
223

ais

213

[TRANSACTION SPECIFICATION

erializability might be violated. Whena subtransaction commits,its
are inherited by the parent transaction.

In addition to locks, transactional operations can be defined in terms of object
2on and deletion visibility. If an object is defined to be created undera trans-
E "then the existence of the object is visible only within that transaction and
inferiors put will disappear if the transaction aborts. If an object is defined tojeted under a transaction, then the object is not visible to any transaction

leting transaction) but will reappear if the transaction aborts.ing the de we ee
, q nested transaction commits, visibility state is inherited by the parent

then §

tion.

nce a transaction reaches the VOTINGstage, if all execution under the trans-
n (andits subtransactions) hasfinished, then the only reasons the transaction
bort are:

The manager crashes (or has crashed)
; One or more participants crash (or have crashed)
»There is an explicit abort

Transaction deadlocks are not guaranteed to be prevented or even detected,
managers and participants are permitted to break known deadlocks by abort-

Anactive transaction is an orphanifit or oneof its ancestors is guaranteed to
This can occur because an ancestor has explicitly aborted or because some

icipant or manager of the transaction or an ancestor has crashed. Orphansare
guaranteed to be detected by the system, so programmersusing transactions
{ be aware that orphanscansee internally inconsistent state and take appropri-
action.

ausal ordering information abouttransactionsis not guaranteed to be propa-
First, given two sibling transactions (at any level), it is not possible to tell

ther they were created concurrently or sequentially (or in what order). Sec-
if two transactions are causally ordered andthe earlier transaction has com-

_ the outcome of the earlier transaction is not guaranteed to be known at
participant used by the later transaction, unless the client is successful in
the variant of commit or abort that takes a timeout parameter. Programmers
non-blocking forms of operations musttake this into account.
s long as a transaction persists in attempting to acquire a lockthat conflicts
another transaction, the participant will persist in attempting to resolve the
me of the transaction that holds the conflicting lock. Attempts to acquire a
include making a blocking call, continuing to make non-blocking calls, and
tering for event notification undera transaction.

223

224

TX.3.6 Serialized Forms

Class

Transaction. Created

NestableTransaction. Created

TransactionManager.Created

ServerTransaction

NestableServerTransaction

TransactionException

CannotAbortException

CannotCommi tException

CannotjJoinException

CannotNestException

TimeoutExpi redException

UnknownTransactionException

CrashCountException

serialVersionUID

—5199291723008952986L

~2979247545926318953L

—4233846033773471113L

4552277137549765374L

—3438419132543972925L

—5009935764793203986L

35971016467375 10009L

—4497341152359563957L

5568393043937204939L

340960450049 1735434L

3918773760682958000L

443798629936327009L

4299226125245015671L

224

Serialized Fields

all public fields

all public fields

all public fields

all public fields

all public fields
none

none

none

none

none

all public fields

none

none

225

MWestieait)(TX)

225

226

 SSSSSTY pea ct ee

The Jini Lookup Service
Specification

LU.1 Introduction
Tx Jini Lookup service is a fundamental part of the federation infrastructure
for a djinn, the group of devices, resources, and users that are joined by the Jini
software infrastructure. The lookup service provides a central registry of services
available within the djinn. This lookup service is a primary meansfor programs to
find services within the djinn, and is the foundation for providing user interfaces
through which users and administrators can discover and interact with services in
the djinn.

Although the primary purposeofthis specification is to define the interface to
the djinn’s central service registry, the interfaces defined here can readily be used
in other service registries.

LU.1.1 The Lookup Service Model

The lookupservice maintainsa flat collection of service items. Each service item
represents an instance of a service available within the djinn. The item contains
the RMIstub (if the service is implemented as a remote object) or other object (if
the service makes use of a local proxy) that programs use to access the service,
and anextensible collection of attributes that describe the service or provide sec-

ondary interfaces to the service.
When a new service is created (for example, when a new device is added to

the djinn), the service registers itself with the djinn’s lookupservice, providing an
initial collection of attributes. For example, a printer might includeattributes indi-

217

226

227

218

ATTRIBUTES

cating speed (in pages per minute), resolution (in dots per inch), and whether
duplex printing is supported. Amongthe attributes might be an indicator that the
service is new and needsto be configured.

An administrator uses the event mechanismof the lookupservice to receive
notifications as new services are registered. To configure the service, the adminis-
trator might look for an attribute that provides an applet for this purpose. The
administrator might also use an applet to add new attributes, such as the physical
location of the service and a common nameforit; the service would receive these

attribute change requests from the applet and respond by making the changesat
the lookup service.

Programs(including other services) that need a particular type of service can
use the lookupserviceto find an instance. A match can be made basedonthe spe-
cific data types for the Java programming language implemented bythe service as
well as the specific attributes attachedto the service. For example, a program that
needs to make use of transactions might look for a service that supports the type
net.jini.core.transaction.server.TransactionManager and mightfurther
qualify the match by desired location.

Although the collection of service itemsis flat, a wide variety of hierarchical
views can be imposed on the collection by aggregating items according to service
typesandattributes. The lookup service provides a set of methodsto enableincre-
mental exploration ofthe collection, and a variety of user interfaces can be built
by using these methods, allowing users and administrators to browse. Once an
appropriate service is found, the user might interact with the service by loading a
user interface applet, attached as anotherattribute on the item.

If a service encounters some problem that needs administrative attention, such
as a printer running out of toner, the service can add an attribute that indicates
what the problem is. Administrators again use the event mechanism to receive
notification of such problems.

LU.1.2 Attributes

The attributes of a service item are represented asaset of attribute sets. An indi-
vidual attribute set is represented as an instance of someclass for the Java plat-
form, eachattribute being a public field of that class. The class provides strong
typing of both the set and the individual attributes. A service item can contain
multiple instances of the same class with different attribute values, as well as mul-
tiple instances of different classes. For example, an item might have multiple
instances of a Name class, each giving the common nameofthe service in a differ-
ent language, plus an instance of a Location class, an Owner class, and various
service-specific classes. The schemaused forattributes is not constrained bythis

227

228

THE JINI LOOKUP SERVICE SPECIFICATION 219

specification, but a standard foundation schema for Jini systems is defined in the
Jini Lookup Attribute Schema Specification.

Concretely, a set of attributes is implemented with a class that correctly imple-
ments the interface net.jini.core.entry.Entry, as described in the Jini Entry
Specification. Operations on the lookup service are defined in terms of template
matching, using the same semantics as in the Jini Entry Specification, butthe def-
inition is augmented to deal with sets of entries and sets of templates. A set of ; |
entries matches a set of templates if there is at least one matching entry for every
template (with every entry usable as the match for more than one template).

LU.1.3 Dependencies

This specification relies on the following other specifications:

Java Remote Method Invocation Specification

@ Java Object Serialization Specification

@ Jini Entry Specification

@ Jini Distributed Event Specification

@ Jini Distributed Leasing Specification

@ Jini Discovery and Join Specification

Deereerea

228

229

EE

THE JINI LOOKUP SERVICE SPECIFICATION 221

LU.2 The ServiceRegistrar

Tire typesdefined in this specification are in the net. jini .core. lookup pack-
age. The following types are imported from other packages andare referenced in
unqualified form in the restofthis specification:

java.rmi.MarshalledObject
java.rmi.RemoteException
java.rmi.UnmarshalException
java.io.Serializable
java.io.DataInput

java.io.DataQutput
java.io. IOException
net. jini.core.discovery.LookupLocator
net.jini.core.entry.Entry
net.jini.core, lease.Lease

net. jini.core.event.RemoteEvent
net.jini.core.event.EventRegistration
net.jini.core.event.RemoteEventListener

LU.2.1 ServiceID

Every service is assigned a universally unique identifier (UUID), represented as an
instance of the ServicelIDclass.

public final class ServiceID implements Serializable {
public ServiceID(long mostSig, long leastSig) {..}
public ServiceID(DataInput in) throws IOException {..}
public void writeBytes(DataOutput out) throws IOException

{...}

public long getMostSignificantBits() {..}
public long getLeastSignificantBits() {..}

229

230

|

222 ServiceItem

A service ID is a 128-bit value. Service IDs are equal (using the equals
method)if they represent the same 128-bit value. For simplicity and reliability,
service IDs are intended to be generated only by lookup services, not by clients.
As such, the ServiceID constructor merely takes 128bits of data, to be computed
in an implementation-dependent manner by the lookupservice. The writeBytes
method writes out 16 bytes in standard network byte order. The second construc-
tor readsin 16 bytes in standard network byte order.

The most significant long can be decomposed into the following unsigned
fields:

OxFFFFFFFFQ@Q@ee000 time_low
Ox@0@0Q000FFFFOQRG time_mid
0x000020000000FR00 version
Qx@0000G0000000FFF time_hi

Theleast significant long can be decomposedinto the following unsignedfields:
0xCGGG000000000000 variant
Ox3FFFOGQe@RGeoR000 clock_seq
@xQQQ0FFFFFFFFFFFF node

The variant field must be 0x2. The version field must be either Ox1 or 0x4. If
the version field is 0x4, then the most significant bit of the node field must be set
to 1, and the remaining fields are set to values produced by a cryptographically
strong pseudo-random numbergenerator. If the version field is Ox1, then the
node field is set to an IEEE 802 address, the clock_seqfieldis set to a 14-bit ran-
dom number, and the time_1 ow, time_mid, and time_hi fieldsaresetto the least,
middle, and mostsignificantbits (respectively) of a 60-bit timestamp measured in
100-nanosecondunits since midni ght, October 15, 1582 UTC.

The toString method returns a 36-character string ofsix fields separated by
hyphens, eachfield represented in lowercase hexadecimal with the same number
of digits as in the field. The order of fields is: time_low, time_mi d, version and
time_hi treated as a single field, variant and cl ock_seqtreated asa singlefield,
and node.

LU.2.2. Servicertem

Items are stored in the lookupservice using instances of the ServiceItem class,
public class ServiceItem implements Serializable {

public ServiceItem(ServiceID servicelID,
Object service,

230

231

nL

THE JINI LOOKUP SERVICE SPECIFICATION 223

Entry[] attributeSets) {..}
public ServiceID serviceID;
public Object service;

public Entry[{] attributeSets;
}

The constructor simply assigns each parameterto the correspondingfield.
Each Entry represents an attribute set. The class must have a public no-arg

constructor, and all non-static, non-final, non-transient public fields must be
declared with reference types, holding serializable objects. Each suchfieldis seri-
alized separately as a MarshalledObject, and field equality is defined by
MarshalledObject.equals. The only relationship constraint on attribute sets
within an item is that exact duplicates are eliminated; other than that, multiple
attribute sets of the same type are permitted, multiple attribute set types can have a
common superclass, and so on.

The net.jini.core.entry.UnusableEntryException is not used in the
lookupservice; alternate semantics for individual operations are definedlater in
this section.

LU.2.3_ ServiceTemplate and Item Matching

Items in the lookup service are matchedusinginstances of the Servi ceTemplate |
class.

public class ServiceTemplate implements Serializable { |
public ServiceTemplate(ServiceID servicelD,

Class[] serviceTypes,
Entry[] attributeSetTemplates) {..} |

public ServiceID servicelID; ‘Bi
public Class[] serviceTypes;
public Entry[] attributeSetTemplates;

}

The constructor simply assigns each parameterto the corresponding field. A ser-
vice item (item) matches a service template (tmp1) if:

¢ item.serviceID equals tmp].serviceID(or if tmp1.serviceIDis nu11),
and

@ item.service is an instance of every type in tmp1.serviceTypes, and

item.attributeSets contains at least one matching entry for each entry
template in tmp].attributeSetTemplates.

231

232

LE

224 OTHER SUPPORTING TYPES

An entry matches anentry templateif the class of the template is the sameas,
or a superclass of, the class of the entry, and every non-nul1 field in the template
equals the correspondingfield of the entry. Every entry can be used to match more
than one template. For both service types and entry classes, type matching is
based simply on fully qualified class names. Note that in a service template, for
serviceTypes and attri buteSetTemplates, a nul) field is equivalent to an
empty array; both represent a wildcard.

LU.2.4. Other Supporting Types

The ServiceMatches classis used for the return value when looking up mul-
tiple items,

public class ServiceMatches implements Serializable {
public ServiceMatches (ServicelItem[] items,

int totalMatches) {..}
public ServiceItem[] items;
public int totalMatches;

}

The constructor simply assigns each parameterto the correspondingfield.
A ServiceEvent extends RemoteEvent with methodsto obtain the service ID

of the matched item,the transition that triggered the event, and the new state of
the matcheditem.

public abstract class ServiceEvent extends RemoteEvent {
public ServiceEvent (Object source,

long eventID,
long seqNum,

MarshalledObject handback,
ServiceID serviceID,
int transition) {..}

public ServiceID getServiceID() {..}
public int getTransitiong® {..}
public abstract ServcelItem getServiceItem() {..}

}

The getServiceID and getTransition methods return the value of the corre-
sponding constructor parameter. The remaining constructor parameters are the
sameas in the RemoteEvent constructor.

The rest of the semantics of both these classesis explained in the nextsection.

232

233

THE JINI LOOKUP SERVICE SPECIFICATION 225

LU.2.5 ServiceRegistrar

The ServiceRegistrar defines the interface to the lookupservice. The inter- i |
face is not a remote interface; each implementation of the lookup service exports i |
proxy objects that implement the ServiceRegistrar interface localto the client,
using an implementation-specific protocol to communicate with the actual remote

server. All of the proxy methods obey normal RMI remote interface semantics |
except where explicitly noted. Two proxy objects are equal (using the equals | |
method) if they are proxies for the same lookupservice.

Methodsare providedto register service items, find items that match a tem-
plate, receive event notifications when items are modified, and incrementally
explore the collection of items along the three major axes: entry class, attribute
value, and service type.

public interface ServiceRegistrar {
ServiceRegistration register(ServiceItem item,

long TeaseDuration)
throws RemoteException;

Object lookup(ServiceTemplate tmp1)
throws RemoteException;

ServiceMatches

lookup(ServiceTemplate tmp], int maxMatches)
throws RemoteException; |

int TRANSITION_MATCH_NOMATCH=1 << 0;
int TRANSITION_NOMATCH_MATCH = 1 << 1;
int TRANSITION_MATCH_MATCH = 1 << 2;

EventRegistration notify(ServiceTemplate tmp],
int transitions,

RemoteEventListener listener,
MarshalledObject handback,

long leaseDuration)
throws RemoteException;

Class[] getEntryClasses(ServiceTemplate tmp1)
throws RemoteException;

sre
Object[] getFieldValues(ServiceTemplate tmp,

233

234

a_

226 ServiceRegistrar

int setIndex,

String field)

throws NoSuchFieldException, RemoteException;

Class[] getServiceTypes(ServiceTemplate tmpl,
String prefix)

throws RemoteException;

ServiceID getServiceID();
LookupLocator getLocator() throws RemoteException;

String[] getGroups() throws RemoteException;
}

Every method invocation on ServiceRegistrar and ServiceRegistration is
atomic with respect to other invocations.

The register methodis used to register a new service and to re-register an
existing service. The method is defined so that it can be used in an idempotent
fashion. Specifically, if a call to register results in a RemoteException (in
which case the item might or might not have beenregistered), the caller can sim-
ply repeat the call to register with the same parameters, until it succeeds.

To register a new service, item.serviceID should be nu11. In thatcase, if
item.service does not equal (using Marshal ledObject.equals) any existing
item’s service object, then a new service ID will be assigned and includedin the
returned ServiceRegistration (described in the next section). The service ID is
unique over time and space with respecttoall other service IDs generated by all
lookupservices. If item. service does equalan existing item’s service object, the
existing item is first deleted from the lookup service (even if it has different
attributes) and its lease is cancelled, but that item’s service ID is reused for the
newly registered item.

To re-register an existing service,or to register the service in any other lookup
service, item.serviceID should be set to the same service ID that was returned
by the initial registration. If an item is already registered under the sameservice
ID, the existing item is first deleted (even if it has different attributes or a different
service instance) andits lease is cancelled by the lookupservice. Note that service
object equality is not checked in this case, to allow for reasonable evolution ofthe
service (for example, the serialized form of the stub changesor the service imple-
ments a new interface).

Any duplicate attribute sets that are included in a service item are eliminated
in the stored representation of the item. The lease duration request (specified in
milliseconds) is not exact; the returnedlease is allowed to have a shorter (but not

234

235

THE JINI LOOKUP SERVICE SPECIFICATION

longer) duration than what was requested. The registration is persistent across
restarts (crashes) of the lookup service until the lease expires or is cancelled.

