
131

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 121

The effects of modifying the contents of the tmp] parameter while the invo-
cation is in progress are unpredictable and undefined.

If no service can be found that matches the desired criteria, then the versions of

lookup from the first category—those that return a single instance of
ServiceItem—will return null, whereas the versions from the second cate-

gory—thosethat return an array of ServiceItem instances—will return an empty
array.

The versions of lookup from the first category can be used in a fashion simi-
lar to the first form of the lookup methoddefined in the ServiceRegistrar inter-
face described in The Jini Technology Core Platform Specification, “Lookup
Service”. That is, an entity would typically invoke one of these versions of lookup
whenit wishesto find a single service reference and the particular lookup service
with whichthat service reference is registered is unimportantto the entity.

Each version of lookup defined in the ServiceDiscoveryManager differs
with the corresponding version of lookup in ServiceRegistrar in the following
ways:

@ The versions of lookup defined in the ServiceDiscoveryManager query
multiple lookup services(the order in which the lookup services are queried
is dependent on the implementation).

@ The versions of lookup defined in the ServiceDiscoveryManager can

apply additional matchingcriteria, in the form ofa filter object, when decid-
ing whether a service reference found through standard template matching
should be returnedto the entity.

The versions of lookup that return an array of ServiceItem objects can be
used in a fashion similar to the second form of lookup defined in the

ServiceRegistrar interface. That is, an entity would typically invoke these ver-
sions of lookup whenit wishes to find multiple service references matching the
input criteria. Each of the versions of lookup that return an array of ServiceItem
objects takes as one of its arguments an int parameter, maxMatches, that repre-
sents the maximum number of matches that should be returned. The array
returned by these methods will contain no more than maxMatches service refer-
ences, although it may contain fewer than that number.

Aswith the versions of lookup that return a single instance of ServiceItem,
multiple queries andfiltering are also notable differences between the second-cat-
egory versions of this method and their counterpart in ServiceRegistrar.

For each version of lookup, whenever a lookup service query returns a nul
service reference,the filter is bypassed, and the service reference is excluded from

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

131

132

122 THE SEMANTICS

the return object. On the other hand,if the query returns a non-nu11 servicerefer-
ence in which the associated array of attribute contains one or more null ele-
ments, the filter is still applied and the service reference is included in the return
object.

Each version of lookup may be confronted with duplicate references during a
search for a service of interest. This is because the same service may register with
more than one lookup service in the managed set. As with the cache, when a set of
service references is returned by lookup, each service reference in the return set
will be unique with respect to all other service referencesin the set, as determined
by the equals methodprovidedby eachreference.

If it is determined that a lookup service is unavailable (due to an exception or
some other non-fatal error) while interacting with a lookup service from the man-
aged set, all versions of lookup will invoke the discard method onthe instance
of DiscoveryManagement being employed by the ServiceDiscoveryManager.
Doing so will result in the unavailable lookup service being discarded and made
eligible for rediscovery.

Recall that the propagation of modifications to a service’s attributes across a
set of lookup services typically occurs asynchronously. It is for this reason that
while invoking lookupto find a set of matching services, it is possible that the set
returned may contain multiple references having the same service ID with differ-
ent attributes. Note that although this sort of inconsistent state can also occurif the
entity employs a cache, the cache will eventually reflect the correct state.

The Blocking Feature of 1ookup

As noted above, each category contains a version of lookup that provides a fea-
ture in which the entity can request that if the numberof service references found
throughout the available lookup services does not fall into a desired range, the
method will wait a finite period of time until either an acceptable minimum num-
ber of service references are discovered or the specified time period has passed.

The versions of lookup providing this blocking feature each takes as one of
its parameters a value of type long that represents the number of milliseconds to
wait for the service to be discovered. In addition to RemoteException (described
previously for these methods), each of these versions of lookup may throw an
InterruptedException.

One of these blocking versions of lookup implicitly uses a value of one for
both the acceptable minimum and the allowable maximum numberofservice ref-
erences to discover. The other blocking version requires that the entity specify the
range through the minMatches and maxMatches parameters, respectively.

Prior to blocking, each of these versions of lookupfirst queries each available
lookup service in an attempt to retrieve a satisfactory number of matchingser-

132

133

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 123

vices. Whether or not the method actually blocks is dependent on how many
matching service references are found during the query process. Blocking occurs
only if after querying all of the available lookup services, the number of matching
services found is less than the acceptable minimum.If the waiting period (mea-
sured from when blocking first begins) passes before that minimum number of
service references is found, the methodwill return the service references that have

been discovered up to that point. If the waiting period passes and no services have
been found, nu11 or an empty array (depending onthe version of lookup) will be
returned.

If, after querying all of the available lookup services, the number of matching
services found is greater than or equal to the specified minimum butless than the
specified maximum, the method will return the currently discovered service refer-
ences without blocking. If the initial query process produces the desired maxi-
mum number of service references, the method will return the results

immediately.
The blocking versions of lookup are quite useful to entities that cannot pro-

ceed until such a service of interest is found. If a non-positive value is input to the
waitDur argument, then the method will not wait. It will simply query the avail-
able lookup services and employ the return semantics described above.

The values of the minMatches and maxMatches arguments must both be posi-
tive, and maxMatches must be greater than or equal to minMatches; otherwise, an
T1legalArgumentException will be thrown.

The blocking versions of lookup makea concurrency guarantee with respect
to the discovery of new lookup services during the wait period. That is, while
waiting for matching service reference(s) to be discovered, if one or more of the
desired—butpreviously unavailable—lookup services is discovered and added to
the managedset, those new lookupservices will also be queried for the service(s)
of interest.

In addition, the blocking versions of lookup throw InterruptedException.
When an entity invokes either version with valid parameters, the entity may
decide during the wait period that it no longer wishes to wait the entire period for
the method to return. Thus, while the method is blocking on the discovery of
matching service(s), it may be interrupted by invoking the interrupt method
from the Thread class. The intent of this mechanism is to allow the entity to inter-
rupt a blocking lookup in the same way it would a sleeping thread.

SD.4.1.4 The getDiscoveryManager Method

The getDiscoveryManager method returns an object that implements the
DiscoveryManagement interface. The object returned by this method providesthe

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

133

134

124 THE SEMANTICS

ServiceDiscoveryManager with the ability to set discovery listeners and to dis-
card previously discovered lookup services when they are found to be unavailable.
This method takes no arguments.

SD.4.1.5 The getLeaseRenewalManager Method

The getLeaseRenewalManager method returns a LeaseRenewalManager object.
The object returned by this method managesthe leases requested and held by the
ServiceDiscoveryManager.In general, these leases correspond to the registra-
tions made by the ServiceDiscoveryManager with the event mechanism of each
lookup service in the managed set. This method takes no arguments.

SD.4.1.6 The terminate Method

The terminate method performs cleanup duties related to the termination of the
event mechanism for /ookup service discovery, the event mechanism for service
discovery, and the cache managementduties of the ServiceDiscoveryManager.
Thatis, the terminate method will terminate each LookupCache instance created

and managed by the ServiceDiscoveryManager. Additionally, if the discovery
manager employed by the ServiceDiscoveryManager was created by the
ServiceDiscoveryManager itself, then the terminate method will also termi-

nate that discovery manager.
Note that if the discovery manager was created externally and supplied to the

ServiceDiscoveryManager, then any reference to that discovery manager held
by the entity will remain valid, even after the ServiceDiscoveryManager has
been terminated. Similarly, if the entity holds a reference to the lease renewal
manager employed by the ServiceDiscoveryManager,that reference will also
remain valid after termination, whether lease renewal managerwascreated exter-
nally or by the ServiceDiscoveryManager itself.

