
156

THE JINI DISTRIBUTED LEASING SPECIFICATION 143

long getExpiration();

void cancelQ throws UnknownLeaseException,
RemoteException:

void renew(long duration) throws LeaseDeniedException,
UnknownLeaseException,
RemoteException:

void setSerialFormat(int format);
int getSerialFormat(Q);
LeaseMap createLeaseMap(long duration);
boolean canBatch(Lease lease);

}

Particular instances of the Lease type will be created by the grantors of a
lease and returned to the holder of the lease as part of the return value from a call
that allocates a leased resource. The actual implementation of the object, includ-
ing the way (if any) in which the Lease object communicates with the grantor of
the lease, is determined by the lease grantor and is hidden from the lease holder.

The interface defines two constants that can be used when requestingalease.
The first, FOREVER, can be used to request a lease that never expires. When granted
such a lease, the lease holderis responsible for ensuri ng that the leased resourceis
freed when no longer needed. The second constant, ANY, is used by the requestor
to indicate that no particular lease timeis desired and that the grantorofthe lease
should supply a time that is most convenientfor the grantor.

If the requestis for a particular duration, the lease grantoris required to grant
a lease of no morethan the requested period oftime. A lease may be granted for a
periodof time shorter than that requested.

A secondpair of constants is used to determine the formatusedin theserial-
ized form for a Lease object; in particular, the serialized form thatis used to rep-
resent the time at which the lease expires. If the serialized format is set to the
value DURATION, the serialized form will convert the time oflease expiration into a
duration (in milliseconds) from the timeof serialization. This form is best used
whentransmitting a Lease object from one address space to another (such as via
an RMIcall) where it cannot be assumed that the address spaces have sufficiently
synchronizedclocks,If the serialized formatis set to ABSOLUTE, the time of expi-
ration will be stored as an absolute time, calculated in termsof milliseconds since
the beginning ofthe epoch.

The first method in the Lease interface, getExpi ration, returns a long that
indicates the time,relative to the current clock, that the lease will expire, Follow-
ing the usual convention in the Java programming language, this time is repre-
sented as milliseconds from the beginning of the epoch, and can be used to i

“RETESET

156

157

pS _

144 BASIC OPERATIONS

comparethe expiration time of the lease with the result ofa call to obtain the cur-
rent time, java. lang.System.currentTimeMillis.

The second method, cance1, can be used by the lease holder to indicate thatit
is no longer interested in the resource or information held by the lease. If the
leased information or resource could cause a callback to the lease holder (or some

other object on behalf of the lease holder), the lease grantor should not issue such
a callback after the lease has been cancelled. The overall effect of a cance] call is

the same as lease expiration, but instead of happening atthe end of a pre-agreed
duration, it happens immediately. If the lease being cancelled is unknownto the
lease grantor, an UnknownLeaseExceptionis thrown. The method can also throw
a RemoteException if the implementation of the method requires calling a
remote object that is the lease holder.

The third method, renew, is used to renew a lease for an additional period of
time. The length of the desired renewalis given, in milliseconds, in the parameter
to the call. This duration is not addedto the original lease, but is used to determine
a new expiration time for the existing lease. This method has no return value; if
the renewal is granted, this is reflected in the lease object on which the call was
made. If the lease grantor is unable or unwilling to renew the lease, a
RenewFai ledExceptionis thrown.If a renewalfails, the lease is left intact for the
same duration that was in force prior to the call to renew. If the lease being
renewed is unknownto the lease grantor, an UnknownLeaseExceptionis thrown.
The method can also throw a RemoteException if the implementation of the
method requires calling a remote object that is the lease holder.

Two methods are concerned with the serialized format of a Lease object. The

first, setSerialFormat, takes an integer that indicates the appropriate formatto
use whenserializing the format. The current supported formats are a duration for-
mat that stores the length of time (from the time of serialization) before the lease
expires, and an absolute format, which stores the time (relative to the current
clock) that the lease will expire. The absolute format should be used whenserial-
izing a Lease object for transmission from one machine toanother; the durational
format should be used when storing a Lease object on stable store that will be
read backlater by the same process or machine. Thedefault serialization formatis
durational. The second method, getSerialForm, returns an integer indicating the
formatthat will be used to serialize the Lease object.