The single-parameter form of lookup returns the service object (i.e., just
ServiceItem.service) from an item matching the template or nu11 if there is
no match. If multiple items match the template, it is arbitrary as to which service
object is returned by the invocation.If the returned object cannot be deserialized,
an UnmarshalExceptionis thrown with the standard RMI semantics.

The two-parameter form of lookup returns at most maxMatches items match-
ing the template and the total numberof items that match the template. The return
value is never nul1, and the returned items array is nul] only if maxMatchesis
zero, For each returned item, if the service object cannot be deserialized, the
service field of the item is set to nul] and no exception is thrown. Similarly, if
an attribute set cannot be deserialized, that elementof the attributeSetsarrayis
set to nu11 and no exception is thrown.

The notify methodis used to register for event notification. The registration
is leased; the lease duration request (specified in milliseconds) is not exact. The
registration is persistent across restarts (crashes) of the lookup service until the
lease expires or is cancelled. The event ID in the returned EventRegistrationis
unique at least with respect to all other active eventregistrations at this lookupser-
vice with different service templates or transitions.

While the event registration is in effect, a Servi ceEvent is sent to the speci-
fied listener whenever a register, lease cancellation or expiration, or attribute
change operation results in an item changing state in a way that satisfies the tem-
plate and transition combination. The transitions parameter is the bitwise OR
of any non-empty set of transition values:

@ TRANSITION_MATCH_NOMATCH: An event is sent when the changed item
matches the template before the operation, but doesn’t match the template
after the operation (this includes deletion of the item).

TRANSITION_NOMATCH_MATCH: An event is sent when the changed item
doesn’t match the template before the operation (this includes not existing),
but does match the template after the operation.

@ TRANSITION_MATCH_MATCH: An event is sent when the changed item
matches the template both before and after the operation.

The getTransition method of ServiceEvent returns the singleton transi-
tion value that triggered the match.

The getServiceItem method of ServiceEvent returns the new state of the

item (the state after the operation) or nu11 if the item was deleted by the opera-
tion. Note that this method is declared abstract; a lookup service uses a subclass
of ServiceEventto transmit the new state of the item howeverit chooses.

235

227

236

228 ServiceRegistrar

Sequence numbers for a given event ID are strictly increasing. If there is no
gap between two sequence numbers, no events have been missed;if there is a gap,
events might (but might not) have been missed. For example, a gap might occurif
the lookupservice crashes, even if no events are lost due to the crash.

As mentioned earlier, users are allowed to explore a collection of items down
each of the major axes: entry class, attribute value, and service type.

The getEntryClasses method looks at all service items that match the spec-
ified template, finds every entry (amongthoseservice items) that either doesn’t
match any entry templates or is a subclassof at least one matching entry template,
andreturnsthe set of the (most specific) classes of those entries. Duplicate classes
are eliminated, and the order of classes within the returned array is arbitrary. A
nul1 reference (not an empty array) is returnedif there are no such entries or no
matching items. If a returned class cannot be deserialized, that element of the
returned array is set to nu11 and no exceptionis thrown.

The getFieldValues method looksatall service items that match the speci-
fied template, finds every entry (among those service items) that matches
tmp].attributeSetTemplates[setIndex], and returns the set of values of the
specified field of those entries. Duplicate values are eliminated, and the order of
values within the returned array is arbitrary. a nu11 reference (not an empty array)
is returned if there are no matchingitems. If a returned value cannotbe deserial-
ized, that element of the returned arrayis set to nu11 and no exception is thrown.
NoSuchFieldException is thrown if field does not namea field of the entry
template.

The getServiceTypes method looksat all service items that match the spec-
ified template and, for every service item, finds the most specific type (class or
interface) or types the service item is an instanceofthat are neither equal to, nora
superclass of, any of the service types in the template and that have namesthat
start with the specified prefix, and returnsthe set of all such types. Duplicate types
are eliminated, and the order of types within the returned array is arbitrary. A
null reference (not an empty array) is returned if there are no such types. If a
returned type cannot be deserialized, that element of the returned array is set to
nul] and no exception is thrown.

Every lookup service assignsitself a service ID whenitis first created; this
service ID is returned by the getServiceID method. (Note that this does not
make a remote call.) A lookup service is always registered with itself underthis
service ID,andif a lookup service is configuredto registeritself with other lookup
services,it will register with all of them using this sameservice ID.

The getLocator method returns a LookupLocator that can be used if neces-
sary for unicast discovery of the lookup service. The definition of this class is
given in the Jini Technology Discovery and Join Specification.

236

237

———————————_———t—“‘“_“‘“‘ié—S

a

THE JINI LOOKUP SERVICE SPECIFICATION 229

The getGroups method returns the set of groups that this lookup service is
currently a member of. The semantics of these groups is defined in the Jini Tech-
nology Discovery and Join Specification.

LU.2.6 ServiceRegistration

A registered service item is manipulated using a ServiceRegi stration instance.
public interface ServiceRegistration {

ServiceID getServiceID();
Lease getLease(Q);
void addAttributes(Entry[] attrSets)

throws UnknownLeaseException, RemoteException;
void modifyAttributes(Entry[] attrSetTemplates,

Entry[] attrSets)
throws UnknownLeaseException, RemoteException;

void setAttributes(Entry[] attrSets)
throws UnknownLeaseException, RemoteException;

}

Like ServiceRegistrar, this is not a remote interface; each implementation of |
the lookup service exports proxy objects that implementthis interface local to the
client. The proxy methods obey normal RMIremote interface semantics.

The getServiceID method returns the service ID for this service. (Note that
this does not make a remote call.)

The getLease method returns the lease that controls the service registration,
allowing the lease to be renewed or cancelled. (Note that getLease does not make
a remote call.)

The addAttributes method adds the specified attribute sets (those that aren’t
duplicates of existing attribute sets) to the registered service item. Note that this
operation has no effect on existing attribute sets of the service item and can be
repeated in an idempotent fashion. UnknownLeaseExceptionis thrownif the reg- r
istration lease has expired or been cancelled.

The modifyAttributes methodis used to modify existing attribute sets. The
lengths of the attrSetTemplates and attrSets arrays must be equal, or
I] legalArgumentExceptionis thrown. The service item’s attribute sets are mod-
ified as follows. For each array index 7: if attrSets[7] is null, then every entry
that matches attrSetTemplates[i] is deleted; otherwise, for every non-nul]
field in attrSets[iJ, the value ofthat field is stored into the corresponding field
of every entry that matches attrSetTemplates[i]. The class of attrSets[i]
must be the same as, or a superclass of, the class of attrSetTemplates[i], or

237

238

| =

230 SERIALIZED FORMS

Tl JegalArgumentException is thrown. If the modifications result in duplicate
entries within the service item, the duplicates are eliminated. An
UnknownLeaseExceptionis thrownif the registration lease has expired or been
cancelled.

Note that it is possible to use modi fyAttributes in waysthat are not idem-
potent. The attribute schema should be designed in such a way thatall intended
uses of this method can be performed in an idempotent fashion. Also note that
modifyAttributes does not provide a means for setting a field to nul]; it is
assumed that the attribute schemais designed in such a way that this is not neces-
sary.

The setAttributes method deletes all of the service item’s existing
attributes and replaces them with the specified attribute sets. Any duplicate
attribute sets are eliminated in the stored representation of the item.
UnknownLeaseExceptionis thrownif the registration lease has expired or been
cancelled.

LU.2.7 Serialized Forms

Class serialVersionUID Serialized Fields

ServiceID -7803375959559762239L long mostSig
long leastSig

ServiceItem 717395451032330758L all public fields

ServiceTemplate 7854483807886483216L all public fields

ServiceMatches ~5518280843537399398L all public fields

ServiceEvent 1304997274096842701L ServiceID serviceID
. int transition

238

239

239

240

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION defines a set ofattributes
that a local administrator might choose to place on aservice. These are

“serving suggestions”—nobodyis required to use these
attribute definitions, but they give a starting pointfor
people who need suchattributes to either use directly
or usefor inspiration. This also describes the common

ons stylefor entry design, including the canonical wayto
present your entry as a JavaBean object.

INT

240

241

ar

The Jini Lookup Attribute
Schema Specification

LS.1 Introduction

Tix Jini Lookupservice providesfacilities for services to advertise their avail-
ability and for would-be clients to obtain referencesto those services based on the
attributes they provide. The mechanism thatit provides for registering and query-
ing based onattributes is centered on the Java platform type system, and is based
on the notion of an entry,

Anentry is a class that contains a numberofpublic fields of object type. Ser-
vices provide concrete values for each of these fields; each value acts as an
attribute. Entries thus provide aggregation of attributes into sets: a service may
provide several entries when registering itself in the lookup service, which means
that attributes on each service are provided inaset ofsets.

The purpose ofthis documentis to provide a framework in which services and
their would-beclients can interoperate. This framework takes two parts:

¢ Wedescribe a set of commonpredefined entries that span muchofthe basic
functionality that is needed both by services registering themselves and by
entities that are searching for services.

@ Since we cannotanticipateall of the future needsof clients of the lookup ser-
vice, we providea set of guidelines and design patterns for extending, using,
and imitating this set in ways that are consistent and predictable. We also
construct some examplesthatillustrate the use of these patterns.

241

233

242

234 TERMINOLOGY

LS.1.1 Terminology

Throughout this document, we will use the following terms in consistent ways:

@ Service—aservice that has registered,or will register, itself with the lookup
service

¢ Client—anentity that performs queries on the lookup service, in order to
find particular services

LS.1.2 Design Issues

Several factors influence and constrain the design of the lookup service schema.

Matching Cannot Always Be Automated

No matter how muchinformationit hasat its disposal, a client of the lookup ser-
vice will not alwaysbe ableto find a single unique match without assistance when
it performsa lookup. In many instances we expect that more than oneservice will
match a particular query. Accordingly, both the lookup service and the attribute
schema are geared toward reducing the numberof matchesthat are returned on a
given lookup to a minimum,and not necessarily to just one.

Attributes Are Mostly Static

We have designed the schemafor the lookup service with the assumption that
most attributes will not need to be changed frequently. For example, we do not
expectattributes to change moreoften than once every minute or so. This decision
is based on our expectation thatclients that need to make a choice of service based
on more frequently updatedattributes will be able to talk to whatever small set of
services the lookup servicereturns for a query, and on our belief that the benefit of
updating attributes frequently at the lookup service is outweighed by the cost in
networktraffic and processing.

Humans Need to Understand MostAttributes

A corollary of the idea that matching cannot always be automated is that
humans—whether they be users or administrators of services—must be able to
understandandinterpret attributes. This has several implications:

242

243

OOeee

THEJINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION 235

We must provide a mechanism to deal with localization of attributes

¢ Multiple-valued attributes must provide a way for humansto see only one
value (see Section LS.2)

We will cover human accessibility of attributes soon.

Attributes Can Be Changed by Services or Humans, But Not Both

For any given attribute class we expect that attributes within that class will all be
set or modified either by the service, or via human intervention, but not both.
What do we mean bythis? A serviceis unlikely to be able to determinethatit has
been moved from one roomto another, for example, so we would not expect the
fields of a “location”attribute class to be changedby the serviceitself. Similarly,
we do notexpectthat a human operator will need to change the nameofthe ven-
dor ofa particular service.

This idea has implications for our approach to ensuring that the values of
attributes are valid.

Attributes Must Interoperate with JavaBeans Components

The JavaBeans specification provides a numberoffacilities relating to the local-
ized display and modification of properties, and has been widely adopted. It is to
our advantage to provide a familiar set of mechanismsfor manipulatingattributes
in these ways.

Ww
ao

ilwn

& dnyoo']
LS.1.3. Dependencies

This documentrelies on the following other specifications:

Jini Entry Specification

¢ Jini Entry Utilities Specification

@ JavaBeans Specification

243

244

|

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION 237

enneeeee

LS.2. HumanAccessto Attributes |

LS.2.1 Providing a Single View of an Attribute’s Value

Conswwer the following entry class:
public class Foo implements net.jini.core.entry.Entry {

public Bar baz;
}

public class Bar {

int quux;

boolean zot;
}

A visual search tool is going to have a difficult time rendering the value of an
instance of class Bar in a mannerthat is comprehensible to humans. Accordingly,
to avoid such situations, entry class implementors should use the following guide-
lines when designingaclassthat is to act as a value foran attribute:

Provide a property editorclass of the appropriate type, as described in Sec-
tion 9.2 of the JavaBeans Specification.

Extend the java.awt.Component class; this allows a value to be represented
by a JavaBeans componentor some other “active” object.

¢ Provide either a non-default implementation of the Object.toStri ng
methodorinherit directly or indirectly from a class that does so (since the
default implementation of Object.toString is not useful).

One of the above guidelines should be followedfor all attribute value classes.
Authors of entry classes should assumethatanyattribute value that doesnot sat-
isfy one of these guidelines will be ignored by someorall user interfaces.

244

245

aE,Ea

THE JIN] LOOKUP ATTRIBUTE SCHEMA SPECIFICATION 239

LS.3. JavaBeans Components and Design
Patterns |

LS.3.1 Allowing Display and Modification of Attributes

V \ E use JavaBeans components to provide a layer of abstraction on top of the
individual classes that implement the net.jini.core.entry.Entry interface.
This provides us with several benefits:

¢@ This approach uses an existing standard and thus reduces the amount of
unfamiliar material for programmers.

@ JavaBeans components provide mechanisms for localized display of
attribute values and descriptions.

@ Modification ofattributes is also handled, via property editors.
LS.3.1.1 Using JavaBeans Components with Entry Classes

Many, if not most, entry classes should have a bean class associated with them.
Our use of JavaBeans components provides a familiar mechanism for authors of
browse/search tools to represent information about a service’s attributes, such as
its icons and appropriately localized descriptions of the meanings and valuesofits |
attributes. JavaBeans components also play a role in permitting administrators of a
service to modify someofits attributes, as they can manipulate the valuesofits
attributes using standard JavaBeans component mechanisms.

For example, obtaining a java.beans.BeanDescriptor for a JavaBeans
componentthatis linked to a “location” entry objectfor a particularservice allows
a programmerto obtain an icon that gives a visual indication of what that entry
classis for, along with a short textual description of the class and the valuesofthe
individualattributes in the location object. It also permits an administrative tool to
view and changecertain fields in the location, such as the floor number.

245

246

RE

240 — ASSOCIATING JAVABEANS COMPONENTS WITH ENTRY CLASSES

LS.3.2 Associating JavaBeans Components with Entry Classes

The pattern for establishing a link between an entry object and aninstanceofits
JavaBeans componentis simple enough,as this exampleillustrates:

package org.example. foo;

import java.io.Serializable;
import net.jini.lookup.entry.EntryBean:
import net.jini.entry.AbstractEntry;

public class Size {
public int value;

}

public class Cavenewt extends AbstractEntry {
public Cavenewt() {
}

public Cavenewt(Size anvilSize) {
this.anvilSize = anvilSize;

}

public Size anvilSize;
}

public class CavenewtBean implements EntryBean, Serializable {
protected Cavenewt assoc;
public CavenewtBean() {

super();

assoc = new Cavenewt();
$

public void setAnvilSize(Size x) {
assoc.anvilSize = x;

}

public Size getAnvilSize() {
return assoc.anvilSize;

}

public void makeLink(Entry obj) {
assoc = (Cavenewt) obj;

}

public Entry followLink® {
return assoc;

}

246

247

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION

From the above, the pattern shouldberelativelyclear:

¢ The name of a JavaBeans componentis derived by taking the fully qualified
entry class name and appending the string Bean; for example, the name of
the JavaBeans componentassociated with the entry class foo.bar.Baz is
foo.bar.BazBean. This implies that an entry class and its associated Java-
Beans component must reside in the same package.

@ The class has both a public no-arg constructor and a public constructor that
takes each public object field of the class and its superclasses as parameter.
The former constructs an empty instance of the class, and the latter initial-
izes eachfield of the new instanceto the given parameter.

¢ The class implements the net. jini.core.entry.Entry interface, prefera-
bly by extending the net. jini.entry.AbstractEntryclass, and the Java-
Beans component implements the net.jini.lookup.entry.EntryBean
interface.

@ There is a one-to-onelink between a JavaBeans componentanda particular
entry object. The makeLink method establishes this link and will throw an
exception if the association is with an entry class of the wrong type. The
followLink method returns the entry object associated with a particular
JavaBeans component.