The ServiceDiscoveryManager makescertain concurrency guarantees with
respect to an invocation of terminate while other method invocations are in
progress. The termination process described above will not begin until completion
of all invocations of the public methods defined in the public interface of
ServiceDiscoveryManager; that is, until completion of invocations of
createLookupCache, lookup, getDiscoveryManager, and
getLeaseRenewalManager.

Upon completion of the termination process, the semantics of all current and
future method invocations on_the terminated instance of the

ServiceDiscoveryManagerare undefined.

134

135

JINI SERVICE DISCOVERY UTILITIES SPECIFICATION, version 1.1 125

SD.4.2 Defining Service Equality

The ability to accurately determine when two different service references are
equal is very important to the ServiceDiscoveryManager in general, and the
LookupCachein particular. Any restriction placed onthat ability can result in inef-
ficient and undesirable behavior. Storing and managing duplicate service refer-
ences—that is, proxies that refer to the same version of the same back end
service—is usually viewed as undesirable. In other words, when storing and man-
aging service references, it is very desirable to be able to determine not only that
two different proxies refer to the same back endservice,but if they do refer to the
same back end, whether or not the current version of the referenced service has

been replaced with a new version.
The mechanism employed by the LookupCacheto avoid storing duplicate ser-

vice references is the equals method provided by the discovered services them-
selves. This is because an individual well-behaved service of interest will usually
register with multiple lookup services, and for each lookup service with which
that service registers, the LookupCache will receive a separate event containing a
reference to the service. When the LookupCache receives events from multiple
lookupservices, the service ID (retrieved from the service reference in the event)
together with the equals method providedby the serviceitself, is used to distin-
guish the service references from each other. In this way, when a new eventarrives
containing a reference associated with the sameservice as an already-stored refer-
ence, the LookupCache can determine whether the new reference is a duplicate or
the service has been replaced with a new version ofitself. In the former case, the
duplicate would be ignored;in the latter case, the old reference would be replaced
with the new reference.

Thus, the LookupCacherelies on the provider of each service to override the
equals method inherited from the class Object with an implementation that
allows for the identification of duplicate service proxies. In addition to the equals
method, each service should also provide a proper implementation of the
hashCode method. This is because even if an entity never explicitly calls on the
equals method to compareservice references, those references maystill be stored
in container classes (for example, Hashtable) where such comparisons are made
“under the covers.” From the point of view of the ServiceDiscoveryManager
and the LookupCache, providing an appropriate implementation for both the
equals method and the hashCode methodis a key characteristic of good behavior
in a Jini service.

Note that there is no need to override either the equals method or the hash-

Code methodif the service is implemented as a purely remote object in which the
service proxy is an RMIstub. In this case, appropriate implementations for both
methodsare already providedin the stub.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

135

136

126 THE SEMANTICS

SD.4.3 Exporting RemoteEventListener Objects

A subset of the methods on the ServiceDiscoveryManager, when invoked, will

result in a request for registration with the event mechanism of one or more
lookup services. The methods that result in such a_request are
createLookupCache and the blocking versions of the lookup method.

Anyentity that invokes one of these methods must export, to each lookupser-
vice with which a registration occurs, the stub classes of the
RemoteEventListener object through which instances of RemoteEvent will be
received. Furthermore, each of these methods must throw RemoteException. The

reasons that a RemoteException can occurfall into one of the following catego-
ries:

@ Each of these methods attempts to export a remote object, a process that can
throw RemoteException.

@ Each of these methods attempts to register with the event mechanism ofat
least one lookup service, a process that can throw RemoteException.

Howeachof the affected methods handle the RemoteExceptionis dependent
on the reason for the exception. If a RemoteException (or any other non-fatal
exception or error) is thrown during an attempt to register for events from a
lookupservice, that lookup service will be discarded and madeeligible for redis-
covery. On the other hand, if a RemoteException occurs during an attempt to
export the listener, the method from which that attempt is made will re-throw the
same exception.

The potential for RemoteException during the export process imposes the
following requirement: the same instance of the listener must be exported to each
lookup service from which events will be requested. Furthermore, the creation and
export of the listener must occur prior to the event registration process. This
requirement guarantees that should a RemoteException occurafter the registra-
tion process has begun,the exception will not be propagated and event processing
will continue.

To understand the significance of this requirement, consider the scenario in
which a different instance of the listener is exported to each lookupservice. If a
new lookupservice is discovered after the event process has begun for the other
lookup services in the managedset, a new instanceofthe listener must be created
and exported. Should a RemoteException occur during the export process, the
exception will be propagated and all event processing will stop—aresult that
many entities may view as undesirable.

136

137

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 127

To facilitate exporting the listener, the entity—whetherit is a Jini client or a
Jini service—is responsible for providing and advertising a mechanism through
which each lookupservice will acquire the listener’s stub classes.

For example, one implementation of the ServiceDiscoveryManager might
provide a special JAR file containing only the listener stub classes to optimize
download time. By_including this JAR_file in the_entity’s
java.rmi.server.codebase property (in the appropriate format, specifying
transport protocol and location), the entity advertises the mechanism that lookup
services can employ to acquire the stub classes. By executing a process to serve up
the JAR file (for example, an HTTP server), the mechanism through which each
lookupservice acquires those stub classesis provided.

It is important to note that should such a mechanism not be madeavailable to
each lookupservice with which eventregistration will be requested, a “silent fail-
ure” can occur repeatedly. If the mechanism is not available, each lookup service
cannot acquire the exported listener. Because each lookup service cannot acquire
the exported listener, any attempts to register for events will fail. Whenever an
attemptto register for events fails, the associated lookup service will be discarded
and madeeligible for rediscovery. Upon rediscovery of the discarded lookupser-
vice, the cycle repeats when a new attemptto register for events is made.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

137

138

128 THE SEMANTICS

138

139

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 129

SD.5 Supporting Interfaces and Classes

Tz ServiceDiscoveryManager utility class depends on the following inter-
faces defined in The Jini Technology Core Platform Specification, “Lookup Ser-
vice”: ServiceTemplate, ServiceItem, and ServiceMatches. This class also

depends on a numberofinterfaces, each defined in this section; those interfaces
are DiscoveryManagement, ServiceItemFilter, ServiceDiscoveryListener,

and LookupCache.

The ServiceDiscoveryManager class references the following concrete
classes: LookupDiscoveryManager and LeaseRenewalManager, each described
in a separate chapter of this document, and ServiceDiscoveryEvent, which is
defined in this chapter.

SD.5.1 The DiscoveryManagement Interface

Although it is not necessary for the ServiceDiscoveryManager itself to execute
the discovery process, it does need to be notified when one of the lookup services
it wishes to query is discovered or discarded. Thus, at a minimum, the
ServiceDiscoveryManager requires access to the instances of DiscoveryEvent
sent to the listeners registered with the event mechanism ofthe discovery process.
The instance of DiscoveryManagement passed to the constructor of the
ServiceDiscoveryManager provides a mechanism for acquiring access to those
events. For a complete description of the semantics of the methods ofthis inter-
face, refer to the Jini Discovery Utilities Specification.