The last two methodsare used toaid in the batch renewalor cancellation of a

group of Lease objects. Thefirst of these, createLeaseMap,creates a Map object
that can contain leases whose renewalor cancellation can be batched, and adds the

current lease to that map. The current lease will be renewed for the duration indi-
cated by the argument to the method when all of the leases in the LeaseMap are
renewed. The second method, batchWith(Lease lease), returns a boolean value

| indicating whether or not the lease given as an argumentto the method can be

157

158

THE JINI DISTRIBUTED LEASING SPECIFICATION 145

batched (in renew and cance] calls) with the currentlease. Whetheror not two
Lease objects can be batched is an implementation detail determined by the
objects.

Three types of Exception objects are associated with the basic lease inter-
face. All of these are used in the Lease interface itself, and two can be used by
methodsthat grant access to a leased resource.

The RemoteException is imported from the package java. rmi. This excep-
tion is used to indicate a problem with any communication that might occur
between the lease holder and the lease grantorif those objects are in separate vir-
tual machines. The full specification ofthis exception can be found in the Java
Remote Method Invocation Specification.

The UnknownLeaseExceptionis used to indicate that the Lease object used
is not known to the grantor of the lease. This can occur whenalease expires, or
when a copyofa lease has been cancelled by someother lease holder. This excep-
tion is defined as:

package net.jini.core. lease;

public class UnknownLeaseException extends LeaseException {
public UnknownLeaseException() {

super();

}

public UnknownLeaseException(String reason) {
super(reason);

}

}

The final exception defined is the LeaseDeniedException, which can be
thrownbyeither a call to renew or a call to an interface that grants access to a
leased resource. This exception indicates that the requested lease has been denied
by the resource holder. The exception is defined as:

package net.jini.core. lease;

public class LeaseDeniedException extends LeaseException {
public LeaseDeniedException() {

super ();

}

public LeaseDeniedException(String reason) {
super(reason):

}

(aD
fonia")
$<)whie
i=}

Nie}

158

159

146 BASIC OPERATIONS

The LeaseException superclassis defined as:

package net.jini.core. lease;

public class LeaseException extends Exception {
public LeaseException() {

super();
}

public LeaseException(String reason) {

super (reason) ;

}

}

The final basic interface defined for leasing is that of a LeaseMap, which
allows groups of Lease objects to be renewed or cancelled using a single opera-
tion. The LeaseMap interfaceis:

package net.jini.core. lease;

import java.rmi.RemoteException;

public interface LeaseMap extends java.util.Map {

boolean canContainKey(Object key);
void renewAl1() throws LeaseMapException, RemoteException;
void cancelAl1(€) throws LeaseMapException, RemoteException;

}

A LeaseMap is an extension of the java.util.Map class that associates a Lease
object with a Long. The Long is the duration for which the lease should be

renewed wheneverit is renewed. Lease objects and associated renewal durations
can be entered and removed from a LeaseMap using the usual Map methods. An
attempt to add a Lease object to a map containing other Lease objects for which
Lease.canBatch would return false will cause an I111legalArgumentException
to be thrown,as will attempts to add a key that is not a Lease objector a value that
is not a Long.

The first method defined in the LeaseMapinterface, canContainKkey, takes a

Lease object as an argumentand returns trueif that Lease object can be added to
the Map and false otherwise. A Lease object can be added to a Map if that Lease
object can be renewed in a batch with the other objects in the LeaseMap. The
requirements for this depends on the implementation of the Lease object.

The second method, renewA11, will attempt to renew all of the Lease objects
in the LeaseMap for the duration associated with the Lease object. If all of the
Lease objects are successfully renewed, the method will return nothing. If some

159

160

THE JINT DISTRIBUTED LEASING SPECIFICATION

Lease objects fail to renew,those objects will be removed from the LeaseMap and
will be containedin the thrown LeaseMapException.

The third method, cance1A11, cancels all the Lease objects in the LeaseMap.
If all cancels are successful, the method returns normally and leaves all leases in
the map. If any of the Lease objects cannot be cancelled, they are removed from
the LeaseMapandthe operation throws a LeaseMapException.

The LeaseMapExceptionclass is defined as:

package net.jini.core. lease;

import java.util.Map;

public class LeaseMapException extends LeaseException {
public Map exceptionMap;
public LeaseMapException(String s, Map exceptionMap) {

super(s);

this.exceptionMap = exceptionMap;

}

Objects of type LeaseMapException contain a Map object that maps Lease
objects (the keys) to Exception objects (the values). The Lease objects are the
ones that could not be renewed or cancelled, and the Exception objectsreflect the
individual failures. For example, if a LeaseMap. renew call fails because one of
the leases has already expired, that lease would be taken out ofthe original
LeaseMap and placed in the Map returned as part of the LeaseMapException
object with an UnknownLeaseException object as the corresponding value.