@ The no-arg public constructor for a JavaBeans componentcreates and makes
a link to an empty entry object.

¢ For each public objectfield foo in an entry class, there exist both a set Foo
and a getFoo method in the associated JavaBeans component. The set Foo
method takes a single argument of the same typeas the foofield in the asso-
ciated entry and sets the value of that field to its argument. The getFoo
methodreturns the valueofthat field.

LS.3.3 Supporting Interfaces and Classes

The following classes and interfaces provide facilities for handling entry classes
and their associated JavaBeans components.

package net.jini. lookup.entry;

public class EntryBeans {

public static EntryBean createBean(Entry e)
throws ClassNotFoundException, java.io. IOException {..}

247

241

(ST) TaNeyTRTS
eS=)
S
an
=
a

i
||

248

Figccc

242 SUPPORTING INTERFACES AND CLASSES

public static Class getBeanClass(Class c)
throws ClassNotFoundException {...}

public interface EntryBean {
void makeLink(Entry e);
Entry followLink();

}

The EntryBeans class cannotbe instantiated. Its sole method, createBean,cre-
ates and initializes a new JavaBeans componentand linksit to the entry objectit is
passed.If a problem occurs creating the JavaBeans component, the method throws
either java.io. IOException or C1 assNotFoundException.

The createBean method uses the same mechanism for instantiating a Java-
Beans componentas the java.beans.Beans.instantiate method, It will ini-
tially try to instantiate the JavaBeans component using the same class loader as
the entry it is passed.If thatfails, it will fall back to using the default class loader.

The getBeanClass method returns the class of the JavaBeans component
associated with the given attribute class. If the class passed in does not implement
the net. jini.core.entry. Entry interface, an I] legalArgumentExceptionis
thrown.If the given attribute class cannot be found, a ClassNotFoundException
is thrown.

The EntryBeaninterface must be implemented by all JavaBeans components
that are intendedto belinked to entry objects. The makeLink methodestablishes a
link between a JavaBeans component object and an entry object, and the
followLink methodreturns the entry object linked to by a particular JavaBeans
component. Note that objects that implement the Ent ryBean interface should not
be assumed to perform any internal synchronization in their implementations of
the makeLink or fol lowL ink methods, or in the setFoo or getFoo patterns.

248

249

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION

LS.4 Generic Attribute Classes

W;: will now describe some attribute classes that are generic to manyorall ser-
vices, and the JavaBeans components that are associated with each. Unless other-
wise stated, all classes defined here live in the net.jini. lookup. entry

package. The definitions assume the following classes to have been imported:

java.io.Serializable

net.jini.entry.AbstractEntry

LS.4.1 Indicating User Modifiability

To indicate that certain entry classes should only be modified by the service that
registered itself with instances of these entry classes, we annotate them with the
ServiceControl led interface.

public interface ServiceControlled {
}

Authors of administrative tools that modifyfields of attribute objects at the lookup
service should not permit users to either modify any fields or add any new
instances of objects that implementthis interface.

LS.4.2 Basic Service Information

The ServiceInfoattribute class provides some basic information abouta service.

public class ServiceInfo extends AbstractEntry
implements ServiceControlled

public ServiceInfo() {..}
public ServiceInfo(String name, String manufacturer,

String vendor, String version,

String model, String serialNumber) {...}

249

243

250

ee_|

244 BASIC SERVICE INFORMATION

public String name;

public String manufacturer;
public String vendor;
public String version;
public String model;
public String serialNumber;

public class ServiceInfoBean

implements EntryBean, Serializable
{

public String getName() {..}
public void setName(String s) {..}
public String getManufacturer() {..}
public void setManufacturer(String s) {..}
public String getVendor() {...}
public void setVendor(String s) {..}
public String getVersion() {..}
public void setVersion(String s) {..}
public String getModel() {...}
public void setModel(String s) {..}
public String getSerialNumber() {..}
public void setSerialNumber(String s) {...}

}

Each service should register itself with only one instanceof this class. The fields
of the ServiceInfoclass have the following meanings:

¢ The name field contains a specific product name, such as "U]tra 30" (for a
particular workstation) or "JavaSafe" (fora specific configuration manage-
mentservice). This string should not include the nameof the manufacturer
or vendor.

The manufacturer field provides the nameofthe company that “built”this
service. This might be a hardware manufacturer or a software authoring
company.

¢ The vendor field contains the name of the companythatsells the software
or hardware that provides this service. This may be the same nameasis in
the manufacturer field, or it could be the nameofa reseller. This field exists
sothat in cases in whichresellers relabel products built by other companies,
users will be able to search based on either name.

250

251

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION

¢ The versionfield provides information aboutthe version ofthis service. It
is a free-form field, though we expect that service implementorswill follow
normal version-naming conventionsin using it.

@ The model field contains the specific model name or numberofthe product,
if any.

@ The serialNumber field provides the serial numberof this instance of the
service, if any.

LS.4.3 More Specific Information

The ServiceTypeclass allows an author of a service to deliver information that is
specific to a particular instance ofa service, rather than to services in general.

public class ServiceType extends AbstractEntry
implements ServiceControl led

{

public ServiceTypeQ {..}
public java.awt.Image getIcon(int iconKind) {..}
public String getDisplayName() {..}
public String getShortDescription() {..}

}

Each service mayregister itself with multiple instancesofthis class, usually with
one instance for each type of service interface it implements.

This class has no public fields and, as a result, has no associated JavaBeans
component.

The getIcon method returns an icon of the appropriate kindfor the service; it
works in the same way as the getIcon methodin the java.beans.BeanInfo
interface, with the value of iconKind being taken from the possibilities defined in
that interface. The getDisplayName and getShortDescription methods return
a localized human-readable name and description for the service, in the same
manneras their counterparts in the java. beans .FeatureDescriptor class. Each
of these methodsreturns nu11 if no information of the appropriate kindis defined.

In case the distinction between the information this class provides and that
provided by a JavaBeans component’s metainformation is unclear, the class
ServiceType is meant to be used in the lookup service as one of the entry classes
with which a serviceregisters itself, and so it can be customized on a per-service
basis. By contrast, the FeatureDescriptor and BeanInfo objects for all
EntryBeanclasses provide only generic information aboutthose classes and none
about specific instances of those classes.

251

245

S60 PATELALS
eS°
=)
ae
=
|

252

246 NAMING A SERVICE

LS.4.4 Naming a Service

People like to associate names with particular services and may do so using the
Name class.

public class Name extends AbstractEntry {
public Name() {..}

public Name(String name) {...}

public String name;

public class NameBean implements EntryBean, Serializable {
public String getName() {..}
public void setName(String s) {..}

}

Services may register themselves with multiple instancesof this class, and either
services or administrators may add, modify, or removeinstancesofthis class from
the attribute set under which a service is registered.

The namefield provides a short namefor a particular instanceof a service (for
example, “Bob’s toaster”),

LS.4.5 Adding a Commentto a Service

In cases in which some kind of commentis appropriate for a service (for example,
“this toaster tends to burn bagels”), the Commentclass provides an appro-
priate facility,

public class Comment extends AbstractEntry {
public Comment) {..}
public Comment (String comment) {..}

public String comment:

public class CommentBean implements EntryBean, Serializable {
public String getComment() {...}
public void setComment(String s) {..}

252

253

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION

A service may have more than one commentassociated with it, and comments
may be added, removed, or edited by either a service itself, administrators, or
users.

LS.4.6 Physical Location

The Location and Address classes provide information about the physical loca-
tion of a particular service.

Since many services have no physical location, some have one, and a few may
have more than one, it might make sense for a service to register itself with zero or
more instancesof either of these classes, depending on its nature.

The Location class is intended to provide information about the physical
location of a service in a single building or on a small, unified campus. The
Addressclass provides more information and may be appropriate for use with the
Locationclass in a larger, more geographically distributed organization.

public class Location extends AbstractEntry {
public Location() {...}

public Location(String floor, String room,
String building) {...}

public String floor;
public String room;

public String building;
}

public class LocationBean implements EntryBean, Serializable {
public String getFloor() {...}

public void setFloor(String s) {...}
public String getRoom() {...}
public void setRoom(String s) {..}

public String getBuilding() {...}
public void setBuilding(String s) {..}

public class Address extends AbstractEntry f
public Address() {...}

public Address(String street, String organization,
String organizationalUnit, String locality,
String stateOrProvince, String postalCode,

253

247

254

EE

248 STATUS INFORMATION

String country) -{...}

public String street;
public String organization;

public String organizationalUnit;
public String locality;

public String stateOrProvince;
public String postalCode;

public String country;

public class AddressBean implements EntryBean, Serializable {
public String getStreet() {..}

public void setStreet(String s) {..}
public String getOrganization() {...}3
public void setOrganization(String s) {..}
public String getOrganizationalUnit() {...}
public void setOrganizationalUnit(String s) {..}
public String getLocality({..}
public void setLocality(String s) {..}
public String getStateOrProvince() {..3
public void setStateOrProvince(String s) {..}
public String getPostalCode() {...}

public void setPostalCode(String s) {..}
public String getCountry() {...3

public void setCountry(String s) {.}
3

Webelieve the fields of these classes to be self-explanatory, with the possible
exception of the localityfield of the Address class, which would typically hold
the name ofa city.

LS.4.7 Status Information

Someattributes of a service may constitute long-lived status, such as an indication
that a printer is out of paper. We provide a class, Status, that implementors can
use as a base for providing status-related entry classes.

public abstract class Status extends AbstractEntry {
protected Status() {...}

protected Status(StatusType severity) {..}

254

255

(

THE JINI LOOKUP ATTRIBUTE SCHEMA SPECIFICATION 249

public StatusType severity;
}

public class StatusType implements Serializable {
private final int type;
private StatusType(int t) { type = t; }
public static final StatusType ERROR = new StatusType(1);
public static final StatusType WARNING =

new StatusType(2);

public static final StatusType NOTICE = new StatusType(3);
public static final StatusType NORMAL = new StatusType(4); |

} |

public abstract class StatusBean
implements EntryBean, Serializable

{
public StatusType getSeverityQ {..}
public void setSeverity(StatusType i) {...}

}
. “cies

Wedefine a separate StatusType class to makeit possible to write a property edi- = Ss
tor that will work with the StatusBeanclass (we do not currently provide a prop- ag ry—

eo
erty editor implementation).

LS.4.8 Serialized Forms

Class serialVersionUID Serialized Fields

Address 2896136903322046578L all public fields

AddressBean 4491500432084550577L Address asoc

Comment 7138608904371928208L all public fields

CommentBean 5272583409036504625L Comment asoc

Location ~3275276677967431315L all public fields

LocationBean —4182591284470292829L Location asoc

Name 2743215148071307201L all publicfields

NameBean -6026791845102735793L Name asoc |
ServiceInfo —1116664185758541509L all public fields

255

256

igSSS

250 SERIALIZED FORMS

: Class serialVersionUID Serialized Fields
ServiceInfoBean 8352546663361067804L ServiceInfo asoc

ServiceType —6443809721367395836L all publicfields
Status —3193075846115040838L all public fields
StatusBean —1975539395914887503L Status asoc

StatusType -8268735508512712203L int type

256

257

251

257

258

THE JAVASPACES SPECIFICATION describes the JavaSpaces service defined in the
package net. jini. javaSpace. A JavaSpacesservice provides a simple

yet powerful persistent coordination tool for
transactionally governed cooperation between loosely

aN coupled players in distributed protocols.
od

INT

258

259

The JavaSpaces Specification

JS.1 Introduction

Disrenurep systems are hard to build. They require careful thinking about
problemsthat do not occur in local computation. The primary problemsare those
of partial failure, greatly increased latency, and language compatibility. The Java
programming language has a remote method invocation system called RMIthat
lets you approach generaldistributed computation in the Java programminglan-
guage using techniquesnatural to the Java programming language and application
environment. This is layered on the Java platform’s object serialization mecha-
nism to marshal parameters of remote methods into a form that can be shipped
across the wire and unmarshalled in a remote server’s Java virtual machine (JVM).

This specification describes the architecture of JavaSpaces technology, which
is designed to help you solve two related problems: distributed persistence and the
design of distributed algorithms. JavaSpaces services use RMI andtheserializa-
tion feature of the Java programming language to accomplish these goals.

JS.1.1. The JavaSpaces Application Model and Terms

A JavaSpaces service holds entries. An entry is a typed group of objects,
expressed in a class for the Java platform that implements the interface
net.jini.core.entry. Entry. Entries are described in detail in the Jini Entry
Specification.

An entry can be written into a JavaSpaces service, which creates a copy of
that entry in the space! that can be used in future lookup operations.

1 The term “space”is used to refer to a JavaSpaces service implementation.

259

233

rs
pes
Ge
7s(=)
ii=]

hI
saoedcvare

260

254 THE JAVASPACES APPLICATION MODEL AND TERMS

You can look up entries in a JavaSpaces service using templates, which are
entry objects that have someorall ofits fields set to specified values that must be
matched exactly. Remainingfields are left as wildcards—thesefields are not used
in the lookup.

There are two kinds of lookup operations: read and take. A read request to a
space returns either an entry that matches the template on whichthereadis done,
or an indication that no match was found. A take request operateslike a read, but
if a match is found, the matching entry is removed from the space.

You can request a JavaSpaces service to notify you when an entry that
matches a specified template is written. This is done using the distributed event
model contained in the package net.jini.core.event and described in the Jini
Distributed Event Specification.

All operations that modify a JavaSpaces service are performed in a transac-
tionally secure manner with respect to that space. That is, if a write operation
returns successfully, that entry was written into the space (although an intervening
take may removeit from the space before a subsequentlookup of yours). Andif a
take operation returns an entry, that entry has been removed from the space, and
no future operation will read or take the sameentry. In other words, each entry in
the space can be taken at most once. Note, however, that two or moreentries in a
space may have exactly the same value.

The architecture of JavaSpaces technology supports a simple transaction
mechanism that allows multi-operation and/or multi-space updates to complete
atomically. This is done using the two-phase commit model under the default
transaction semantics, as defined in the package net.jini.core.transaction
and described in the Jini Transaction Specification.

Entries written into a JavaSpacesservice are governed by a lease, as defined
in the package net. jini.core. lease and described in the Jini Distributed Lease
Specification.

JS.1.1.1 Distributed Persistence

Implementations of JavaSpaces technology provide a mechanism for storing a
groupofrelated objects and retrieving them based on a value-matching lookupfor
specified fields. This allows a JavaSpaces service to be usedtostore and retrieve
objects on a remote system.

JS.1.1.2 Distributed Algorithms as Flows of Objects

Manydistributed algorithms can be modeled asa flow of objects betweenpartici-
pants. This is different from the traditional way of approaching distributed com-

260

261

THE JAVASPACES SPECIFICATION

puting, which is to create method-invocation-style protocols between participants.
In this architecture’s “flow of objects” approach,protocols are based on the move-
mentof objects into and out of implementations of JavaSpacestechnology.

For example, a book-ordering system might looklikethis:

@ A book buyer wants to buy 100 copies of a book. The buyer writes a request
for bids into a particular public JavaSpaces service.

¢@ The brokerruns a serverthat takes those requests outof the space and writes
them into a JavaSpaces service for each bookseller who registered with the
broker for that service.

@ A server at each bookseller removes the requests from its JavaSpaces ser-
vice, presents the request to a humanto preparea bid, and writes the bid into
the space specified in the book buyer’s request for bids.

Whenthe biddingperiod closes, the buyer takesall the bids from the space
and presents them to a humantoselect the winningbid.

A method-invocation-style design would create particular remote interfaces for
these interactions. With a “flow of objects” approach, only one interface is
required: the net. jini .space.JavaSpace interface.

In general, the JavaSpaces application world looks likethis:

 Identities
JavaSpaces

service

| \ oN
i \ wri teEvent

: \ ae
\write

\
v JavaSpaces

service

JavaSpaces
service

255

—_~
I

g ASopouysay, soovdgvart’

261

262

Nee

256 BENEFITS

Clients perform operations that map entries or templates onto JavaSpaces ser-
vices. These can be singleton operations (as with the upperclient), or contained in
transactions (as with the lowerclient) so that all or none of the operations take
place. A single client can interact with as many spacesasit needsto. Identities are
accessed from the security subsystem andpassedas parameters to method invoca-
tions. Notifications go to event catchers, which maybeclients themselves or prox-
ies for a client (such as a store-and-forward mailbox).

JS.1.2 Benefits

JavaSpaces services are tools for building distributed protocols. They are designed
to work with applications that can model themselves as flows of objects through
one or more servers. If your application can be modeled this way, JavaSpaces
technology will provide many benefits.