One noteworthy item about the semantics of the ServiceDi scoveryManager
is the effect that invocations of the discard method of DiscoveryManagement

have on any cache objects created by the ServiceDiscoveryManager. The
DiscoveryManagement interface specifies that the discard method will remove a
particular lookup service from the managedset of lookupservices already discov-
ered, allowing that lookup service to be rediscovered. Invoking this method will
result in the flushing of the lookup service from the appropriate cache. This effect
ultimately causes a discard notification to be sent to all DiscoveryListener

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

139

140

130 SUPPORTING INTERFACES AND CLASSES

objects registered with the event mechanism of the discovery process (including
all listeners registered by the ServiceDiscoveryManager).

The receipt of an event notification indicating that a lookup service from the
managed set has been discarded must ultimately result in the cancellation and
removal of all event leases that were granted by the discarded lookup service and
that are managed by the LeaseRenewalManager on behalf of the
ServiceDiscoveryManager.

Furthermore, every service reference stored in the cachethat is registered with
the discarded lookup service but is not registered with any of the remaining
lookup services in the managedset will be “discarded” as well. Thatis, all previ-
ously discovered service references that are registered with only unavailable
lookup services will be removed from the cache and made eligible for service
rediscovery.

SD.5.2. The ServiceItemFilter Interface

The ServiceItemFi1ter interface defines the methods used by an object such as
the ServiceDiscoveryManager or the LookupCacheto apply additional match-
ing criteria when searching for services in which an entity has registered interest.
It is the responsibility of the entity requesting the application of additionalcriteria
to construct an implementation ofthis interface that defines the additionalcriteria,
and to pass the resulting object (referred to as a filter) into the object that will
applyit.

Thefiltering mechanism provided by implementationsofthis interface is par-
ticularly useful to entities that wish to extend the capabilities of the standard tem-
plate matching scheme. For example, because template matching does not allow
one to search for services based on a range of attribute values, this additional
matching mechanism can be exploited by the entity to ask the managing object to
find all registered printer services that have a resolution attribute between say, 300
dpi and 1200 dpi.

package net.jini. lookup;

public interface ServiceItemFilter {

public boolean check(ServiceItem item);

}

140

141

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 131

SD.5.2.1 The Semantics

The check method defines the implementation of the additional matchingcriteria
to apply to a ServiceItem object found through standard template matching. This
method takes one argument: the ServiceItem object to test against the additional
criteria. This method returns true if the input object satisfies the additional crite-
ria and false otherwise.

Neither a nul] reference nor a ServiceItem object containing nu11 fields
will be passed into this method by the ServiceDi scoveryManager.

If the parameter input to this method is a ServiceItem object that has non-
null fields but is associated with attribute sets containing null entries, this
method must process that parameter in a reasonable manner.

Should an exception occur during an invocation of this method, the semantics
of how that exception is handled are undefined.

This method must not modify the contents of the input ServiceItem object
becauseit could result in unpredictable and undesirable effects on future process-
ing by the ServiceDiscoveryManager.Thatis whythe effects of any such modi-
fication to the contents of that input parameter are undefined.

SD.5.3. The ServiceDiscoveryEvent Class

The ServiceDiscoveryEvent class encapsulates the service discovery informa-
tion made available by the event mechanism of the LookupCache.All listeners
that an entity has registered with the cache’s event mechanism will receive an
event of type ServiceDiscoveryEvent upon the discovery, removal, or modifica-
tion of one of the cache’s services, as described previously in “Events and the
Cache.”

This class is a subclass of the class EventObject. In addition to the methods
of the EventObject class, this class provides two additional accessor methods
that can be used to retrieve the additional state associated with the event:

getPreEventServicelItem and getPostEventServicelItem.
The getSource method of the EventObject class returns the instance of

LookupCache from whichthe given eventoriginated.

package net.jini. lookup;

public class ServiceDiscoveryEvent extends EventObject {

public ServiceDiscoveryEvent(Object source,
ServiceItem preEventitem,

ServiceItem postEventItem)

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

144

142

132 SUPPORTING INTERFACES AND CLASSES

{...}

public ServiceItem getPreEventServicelItem() {...}

public ServiceItem getPostEventServicelItem() {...}

SD.5.3.1 The Semantics

The constructor of ServiceDiscoveryEventtakes three arguments:

An instance of Object corresponding to the instance of LookupCache from
whichthe given event originated

@ A ServiceItem reference representing the state of the service (associated
with the given event) prior to the occurrence of the event

@ A ServiceItem reference representing the state of the service after the
occurrence of the event

If null is passed as the source parameter for the constructor, a
Nul1PointerException will be thrown.

Depending on the nature of the discovery event, a null reference may be
passed as one orthe other of the remaining parameters, but never both. If nu11 is
passed as both the preEventItem and the postEventItem parameters, a
Nul1PointerException will be thrown.

Note that the constructor will not modify the contents of either ServiceItem
argument. Doing so can result in unpredictable and undesirable effects on future
processing by the ServiceDiscoveryManager. That is why the effects of any
such modification to the contents of either input parameter are undefined.

The getPreEventServiceItem method returns an instance of ServiceItem
containing the service reference corresponding to the given event. The service
state reflected in the returned service item is the state of the service prior to the
occurrenceofthe event.

If the event is a discovery event (as opposed to a removal or modification
event), then this method will return nu11 because the discovered service had no
state in the cachepriorto its discovery.

The getPostEventServiceItem methodreturns an instance of ServiceItem
containing the service reference corresponding to the given event. The service
state reflected in the returned service item is the state of the service after the
occurrenceofthe event.

If the event is a removal event, then this method will return nu11 because the
discovered service hasnostate in the cacheafter it is removed from the cache.

142

143

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 133

Because making a copy can be a very expensive process, neither accessor
method returns a copy ofthe service reference associated with the event. Rather,
each methodreturns the appropriate service reference from the cache itself. Due
to this cost, listeners (see Section SD.5.4, “The ServiceDiscoveryListener Inter-
face” below) that receive a ServiceDiscoveryEvent must not modify the con-
tents of the object returned by these methods; doing so could causethe state of the
cache to become corrupted or inconsistent because the objects returned by these
methods are also membersof the cache. This potential for corruption or inconsis-
tency is why the effects of modifying the object returned by either accessor
method are undefined.