LE.2.3 Leasing and Time

The duration of a lease is determined whenthelease is granted (or renewed). A
lease is granted for a duration rather than until some particular momentoftime,
since such a grant does not require that the clocks used bythe client and the server
be synchronized.

The difficulty of synchronizing clocks in a distributed system is well known.
The problem is somewhat moretractable in the case ofleases, which are expected
to be for periods of minutes to months, as the accuracy of synchronization
required is expected to be in terms of minutes rather than nanoseconds. Overa
particular local group of machines, a time service could be used that would allow
this level of synchronization.

However, leasing is expected to be used byclients and servers that are widely
distributed and mightnotshare a particular time service. In such a case, clock drift eReean?TLLPSETTTEETEES

160

161

148 SERIALIZED FORMS

of many minutes is a common occurrence. Becauseofthis, the leasing specifica-
tion has chosento use durations rather than absolute time.

The reasoning behind such a choice is based on the observation that the accu-
racy of the clocks used in the machines that make up a distributed system is
matched much moreclosely than the clocks on those systems. While there may be
minutes ofdifference in the notion of the absolute time held by widely separated
systems, there is muchless likelihood of a significant difference over the rate of
change of time in those systems. While there is clearly some difference in the
notion of duration between systems (if there were not, synchronization for abso-
lute time would be mucheasier), that difference is not cumulative in the way
errors in absolute timeare.

This decision does mean that holders of leases and grantors ofleases needto
be aware of some of the consequences of the use of durations. In particular, the
amount of time needed to communicate between the lease holder and the lease

grantor, which may vary from call to call, needs to be taken into account when
renewinga lease. If a lease holder is calculating the absolute time (relative to the
lease holder’s clock) at which to ask for a renewal, that time should be based on
the sum of the duration of the lease and the time at which the lease holder

requested the lease, not on the duration and the time that the lease holder received
the lease.

LE.2.4 Serialized Forms

 Class serialVersionUID Serialized Fields

LeaseException —7902272546257490469L all public fields

UnknownLeaseException —2921099330511429288L none

LeaseDeniedException 5704943735577343495L none

LeaseMapException —4854893779678486122L none

161

162

THE JINI DISTRIBUTED LEASING SPECIFICATION

LE.3 Example Supporting Classes

Ti basic Lease interface allows leases to be granted by one object and handed
to another as the result of a call that creates or provides access to some leased
resource. The goal of the interface is to allow as much freedom as possible in
implementation to both the party that is granting the lease (and thusis giving out
the implementation that supports the Lease interface) and the party that receives
the lease.

However, a numberof classes can be supplied that can simplify the handling
of leases in some common cases, We will describe examples of these supporting
classes and show howtheseclasses can be used with leased resources.

LE.3.1 A Renewal Class

One of the commonpatterns with leasing is for the lease holder to request a lease
with the intention of renewing the lease until it is finished with the resource. The
period of time during which the resource is needed is unknown at the time of
requesting the lease, so the requestor wants the lease to be renewed until an unde-
termined time in the future. Alternatively, the lease requestor might know how
long the lease needs to be held, but the lease holder might be unwilling to grant a
lease for the full period of time. Again, the pattern will be to renew the lease for
some period oftime.

If the lease continues to be renewed, the lease holder doesn’t want to be both-

ered with knowing aboutit, but if the lease is not renewed for some reason, the
lease holder wants to be notified. Such a notification can be done using the usual
inter-address space mechanismsfor event notifications, by registering a listenerof
the appropriate type. This functionality can be supplied by a class with an inter-
face like the following

class LeaseRenew {

LeaseRenew(Lease toRenew,

long renewTil,
LeaseExpireListener listener) {...}

ab
we

Me)

162

163

150 A RENEWALCLASS

void addRenew(Lease toRenew,]

long renewTil,
LeaseExpireListener listener) {..}

long getExpiration(Lease forLease) |
throws UnknownLeaseException {...} |

void setExpiration(Lease forLease, long toExpire)
throws UnknownLeaseException {...}

void cancel(Lease toCancel)
throws UnknownLeaseException {...}

void setLeaseExpireListener(Lease forLease,
LeaseExpireListener listener)

throws UnknownLeaseException {...}

void removeLeaseExpireListener(Lease forLease) |
throws UnknownLeaseException {..}

}

The constructorofthis class takes a Lease object, presumably returned from some
call that reserved a leased resource;an initial time indicating the time until which
the lease should be renewed; andanobjectthatis to be notified if a renewal fails
before the time indicated in renewTi1. This returns a LeaseRenew object, which
will have its own thread of control that will do the lease renewals.