JavaSpacesservices can providea reliable distributed storage system for the
objects. In the book-buying example, the designerofthe system hadto define the
protocol for the participants and designthe various kinds ofentries that must be
passed around.This effort is akin to designing the remoteinterfaces that an equiv-
alent customized service would require. Both the JavaSpaces system solution and
the customized solution would require someone to write the code that presented
requests and bids to humans in a GUI. And in both systems, someone would have
to write code to handletheseller’s registrations of interest with the broker.

The server for the model that uses the JavaSpaces API would be implemented
at that point.

The customized system would need to implementthe servers. These servers
would have to handle concurrent access from multiple clients. Someone would
need to design and implement a reliable storage strategy that guaranteed the
entries written to the server would not be lost in an unrecoverable or undetectable
way. If multiple bids needed to be made atomically, a distributed transaction sys-
tem would have to be implemented.

All these concernsare solved in JavaSpacesservices. They handle concurrent
access. They store and retrieve entries atomically. And they provide an implemen-
tation of the distributed transaction mechanism.

This is the power of the JavaSpacestechnology architecture—many common
needs are addressed in a simple platform that can be easily understood and used in
powerful ways.

JavaSpaces services also help with data that would traditionally be stored in a
file system, such as user preferences, e-mail messages, and images. Actually, this
is not a different use of a JavaSpaces service. Such uses of a file system can
equally be viewed as passing objects that contain state from one external object

262

263

THE JAVASPACES SPECIFICATION

(the image editor) to another (the window system that uses the image as a screen
background). And JavaSpaces services enhance this functionality because they
store objects, not just data, so the image can have abstract behavior, not just infor-
mation that must be interpreted by some external application(s).

JavaSpacesservices can provide distributed object persistence with objects in
the Java programming language. Because code written in the Java programming
language is downloadable, entries can store objects whose behaviorwill be trans-
mitted from the writer to the readers, just as in an RMI using Java technology. An
entry in a space may, when fetched, cause someactive behavior in the reading cli-
ent. This is the benefit of storing objects, not just data, in an accessible repository
for distributed cooperative computing.

JS.1.3 JavaSpaces Technology and Databases

A JavaSpaces service can store persistent data which is later searchable. But a
JavaSpacesserviceis not a relational or object database. JavaSpaces services are
designed to help solve problemsin distributed computing,not to be used primarily
as a data repository (although there are many data storage uses for JavaSpaces
applications). Some importantdifferences are:

+ Relational databases understand the data they store and manipulate it
directly via query languages. JavaSpaces services store entries that they
understand only by type andthe serialized form of each field. There are no
general queries in the JavaSpaces application design, only “exact match”or
“don’t care” for a given field. You design yourflow of objects so that this is
sufficient and powerful.

Object databases provide an object oriented image of stored data that can be
modified and used, nearly asif it were transient memory. JavaSpaces sys-
temsdo not provide a nearly transparent persistent/transientlayer, and work
only on copies ofentries.

These differences exist because JavaSpaces services are designedfora differ-
ent purposethan eitherrelational or object databases. A JavaSpaces service can be
used for simple persistent storage, such as storing a user’s preferencesthat can be
looked up by the user’s ID or name. JavaSpaces service functionality is some-
where between that of a filesystem and a database,butit is neither.

263

257

(Sf) ASopouyoay, savedgear[

264

ng

258 JAVASPACES SYSTEM DESIGN AND LINDA SYSTEMS

JS.1.4 JavaSpaces System Design and Linda” Systems

The JavaSpaces system designis strongly influenced by Linda systems, which
support a similar model of entry-based shared concurrent processing. In Section
JS.4.1 you will find several references that describe Linda-style systems.

No knowledge of Linda systemsis required to understand this specification.
This section discusses the relationship of JavaSpaces systems with respect to
Linda systems for the benefit of those already familiar with Linda programming.
Other readers should feel free to skip ahead.

JavaSpaces systemsare similar to Linda systemsin thatthey store collections
of information for future computation and are driven by value-based lookup. They
differ in some important ways:

¢ Linda systems have not used rich typing. JavaSpaces systems take a deep
concern with typing from the Java platform type-safe environment. In Java-
Spaces systems,entries themselves,notjusttheir fields, are typed—twodif-
ferent entries with the samefield types but with different data types for the
Java programming languageare different entry types. For example, an entry
that had a string and two double values could be either a named point or a
named vector. In JavaSpaces systemsthese two entry types would have spe-
cific differentclasses for the Java platform, and templates for one type would
never match the other, even if the values were compatible,

¢ Entries are typed as objects in the Java programming language, so they may
have methods associated with them. This provides a way ofassociating
behaviorwith entries.

@ As another result of typed entries, JavaSpaces services allow matching of
subtypes—a template match can return a type that is a subtype of the tem-
plate type. This means that the read or take may return more states than
anticipated. In combination with the previous point, this means that entry
behavior can be polymorphic in the usual object-oriented style that the Java
platform provides.

@ Thefields of entries are objects in the Java programming language. Any
object data type for the Java programming language can be used as a tem-
plate for matching entry lookups as long as it has certain properties. This
means that computing systems constructed using the JavaSpaces API are

2 “TLinda”is the name of a public domain technology originally propounded by Dr. David Gelernter of
Yale University. “Linda”is also claimedas a trademark for certain goods by Scientific Computing As-
sociates, Inc. This discussion refers to the public domain “Linda” technology.

264

265

THE JAVASPACESSPECIFICATION 259

object-oriented from top to bottom, and behavior-based(agent-like) applica-
tions can use JavaSpaces services for co-ordination.

¢ Most environmentswill have more than one JavaSpacesservice. Most Linda
tuple spaces haveonetuple spaceforall cooperating threads. So transactions
in the JavaSpaces system can span multiple spaces (and even non-Java-
Spaces system transaction participants).

¢ Entries written into a JavaSpacesservice are leased. This helps keep the

space free of debris left behind due to system crashes and network failures.
@ The JavaSpaces API does not provide an equivalent of “eval” becauseit

would require the service to execute arbitrary computation on behalf of the
client. Such a general computeservice has its own large numberof require-
ments (such as security and fairness). |

On the nomenclature side, the JavaSpaces technology API uses a more acces-
sible set of terms than the traditional Linda terms. The term mappings are “entry” |
for “tuple”, “value” for “actual”, “wildcard” for “formal”, “write” for “out”, and
“take” for “in”. So the Linda sentence “When you ‘out’ a tuple make sure that |
actuals and formals in ‘in’ and ‘read’ can do appropriate matching” would be |
translated to “When you write an entry make sure that values and wildcards in
‘take’ and ‘read’ can do appropriate matching.”

JS.1.5 Goals and Requirements

The goals for the design of JavaSpaces technologyare:

Provide a platform for designing distributed computing systems that simpli-
fies the design and implementation of those systems.

@ Theclient side should have few classes, both to keep the client-side model
simple and to make downloadingofthe client classes quick.

@ Theclient side should have a small footprint, because it will run on comput-
ers with limited local memory.

A variety of implementations should be possible, including relational data-
base storage and object-oriented database storage.

It should be possible to create a replicated JavaSpaces service.

Psfe)
~Sa
ie—

5
To
o

saoudguare

265

266

260 DEPENDENCIES

The requirements for JavaSpacesapplication clients are:

@ It must be possible to write a client purely in the Java programming lan-
guage.

Clients must be oblivious to the implementation details of the service. The
same entries and templates must work in the same ways no matter which
implementation is used.

JS.1.6 Dependencies

This documentrelies upon the following other specifications:

* Java Remote Method Invocation Specification
@ Java Object Serialization Specification
@ Jini Entry Specification

@ Jini Entry Utilities Specification

¢ Jini Distributed Event Specification

¢ Jini Distributed Leasing Specification

@ Jini Transaction Specification

266

267

THE JAVASPACES SPECIFICATION 261

JS.2 Operations

Tre are four primary kinds of operations that you can invoke on a Java-
Spaces service. Each operation has parameters that are entries, including some
that are templates, which are a kind of entry. This chapter describes entries, tem-
plates, and the details of the operations, which are:

write: Write the given entry into this JavaSpacesservice.

read: Read an entry from this JavaSpaces service that matches the given
template.

take: Read an entry from this JavaSpaces service that matches the given
template, removing it from this space.

notify: Notify a specified object when entries that match the given template
are written into this JavaSpaces service.

Asused in this document, the term “operation”refers to a single invocation of
a method; for example, two different take operations may have different tem-
plates. =i]

at
AsS

OS
*<

JS.2.1 Entries saondgvare
The types Entry and UnusableEntryExceptionthatare usedin this specification
are from the package net.jini.core.entry and are described in detail in the
Jini Entry Specification. In the terminology of that specification write is a store
operation; read and take are combination search and fetch operations; and
notify sets up repeated search operations as entries are written to the space.

267

268

a

262 net. jini. space. JavaSpace

JS.2.2. net. jini.space. JavaSpace

All operations are invoked on an object that implements the JavaSpace interface.
For example, the following code fragment would write an entry of type
AttrEntryinto the JavaSpaces service referred to bythe identifier space:

JavaSpace space = getSpace();

AttrEntry e = new AttrEntryQ;
e.name = "Duke";

e.value = new GIFImage("dukeWave. gif");
space.write(e, null, 60 * 60 * 1000);// one hour

// lease is ignored -~ one hour will be enough

The JavaSpaceinterfaceis:

package net.jini.space;

import java.rmi.*;

import net.jini.core.event.*;

import net.jini.core.transaction.*;
import net.jini.core.lease.*;

public interface JavaSpace {

Lease write(Entry e, Transaction txn, long lease)
throws RemoteException, TransactionException;

public final long NO_WAIT = @; // don’t wait at all

Entry read(Entry tmpl, Transaction txn, long timeout)
throws TransactionException, UnusableEntryException,

RemoteException, InterruptedException;
Entry readIfExists(Entry tmp], Transaction txn,

long timeout)

throws TransactionException, UnusableEntryException,
RemoteException, InterruptedException;

Entry take(Entry tmp], Transaction txn, long timeout)
throws TransactionException, UnusableEntryException,

RemoteException, InterruptedException;
Entry takeIfExists(Entry tmpl, Transaction txn,

long timeout)

throws TransactionException, UnusableEntryException,
RemoteException, InterruptedException;

EventRegistration notify(Entry tmpl, Transaction txn,
RemoteEventListener listener, long lease,

268

269

THE JAVASPACES SPECIFICATION

MarshalledObject handback)

throws RemoteException, TransactionException;

Entry snapshot(Entry e) throws RemoteException;

}

The Transaction and TransactionException types in the above signatures are
imported from net .jini.core.transaction. The Lease type is imported from
net. jini.core.lease. The RemoteEventListener and EventRegistration
types are imported from net. jini.core.event.

Tn all methods that have the parameter, txn may be nu11, which meansthat no
Transaction object is managing the operation (see Section JS.3).

The JavaSpaceinterface is not a remote interface. Each implementation of a
JavaSpaces service exports proxy objects that implement the JavaSpace interface
locally on the client, talking to the actual JavaSpaces service through an imple-
mentation-specific interface. An implementation of any JavaSpace method may
communicate with a remote JavaSpaces service to accomplish its goal; hence,
each method throws RemoteException to allow for possible failures. Unless
noted otherwise in this specification, when you invoke JavaSpace methods you
should expect RemoteExceptions on methodcalls in the same cases in which you
would expect them for methods invoked directly on an RMI remote reference, For
example, invoking snapshot might require talking to the remote JavaSpaces
server, and so might get a RemoteExceptionif the server crashes during the oper-
ation.

The details of each JavaSpace methodare given in the sections that follow.

JS.2.2.1 InternalSpaceException

The exception Internal SpaceException may be thrown by a JavaSpacesservice
that encounters an inconsistency in its own internal state or is unable to process a
request because of internal limitations (such as storage space being exhausted).
This exception is a subclass of RuntimeException. The exception has two con-
structors: one that takes a String description and anotherthat takes a String and
a nested exception; both constructors simply invoke the RuntimeException con-
structor that takes a String argument.

package net.jini.space;

public class InternalSpaceException extends RuntimeException {
public final Throwable nestedException;
public InternalSpaceException(String msg) {...}

public InternalSpaceException(String msg, Throwable e) {...}

ry

Pass
i)
Zhaoo

“ei
sooedguarl,

269

270

|

264 write

public printStackTrace() {..}
public printStackTrace(PrintStream out) {..}
public printStackTrace(PrintWriter out) {..}

}

The nestedException field is the one passed to the second constructor, or nul] if
the first constructor was used. The overridden printStackTrace methodsprint
out the stack trace of the exception and, if nestedExceptionis not nul1, print
out that stack trace as well.

JS.2.3. write

A write places a copy of an entry into the given JavaSpaces service. The Entry
passed to the write is not affected by the operation. Each write operation places
a new entry into the specified space, even if the same Entry object is used in more
than one write.

Each write invocation returns a Lease object that is lease milliseconds long,
If the requested time is longer than the spaceis willing to grant, you will get a
lease with a reduced time. Whenthe lease expires, the entry is removed from the
space. You will get an I7 TegalArgumentExceptionif the lease time requested is
negative.

If a write returns without throwing an exception,that entry is committed to
the space, possibly within a transaction (see Section JS.3). Ifa RemoteException
is thrown, the write may or may not have been successful. If any other exception
is thrown, the entry was not written into the space.

Writing an entry into a space might generatenotifications to registered objects
(see Section JS.2.7).

JS.2.4 readIfExists and read

The twoformsof the read request search the JavaSpaces service for an entry that
matches the template provided as an Entry. If a match is found, a reference to a
copy of the matching entry is returned. If no match is found, nu11 is returned.
Passing a nu] reference for the template will match any entry.

Any matching entry can be returned. Successive read requests with the same
template in the same JavaSpaces service may or may not return equivalent objects,
even if nointervening modifications have been made to the space. Each invocation
of read may return a new object even if the same entry is matched in the Java-
Spacesservice.

270

271

THE JAVASPACES SPECIFICATION 265

A readIfExists request will return a matching entry, or nu11 if there is cur-
rently no matching entry in the space. If the only possible matches for the tem-
plate have conflicting locks from one or more other transactions, the timeout
value specifies how long the client is willing to wait for interfering transactions to
settle before returning a value. If at the end of that time no value can be returned
that would notinterfere with transactional state, nu11 is returned. Note that, due to
the remote nature of JavaSpaces services, read and readIfExists may throw a
RemoteExceptionif the network or server fails prior to the timeout expiration

A read request acts like a readIfExists except that it will wait until a
matching entry is found or until transactions settle, whichever is longer, up to the
timeoutperiod.

In both read methods, a timeout of NO_LWAIT means to return immediately,
with no waiting, which is equivalent to using a zero timeout.

JS.2.5 takeIfExists and take

The take requests perform exactly like the corresponding read requests (see Sec-
tion JS.2.4), except that the matching entry is removed from the space. Two take
operations will never return copies of the sameentry, although if two equivalent
entries were in the JavaSpaces service the two take operations could return equiv-
alententries.

If a take returns a non-null value, the entry has been removed from the
space, possibly within a transaction (see Section JS.3). This modifies the claims to
once-only retrieval: A take is considered to be successful only if all enclosing
transactions commit successfully. If a RenoteExceptianis thrown, the take may
or may not have been successful. If an UnusableEntryException is thrown, the
take removed the unusable entry from the space; the contents of the exception are
as described in the Jini Entry Specification. If any other exception is thrown, the
take did not occur, and no entry was removed from the space.

With a RemoteException, an entry can be removed from a space and yet
never returned to the client that performed the take, thus losing the entry in
between. In circumstances in whichthis is unacceptable, the take can be wrapped
inside a transaction that is committed by the client whenit has the requested entry
in hand.

aAh)CUAL)& saovdgvaet
JS.2.6 snapshot

The process ofserializing an entry for transmission to a JavaSpaces service will
be identical if the same entry is used twice. This is most likely to be an issue with

271

272

Al|

266 notify

templatesthat are used repeatedly to search for entries with read or take. Thecli-
ent-side implementations of read and take cannot reasonably avoid this dupli-
cated effort, since they have no efficient way of checking whether the same
template is being used without intervening modification.

The snapshot method gives the JavaSpaces service implementor a way to
reduce the impact of repeated use of the same entry. Invoking snapshot with an
Entry will return another Entry object that contains a snapshot of the original
entry. Using the returned snapshot entry is equivalent to using the unmodified
original entry in all operations on the same JavaSpaces service. Modifications to
the original entry will not affect the snapshot. You can snapshot a nul] template;
snapshot may or may not return nul11 given a nul] template.