SD.5.4 The ServiceDiscoveryListener Interface

The ServiceDiscoveryListener interface defines the methods used by objects
such as a LookupCacheto notify an entity that events of interest related to the ele-
ments of the cache have occurred.It is the responsibility of the entity wishing to
be notified of the occurrence of such events to construct an object that implements
the ServiceDiscoveryListener interface and then register that object with the
cache’s event mechanism. Any implementation of this interface must define the
actions to take uponreceipt of an eventnotification. The action taken is dependent
on both the application and the particular event that has occurred.

package net.jini. lookup;

public interface ServiceDiscoveryListener {

public void serviceAdded(ServiceDiscoveryEvent event) ;

public void serviceRemoved(ServiceDiscoveryEvent event);

public void serviceChanged(ServiceDiscoveryEvent event) ;

SD.5.4.1 The Semantics

As described previously in the section titled “Events and the Cache,’ when the
cache receives from one of the managed lookup services, an event signaling the
registration of a service of interest for thefirst time (or for the first time since the
service has been discarded), the cache invokes the serviceAdded methodonall
instances of ServiceDiscoveryListener that are registered with the cache;
doing so notifies the entity that a service of interest has been discovered. The
method serviceAdded takes one argument: an_ instance’ of
ServiceDiscoveryEvent containing references to the service item correspond-

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

143

144

134 SUPPORTING INTERFACES AND CLASSES

ing to the event, including representations of the service’s state both before and
after the event.

Whenthe cache receives, from a managed lookupservice, an event signaling
the removalof a service of interest from the /ast such lookup service with whichit
was registered, the cache invokes the serviceRemoved method onall instances of
ServiceDiscoveryListener that are registered with the cache; doing so notifies
the entity that a service of interest has been discarded. The serviceRemoved
method takes one argument: a ServiceDiscoveryEvent object containing refer-
encesto the service item corresponding to the event, including representations of
the service’s state both before and after the event.

Whenthe cache receives, from a managed lookupservice, an event signaling
the unique modification of the attributes of a service of interest (across the
attribute sets of all references to the service), the cache invokes the
serviceChanged method onall instances of ServiceDiscoveryListener that

are registered with the cache; doing so notifies the entity that the state of a service
of interest has changed. The serviceChanged method takes one argument: a
ServiceDiscoveryEvent object containing references to the service item corre-
sponding to the event, including representations of the service’s state both before
and after the event.

Should an exception occur during an invocation of any of the methods defined
by this interface, the semantics of how that exception is handled are undefined.

Each method defined by this interface must not modify the contents of the
ServiceDiscoveryEvent parameter; doing so can result in unpredictable and
undesirable effects on future processing by the ServiceDiscoveryManager.It is
for this reason that if one of these methods modifies the contents of the parameter,
the effects are undefined.

This interface makes the following concurrency guarantee: for any givenlis-
tener object that implements this interface, no two methods(either the same two
methodsor different methods) defined by the interface can be invoked at the same
time by the same cache. For example, the serviceRemoved method must not be
invoked while the invocation of another listener’s serviceAdded method is in

progress.

Finally, it should be noted that the intent of the methods ofthis interfaceis to
allow the recipient of the ServiceDiscoveryEvent to be informed that a service
has been addedto, removed from, or modified in the cache. Calls to these methods

are synchronousto allow the entity that makesthe call (for example, a thread that
interacts with the various lookupservices of interest) to determine whether or not
the call succeeded. However,it is not part of the semantics of the call that the noti-
fication return can be delayed while the recipient of the call reacts to the occur-
rence of the event. It is therefore highly recommended that implementations of
this interface avoid time consuming operations and return from the method as

144

145

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1

quickly as possible. For example, one strategy might be to simply note the occur-
rence of the ServiceDiscoveryEvent and perform any time-consuming event
handling asynchronously.

SD.5.5 The LookupCacheInterface

The LookupCache interface defines the methods provided by the object created
and returned by the ServiceDiscoveryManager when an entity invokes the
createLookupCache method. Within this object are stored the discovered service
references that match criteria defined by the entity. Through this interface the
entity may retrieve one or more of the stored service references, register and
unregister with the cache’s event mechanism, and terminate all of the cache’s pro-
cessing.

package net.jini. lookup;

public interface LookupCache {

public ServiceItem lookup(ServiceItemFilter filter);

public ServiceItem[] lookup(ServiceItemFilter filter,

int maxMatches);

public void addListener

(ServiceDiscoveryListener listener);

public void removeListener

(ServiceDiscoveryListener listener);

public void discard(Object serviceReference);

public void terminateQ) ;

SD.5.5.1 The Semantics

Depending on whichversion is invoked, the lookup method of the LookupCache
interface returns one or more elements—each matching the input criteria—that
were stored in the associated cache. The object that is returned is either a single
instance of ServiceItem or a set of service references in the form of an array of
ServiceItem objects. Each service item that is returned by either form ofthis
method must have been previously discovered both to be registered with one or

135

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

145

146

136 SUPPORTING INTERFACES AND CLASSES

more of the lookup services in the managed set and to matchcriteria defined by
the entity.

One argument is common to both forms of lookup: an instance of
ServiceItemFilter. The semantics of the filter argument are identical to
those of the filter argumentspecified for a numberofthe methodsdefined in the
interface of the ServiceDiscoveryManager utility class. This argument is
intendedto allow an entity to separate its filtering into two steps: an initial filter
applied during the discovery phase and thena finer resolution filter applied upon
retrieval from the cache. As with the methods of the ServiceDiscoveryManager,

if nul] is the value of this argument, then no additional filtering will be per-
formed.

The second form of the]ookup method of the LookupCache interface takes an

additional argument: a parameter of type int that represents the maximum num-
ber of matches that should be returned. The array returned by this form of lookup
will contain no more than the requested numberof service references, althoughit
may contain fewer than that number. The value input to this argument must be
positive; otherwise, an I1legalArgumentExceptionwill be thrown.

If the cache is empty, or if no service can be found that matches the inputcri-
teria, then the first form of lookup will return nul11, whereas the second form of

lookup will return an empty array. The algorithm used to select the return ele-
ment(s) from the set of matching service references is implementation dependent.

Neither form of the lookup method of the LookupCache interface returns a

copy of the matching service reference(s) that were selected; rather, each form
returns the actual service reference(s) from the cache itself. Because the actual
service reference(s) are returned, entities that invoke either form of this method
must not modify the contents of the returned reference(s). Modifying the returned
service reference(s) could cause the state of the cache to become corrupted or
inconsistent. This potential for corruption or inconsistency is whythe effects of
modifying the service reference(s) returned by either form of lookupis undefined.

Typically, an entity will request the creation of a separate cache for each ser-
vice type of interest. When the entity simply needs a reference to a service of a
particular type, the entity should invoke the first form of lookup to retrieve one
element from the cache; in this case, which particular service reference that is
returned will not, in general, matter to the entity. If for some reason it does matter
to an entity whichservice reference is returned, then the entity can invoke the sec-
ond form of lookup requesting that Integer.MAX_VALUE service references be
returned; doing so will return all elements of the cache that match the input crite-
ria. The entity can then iterate through each element, selecting the desired refer-
ence.

The addListener method will register a ServiceDiscoveryListener object
with the event mechanism of a LookupCache. This listener object will receive a

146

147

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1

ServiceDiscoveryEvent uponthe discovery, removal, or modification of one of
the cache’s services, as described previously in “Events and the Cache.” This
method takes one argument: a reference to the ServiceDiscoveryListener
object to register.

If null is input to the addListener method, a Nul1PointerException is
thrown. If the object input is a duplicate (using the equals method) of another
elementin the set of listeners, no action is taken.

Oncea listener is registered,it will be notified ofall service references discov-
ered to date, and will be notified as new services are discovered and existing ser-
vices are modified or discarded.

