to get away from the “Big Wad
of Software” model that currently is causing so much trouble.

This vision is centered around the following principles that may, at first,
appear plausible:

0 There is a single natural object—oriented design for a given application,
regardless of the context in which that application will be deployed;

9 Failure and performance issues are tied to the implementation of the compo-
nents of an application, and consideration of these issues should be left out
of an initial design; and

9 The interface of an object is independent of the context in which that object
is used.

Unfortunately, all of these principles are false. In what follows, we will show why
these principles are mistaken, and why it is important to recognize the fundamen-
tal differences between distributed computing and local computing.

313

314

 A NOTE ON DISTRIBUTED COMPUTING

A.3 Déja Vu All Over Again

For those of us either old enough to have experienced it or interested enough in

the history of computing to have learned about it, the vision of unified objects is

quite familiar. The desire to merge the programming and computational models of

local and remote computing is not new.

Communications protocol development has tended to follow two paths. One

path has emphasized integration with the current language model. The other path

has emphasized solving the problems inherent in distributed computing. Both are

necessary, and successful advances in distributed computing synthesize elements

from both camps.

Historically, the language approach has been the less influential of the two

camps. Every ten years (approximately), members of the language camp notice

that the number of distributed applications is relatively small. They look at the

programming interfaces and decide that the problem is that the programming

model is not close enough to whatever programming model is currently in vogue

(messages in the moat“. procedure calls in the 1980319102111, and objects in the
19904121). A furious bout of language and protocol design takes place and a new

distributed computing paradigm is announced that is compliant with the latest

programming model. After several years, the percentage of distributed applica

tions is discovered not to have increased significantly, and the cycle begins anew.

A possible explanation for this cycle is that each round is an evolutionary

stage for both the local and the distributed programming paradigm. The repetition

of the pattern is a result of neither model being sufficient to encompass both activ—

ities at any previous stage. However, (this explanation continues) each iteration

has brought us closer to a unification of the local and distributed computing mod—

els. The current iteration, based on the object—oriented approach to both local and

distributed programming, will be the one that produces a single computational
model that will suffice for both.

A less optimistic explanation of the failure of each attempt at unification holds

that any such attempt will fail for the simple reason that programming distributed

applications is not the same as programming non-distributed applications. Just

making the communications paradigm the same as the language paradigm is

insufficient to make programming distributed programs easier, because communi~

eating between the parts of a distributed application is not the difficult part of that

application.

The hard problems in distributed computing are not the problems of how to

get things on and off the wire. The hard problems in distributed computing con-

cern dealing with partial failure and the lack of a central resource manager. The

hard problems in distributed computing concern insuring adequate performance

and dealing with problems of concurrency. The hard problems have to do with dif—

314

315

___ _ __"fi

312 A NOTE ON DISTRIBUTED COMPUTING

ferences in memory access paradigms between local and distributed entities. Peo—
ple attempting to write distributed applications quickly discover that they are
spending all of their efforts in these areas and not on the communications protocol
programming interface.

This is not to argue against pleasant programming interfaces. However, the
law of diminishing returns comes into play rather quickly. Even with a perfect
programming model of complete transparency between “fine-grained” language
level objects and “larger-grained” distributed objects, the number of distributed
applications would not be noticeably larger if these other problems have not been
addressed.

All of this suggests that there is interesting and profitable work to be done in
distributed computing, but it needs to be done at a much higher-level than that of
“finergrained” object integration. Providing developers with tools that help man-
age the complexity of handling the problems of distributed application develop-
ment as opposed to the genetic application development is an area that has been
poorly addressed.

A.4 Local and Distributed Computing

The major differences between local and distributed computing concern the areas
of latency, memory access, partial failure, and concurrency.l The difference in
latency is the most obvious, but in many ways is the least fundamental. The often
overlooked differences concerning memory access, partial failure, and concur-
rency are far more difficult to explain away, and the differences concerning partial
failure and concurrency make unifying the local and remote computing models
impossible without making unacceptable compromises.

A.4.1 Latency

The most obvious difference between a local object invocation and the invocation
of an operation on a remote (or possibly remote) object has to do with the latency
of the two calls. The difference between the two is currently between four and five
orders of magnitude, and given the relative rates at which processor speed and net-
work latency speeds are changing, the difference in the future promises to be at
best no better, and will likely be worse. It is this disparity in efficiency that is often
seen as the essential difference between local and distributed computing.

I We are not the first to notice these differences; indeed, they are clearly stated in [12].

315