The entry returned from snapshot will be guaranteed equivalent to theorigi-
nal unmodified object only when used with the space. Using the snapshot with any
other JavaSpaces service will generate an I1]egalArgumentException unless
the other space can use it because of knowledge about the JavaSpacesservice that
generated the snapshot. The snapshotwill be a different object from the original,
may or may not have the same hash code, and equals may or may not return true
wheninvoked withthe original object, even if the original object is unmodified.

A snapshot is guaranteed to work only within the virtual machine in which it
was generated. If a snapshot is passed to another virtual machine (for example, in
a parameter of an RMIcall), using it—even with the same JavaSpaces service—
may generate an I] legalArgumentException.

Weexpectthat an implementation of JavaSpaces technologywill return a spe-
cialized Entry object that represents a pre-serialized version of the object, either
in the objectitself or as an identifier for the entry that has been cached on the
server. Although the client may cache the snapshoton theserver, it must guaran-
tee that the snapshotreturnedto the client code is always valid. The implementa-
tion may not throw any exception that indicates that the snapshot has become
invalid because it has been evicted from a cache. An implementation that uses a
server-side cache must therefore guarantee that the snapshotis valid as longasit
is reachable (not garbage) in the client, such as by storing enough information in
the client to be able to re-insert the snapshot into the server-side cache.

Noother method returns a snapshot. Specifically, the return values of the read
and take methodsare not snapshots and are usable with any implementation of
JavaSpaces technology.

JS.2.7. notify

A notify request registers interest in future incoming entries to the JavaSpaces
service that match the specified template. Matching is doneasit is for read. The

272

273

THE JAVASPACESSPECIFICATION 267

notify method is a particular registration method under the Jini Distributed
Event Specification. When matching entries are written, the specified
RemoteEventListener will eventually be notified. When you invoke notify you
provide an upper boundon the lease time, which is how long you want the regis-
tration to be remembered by the JavaSpaces service. The service decides the
actual time for the lease. You will get an I] 1egalArgumentException ifthe lease
time requested is not Lease.ANY and is negative. The lease time is expressed in
the standard millisecond units, although actual lease times will usually be of much
larger granularity. A lease time of Lease. FOREVERis a request for an indefinite
lease; if the service chooses not to grant an indefinite lease, it will return a
bounded (non-zero)lease.

Each notify returns a net. jini.core.event.EventRegistration object.
Whenan object is written that matches the template supplied in the notify invo-
cation, the listener’s notify method is eventually invoked, with a RemoteEvent
object whose evID is the value returned by the EventRegistration object’s
getEventID method, fromWhom being the JavaSpaces service, seqNo being a
monotonically increasing number, and whose getRegistrationObject being
that passed as the handback parameter to notify. If you get a notification with a
sequence numberof 103 and the EventRegIDobject’s current sequence numberis
100, there will have been three matching entries written since you invoked
notify. You may or may not havereceivednotification of the previousentries due
to networkfailures or the space compressing multiple matching entry events into a
single call.

If the transaction parameteris nu11, the listener will be notified when match-
ing entries are written either under a nu11 transaction or whena transaction com-
mits. If an entry is written under a transaction and then taken under that same
transaction before the transaction is committed, listeners registered under a nu11
transaction will not be notified of that entry.

If the transaction parameteris not nu11, the listener will be notified of match-
ing entries written under that transaction in addition to the notifications it would
receive under a nu11 transaction. A notify made with a non-nu11 transaction is
implicitly dropped whenthe transaction completes.

The request specified by a successful notify is as persistent as the entries of
the space. They will be remembered as long as an untaken entry would be, until
the lease expires, or until any governing transaction completes, whichever is
shorter.

The service will make a “best effort” attempt to deliver notifications. The ser-
vice will retry at most until the notification request’s lease expires. Notifications
may be delivered in any order.

See the Jini Distributed Event Specification for details on the eventtypes.

ry
~ >
Pa
ACES)
ige
i

Pealaust

273

274

 7 ~~TO

268 OPERATION ORDERING

JS.2.8 Operation Ordering

Operations on a space are unordered. The only view of operation order can be a
thread’s view of the order of the operations it performs. A view of inter-thread
order can be imposed only by cooperating threads that use an application-specific
protocol to prevent two or more operations being in progressat a single time on a
single JavaSpaces service. Such means are outside the purview ofthis specifica-
tion.

For example, given twothreads T and U, if T performs a write operation and
U performs a read with a template that would match the written entry, the read
may not find the written entry even if the write returns before the read. Only if T
and U cooperate to ensure that the write returns before the read commences

would the read be ensured the opportunity to find the entry written by T (although
it still might not do so because of an intervening take from a third entity).

JS.2.9 Serialized Form

Class serialVersionUID Serialized Fields

InternalSpaceException -4167507833172939849L all public fields

274

275

THE JAVASPACES SPECIFICATION 269

JS.3. Transactions

Tu JavaSpaces API uses the package net.jini.core.transaction to pro-
vide basic atomic transactions that group multiple operations across multiple
JavaSpaces services into a bundle that acts as a single atomic operation. Java-
Spaces services are actors in these transactions; the client can be an actor as well,
as can any remote object that implements the appropriate interfaces.

Transactions wrap together multiple operations. Either all modifications |
within the transactions will be applied or none will, whether the transaction spans
one or more operations and/or one or more JavaSpacesservices.

The transaction semantics described here conform to the default transaction

semantics defined in the Jini Transaction Specification.

JS.3.1. Operations under Transactions

Any read, write, or take operations that have a nu11 transaction act as if they
were in a committed transaction that contained exactly that operation. For exam-
ple, a take with a nu711 transaction parameter performsas if a transaction wascre-
ated, the take performed under that transaction, and then the transaction was
committed. Any notify operations with a nu11 transaction apply to write opera-
tions that are committed to the entire space.

Transactions affect operations in the following ways:

ry
cs

we
ZsSo

vin]
<i

Salatisatbl
@ write: An entry that is written is not visible outside its transaction until the

transaction successfully commits.If the entry is taken within thetransaction,
the entry will never be visible outside the transaction and will not be added
to the space whenthe transaction commits. Specifically, the entry will not
generate notifications to listeners that are not registered under the writing
transaction. Entries written undera transaction that aborts are discarded.

@ read: A read may match any entry written underthat transaction or in the

entire space. A JavaSpacesservice is not required to prefer matching entries
written inside the transaction to those in the entire space. When read, an

275

276

270

Te

TRANSACTIONS AND ACID PROPERTIES

entry is addedto the set of entries read by the provided transaction. Such an
entry may be read in any other transaction to whichthe entry is visible, but
cannot be taken in anothertransaction.

@ take: A take matches like a read with the same template. When taken, an
entry is added tothe set of entries taken by the provided transaction. Such
an entry maynot be read or taken by any othertransaction.

@ notify: A notify performed under a nu11 transaction applies to write
operations that are committed to the entire space. A notify performed
under a non-nu11 transaction additionally provides notification of writes
performed within that transaction. Whena transaction completes, any regis-
trations under that transaction are implicitly dropped. When a transaction
commits, any entries that were written underthe transaction (and nottaken)
will cause appropriate notifications for registrations that were made undera
nul] transaction.

If a transaction aborts while an operation is in progress underthat transaction,
the operation will terminate with a TransactionException. Any statement made
in this chapter about read or take apply equally to readIfExists or
takeIfExists, respectively.

JS.3.2 Transactions and ACID Properties

The ACID properties traditionally offered by database transactionsare preserved
in transactions on JavaSpaces systems. The ACID propertiesare:

@ Atomicity: All the operations grouped undera transaction occur or none of
them do.

@ Consistency: The completion of a transaction must leave the system in a
consistentstate. Consistency includes issues knownonly to humans,such as
that an employee should always have a manager. The enforcementof con-
sistency is outside ofthe transaction—atransactionis a tool to allow consis-
tency guarantees, and notitself a guarantorof consistency.

¢ Isolation: Ongoing transactions should not affect each other. Any observer
should be able to see other transactions executing in some sequential order
(although different observers may see different orders).

¢ Durability: The results of a transaction should be aspersistent as the entity
on whichthe transaction commits.

276

277

THE JAVASPACES SPECIFICATION

The timeout values in read and takeallowaclient to trade full isolation for

liveness. For example, if a read request has only one matching entry and that
entry is currently locked in a take from another transaction, read would block
indefinitely if the client wanted to preserve isolation. Since completing the trans-
action could take an indefinite amountof time, a client may chooseinstead to put

an upper bound on howlongit is willing to wait for such isolation guarantees, and
instead proceedto either abort its own transaction or ask the user whether to con-
tinue or whatever else is appropriate for the client.

Persistence is not a required property of JavaSpaces technology implementa-
tions. A transient implementation that does not preserve its contents between sys-
tem crashes is a proper implementation of the JavaSpace interface’s contract, and
may be quite useful. If you choose to perform operations on such a space, your
transactions will guarantee as much durability as the JavaSpaces service allows
for all its data, which isall that any transaction system can guarantee.

277

271

=
Ccae

= 5
Yo°

Niel
te

saoedguarf

278

278

279

a

THE JAVASPACES SPECIFICATION 273

JS.4 Further Reading

JS.4.1 Linda Systems

1. How to Write Parallel Programs: A Guide to the Perplexed, Nicholas Car-
tiero and David Gelernter, ACM Computing Surveys, Sept., 1989.

2. Generative Communication in Linda, David Gelernter, ACM Transactions
on Programming Languages and Systems, Vol. 7, No. 1, pp. 80-112 (Jan-
uary 1985).

3. Persistent Linda: Linda + Transactions +-Query Processing. Brian G.
Anderson and Dennis Shasha, Proceedings of the 13th Symposium on
Fault-Tolerant Distributed Systems, 1994.

4. Adding Fault-tolerant Transaction Processing to LINDA, Scott R. Cannon
and David Dunn, Software—Practice and Experience, Vol. 24(5), pp.
449-446 (May 1994).

5. ActorSpaces: An Open Distributed Programming Paradigm, Gul Agha,
Christian J. Callsen, University of Illinois at Urbana-Champaign, UILU-
ENG-92-1846.

Cy) ASopouypaT, aed(ltdf
JS.4.2 The Java Platform

6. The Java Programming Language, Second Edition, Ken Arnold and James
Gosling, Addison Wesley, 1998.

7. The Java LanguageSpecification, James Gosling,BillJoy, and GuySteele,
Addison Wesley, 1996.

8. The Java Virtual Machine Specification, Second Edition, Tim Lindholm
and Frank Yellin, Addison Wesley, 1999.

9. The Java Class Libraries, Second Edition, Patrick Chan, Rosanna Lee, and
Doug Kramer, Addison Wesley, 1998.

279

280

Ea
274 DISTRIBUTED COMPUTING

JS.4.3 Distributed Computing

10. Distributed Systems, Sape Mullender, Addison Wesley, 1993.

11. Distributed Systems: Concepts and Design, George Coulouris, Jean Dolli-
more, and Tim Kindberg, Addison Wesley, 1998.

12. Distributed Algorithms, Nancy A. Lynch, Morgan Kaufmann Publishers,
1997.

280

281

wnéA

JavaSpacesMROreteCray(JS)

281

282

THE JINI DEVICE ARCHITECTURE SPECIFICATION describes several ways in which
a device (ar anyother service) can participate in a Jini system without the

device (or service) being a general Jini service. The
possibilities listed are not exhaustive—there could be

a otherinteresting models as well. The main point to pay
attention to here is that any service can participate in

the Jini architecture, even with no modification of the
service provideritself. This “device architecture” applies

equally well to legacy systems and other software services.

282

283

The Jini Device Architecture

Specification

DA.1 Introduction

Tux Jini technology infrastructure is built around the model ofclients looking
for services. The notion of a service encompasses access to information, computa-
tion, software that performs particular tasks, and in general any component that
helps a user accomplish some goal. Services can themselves beclients of other
services, and can be grouped together to provide higher-level functionality.

The Jini architecture requires a service to be defined in terms of a data type for
the Java programming languagethat can then be implementedin different ways by
different instances of the service. A service can be a member of many different

types, allowing a single service instance to provide a variety of functionality to
clients. This is a standard practice in object-oriented software. However, the dis-
tributed nature of the Jini system allows data types for the Java programminglan-
guage to be implemented in a combination of software and hardware in a way that
is unique.

The core of the idea that enables this implementation flexibility is quite sim-
ple. Services are defined via an interface, and the implementation of a proxy sup-
porting the interface that will be seen by the service client will be uploadedinto
the lookup service by the service provider. This implementation is then down-
loaded into the client as part of that client finding the service. This service-specific
implementation needs to be code written in the Java programming language (to
ensure portability). However, since this code comes from the actualinstance of the
service being used, it can know in great detail the specifics of the particular ser-
vice implementation for whichit is the proxy. Not only can the code that is down-
loaded know about the software used to implementthe service, the code can know

283

277

i
Es

Pe
as=
=&

fel=|—
°

r¢|

a)Fs)

284

re__|

278 REQUIREMENTS FROM THE JINI LOOKUP SERVICE

specifics about the hardware on whichtheserviceresides. In the limit case ofthis,
the hardware could be all that there is to the service, and the downloadedsoftware
could act as a network-level device driver, taking methodcalls in the Java pro-
gramming language from the client and generating specific, hard-coded requests
to the hardware on the other end of the network wire.

This approachto services requires that there be a piece of code written in the
Java programming language that can be downloaded by the client of the service
and some hardware that ultimately runs the service. Between these two points,
however, there are a numberof options concerning the software structure, hard-
ware structure, and location of components that can be chosen by the service pro-
vider. These options allow trade-offs to be made in the functionality provided and
the cost of the underlying hardware.

In what follows we begin by discussing in more detail the requirements
placed on a serviceto be part of the Jini system. We then discuss some examples
of combinations of software and hardware that can be used to implement Jini-
capable services oncethe specialized implementationsin hardware begin to play a
role.

DA.1.1 Requirements from the Jini Lookup Service

The actual offering of a service places very few requirements on the entity that
makes the offer; indeed,it is possible to implement a device using Jini software
servicesthat offers a service in such a waythat the code written in the Java pro-
gramming language that is downloaded bytheclient transmits bit patterns to the
hardware that are directly interpreted. In such cases the amount of intelligence
needed for a Jini device is minimal. The code written in the Java programming
language could talk directly to the device controller in much the same way that the
device would be talked to if it were on the local computer’s bus (with, of course,
some modifications for dealing with the network-centric aspects of the communi-
cation).

Unfortunately, providing a service is only part of whatis needed to be a Jini
service. To bepartof a Jini system grouping, a service must also be able to partic-
ipate in the Jini Discovery protocol and register itself into the local Jini Lookup
service. This is how a service makesitself knownto the djinn, and how theservice
is accessed by other membersofthe djinn.

These two requirements are intimately connected. The major goal of the Jini
Discovery protocolis to allow a device orservice to obtain a Java Remote Method
Invocation (RMI) reference to the local Jini Lookupservice. Once this reference
has been obtained, the service needsto registeritself in that Jini Lookupservice,
allowing otherparticipants in the djinn to find and usethe service,

284

285

THE JINI DEVICE ARCHITECTURE SPECIFICATION

The interface to the Jini Lookup serviceis a full RMI interface, and the imple-
mentationofthat service uses all of the mechanisms of RMI,including the distrib-
uted garbage collection and the dynamic downloading of code. As such, there is
an implicit assumption that the service that holds a reference to the Jini Lookup
service lives inside a full Java™virtual machine (JVM)that is at least capable of

running the full RMI system.
This assumption is most evident if we consider the possibility of alternate

implementations ofthe Jini Lookup service, which might support remote inter-
faces beyond that specified by the Jini Lookupservice itself (currently the inter-
face net.jini.core.lookup.ServiceRegistrar). Such an implementation
would have a different RMI proxy than the current implementation, which would
be downloadedif the device had a full JVM and RMIruntime. Devices without a
full JVM and RMI runtime would need a different way of dealing with such imple-
mentations of the service.

In addition to the need to downloadthe stub code for the Jini Lookupservice,

registering with the service requires the creation of an object of type
net.jini.core. lookup.ServiceItem, which is itself made up of a set of
objects in the Java programming language. Maintenance of these entries in the
Jini Lookup service can require the creation of other objects in the Java program-
ming language ofthe type net. jini.core.entry.Entry. All of these objects are
most easily constructed by using a running JVM.