The LookupCache makes a reentrancy guarantee with respect to any
ServiceDiscoveryListener objects registered with it. Should the LookupCache
invoke a method ona registered listener(a localcall), any call from that method to
a local method of the LookupCache is guaranteed not to result in a deadlock con-
dition.

The removeListener method will remove a ServiceDiscoveryListener

object from the set of listeners currently registered with a LookupCache.Onceall
listeners are removed from the cache’s set of listeners, the cache will send no

more ServiceDiscoveryEventnotifications. This method takes one argument: a
reference to the ServiceDiscoveryListener object to remove.

If the parameter value to removeListener is nu11, orif the listener passed to
this method doesnotexist in the set of listeners maintained by the implementation
class, then this method will take no action.

If an entity determines that a service reference retrieved from the cache is no
longer available, the entity should request the removal of that reference from the
cache. The mechanism for discarding an unavailable service from the cache is
provided by the discard method of the LookupCache interface. The discard
method takes one argument: an instance of Object whose reference is the service
reference to remove from the cache. If the proxy input to this method is nu11, or if
it matches (using the equals method) noneofthe service references in the cache,
this method takes no action.

The discard method not only deletes the service reference from the cache,
but also causesa notification to be sentto all registered listeners indicating that the
service has been discarded (see the description of the serviceRemoved methodin
the section that specifies the ServiceDiscoveryListener interface). The service
is guaranteed to have been removed from the cache when this method completes
successfully; the service is then said to have been discarded. No such guaranteeis
made with respect to when the discard eventis sent to the client’s registered listen-
ers. That is, the event that notifies the client that the service has been discarded

may or may not be sent asynchronously.

137

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

147

148

138 SUPPORTING INTERFACES AND CLASSES

With respect to discarding services, there is a situation that must be handled
by all implementations of the LookupCache. Because the LookupCache discovers
a service through a lookup service rather than through the serviceitself, there is a
danger that, unless the LookupCache takes action (described below), once a ser-
vice has been discarded, it may never be rediscovered. This can happen because
even though a service may bediscarded from the cache, it may not be discarded
from the lookup services with whichit is registered.

To understand this situation, it might help to first consider the conditions
under whichaservice is normally discarded from the cache and then rediscov-
ered. An entity typically discards a service whenthe entity determinesthat the ser-
vice has becomeunavailable. Recall that a service usually becomes unavailable to
an entity when the service crashes, the service is shut down, or the link between
the entity and the service experiences a network partition. Under normal circum-
stances, when a well-defined service becomes unavailable because it has crashed

or has been shut down, and the entity—after determining that the service is
unavailable—discards the service, the cache will rediscover the service when the
service comesback online. The service is rediscovered because a well-behaved

service will typically reregister with each lookup service with whichit wasregis-
tered prior to crashing or shutting down. Note that such a service will reregister
even whenits original lease with a lookupserviceisstill valid. When the service
reregisters with a lookup service, the lookup service notifies the cache’s listener
that a reregistration has occurred, and the service is then rediscovered.

A special case of the scenario just described involves services that choose to
persist their leases. Typically, when a service thatpersists its leases comes back on
line after a crash or a shutdown,the service will not reregister with any lookup
service for which the associatedlease isstill valid. If none of the service’s leases

expire during the period in which the service is down, then when the service
comes back on line, it will never reregister with any of the desired lookup ser-
vices, and the cache will never be notified that the discarded service has become

available once again.
Therefore it is important to note that there are conditions that may hinder

rediscovering certain types of services that were discarded as a result of a crash or
shutdown. This situation should not occur with any frequency becauseservices
that persist their leases are expected to be less common than other types of ser-
vices. However, there is a commonscenario in which any type of service may be
discarded but never rediscovered. This new scenario is characterized not by ser-
vice crashes or shutdowns, but by communication failures. In this situation, com-
munication failures cause only the entity to view the service as unavailable; thatis
each lookup service in the managed set can still communicate with the service.

As with service crashes or shutdowns, communication failures between the

entity and the service can also cause the entity to discard the service. But prob-

148

149

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 139

lems can arise when the communication failures occur between the entity and the
service, but not betweenthe service and any of the lookup services in the managed
set. Although the service never goes down, it is still discarded by the entity
because the inability to communicate with the service causes the entity to view the
service as unavailable. But because the service can still communicate with the

lookup services, the service will continue renewing its residency in each lookup
service. Thus, since none ofthe service’s leases expire, the service never reregis-
ters with any of the lookup services, and the lookup services will never send
events to the cache’s listener that cause the service to be rediscovered.

To address the scenarios described above, all implementations must do the
following whena service is discarded from the cache:

@ Place the reference to the discarded service in separate storage, and remove
the reference from the cache’s storage (to guarantee that subsequent queries
of the cache do not return that same unavailable reference).

@ Wait an implementation-dependent amountoftime thatis likely to exceed
the typical service lease duration.

@ Ifa ServiceEvent with a transition equal to TRANSITION_MATCH_NOMATCH
is received (indicating that the service’s lease has expired), then the service
reference that wasset aside can beflushed, andthe service is then truly dis-
carded.

If such a ServiceEventis not received (indicating that a transient commu-
nication failure probably occurred), the service reference that wasset aside
should be placed back in the cache’s local storage, andif the entity is regis-
tered for events from the cache, the appropriate event should be sentto the
entity’s registered listener.

The terminate method performs cleanup duties related to the termination of
the processing being performedbya particular instance of LookupCache. Forthat
instance, this method cancels all event leases granted by the lookup services that
supplied the contents of the cache, and unexports all remote listener objects regis-
tered with those lookup services. The terminate methodis typically called when
the entity is no longer interested in the contents of the LookupCache. Upon com-
pletion of the termination process, the semantics ofall current and future method
invocations on the current instance of LookupCacheare undefined.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

149

150

140 SUPPORTING INTERFACES AND CLASSES

150

151

LS

Jini Lookup Attribute Schema
Specification

LS.1 Introduction

Ti Jini lookup service providesfacilities for services to advertise their avail-
ability and for would-be clients to obtain references to those services based on the
attributes they provide. The mechanism that it provides for registering and query-
ing based onattributes is centered on the Java platform type system, and is based
on the notion of an entry.

Anentry is a class that contains a numberofpublic fields of object type. Ser-
vices provide concrete values for each of these fields; each value acts as an
attribute. Entries thus provide aggregation of attributes into sets; a service may
provide several entries whenregistering itself in the lookup service, which means
that attributes on each service are provided ina set ofsets.

The purpose of this documentis to provide a framework in which services and
their would-be clients can interoperate. This framework takes twoparts:

@ We describe a set of commonpredefined entries that span muchofthe basic
functionality that is needed both by services registering themselves and by
entities that are searching for services.

@ Since we cannotanticipate all ofthe future needs ofclients ofthe lookup ser-
vice, we providea set of guidelines and design patterns for extending, using,
and imitating this set in ways that are consistent and predictable. We also
construct some examplesthatillustrate the use of these patterns.

151

141

152

142 INTRODUCTION

LS.1.1. Terminology

Throughout this document, we will use the following terms in consistent ways:

@ Service—aservice that has registered, or will register, itself with the lookup
service

¢ Client—anentity that performs queries on the lookup service, in order to
find particular services

LS.1.2 Design Issues

Several factors influence and constrain the design of the lookup service schema.