Once a LeaseRenewobject has beencreated, other leases can be added to the
set that are renewed by that object using the addRenewcall. This call takes a
Lease object, an expiration time or overall duration, and a listener to be informed
if the lease cannot be renewed prior to the time requested. Internally to the
LeaseRenew object, leases that can be batched can be placed into a LeaseMap.

The duration of a particular lease can be queried by a call to the method
getExpiration. This method takes a Lease object and returns the time at which
that lease will be allowedto expire by the LeaseRenew object. Notethatthis is dif-
ferent from the Lease. getExpiration method, whichtells the time at which the
lease will expireif it is not renewed.If there is no Lease object correspondingto
the argument for this call being handled by the LeaseRenew object, an
UnknownLeaseException will be thrown. This can happen either when no such
Leasehasever been given to the LeaseRenew object, or when a Lease object that
has been held has already expired or been cancelled. Notice that since this object
is assumed to be in the same address space as the object that acquired the lease,
we can assumethat it shares the same clock with that object, and hence can use
absolute time rather than a duration-based system.

The setExpi ration method allowsthecaller to adjust the expiration time of
any Lease object held by the LeaseRenewobject. This method takes as arguments
the Lease whose time of expiration is to be adjusted and the new expiration time.

163

164

TeJINI DISTRIBUTED LEASING SPECIFICATION 151
[f no lease is held by the LeaseRenew object corresponding to the first argument,
an UnknownLeaseException will be thrown.

A call to cancewill result in the cancellation of the indicated Lease held by
the LeaseRenew object. Again, if the lease has already expired on that object, an
UnknownLeaseException will be thrown.It is expected thata call to this method
will be made if the leased resource is no longer needed, rather than just dropping
all references to the LeaseRenew object.

The methods setLeaseExpireListener and removeLeaseExpireListener
allow setting and unsetting the destination of an event handler associated with a
particular Lease object held by the LeaseRenew object. The handler will be called
‘f the Lease object expires before the desired duration period is completed. Note
that one of the properties of this example is that only one LeaseExpireListener
can be associated with each Lease.

LE.3.2 A Renewal Service

Objects that hold a lease that needs to be renewed may themselves be activatable,
and thus unable to ensure that they will be capable of renewing a lease at some
particular time in the future (since they mightnot be active at that time). For such
objects it might make sense to hand the lease renewal duty off to a service that
could take care of lease renewalfor the object, allowing that object to be deacti-
vated without fear of losing its lease on some other resource.

| The most straightforward way of accomplishing this is to hand the Lease
| object off to some object whose job it is to renew leases on behalf of others. This

object will be remote to the objects to which it offers its service (otherwise it
would be inactive when the others become inactive) but might be local to the
machine; there could even be suchservices that are located on other machines.

The interface to such an object might look somethinglike:

interface LeaseRenewService extends Remote {

EventRegistration renew(Lease toRenew,
long renewTil,
RemoteEventListenter notifyBeforeDrop,

MarshalledObject returnOnNotify)

throws RemoteException;

void onRenewFai lure(Lease toRenew,

RemoteEventListenter toNotify,

MarshalledObject returnOnNotify)

throws RemoteException, UnknownLeaseException;

“vePoRREARENCOTaLAANTINT

164

165

152 A RENEWAL SERVICE

Thefirst method, renew, is the request to the object to renew a particular lease on
behalf of the caller. The Lease object to be renewed is passed to the
LeaseRenewService object, along with the length of time for which the leaseis to
be renewed. Since we are assuming that this service might not be on the same
machine as the object that acquired the original lease, we return to a duration-
based time system, since we cannot assumethat the two systems have synchro-
nized clocks.