Finally, registrations with the Jini Lookup service are leased, with the lease
that is returned requiring renewal for the service to continue to be shown in the
lookup service. The specification of the lookup service does not include a specifi-
cation of the lease object that is returned bya registration. All that is specified is
an interface written in the Java programming language that must be supported by
the (local) object that is returned as the lease. Thus the design of the Jini Lookup
service requiresthat the code that implementsthe class that in turn implements the
net. jini.core. lease.Lease interface be downloaded into the service that reg-
isters so that the lease can be renewed.

285

279

S
is

iedLon4
i)
=acomet
=
oC
C2C

5ar}

ddAId

286

THE JINI DEVICE ARCHITECTURE SPECIFICATION 281
DA.2 Basic Device Architecture Examples

Now we will look at three different approaches for implementing a Jini service
in hardware. Each of the approaches will look the sameto a client of the service.
Each approach takesa different route to interacting with the Jini Lookup service
and in providing an interface written in the Java programming languagetoclients
of that service. In each case, a different trade-off was made between the complex-

ity of the device, the flexibility of the device, and the directness of the communi-
cation between the client wanting to use the service and the device that
implements the service.

All but the first of the examples make use of interposition, that is, the ability
of a service to add a proxy betweenitself and the client of the service. The service
can use this proxy as an agent to the Jini technology infrastructure, off-loading
from the service some of the work neededto join the Jini system federation.

The examples given in this chapter are not the only options available to the
service designer who wishes to produce a service that includes a hardware compo-
nent. Rather, the examples are meant to show some samples of the range of imple-
mentation possibilities that are open to such designers. In effect, this documentis
meant to show that, within the overall Jini architecture, there is no single Jini
device architecture. Instead, the device space is freed up, allowing different ser-
vices to have hardware implementations with different price, performance, func-
tionality, and flexibility design points.

DA.2.1 Devices with Resident Java Virtual Machines

An obvious design for a device that can becomepart of a Jini system federationis
one that includes the computing power, memory, and nonvolatile store necessary
to have a full JVM and thoseparts of the Java application environment necessary
to support the Jini infrastructure (in particular, those parts needed for code load-
ing, RMI, and any required security). This would make the device into a special-
ized computing entity, with part of the device dedicated to the parts of the Java :

API required bythe Jini architecture. On this approach, the hardware implementa- |

BRASYASAd Baney6|
tion is abstracted behind a device-local software abstraction, which in turn is

286

287

TT

282 DEVICES WITH RESIDENTJAVA VIRTUAL MACHINES

abstracted behind the proxy code used by the client to contact the service. This
sort of architecture is shown in Figure DA.2.1.

Service Client Service Provider

] Hardware
| Implementation

Client Private
 1 Protocol

Proxy a
Java VM

Seee
Network | y (Communication via RMIprotocol)
aee

FIGURE DA.2.1: A Full Jini-Capable Device

Such a device would be able to make full use of Jini and Java technology,
uploading code that is used to communicate with the device and downloading
code that might be needed for the service provided by the device. Such a device
can make use of the native RMI protocol for communication over the network, and
has a loose tie between the communication protocol and the particular software
protocol governing the running of the device itself. On this approach, the device
becomes a specialized network appliance offering a particular service (or set of
services) via an embedded Java platform.

In effect, this approach uses a hardware implementation for the local imple-
mentation of an RMIserver, isolating the hardware behind two levels of indirec-
tion. Thefirst is that provided by the local proxy code that is uploadedinto the Jini
Lookupservice and then downloadedinto the client of the service. Additionally,
the local JVM and code written in the Java programming languageresident on the
service device allow mediation between the client proxy and the hardwareitself.

A device that took this approach could easily have multiple services imple-
mented on the device in a way that was mediated by the JVM on the device. Fur-
ther, such a device could be evolved with no impact on the client or the network

287

288

THE JINI DEVICE ARCHITECTURE SPECIFICATION

protocol used betweentheclient and the service, since any changein the hardware
would be seen only by the JVM andany server-side code that talked directly to the
hardware.

While simple and flexible, this approach does add somecost to the device. In
particular, the device would needto have a microprocessor capable of running the
JVM, some memory in which to create and store classes, and some nonvolatile
store (either disk or NVRAM) from which to load the JVM and Java™Develop-
ment Kit (JDK) software classes. All of these are in addition to the hardware
needed to implementthe Jini service that the device provides. This extra hardware
will increase the cost of producing the device.

Meeting these requirements does not call for a hosted version of the JVM or a
full version of the JDK running on the device. The JVM could mun onany form of
microkernel or directly on the hardware of the device. Further, there are large
parts of the JDK that would not be required for the minimal device—suchthings
as the graphics anduser interface classes, which formasignificant chunk ofthe
current release, would not be needed. Other parts of that release could also be
dropped, allowing a stripped-down JDKto suffice for Jini devices. It would be
worthwhile to determine the exact definition of such a subset of the JDK and size

that component; it would be something closeto the definition of embedded Java
technology with the additional classes needed to support RMI.

Whatis important for this kind of approach is for the device to be able to
download any code written in the Java programming language (although whether
that code is run could depend onthe local security manager), utilize the RMI com-
munication system, and handle the requirements of a general virtual machine. By
presenting a standard JVM,the device gets full membership in a Jini system feder-
ation and complete flexibility in the ways in which the machine communicates
between the proxy it provides other members of the federation and the device
itself.

DA.2.2 Devices Using Specialized Virtual Machines

Wecanlowerthe barrier to entry for a device manufacturerif that manufacturer is
willing to give up someoftheflexibility given by the Jini distribution architecture.
This can be doneby allowing the device to become part of a Jini system federation
with a specialized virtual machine that is tuned to allow only those operations.
needed by the Jini Discovery protocol and Jini Lookupservice.

To dothis, the device manufacturer would need to implementthe interfaces to
the Jini Discovery and Jini Lookupservice in the deviceitself, include specialized
knowledge of the kind of leases that are handed out by the Jini Lookup service
and be able to renew those leases directly, and have sufficient functionality to

283

S
ESall PRIALSTtALA

288

289

——————————————Vaae_eV“xSS_L_Lawe

284 CLUSTERING DEVICES WITH A SHARED VIRTUAL MACHINE(PHYSICAL OPTION)

download anduse the stubs for these services. This is a particular set of function-
alities that is considerably smaller than that required by the whole of the JVM, and
should be possible to implement in much less code. For example, such a JVM
would not need to contain a security manager, a code verifier, or a numberof the
other components that are required for a full JVM.

Such a device would contain a JVM specialized for the Jini environment,
allowing the Jini Discovery and Jini Lookupservices to be accessed andleases of
a particular sort to be renewed. This would limit the flexibility of such a device, as
the device would not be able to have software changes made overtimeto the pro-
tocol used by the proxy for the device. The specialized knowledge of the kind of
lease that is handed out by the lookup service would also tie such a device to a
particular implementation of the lookup service. However, this penalty in service-
ability might not outweigh the simplicity of the overall device.

DA.2.3 Clustering Devices with a Shared Virtual Machine
(Physical Option)

A third approach uses a full JVM,but amortizes the cost of the JVM (both software
and hardware) over a numberof different devices, In this approach, a group of
devices each uses a physically co-located JVM as an intermediate layer between
the device and the Jini system grouping. The device loads code written in the Java
programming language into this local virtual machine, allowing that local
machine to interact with the device, and then delegates to the local JVM the
requirements of interacting with the Jini Lookupservice, Jini Discovery, and Jini
Leasing.

This approach is very muchlike thefirst one discussed in this section, except
that the JVM used by the devices is shared. It is still a full JVM,allowing the
downloading of code and complete Java platform functionality. However, the most
likely implementation of such a device would allow multiple (and perhaps differ-
ent) kinds of physical devices to be plugged into the overall device to get the shar-
ing of the Java application environment.

Such a device might best be thoughtof as a “Jini device bay.” This bay could
provide power, a network connection, and a processor running a JVM and appro-
priate parts of the JDK. Physical devices that are used to provide a particular kind
of Jini service could be plugged into the device bay and announce themselves to
the bay in whatever way the two decided was appropriate. This could be using a
proprietary protocol (allowing a device manufacturer to produce both the basic
device or devices and the device bay) or some other industry standard, local-
device identification scheme.

289

290

THE JINI DEVICE ARCHITECTURE SPECIFICATION 285

As part of the local announcement, a new device wouldtell the device bay
whereto find the code written in the Java programming languagethatis needed by
a client of the service, and (possibly) where to find code that would allow the
device bay to interact with the device. This allows devices to carry their own
“drivers,” both for the local machine and at the networklevel.

Upon detection of the new local device, the Jini device bay would register the
services provided by the new device (previously known by the device bay) with
the Jini Lookupservice. It would bethe role of the device bay to renew leases on
the Jini Lookup service entries, and to detect removal of any of the devices for
whichit was acting as proxy. The device bay would provide the Jini Lookupser-
vice with the code handed to it by the device so that service clients could down-
load that code. |

Theclient of the device service would believe thatit is talking to the device |
registered in the Jini Lookup service, but would actually be talking to the device |
bay. The device bay would actas a dispatcherto the particular device for which it |
was acting as a proxy, along with any translation of protocol betweenthe network |
protocol used by the service proxy and the protocol used between the device bay
and the actual device. Graphically, the architecture of such an approach is shown |
in Figure DA.2.2.

ae

persion

|

1

[| Java VM |

 Service Client Service Providers

[oo _ — oe

| dev || dev dev | || Java | l 2 3
Device | :

\ | Bay

; >
1 j oO

cation v 7 ee
Network i Y (Communication via RMIprotocol) ; Rat $ 6Oe 5

FIGURE DA.2.2: Clustering Multiple Devices With a Single Proxy in One Device

290

291

SS

286 CLUSTERING DEVICES WITH A SHARED VIRTUAL MACHINE (NETWORK OPTION)

The savings for the device manufacturerin this case comes from the ability of
multiple physical devices to share a device bay, which contains the intelligence,
memory, and perhaps other components(such as the power supply). By sharing
these resources among multiple devices, the extra cost and engineering needed to
interact with the Jini system federation can be amortized over a large numberof
devices.

The cost of this approach to the device manufacturers is that the protocol
between the device acting as the Jini device bay and the devicesthat are placed in
that bay must be defined in advance and cannot change over time. Becausethere is
no way ofintroducing dynamic behavior in the particular devices, the pairing of
device and Jini device bay must be controlled and known beforehand.

It should be noted that the Jini device bayitself is a Jini device, which can be
thought of as providing services to those devices housed within it. As such, it
could be a revenueitem in its own right. Variationsin the implementation could be
provided to support various internal announcement protocols (device bay, jetsend,
etc.) or hardware buses (including network-like buses such as firewire).

DA.2.4 Clustering Devices with a Shared Virtual Machine
(Network Option)

A variation on the device bay approach uses the network rather than a physical
enclosure and backplane. Onthis alternative, a proxy for the JVM usedbythe var-
ious service devices would exist on the network. Service devices could be added
to the network, discover the existence of such a proxy device, and register with
that proxy. Such a registration could include the code written in the Java program-
ming language needed bya client of the device (either directly or as a URLto use
to obtain the code) and code neededby the proxy to communicate with the service
device.

Whena service device registers with such a network proxy, the proxy device
would register with the Jini Lookup service on behalf of the service device, thus
allowing the service device to become a part of the Jini system federation.
Requests to the new service would gofirst to the proxy for that device, which
could then forward the requests (after appropriate protocol translation) to the par-
ticular service device. In addition, the proxy could handle the Jini-specific tasks
such as renewing leases for the service. This alternative is shown in Figure
DA.2.3.

291

292

 THE JINI DEVICE ARCHITECTURE SPECIFICATION

Service Client

-—
| Network Proxy

fel |
L__

I

1| ? private

| \ | : protocals| ae mob
Network | y (Communicationvia RMIprotocol) | = ;
WESSSSSSS

=| —|
cal J SL
dev | dev | | dev

1 | 2 |; 3

Service Providers

FIGURE DA.2.3: Clustering Devices With a Jini-capable Proxy on the Network

This alternative requires somewhat more hardware for the individual device,
as it requires each service device using such a proxy to be able to be placed on the
network and have its own power supply and network connection. However, the
devices would not need individual CPUs, memory, or persistent store; all of that
would be provided by the networked Jini device proxy.

Devices using this option would need to havesa protocol parallel to the Jini
Discovery protocol between the individual service devices and the network proxy
for those devices. This could be a specialized code on the network, known in
advance, that the devices can useto identify themselves to the network proxy. This
will have to be particular to the device and the proxy for that device. However,
oncethis protocol has been decided upon, no other intelligence needs to bebuilt
into the device. All ofthe intelligence can be built into the network proxy, perhaps
uploadedinto the proxy by the service device (which could easily carry code writ-
ten in the Java programming language, even though it cannot execute that code).

ERTSSTUAYA ERATE|

292

293

ee

288 JINI SOFTWARE SERVICES OVER THE INTERNETINTER-OPERABILITY PROTO COL

The protocol the network Proxy usesto talk to the devices for whichit is a proxy
also needsto bestatically defined in advance and cannot be changed. However,it
can be any protocolthe particular device needs.

In this approach,the individual devices will be more complexthan they would
be in the Jini device bay approach. However, the numberofdevices that can be
served by a network available proxy is not limited by the physical constraints of
the proxy device. Nor is there any requirement that the devices and the proxy
device be co-located, which is a requirementon the physical clustering scheme.

This is also the approach that can be taken to build “gateways” between the
Jini devices and other network-managed devices. Such devices, which already
speaka particular protocol, can be spliced into the Jini system federation by pro-
viding a network proxy that speaks the Jini protocol on behalf of such devices,
andthe existing specialized protocol to such devices. This is the approach that can
be used to add consumer electronic devices, factory controls, or home environ-
ment controls into the Jini system grouping.

DA.2.5 Jini Software Services over the Internet
Inter-Operability Protocol

A final method for connecting devices or services that are not purely based on
Java software into a Jini System centers on using the Object Management Group
(OMG)’s Internet Inter-Operability Protocol (HOP). This protocol defines a stan-
dardfor data transmissionthat will be supported by a subset of RMI.

This approachrelies on the ability of a device to read an IOP stream directly,
either because the device includes an implementation of a Common Object
Request Broker Architecture (CORBA) Object Request Broker (ORB) or because
the device knows what IIOP streams to expect and can interpret streams of these
known formsdirectly.

This approach requires the Jini Lookupservice to supply implementations of
its interfaces over both the native RMI protocoland the IIOP protocol, This is sup-
ported by RMI over HOP as long as the interfaces conform to any subsetting
requirements established by the OMG.Atthe present timeit appears that the Jini
Lookupservice interfacesare in conformance with the RMI over HOP subset.

Devices that contain a CORBA ORB could directly interact with the Jini
Lookup service using the IIOP protocol. The fact that the Jini Lookupservice gen-
erated this protocol via RMI would be transparentto the serviceitself, and the fact
that the service was using a methodotherthan RMI to reply to the Jini Lookupser-
vice (to renew leases, for example) would be transparentto the Jini Lookup ser-
vice. Current differences between the RMI programming model and the CORBA
programming model wouldneedto be dealt with by the deviceitself: for example,

293

294

THE JINI DEVICE ARCHITECTURE SPECIFICATION

the device would not be able to download the implementation of the stub for the
Jini Lookup service, and would need an implementation of the Jini Lease class
used by the Jini Lookupservice.

Devices that do not include a CORBA ORB could directly interpret the IOP
stream and attempt to interact with the Jini Lookup service. This approach
requires very little software support on the side of the device (since the bitstream
from the wire is being directly interpreted). However, it is an approach that will
work only with known versions of the Jini Lookup service that exports known
implementations of a Jini Lease. Anyalteration of either the Jini Lease implemen-
tation or the protocol used by the Jini Lookupservice, even those that would be
invisible to other clients of the service, would make it impossible for the device
directly interpreting the IIOP protocol to interact with the new version of the ser-
vice. Hencethis alternative, while lowest in cost with respect to the hardware and
software neededby the device,is also the least reliable in the face of implementa-
tions that can changeovertimeorthat are open to alternate implementations.