Matching Cannot Always Be Automated

No matter how much informationit hasat its disposal, a client of the lookup ser-
vice will not always beable to find a single unique match without assistance when
it performs a lookup. In many instances we expect that more than one service will
match a particular query. Accordingly, both the lookup service and the attribute
schemaare geared toward reducing the numberofmatchesthat are returned on a
given lookup to a minimum,and notnecessarily to just one.

Attributes Are Mostly Static

We have designed the schema for the lookup service with the assumption that
mostattributes will not need to be changed frequently. For example, we do not
expect attributes to change more often than once every minute or so. This decision
is based on our expectation that clients that need to make a choice of service based
on more frequently updated attributes will be able to talk to whatever small set of
services the lookup service returns for a query, and on ourbelief that the benefit of
updating attributes frequently at the lookup service is outweighed by the cost in
networktraffic and processing.

Humans Need to Understand Most Attributes

A corollary of the idea that matching cannot always be automated is that
humans—whether they be users or administrators of services—mustbe able to
understand andinterpret attributes. This has several implications:

152

153

JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION, version 1.1

@ We must provide a mechanism to deal with localization of attributes

@ Multiple-valued attributes must provide a way for humansto see only one
value (see Section LS.2, “Human Accessto Attributes”’)

Wewill cover humanaccessibility of attributes soon.

Attributes Can Be Changed by Services or Humans, But Not Both

For any given attribute class we expectthat attributes within that class will all be
set or modified either by the service, or via human intervention, but not both.
What do we meanbythis? A service is unlikely to be able to determinethat it has
been moved from one room to another, for example, so we would not expect the
fields of a “location”attribute class to be changedbytheservice itself. Similarly,
we do not expect that a human operator will need to change the name of the ven-
dor of a particular service. This idea has implications for our approach to ensuring
that the values ofattributes are valid.

Attributes Must Interoperate with JavaBeans Components

The JavaBeansspecification provides a numberoffacilities relating to the local-
ized display and modification of properties, and has been widely adopted.It is to
our advantage to provide a familiar set of mechanisms for manipulating attributes
in these ways.

LS.1.3. Dependencies

This documentrelies on the following other specifications:

@ The Jini Technology Core Platform Specification, “Entry”

@ Jini Entry Utilities Specification

@ JavaBeansSpecification

143

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

153

154

144 INTRODUCTION

154

155

JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION, version 1.1 145

LS.2. Human Access to Attributes

LS.2.1 Providing a Single View of an Attribute’s Value

Consiver the following entry class:
public class Foo implements net.jini.core.entry.Entry {

public Bar baz;

}

public class Bar {

int quux;

boolean zot;

}

A visual search tool is going to have a difficult time rendering the value of an
instance of class Bar in a mannerthat is comprehensible to humans. Accordingly,
to avoid such situations, entry class implementors should use the following guide-
lines when designinga classthat is to act as a value for an attribute:

Provide a property editor class of the appropriate type, as described in Sec-
tion 9.2 of the JavaBeans Specification.

@ Extend the java. awt.Componentclass;this allows a value to be represented
by a JavaBeans componentor someother“active” object.

@ Provide either a non-default implementation of the Object.toString
methodor inherit directly or indirectly from a class that does so (since the
default implementation of Object.toString is not useful).

One of the above guidelines should be followed for all attribute value classes.
Authors of entry classes should assumethat any attribute value that does not sat-
isfy one of these guidelines will be ignored by someorall user interfaces.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

155

156

146 HUMANACCESSTO ATTRIBUTES

156

157

JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION, version 1.1 147

LS.3. JavaBeans Components and Design
Patterns

LS.3.1_ Allowing Display and Modification of Attributes

\ \ E use JavaBeans components to provide a layer of abstraction on top of the
individual classes that implement the net.jini.core.entry.Entry interface.
This provides us with several benefits:

@ This approach uses an existing standard and thus reduces the amount of
unfamiliar material for programmers.

@ JavaBeans components provide mechanisms for localized display of
attribute values and descriptions.

@ Modification of attributes is also handled, via property editors.

LS.3.1.1 Using JavaBeans Components with Entry Classes

Many, if not most, entry classes should have a bean class associated with them.
Our use of JavaBeans components provides a familiar mechanism for authors of
browse/search tools to represent information about a service’s attributes, such as
its icons and appropriately localized descriptions of the meanings and valuesofits
attributes. JavaBeans componentsalso play a role in permitting administrators of a
service to modify someofits attributes, as they can manipulate the valuesofits
attributes using standard JavaBeans component mechanisms.

For example, obtaining a java.beans.BeanDescriptor for a JavaBeans
componentthat is linked to a “location” entry object for a particular service allows
a programmerto obtain an icon that gives a visual indication of what that entry
class is for, along with a short textual description of the class and the values of the
individualattributes in the location object. It also permits an administrative tool to
view and changecertain fields in the location, such as the floor number.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

157

158

148 JAVABEANS COMPONENTS AND DESIGN PATTERNS

LS.3.2 Associating JavaBeans Components with Entry Classes

The pattern for establishing a link between an entry object and an instanceofits
JavaBeans componentis simple enough,as this exampleillustrates:

package org.example. foo;

import java.io.Serializable;

import net.jini.lookup.entry.EntryBean;

import net.jini.entry.AbstractEntry;

public class Size {

public int value;

}

public class Cavenewt extends AbstractEntry {

public Cavenewt() {

t

public Cavenewt(Size anvilSize) {

this.anvilSize = anvilSize;

t

public Size anvilSize;

public class CavenewtBean implements EntryBean, Serializable {

protected Cavenewt assoc;

public CavenewtBean() {

super ();

assoc = new Cavenewt();

}

public void setAnvilSize(Size x) {

assoc.anvilSize = x;

}

public Size getAnvilSize() {

return assoc.anvilSize;

}

public void makeLink(Entry obj) {

assoc = (Cavenewt) obj;
}

public Entry followLinkQ®{

158

159

JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION, version 1.1 149

return assoc;

}

From the above, the pattern should berelatively clear:

@ The nameofa JavaBeans componentis derived by taking the fully qualified
entry class name and appendingthe string Bean; for example, the name of
the JavaBeans componentassociated with the entry class foo.bar.Baz is
foo.bar.BazBean. This implies that an entry class andits associated Java-
Beans component mustreside in the same package.

@ The class has both a public no-arg constructor and a public constructor that
takes each public object field of the class and its superclasses as parameter.
The former constructs an empty instance ofthe class, and the latter initial-
izes each field of the new instanceto the given parameter.

@ The class implements the net. jini.core.entry.Entry interface, prefera-
bly by extending the net. jini.entry.AbstractEntryclass, and the Java-
Beans component implements the net.jini.lookup.entry.EntryBean
interface.

@ There is a one-to-one link between a JavaBeans componentanda particular
entry object. The makeLink method establishes this link and will throw an
exception if the association is with an entry class of the wrong type. The
followLink method returns the entry object associated with a particular
JavaBeans component.

@ The no-arg public constructor for a JavaBeans component creates and makes
a link to an empty entry object.