Requests to renew a Lease are themselves leased. The durationofthe leaseis
requested in the duration argumentto the renew method, andthe actual time of the
lease is retumed as part of the EventRegistration return value. While it might
seem odd to lease the service of renewing other leases, this does not cause an infi-
nite regress. It is assumed that the LeaseRenewServicewill grant leases that are
longer (perhaps significantly longer) than those in the leases thatit is renewing. In
this fashion, the LeaseRenewService can act as a concentrator for lease renewal

messages.

The renew method also takes as parameters a RemoteEventListener and
MarshalledObject objects to be passed to that RemoteEventListener. This is
because part of the semantics of the renew call is to register interest in an event
that can occur within the LeaseRenewServiceobject. The registration is actually
for a notification before the lease granted by the renewal service is dropped. This
event notification can be directed back to the object that is the client of the
renewal service, and will (if so directed) cause the object to be activated (if it is
not already active). This gives the object a chance to renew the lease with the
LeaseRenewService object before that lease is dropped.

The second methad, onRenewFai lure, allows the client to register interest in
the LeaseRenewService being unable to renew the Lease supplied as an argu-
ment to the call. This call also takes a RemoteEventListener object that is the
target of the notification, and a Marshal ledObject that will be passed as part of
the notification. This allows the client to be informed if the LeaseRenewService

is denied a lease renewal during the lease period offered to the client for such
renewal. This call does not take a time period for the event registration, but instead.
will have the same duration as the leased renewal associated with the Lease object
passed into the call, which should be the same as the Lease object that was sup-
plied in a previous invocation of the method renew. If the Lease is not known to
the LeaseRenewService object, an UnknownLeaseException will be thrown.

There is no need for a method allowing the cancellation of a lease renewal
request. Since these requests are themselves leased, cancelling the lease with the
LeaseRenewServicewill cancel both the renewing of the lease and any event reg-
istrations associated with that lease.

165

166

ent(LE)

166

167

THE JIN! DISTRIBUTED EVENT SPECIFICATIONdefinesthe distributed event
programming model used throughout the Jini architecture. These are

general-purpose events that can be used by any service
for eventnotifications. The event modelis specifically

aN designed to allowfor useful third parties that help
either the sender orreceiver ofthe event. As you will

see, the lookup service uses these events to notify
interested parties of changesto its contents.

E'

alle
ren

ad

kin

E\

Pre

sid
usi

wl
asi

thi
ev

ot

Cz

re

167

168

 saclalla,C/Noulddaoe

 Sacer ET EETcn an

The Jinl Distributed Event
Specification

EV.1 Introduction

Tue purposeofthe distributed eventinterfaces specified in this documentis to
allow an object in one Java virtual machine (JVM)toregisterinterest in the occur-
rence of some event occurring in an object in some other JVM, perhaps running on
a different physical machine, andto receive a notification when an eventofthat
kind occurs.

EV.1.1 Distributed Events and Notifications

Programs based on an objectthat is reacting to a change of state somewhere out-
side the object are common ina single address space. Such programsare often
used for interactive applications in which user actions are modeled as events to
which other objects in the program react. Delivery of such local events can be
assumed to be well ordered, very fast, predictable, and reliable. Further, the entity
that is interested in the event can be assumed to always want to know about the
event as soon as the event has occurred.

The samestyle of programmingis useful in distributed systems, where the
object reacting to an eventis in a different JVM, perhaps onadifferent physical
machine, from the one on which the event occurred. Just as in the single-JVM
case, the logic of such programs is often reactive, with actions occurring in
tesponse to some changein state that has occurred elsewhere.

A distributed event system hasa different set of characteristics and require-
ments than a single-address-space event system. Notifications of events from

168

155

169

156

GOALS AND REQUIREMENTS

remote objects may arrive in different orders on different clients, or may not arrive
at all. The time it takes for a notification to arrive may be long (in comparison to
the time for computation at either the object that generated the notification or the
object interested in the notification). There may be occasions in which the object
wishing the event notification does not wish to have that notification as soon as
possible, but only on some schedule determined by the recipient. There may evenbe times when the object that registered interest in the event is not the object to
which a notification of the event should be sent.