289

bs

>bar©
=—_e
=
ia")
©-

Efal

ddIAa]

294

295

PART 3

Supplemental
Material

296

TheJini Technology Glossary

activation

The process oftransforming a passive object into an active object. Activa-
tion requires that an object be associated with a Java™ virtual machine
(TVM), which mayentail loading theclass for that object into a VM and the
object restoring its persistent state (if any). (Java Remote Method Invoca-
tion Specification, Section 7.1.1)

activation descriptor
A classinstancethat holds an activatable object’s group identifier (specifies
the JVM in whichit is activated), the object’s class name, a location from
whereto load the object’s class code, and object-specific initialization data
in marshalled form. (Java Remote Method Invocation Specification, Section
7.2)

activation group
The entity that receives a request to activate an object in the JVM and
returns the activated object back to the activator. (Java Remote Method
Invocation Specification, Section 7.2) A separate JVM is spawned for each
activation group. (Section 7.4.7)

activator

The entity that supervises activation by being both (1) a database of infor-
mation that mapsactivation identifiers to the information necessary to acti-
vate an object and (2) a manager of JVMs, that starts up a JVM (when
necessary) and forwards requests for object activation (along with the nec-
essary information) to the correct activation group inside a remote JVM.
There is usually only one activator per host, started by rmid. (Java Remote
Method InvocationSpecification, Section 7.2)

296

297

ee,_|

294 THE JINI TECHNOLOGY GLOSSARY

active object

A remote object that is instantiated and exported in a JVM on somesys-
tem.(Java Remote Method Invocation Specification, Section 7.1.1)

ancestor transaction

A transaction that is the parent of a specific nested transaction (a transac-
tion in which all its operations are contained, or executed, from within
another transaction), or the parent of such a parent, recursively (a grand-
parent, a great-grandparent, and so on). (Jini Transaction Specification,
Section TX.3.5)

attribute set

A strongly-typed set of fields in a service item (represented by a
net.jini.core.entry.Entry)that describes the service or provide second-
ary interfaces to the service. A singleattribute is a public field of an Entry.
(Jini Lookup Service Specification, Section LU.1.2)

channel

The abstraction for a conduit between two address spaces in the RMItrans-
port layer. As such, it is responsible for managing connections between the
local address space and the remote address space for which it is a channel.
(Java Remote Method Invocation Specification, Section 3.5)

connection

The stream-oriented (Java Remote Method Invocation Specification, Sec-
tion 3.4) abstraction for transferring data (performing input/output) in the
RMI transport layer. (Section 3.5)

discovering entity

Oneor more cooperating objects in the Java programming language on the
same host that are about to start, or are in the processof, obtaining refer-
ences to one or more Jini Lookupservices. (Jini Discovery and Join Speci-
Jication, Section DJ.1.1)

discovery request service

A service that runs on a hostin the djinn and accepts requests for a remote
reference to an instance of the Jini Lookupservice. There are really two
discovery request services; one accepts multicast requests, and the other
accepts unicast requests. Both instancesof the discovery requestservice are
present on every system in a djinn that hosts an instance ofthe Jini Lookup
service.

297

298

THE JINI TECHNOLOGY GLOSSARY 295

discovery response service
A remoteobject that runs on a discovering entity and accepts references to
instances of the Jini Lookupservice. An instance ofthe discovery response
service is hosted on every system that wishes to establish communications
with a djinn.

distributed event adapter

An event adapter in which the event generator and the event listener
instances may exist in different virtual machines, possibly on different
hosts. The distributed event adapter is at least a remote eventlistener, but
mayalso be a remote event generator (see local event, remote event). (Jini
Distributed Event Specification, Section EV.3)

djinn (pronounced “gin”)
Thegroupof devices, resources, and users joined by the Jini software infra-
structure. (Jini Lookup Service Specification, Section LU.1.1) This group,
controlled by the Jini system, agrees on basic notionsof trust, administra-
tion, identification, and policy.

dynamicclass loading
The capability of the Java application environment to download files
(classes for the Java platform, audio, and images) from an HTTP server at
runtimeif they are not already available to the client JVM. Dynamicclass
loading may be used by the RMI runtimeto download: stub classes; skele-
ton classes; classes that are passed as subtypes of declared method parame-
ters; and classes that are passed as subtypes of declared method return
types. (See dynamicstub loading)

dynamic stub loading
A subset of dynamic class loading, used to support client-side stubs that
implementthe sameset of remote interfaces as a remote objectitself. (Java
Remote Method Invocation Specification, Section 3.1)

endpoint
The abstraction used to denote an address space or JVM in the RMI trans-
port layer. In the implementation an endpoint can be mappedtoits trans-
port. That is, given an endpoint, a specific transport instance can be
obtained. (Java Remote Method InvocationS,pecification, Section 3.5)

298

299

a

296 THE JINI TECHNOLOGY GLOSSARY

entry

Anentry is a typed group of object references, expressed as a class for the
Java platform that implements the net. jini.core.entry.Entry interface.
Entry fields must all be references to Serializable objects. (Jini Entry
Specification, Section EN.1)

event

Something that happensin an object, corresponding to some change in the
abstract state of the object. Events are abstract occurrences that are not

directly observed outside of an object, and may notcorrespond to a change
in the actual state of the object that advertises the ability to register interest
in the event. (Jini Distributed Event Specification, Section EV.2.1)

event generator

An object that has some kinds of abstract state changes that might be of
interest to other objects and allowsother objects to register interest in those
events. This is the object that will generatenotifications when events ofthis
kind occur, sending those notifications to the event listeners that were indi-
catedas targets in the calls that registered interest in that kind of event. (Jini
Distributed Event Specification, Section EV.2.1)

eventlistener

An objectthat has an interest in being notified when a particular event type
occurs. The event listener (1) implements the appropriate interface, and (2)
registers with an event generator. (See remote eventlistener)

export, -ed, -ing

The process of making a remote object available to accept incomingcalls
on a specific port. An object can be exported (1) if the object is a subclass
of java.rmi.server.UnicastRemoteObject, through the constructor; (2) if
the object is a subclass of java.rmi.activation.Activatable, through
the constructor; (3) by passing the object to the static exportObject
method of UnicastRemoteObject (Java Remote Method Invocation Specifi-
cation, Section 5.3.1); or (4) by passing the object to the static
exportObject method of Activatable. (Section 7.3)

faulting remote reference

A faulting remote reference to a remote object, sometimes referred to as a
fault block, “faults in” the active object’s reference upon thefirst method
invocation to the object executed via the faulting reference. Each faulting
reference, contained in the remote object’s stub, holds both a persistent

299

300

 THE JINI TECHNOLOGY GLOSSARY

object handle (a java.rmi.activation.ActivationID) and a transient
remote reference to the target remote object. (Java Remote Method Invoca-
tion Specification, Section 7.1.2)

host

A hardware device that may be connected to one or more networks. An
individual host may house one or more JVMs. (Jini Discovery and Join
Specification, Section DJ.1.2)

idempotent

A methodthat is idempotent can be called multiple times and produce only
the result as thoughit were called onlyasingle time.

inferior transaction

The inverse of the transactional ancestor relationship: Transaction T; is an
inferior of T, if and only if 7, is an ancestor of T;. (Jini Transaction
Specification, Section TX.3.5)

joining entity

One or more cooperating objects in the Java programming language on the
samehostthat have just received a reference to the Jini Lookupservice and
are in the process of obtaining services from, and possibly exporting ser-
vices to, a djinn. (Jini Discovery and Join Specification, Section DJ.1.1)

join protocol

The protocol] that allowsentities to start communicating usefully with ser-
vices in a djinn, through the Jini Lookupservice. (Jini Discovery and Join
Specification, Section DJ.1.3)

JVM

A commonabbreviation for “Java Virtual Machine.”

lazy activation
The activation mechanism that the RMI system uses, which defers activat-
ing an object until a client’s first use (that is, the first method invocation).
Lazy activation of remote objects is implemented using a faulting remote
reference. (Java Remote Method Invocation Specification, Section 7.1.1)

lease

A grant to use a resource, offered by one object in a distributed system,to
another object in that system for a certain period of time. The duration of

300

301

298 THE JINI TECHNOLOGY GLOSSARY

the lease is negotiated by the two objects whenaccessto the resourceis first
requested and given. (Jini Distributed Leasing Specification, Section LE.1)
A leaseensuresthatthe lease holder will have access to some resource for a
period of time. Duringthe period of a lease, a lease can be cancelled by the
entity holdingthe lease. A lease holder can request that a lease be renewed,
or a lease can expire. (Jini Distributed Leasing Specification, Section
LE.2.1) In the current implementation of RMI,a lease term is not negoti-
ated, as described by the Jini Distributed Leasing Specification; the lease
term is mandated by the implementation server, Another difference is that
in RMIthere is no notion of explicit lease cancellation; lease cancellation is
implicit when a remote reference becomes unreferenced by a specific cli-
ent. (Java Remote Method Invocation Specification, Section 9.1)

lease grantor

The object granting access to a resource for some period of time. (Jini Dis-
tributed Leasing Specification, Section LE.2)

lease holder

The object asking for the leased resource. (Jini Distributed Leasing Specifi-
cation, Section LE.2)

live reference

The concrete representation of a remote object reference (in the RMItrans-
port layer), which consists of an endpoint and an object identifier. Given a
live reference for a remote object, a transport can use the endpointto set up
a connection to the address space in which the remote object resides. On
the server side, the transport uses the object identifier to look up the target
of the remote call. (Java Remote Method Invocation Specification, Section
3.5)

local event

An event objectthat is fired from an event generator to an event listener,
where both the generator andthelistener instances existin the samevirtual
machine, (See event, remote event) (Jini Distributed Event Specification,
Section EV.1.1)

lookup discovery protocol

The protocol that governs the acquisition of a reference to one (or more)
instances ofthe Jini Lookupservice. (Jini Discovery and Join Specification,
Section DJ.1.3)

301

302

THE JINI TECHNOLOGY GLOSSARY 299

lookup service
The Jini Lookup service provides a central registry of service items, repre-
senting services, available within the djinn. This Jini Lookup service is a
primary means for programsto find services within the djinn, and is the
foundation for providing user interfaces through which users and adminis-
trators can discover and interact with services in the djinn. (Jini Lookup
Service Specification, Section LU.1)

marshal streams

Input/outputstreams, used by the RMI remote referencelayer, that employ
object serialization to enable objects in the Java programming language to
be transmitted between address spaces. (Java Remote Method Invocation
Specification, Section 3.3)

marshalled object

A container for an object that allows that object to be passed as a parameter |
in an RMIcall, but postpones deserializing the object at the receiver until
the application explicitly requests the object (via a call to the container
object). The serializable object contained in the MarshalledObjectis seri-
alized and deserialized (when requested) with the same semantics as
parameters passed in RMI calls (Java Remote Method Invocation Specifica-
tion, Section 7.4.8), which means that any remote object in the
MarshalledObject is represented by a serialized instance of its stub. The
object contained by the MarshalledObject may be a remote object, a non-
remote object, or an entire graph of remote and non-remote objects.

notification filter

A distributed event adapter that can be used by either the generator of a
notification or the recipient to intercept notification calls, do processing on
those calls, and act in accord with that processing (perhaps forwarding the
notification, or even generating new notifications). (Jini Distributed Event
Specification, Section EV.3.2) This filter may be used as an event multi-
plexer or demultiplexer.

notification mailbox

A distributed event adapter that can be used to store the notifications sent to
an object until such time as the object for which the notifications were
intended desires delivery. Such delivery can be in a single batch, with the
mailbox storing any notifications received after the request for delivery
until the next request is given. Alternatively, a notification mailbox can be
viewed as a faucet, with notifications turned on (delivering any that have

302

303

—_—_—_—_—E—E—_—ea—SSSSOEEEEen

300 THE JINI TECHNOLOGY GLOSSARY

arrived since the notifications were last turned off) and then delivering any

subsequent notifications to an object immediately, until told to hold the
notifications. (Jini Distributed Event Specification, Section EV.3.3)

object serialization
The system that allows a bytestream to be produced from a graph of
objects, sent out of the Java application environment(either saved to disk or
sent over the network) and then used to re-create an equivalent set of
objects with the same state. (Java Object Serialization Specification, Sec-
tion A.1) In RMI, objects transmitted using the object serialization system
are passed by copy to the remote address space, unless they are remote
objects, in which case they are passed by reference. (Java Remote Method
Invocation Specification, Section 3.3)

passive object
A remote object that is not yet instantiated (or exported) in a JVM,but that
can be broughtinto an active state (see active object). (Java Remote Method
Invocation Specification, Section 7.1.1)

pure transaction
A transaction in whichall access to shared mutablestate is performed under
transactional control. (Jini Transaction Specification, Section TX.3.5)

referencelist

A reference list for a remote object is a list of client JVMsthat hold refer-
ences to that remote object. A client JVM is removed from the object’s ref-
erence list when that client no longer references that object. (Java Remote
MethodInvocation Specification, Section 9.1)

registry
A remote object that maps names to remote objects. The java. rmi.Naming
class provides methods for lookup, binding, rebinding, unbinding, andlist-
ing the contents of a registry. A registry can be used in a virtual machine
shared with other server classes or in a standalone JVM. The methods of

java.rmi.registry.LocateRegistry may be used to get a registry operat-
ing on a particular host or host and port. (Java Remote Method Invocation
Specification, Section 6)

remote event

An object that is passed from an event generator to a remote event listener
to indicate that an eventof a particular kind has occurred. The remote event

303

304

THEJINI TECHNOLOGY GLOSSARY 301

generator and the remote event listener instances may exist in different vir-
tual machines, possibly on different hosts. Jini Distributed Event Specifi-
cation, Section EV.2.1)

remote event generator
An object that is the source of remote events.

remote eventlistener

An object implementing the net.jini.core.event.RemoteEventListener
interface, which is interested in the occurrence of remote events in some

other object. The major function of a remote event listener is to receive
notifications of the occurrence of a remote event in some other object (or

set of objects). Jini Distributed Event Specification, Section EV.2.1)

remote interface

An interface written in the Java programming language that extends
java.rmi.Remote, either directly or indirectly, which declares the methods
of a remote object. (Java Remote Method Invocation Specification, Section
2.1) |

|

|
remote method invocation (RMI)

The action of invoking a method of a remote interface on a remote object.
(Java Remote Method Invocation Specification, Section 2.1)

remote object
An object whose methods can be invoked from another JVM,potentially on
a different host. An object of this type is described by one or more remote
interfaces. (Java Remote Method Invocation Specification, Section 2.1)

remote reference layer (RRL)
The layer of the RMI system that supports remote reference behavior (such
as invocation to a single object or to a replicated object) and carries out the
semantics of method invocation. This layer sits between the RMI stub/skel-
eton layer and the RMItransport layer. Also handled by the remote refer-
ence layer are the reference semantics for the server. (Java Remote Method
Invocation Specification, Section 3.2)

rmic

The stub and skeleton compiler used to generate the appropriate stubs and
skeletons for a specific remote object implementation. The compiler is
invoked with the package-qualified class name of the remote object class.