For each public object field foo in an entry class, there exist both a setFoo
and a getFoo methodin the associated JavaBeans component. The setFoo
method takes a single argument of the sametypeas the foofield in the asso-
ciated entry and sets the value of that field to its argument. The getFoo
methodreturnsthe value ofthat field.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

159

160

150 JAVABEANS COMPONENTS AND DESIGN PATTERNS

LS.3.3. Supporting Interfaces and Classes

The following classes and interfaces provide facilities for handling entry classes
and their associated JavaBeans components.

package net.jini.lookup.entry;

public class EntryBeans {

public static EntryBean createBean(Entry e)

throws ClassNotFoundException, java.io.1O0Exception {...}

public static Class getBeanClass(Class c)
throws ClassNotFoundException {...}

public interface EntryBean {

void makeLink(Entry e);

Entry followLink();
}

The EntryBeans class cannotbe instantiated. Its sole method, createBean, cre-

ates andinitializes a new JavaBeans componentandlinksit to the entry objectit is
passed. If a problem occurs creating the JavaBeans component, the method throws
either java.io. IOException or ClassNotFoundException.

The createBean method uses the same mechanism for instantiating a Java-
Beans component as the java.beans.Beans.instantiate method. It will ini-
tially try to instantiate the JavaBeans component using the same class loader as
the entry it is passed. If that fails, it will fall back to using the default class loader.

The getBeanClass method returns the class of the JavaBeans component
associated with the given attribute class. If the class passed in does not implement
the net. jini.core.entry.Entry interface, an I1legalArgumentExceptionis

thrown.If the given attribute class cannot be found, a ClassNotFoundException
is thrown.

The EntryBeaninterface must be implementedby all JavaBeans components
that are intendedto be linked to entry objects. The makeLink method establishes a
link between a JavaBeans component object and an entry object, and the
followLink method returns the entry object linked to by a particular JavaBeans
component. Note that objects that implement the EntryBean interface should not
be assumed to perform any internal synchronization in their implementations of
the makeLink or fol lowLink methods, or in the setFoo or getFoopatterns.

160

161

JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION, version 1.1 151

LS.4 Generic Attribute Classes

W: will now describe someattribute classes that are generic to manyorall ser-
vices and the JavaBeans componentsthat are associated with each. Unless other-
wise stated, all classes defined here live in the net.jini.lookup.entry
package. The definitions assumethe following classes to have been imported:

java.io.Serializable

net.jini.entry.AbstractEntry

LS.4.1 Indicating User Modifiability

To indicate that certain entry classes should only be modified by the service that
registered itself with instances of these entry classes, we annotate them with the
ServiceControl ledinterface.

public interface ServiceControlled {

}

Authors of administrative tools that modify fields of attribute objects at the lookup
service should not permit users to either modify any fields or add any new
instances of objects that implementthis interface.

LS.4.2 Basic Service Information

The ServiceInfoattribute class provides somebasic information abouta service.

public class ServiceInfo extends AbstractEntry

implements ServiceControlled

{

public ServiceInfo() {...}

public ServiceInfo(String name, String manufacturer,

String vendor, String version,

String model, String serialNumber) {...}

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

161

162

GENERIC ATTRIBUTE CLASSES

public String name;

public String manufacturer;

public String vendor;

public String version;

public String model;

public String serialNumber;

}

public class ServiceInfoBean

implements EntryBean, Serializable

{

public String getName() {...}

public void setName(String s) {...}

public String getManufacturer() {...}

public void setManufacturer(String s) {..}

public String getVendor() {...}

public void setVendor(String s) {..}

public String getVersion() {..}

public void setVersion(String s) {...}

public String getModel() {..}

public void setModel (String s) {..}

public String getSerialNumber() {...}

public void setSerialNumber(String s) {..}
}

Eachservice should register itself with only one instance ofthis class. The fields
of the ServiceInfoclass have the following meanings:

@ The namefield contains a specific product name, such as "Ultra 30" (fora
particular workstation) or "JavaSafe"(for a specific configuration manage-
mentservice). This string should not include the name of the manufacturer
or vendor.

@ The manufacturer field provides the name of the companythat “built”this
service. This might be a hardware manufacturer or a software authoring
company.

@ The vendor field contains the name of the companythat sells the software
or hardware that provides this service. This may be the same nameasis in
the manufacturer field, or it could be the nameofa reseller. This field exists

so that in cases in whichresellers relabel products built by other companies,
users will be able to search based on either name.

162

163

JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION, version 1.1 153

@ The versionfield provides information about the version ofthis service.It
is a free-form field, though we expect that service implementors will follow
normal version-naming conventionsin usingit.

@ The mode] field contains the specific model name or numberofthe product,
if any.

@ The serialNumber field provides the serial number of this instance of the
service,if any.

LS.4.3. More Specific Information

The ServiceTypeclass allows an authorofa service to deliver information that is

specific to a particular instance ofa service, rather than to services in general.

public class ServiceType extends AbstractEntry

implements ServiceControlled

{

public ServiceTypeQ {...}

public java.awt.Image getIcon(Cint iconKind) {...}

public String getDisplayName() {...}

public String getShortDescription() {...}

}

Eachservice mayregister itself with multiple instances of this class, usually with
one instance for each type of service interface it implements.

This class has no public fields and, as a result, has no associated JavaBeans
component.

The getIcon methodreturns an icon of the appropriate kind for the service; it
works in the same way as the getIcon method in the java.beans.BeanInfo
interface, with the value of iconKind being taken from the possibilities defined in
that interface. The getDisplayName and getShortDescription methods return
a localized human-readable name and description for the service, in the same
manneras their counterparts in the java. beans.FeatureDescriptor class. Each
of these methods returns nu11 if no information of the appropriate kindis defined.

In case the distinction between the information this class provides and that
provided by a JavaBeans component’s meta-information is unclear, the class
ServiceTypeis meantto be used in the lookup service as one of the entry classes
with which a service registers itself, and so it can be customized on a per-service
basis. By contrast, the FeatureDescriptor and BeanInfo objects for all
EntryBeanclasses provide only generic information about those classes and none
about specific instances of those classes.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

163

164

154 GENERIC ATTRIBUTE CLASSES

LS.4.4 Naminga Service

People like to associate names with particular services and may do so using the
Name class.

public class Name extends AbstractEntry {

public Name() {...}

public Name(String name) {...}

public String name;

public class NameBean implements EntryBean, Serializable {

public String getName() {...}

public void setName(String s) {...}
}

Services may register themselves with multiple instances of this class, and either
services or administrators may add, modify, or remove instancesofthis class from
the attribute set under whicha serviceis registered.

The name field provides a short namefor a particular instance of a service (for
example, “Bob’s toaster’).

LS.4.5 Adding a Commentto a Service

In cases in which some kind of commentis appropriate for a service (for example,
“this toaster tends to burn bagels”), the Commentclass provides an appro-
priate facility.

public class Comment extends AbstractEntry {

public Comment) {...}

public Comment(String comment) {...}

public String comment;

public class CommentBean implements EntryBean, Serializable f{

public String getComment() {...}

public void setComment(String s) {...}

164

165

JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION, version 1.1

A service may have more than one commentassociated with it, and comments
may be added, removed, or edited by either a service itself, administrators, or
users.

LS.4.6 Physical Location

The Location and Address classes provide information about the physical loca-
tion of a particular service.

Since manyservices have no physical location, some have one, and a few may
have morethan one, it might make sensefor a service to register itself with zero or
more instancesofeither of these classes, dependingonits nature.

The Location class is intended to provide information about the physical
location of a service in a single building or on a small, unified campus. The
Address class provides more information and may be appropriate for use with the
Location class in a larger, more geographically distributed organization.

public class Location extends AbstractEntry {

public Location() {...}

public Location(String floor, String room,

String building) {...}

public String floor;

public String room;

public String building;

public class LocationBean implements EntryBean, Serializable {

public String getFloor({...}

public void setFloor(String s) {..}

public String getRoom() {...}

public void setRoom(String s) {...}

public String getBuilding() {...}

public void setBuilding(String s) {..}

public class Address extends AbstractEntry {

public Address() {...}

public Address(String street, String organization,

String organizationalUnit, String locality,

String stateOrProvince, String postalCode,

155

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

165

166

156 GENERIC ATTRIBUTE CLASSES

String country) {...}

public String street;

public String organization;

public String organizationalUnit;

public String locality;

public String stateOrProvince;

public String postalCode;

public String country;

}

public class AddressBean implements EntryBean, Serializable {

public String getStreet() {..}

public void setStreet(String s) {..}

public String getOrganization() {...}

public void setOrganization(String s) {..}

public String getOrganizationalUnit() {..}

public void setOrganizationalUnit(String s) {...}

public String getLocality() {...}

public void setLocality(String s) {..}

public String getStateOrProvince() {...}

public void setStateOrProvince(String s) {..}

public String getPostalCode() {...}

public void setPostalCode(String s) {...}

public String getCountry() {...}

public void setCountry(String s) {...}
}

We believe the fields of these classes to be self-explanatory, with the possible
exception of the locality field of the Address class, which would typically hold
the nameofa city.

LS.4.7 Status Information

Someattributes of a service may constitute long-lived status, such as an indication
that a printer is out of paper. We provide a class, Status, that implementors can
use as a base for providingstatus-relatedentry classes.

public abstract class Status extends AbstractEntry {

protected Status() {..}

protected Status(StatusType severity) {..}

166

167

JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION, version 1.1

public StatusType severity;

}

157

public class StatusType implements Serializable {

private final int type;

private StatusTypeCint t) { type = t;

public static final StatusType ERROR =

}

new StatusType(1);

public static final StatusType WARNING =

public static final StatusType NOTICE

public static final StatusType NORMAL

}

public abstract class StatusBean

implements EntryBean, Serializable

{

public StatusType getSeverity() {..}

new StatusType(2);

new StatusType(3);

new StatusType(4);

public void setSeverity(StatusType i) {..}

}

Wedefine a separate StatusTypeclass to makeit possible to write a property edi-
tor that will work with the StatusBean class (we do not currently provide a prop-
erty editor implementation).

LS.4.8 Serialized Forms

Class serialVersionUID

Address 2896136903322046578L

AddressBean 4491500432084550577L

Comment 7138608904371928208L

CommentBean 5272583409036504625L

Location —3275276677967431315L

LocationBean —4182591284470292829L

Name 2743215148071307201L

NameBean —6026791845102735793L

Serialized Fields

allpublicfields

Address asoc

allpublicfields

Comment asoc

allpublicfields

Location asoc

allpublicfields

Name asoc

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

167

168

158

Class

ServiceInfo

ServiceInfoBean

ServiceType

Status

StatusBean

StatusType

serialVersionUID

—1116664185758541509L

8352546663361067804L

—6443809721367395836L

—5193075846115040838L

—1975539395914887503L

—8268735508512712203L

168

GENERIC ATTRIBUTE CLASSES

Serialized Fields

allpublicfields

ServiceInfo asoc

allpublicfields

allpublicfields

Status asoc

int type

169

LD

Jini Lookup Discovery
Service

LD.1 Introduction

Parr of The Jini Technology Core Platform Specification, “Discovery and Join”
is devoted to defining the discovery requirements for well-behavedJini clients and
services, called discovering entities, which are requiredto participate in the multi-
cast discovery protocols. Discovering entities are required to send multicast dis-
covery requests to lookup services with which the entities wish to interact. In
addition, they must continuously listen for and act on announcements from the
desired lookup services. Interactions with a discovered lookup service may
involve registration with that lookup service, or may simply involve querying the
lookup service for services of interest (or both). To find specific lookup services,
discovering entities also needto be able to participate in the unicast discovery pro-
tocol.

Undercertain circumstances, a discovering entity may findit useful to allow a
third party to perform the entity’s discovery duties. For example, an activatable
entity that wishes to deactivate may wish to employ a special Jini technology-
enabled service (Jini service)—referred to as a lookup discovery service—to per-
form discovery duties on its behalf. Such an entity may wish to deactivate for var-
ious reasons, one being to conserve computational resources. While the entity is
inactive, the lookup discovery service, running on the sameora separate host,
would employ the discovery protocols to find lookup services in whichthe entity
has expressed interest and would notify the entity when a previously unavailable
lookup service has becomeavailable.

The facilities of the lookup discovery service are of particular value in a sce-
nario in which a new lookupservice is addedto a long-lived djinn containing mul-

169

159

170

160 INTRODUCTION

tiple inactive services. Without the use of a lookup discovery service, the time
frame over which the new lookupserviceis fully populated can be both unpredict-
able and unbounded.

To understand whythis time frame can be unpredictable, consider the fact that
an inactive service has no way ofdiscovering a new lookup service. This means
that each inactive service in the djinn that wishes to discover and join a new
lookup service must first activate. Since activation of a service occurs when some
client attempts to use the service, the amount of time that passes between the
arrival of the new lookup service and the activation of the service can vary greatly
over the range of services in the djinn. Thus, the time frame over which the lookup
service becomes fully populated cannot be predicted because it could take arbi-
trarily long before all of the services activate and then discover and join the new
lookupservice.

In addition to being unpredictable, the time it takes for the lookup service to
fully populate can also be unbounded. This is because there is no guarantee that
the lookup service will send multicast announcements between the timethe ser-
vice activates and the time it deactivates. If the timing is right, it is possible that
one or more of the services in the djinn may never discover and join the new
lookup service. Thus, without the use of the lookup discovery service, the new
lookup service may neverfully populate.

As another example of a discovering entity that mayfind it useful to allow a
third party to perform the entity’s discovery duties, consider an entity that exists in
an environmentwith one of the following characteristics:

@ The environment does not support multicast.

@ The environment contains no lookup services within the entity’s multicast
radius (roughly, the number of hops beyond which neither the multicast
requests from the entity nor the multicast announcements from the lookup
service will propagate).

@ The environmentdoes contain lookup service(s) within the entity’s multicast
radius, but at least one service neededbythe entity is not registered with any
lookupservice within that radius.

If such an entity was provided with references to lookup services—located
outside of the entity’s multicast radius—that contain services neededbythe entity,
the entity could contact each lookup service andretrieve the desired service refer-
ences. One way to provide the entity with access to those lookup services might
be to configure the entity to find and use a lookup discovery service, operating
beyond the entity’s range, that can employ multicast discovery to find nearby
lookup services belonging to groups in which the entity has expressed interest.

170