304

305

302 THE JINI TECHNOLOGY GLOSSARY

The class mustpreviously have been compiled successfully. (Java Remote
Method Invocation Specification, Section 5.11)

rmid

The activation system daemon which provides an implementation of the
activation system interfaces. To use activation, you mustfirst run rmid. This
is the JVM with whichactivation descriptionsget registered. (Java Remote
Method Invocation Specification, Section 7.2)

riniregistry

The RMI system command that provides an implementation of the
java.rmi.registry.Registry interface. The rmiregistry, run on a remote
host, can be accessed bycalling methods of the java. rmi.Namingclass.

semantic transaction

A transaction with specific, associated semantics, as opposed to the proto-
col specified by the TransactionManager interface, which doesnot specify
transaction semantics. A semantic transaction is contractual in nature and

implies a particular usagepattern, so if a program operates within the con-
straints of the contract, assumptions can be safely made aboutthe transac-
tion’s behaviororstate. (Jini Transaction Specification, Section TX.1.1)

serializable

Any data type that may be read from java.io.ObjectInputStreams and
written to java.io.ObjectOutputStreams. This includes primitive data
types in the Java programming language, remote objects in the Java pro-
gramming language, and non-remoteobjects in the Java programming lan-
guage that implement the java.io.Serializable interface. (Java Remote
Method Invocation Specification, Section 2.6)

service

Something that can be used by a person, a program, or another service.It
can be computational, storage, a communication channelto another user, or
another service. Examplesof services include devices such asprinters, dis-
plays, disks, software (such as applications orutilities), information (such
as databasesandfiles), and users of the system. Services will appear pro-
grammatically as objects in the Java programming language, perhaps made
up of other objects in the Java programming language. A service will have
an interface, which defines the operations that can be requested ofthatser-
vice. The type of the service determines the interfaces that make upthat
service. (Jini Architecture Specification, Section AR.2.1.1)

305

306

THE JINI TECHNOLOGY GLOSSARY 303

service items

Each service item represents an instance of a service available within the
djinn. The item containsthe stub (if the service is implemented as a remote
object) or serialized object (if the service makes use of a local proxy) that
programsuse to access the service, and an extensible collection ofattribute
sets that describe the service or provide secondary interfaces to the service.
A newservice item is created in the Jini Lookup service when a new service
is added to the djinn. (Jini Lookup Service Specification, Section LU.1.1)

service registrar
A synonym for Jini Lookup service. (See lookup service) (Jini Lookup Ser-
vice Specification, Section LU.2.5)

skeleton

The server-side entity that reads parameters from incoming method
requests and dispatches calls to the actual remote object implementation.
Note that in the Java DevelopmentKit 1.2, skeleton functionality is now
handled by the remote object stub, but skeletons maystill be used for com-
patibility with earlier releases of the JDK. (Java Remote Method Invocation
Specification, Section 3.3)

store-and-forward agent
A distributed event adapter that enables the object generating a notification
to hand the actual notification of those who haveregistered interestoff to a
separate object. This agent can implement various policies for reliability.
(Jini Distributed Event Specification, Section EV.3.1)

stub

The proxy for a remote object, which implementsall the interfaces that are
supported by the remote object implementation and forwards method invo-
cations to the actual remote object instance. (Java Remote Method Invoca-
tion Specification, Section 3.3)

stub/skeleton layerThe layer of the RMI system that aids in carrying out method invocation. |
The stub/skeleton layer is the interface between the application layer and
the rest of the RMI system. (Java Remote Method Invocation Specification,
Section 3.3) This layer does not deal with specifics of any transport, but
transmits data to the remote reference layer via the abstraction of marshal
streams. This layer contains client-side stubs (proxies) and server-side skel-
etons. (Section 3.2)

306

307

304 THE JINI TECHNOLOGY GLOSSARY

template

An entry object that has someorall of its fields set to specified values.
Templates may be usedto find matching entries. A template will match an
entry if and only if the template’s non-nu11 public fields match the entry’s
non-null public fields exactly. Remaining fields (those set to nu11) are not
used in the matching processbutare left as wildcards. (Jini Entry Specifica-
tion, Section EN.1.5)

transaction

In general, a transaction is a tool that allows a set of operations to be
grouped in such a way as to make them all appearto either all succeed orall
fail; further, the operations in the set appear from outside the transaction to
occur simultaneously. In the Jini architecture model, the concrete represen-
tation of a transaction is encapsulated in an object. (Jini Transaction Speci-
fication, Section TX.1.1)

transaction client

Anobjectthat does either or both of the following: (1) requests that a trans-
action manager create a transaction, (2) invokes the commit or abort
method to complete a transaction. A single transaction may have more than
one client, since the object that completes a transaction may be different
from the object that requested its creation. An object that is a transaction
client may also be a transaction managerorparticipant. (Jini Transaction
Specification, Section TX.1.1)

transaction manager

An object that (1) services requests from transaction clients to create trans-
actions and (2) tracks and manages the completion state of those transac-
tions by implementing the TransactionManager interface. An objectthatis
a transaction manager mayalso bea transactionclient or participant. (Jini
Transaction Specification, Section TX.1.1)

transaction participant
An object that executes operations of a transaction and is able to interact
with the manager to complete transactions properly. An object providing
this service may implement the TransactionParticipant interface. An
object that is a transaction participant may also be a transaction manager or
client. (Jini Transaction Specification, Section TX.1.1)

307

308

THE JINI TECHNOLOGY GLOSSARY

transport

The abstraction that manages channels in the RMI transport layer. Each
channel is a virtual connection between two address spaces. Within a trans-
port, only one channel exists per pair of address spaces (the local address
space and a remote address space). Given an endpoint to a remote address
space, a transport sets up a channel to that address space. The transport
abstraction is also responsible for accepting calls on incoming connections
to the address space, setting up a connection object for the call, and dis-
patching to higher layers in the system. (Java Remote Method Invocation
Specification, Section 3.5)

transport layer
The layer of the RMI system that is responsible for connection set up, con-
nection management, and remote object tracking. (Java Remote Method
Invocation Specification, Section 3.2) The transport layer sits below the
remote reference layer.

weak reference

When a remote object is not referenced by any client, the RMI runtime
refers to it using a weak reference. The weak reference allows the JVM’s
garbage collector to discard the object if no other strong references to the
object exist. The distributed garbage collection algorithm interacts with the
local JVM’s garbagecollectorin the usual ways by holding normal or weak
references to objects; thus, a weak reference allows the RMIruntimeto ref-
erence a remote object, but not prevent the object from being garbagecol-
lected. (Java Remote Method Invocation Specification, Section 3.7)

308

309

NOTE ON DISTRIBUTED COMPUTING describesthe environmentfor which the Jini
architecture is designed—oneoffailure characteristics unknownin local

computing. The Jini architecture takes these differences
into accountin its original design principles, which is

aN one reason whythe overall Jini architecture works.
This note wasoriginally published as a Sun

Microsystems Laboratories technical report (SMLI TR-
94-29). The note has been reformattedfor this book. Two

observations have been added, marked as ! and "! in the
text, and presentedat the end of the note.

309

310

APPENDIX A
aynS = See CAREERS rnnsy

A Note on Distributed
Computing

Jim Waldo, Geoff Wyant, Ann Wollrath,
and Sam Kendall

A.1 Introduction

Marcu of the current work in distributed, object-oriented systems is based on
the assumption that objects form a single ontological class. This class consists of
all entities that can be fully described by the specification of the set of interfaces
supported by the object and the semantics of the operations in those interfaces.
Theclass includes objects that share a single address space, objects that are in sep-
arate address spaces on the same machine, and objects that are in separate address
spaces on different machines (with, perhaps, different architectures). On the view
that all objects are essentially the same kind of entity, these differencesin relative
location are merely an aspect of the implementation of the object. Indeed, the
location of an object may change over time, as an object migrates from one
machineto anotheror the implementation of the object changes.

It is the thesis of this note that this unified view of objects is mistaken. There
are fundamentaldifferences between theinteractionsofdistributed objects and the
interactions of non-distributed objects. Further, work in distributed object-ori-
ented systems that is based on a modelthat ignores or denies these differences is
doomed to failure, and could easily lead to an industry-wide rejection of the
notion of distributed object-based systems.

310

307

311

ee,

308 A NOTE ON DISTRIBUTED COMPUTING

A.1.1 Terminology

In whatfollows, we will talk about local and distributed computing. By local com-
puting (local objectinvocation, etc.), we mean programsthat are confinedto a sin-
gle address space. In contrast, we will use the term distributed computing (remote
object invocation, etc.) to refer to programs that make calls to other address
spaces, possibly on another machine. In the case of distributed computing, noth-
ing is known aboutthe recipientofthe call (other than that it supports a particular
interface). For example, the client of such a distributed object does not know the
hardwarearchitecture on which therecipientofthe call is running, or the language
in whichthe recipient was implemented.

Giventhe above characterizations of “local” and “distributed” computing, the
categories are not exhaustive. There is a middle ground, in which calls are made
from one address space to another but in which somecharacteristics of the called
object are known. An important class of this sort consists of calls from one
address space to another on the same machine; we will discuss these later in the
paper.

A.2 TheVision of Unified Objects

There is an overall vision of distributed object-oriented computing in which, from
the programmer’s point of view, there is no essential distinction between objects
that share an address space and objects that are on two machines with different
architectures located on different continents. While this view can most recently be
seen in such works as the Object Management Group’s Common Object Request
Broker Architecture (CORBA)"!|,it has a history that includes such research sys-
tems as Arjuna?! Emerald"), and Clouds"41,

In such systems, an object, whether local or remote, is defined in terms of a
set of interfaces declared in an interface definition language. The implementation
of the object is independentofthe interface and hidden from other objects. While
the underlying mechanisms used to make a method call may differ depending on
the location ofthe object, those mechanismsare hidden from the programmer who
writes exactly the same codeforeither type of call, and the system takes care of
delivery.

This vision can be seen as an extension of the goal of remote procedurecall
(RPC) systems to the object-oriented paradigm. RPC systems attempt to make
cross-address space function calls look (to the client programmer) like local func-
tion calls. Extending this to the object-oriented programming paradigm allows
papering over not just the marshalling of parameters and the unmarshalling of
results (as is done in RPC systems) butalso the locating and connectingto the tar-

311

312

A NOTE ON DISTRIBUTED COMPUTING

get objects. Given the isolation of an object’s implementation from clients of the
object, the use of objects for distributed computing seems natural. Whether a
given object invocation is local or remote is a function of the implementation of
the objects being used, and could possibly change from one methodinvocation to
another on any given object.

Implicit in this vision is that the system will be “objects all the way down”,
that is, that all current invocations or calls for system services will be eventually
converted into calls that might be to an object residing on some other machine.
There is a single paradigm of object use and communication used no matter what
the location of the object might be.

In actual practice, of course, a local memberfunction call and a cross-conti-
nent object invocation are not the same thing. The vision is that developers write
their applications so that the objects within the application are joined using the
same programmatic glue as objects between applications, but it does not require
that the twokinds of glue be implemented the same way. Whatis neededis a vari-
ety of implementation techniques, ranging from same-address-space implementa-
tions like Microsoft’s Object Linking and Embedding!*! to typical network RPC;
different needs for speed, security, reliability, and object co-location can be met
by using the right “glue” implementation.

Writing a distributed application in this model proceedsin three phases. The
first phase is to write the application without worrying about where objects are
located and how their communication is implemented. The developer will simply
strive for the natural and correct interface between objects. The system will
choose reasonable defaults for object location, and depending on how perfor-
mance-critical the application is, it may be possible to alpha test it with no further
work. Such an approach will enforce a desirable separation between the abstract
architecture of the application and any needed performancetuning.

The second phase is to tune performance by “concretizing” object locations
and communication methods. At this stage, it may be necessary to use as yet
unavailable tools to allow analysis of the communication patterns between
objects, butit is certainly conceivable that such tools could be produced. Also dur-
ing the second phase, the right set of interfaces to export to various clients—such
as other applications—can be chosen. There is obviously tremendousflexibility
here for the application developer. This seemsto be the sort of development sce-
nario that is being advocated in systemslike Fresco), which claim that the deci-
sion to make an object local or remote can be put off until after initial system
implementation.

The final phase is to test with “real bullets” (e.g., networks being partitioned,
machines going down). Interfaces between carefully selected objects can be
beefed up as necessary to deal with these sorts of partial failures introduced by
distribution by adding replication, transactions, or whatever else is needed. The

312

313

EE

310 A NOTEON DISTRIBUTED COMPUTING

exact set of these services can be determined only by experience that will be
gained during the developmentof the system andthefirst applications that will
work on the system.

A central part of the vision is that if an application is built using objects all the
way down, in a proper object-oriented fashion, theright “fault points” at which to
insert process or machine boundaries will emerge naturally. But if you initially
make the wrongchoices, they are very easy to change.

One conceptualjustification for this vision is that whether a call is local or
remote has no impact on the correctness of a program.If an object supportsa par-
ticular interface, and the support of thatinterface is semantically correct, it makes
no difference to the correctness of the program whether the operation is carried
out within the same address space, on some other machine, or off-line by some
other piece of equipment. Indeed, seeing location as a part of the implementation
of an object and therefore as part of the state that an object hides from the outside
world appearsto be a natural extension of the object-oriented paradigm.

Such a system would enjoy many advantages. It would allow the task of soft-
ware maintenanceto be changed in a fundamental way. The granularity of change,
and therefore of upgrade, could be changed from the level of the entire system
(the current model) to the level of the individual object. As long as the interfaces
between objects remain constant, the implementations of those objects can be
altered at will. Remote services can be moved into an address space, and objects
that share an address space can be split and moved to different machines, as local
requirements and needs dictate. An object can be repaired and the repair installed
without worry that the changewill impact the other objects that make upthe sys-
tem. Indeed, this model appearsto be the best wayto get away from the “Big Wad
of Software” model that currently is causing so muchtrouble.

This vision is centered around the following principles that may, atfirst,
appear plausible:

@ There is a single natural object-oriented design for a given application,
regardless of the context in which that application will be deployed;

@ Failure and performanceissuesaretied to the implementation of the compo-
nents of an application, and consideration of these issues should be left out
of an initial design; and

@ The interface of an object is independentof the context in which that object
is used,

Unfortunately, all of these principles are false. In what follows, we will show why
these principles are mistaken, and why it is importantto recognize the fundamen-
tal differences between distributed computing and local computing.

313

314

A NOTE ON DISTRIBUTED COMPUTING

A.3 Déja Vu All Over Again

For those ofus either old enough to have experienced it or interested enough in
the history of computing to have learned aboutit, the vision of unified objects is
quite familiar. The desire to merge the programming and computational models of
local and remote computing is not new.

Communications protocol development has tended to follow two paths. One
path has emphasized integration with the current language model. The other path
has emphasized solving the problemsinherentin distributed computing. Both are
necessary, and successful advances in distributed computing synthesize elements
from both camps.

Historically, the language approach has been the less influential of the two
camps. Every ten years (approximately), members of the language camp notice
that the number of distributed applications is relatively small. They look at the
programming interfaces and decide that the problem is that the programming
model is not close enough to whatever programming model is currently in vogue
(messagesin the 1970s!”8l, procedurecalls in the 1980s!!!) and objects in the
1990s!'7]), A furious bout of language and protocol design takes place and a new
distributed computing paradigm is announced that is compliant with the latest
programming model. After several years, the percentage of distributed applica-
tions is discovered not to have increased significantly, and the cycle begins anew.

A possible explanation for this cycle is that each round is an evolutionary
stage for both the local and the distributed programming paradigm. Therepetition
of the pattern is a result of neither model being sufficient to encompassbothactiv-
ities at any previous stage. However, (this explanation continues) each iteration
has broughtus closer to a unification of the local and distributed computing mod-
els. The current iteration, based on the object-oriented approach to both local and
distributed programming, will be the one that produces a single computational
model that will suffice for both.

A less optimistic explanation of the failure of each attemptat unification holds
that any such attempt will fail for the simple reason that programmingdistributed
applications is not the same as programming non-distributed applications. Just
making the communications paradigm the same as the language paradigm is
insufficient to make programmingdistributed programs easier, because communi-
cating between the parts of a distributed application is notthe difficult part of that
application.

The hard problemsin distributed computing are not the problems of how to
get things on and off the wire. The hard problemsin distributed computing con-
cern dealing with partial failure and the lack of a central resource manager. The
hard problemsin distributed computing concern insuring adequate performance
and dealing with problems of concurrency. The hard problems have to do with dif-

314

315

ee ig

312 A NOTE ON DISTRIBUTED COMPUTING

ferences in memory access paradigmsbetweenlocal and distributed entities. Peo-
ple attempting to write distributed applications quickly discover that they are
spending all oftheir efforts in these areas and not on the communications protocol
programminginterface.

This is not to argue against pleasant programming interfaces. However, the
law of diminishing returns comesinto play rather quickly. Even with a perfect
programming model of complete transparency between “fine-grained” language-
level objects and “larger-grained” distributed objects, the number of distributed
applications would not be noticeably largerif these other problems have not been
addressed.

All of this suggests that there is interesting and profitable work to be donein
distributed computing, but it needs to be doneat a much higher-level than that of
“fine-grained” object integration. Providing developers with tools that help man-
age the complexity of handling the problemsof distributed application develop-
ment as opposed to the generic application development is an area that has been
poorly addressed.

A.4 Local and Distributed Computing

The major differences between local and distributed computing concern the areas
of latency, memory access, partial failure, and concurrency. ! The difference in
latency is the most obvious, but in many waysis the least fundamental. The often
overlooked differences concerning memory access, partial failure, and concur-
rency are far moredifficult to explain away, and the differences concerning partial
failure and concurrency make unifying the local and remote computing models
impossible without making unacceptable compromises.

A4.1 Latency

The most obviousdifference between a local object invocation andthe invocation
of an operation on a remote (or possibly remote) object has to do with the latency
of the twocalls. The difference between the twois currently between four andfive
orders of magnitude, and giventherelative rates at which processor speed andnet-
work latency speeds are changing, the difference in the future promises to be at
best no better, and will likely be worse.It is this disparity in efficiency thatis often
seen as the essential difference betweenlocal and distributed computing.

' Wearenotthefirst to notice these differences; indeed, they are clearly stated in [12].

315