Unlike the single-address-space notion of an event, a distributed event cannot
be guaranteed to be delivered in a timely fashion. Because of the possibilities of
network delaysorfailures, the notification of an event may be delayed indefinitely
and evenlost in the case of a distributed system.Indeed, there are times in a distributed system when the object of a notifica-
tion may actively desire that the notification be delayed. In systems that allow
object activation (such as is allowed by Java Remote Method Invocation (RMD) inthe Java Development Kit, version 1.2, commonly called JDK1 .2), an object might
wish to be able to find out whether an event occurred but not wantthat notification
to cause an activation of the objectif it is otherwise quiescent. In such cases, the
object receiving the event might wish the notification to be delayed until theobject requests notification delivery, or until the object has been activated for
some Other reason.Central to the notion of a distributed notification is the ability to place a third-
party object between the object that generates the notification and the party thatultimately wishes to receive the notification. Such third parties, which can be
strung together in arbitrary ways, allow ways of offloading notifications from
objects, implementing various delivery guarantees, storing of notifications untilneededor desired by a recipient, and the filtering and rerouting of notifications. In
4 distributed system in which full applications are made up of components assem-
bled to produce an overall application, the third party may be more than a filter or
storage spot for a notification; in such systemsit is possible that the third party is
the final intended destination of the notification.

EV.1.2 Goals and Requirements

The requirements ofthis set of interfaces are to:

@ Specify an interface that can be used to send a notification of the occurrence
of the event

@ Specify the information that must be contained in such a notification

169

riclilielasi

170

THE JINI DISTRIB UTED EVENT SPECIFICATION

| In addition, the fact that the interfaces are designed to be used by objects in
different virtual machines, perhaps separated by a network, imposes other require-
ments, including: RtATR

Allowing various degrees of assurance on delivery of a notification

Support for different policies of scheduling notification

Explicitly allowing the interposition of objects that will collect, hold, filter,
and forward notifications

Notice that there is no requirement for a single interface that can be used to

register interest in a particular kind of event. Given the wide variety of kinds of
events, the way in which interest in such events can be indicated may vary from
object to object. This documentwill talk about a modelthat lies behind the sys-
tem’s notion of such a registration, but the interfaces that are used to accomplish
such a registration are not open to general description.

EV.1.3. Dependencies

This documentrelies on the following other specifications:

@ Java Remote Method Invocation Specification

@ Jini Distributed Leasing Specification

170

171

j
144:

EV.2 The Basic Interfaces

‘LD basic interfaces you are aboutto see define a protocol that can be used by
one object to register interest in a kind of state change in another object, and to
receive a notification of an occurrence ofthat kind of state change, either directly
or through somethird-party, that is specified by the object at the timeof registra-
tion. The protocol is meant to be as simple as possible. No attemptis madeto indi-
cate the reliability or the timeliness of the notifications; such guarantees are not
part of the protocol but instead are part of the implementation of the various
objects involved.

In particular, the purpose of these interfacesis:

@ To show the information needed in any method that allows registration of
interest in the occurrence of a kind of event in an object

« To provide an example ofan interface that allows the registration of interest
in such events

@ To specify an interface that can be used to send a notification of the occur-
rence of the event

Implicit in the eventregistration and notification is the idea that events can be
classified into kinds. Registration of interest indicates the kind of event that is of
interest, while a notification indicates that an instance of that kind of event has
occurred.

EV.2.1 Entities Involved

Anevent is something that happens in an object, corresponding to some change in
the abstract state of the object. Events are abstract occurrencesthat are not directly
observed outside of an object, and might not correspond to a changein the actual
state of the object that advertises the ability to register interest in the event. How-
ever, an object may choose to export an identification of a kind of event and allow
other objects to indicate interest in the occurrence of events of that kind; this indi-

159

171

172

160 ENTITIES INVOLVED

cates that the abstract state of the object includes the notion of this state changing.
The information concerning what kinds of events occur within an object can be
exported in a numberof ways, including identifiers for the various events or meth-
ods allowing registration of interest in that kind of event.

An object is responsible for identifying the kinds of events that can occur
within that object, allowing other objects to register interest in the occurrence of
such events, and generating RemoteEvent objects that are sent as notifications to
the objects that have registered interest when such events occur.

Registration of interest is not temporally open ended butis limited to a given
duration using the notion of a lease. Full specification of the way in whichleasing
is used is contained in the Jini Distributed Leasing Specification.

The basic, concrete objects involved in a distributed event system are:

The objectthat registers interest in an event

@ The object in which an event occurs (referred to as the event generator)

Therecipient of event notifications (referred to as a remote eventlistener)

An event generatoris an object that has some kinds of abstract state changes
that might be ofinterest to other objects and allows other objects to register inter-
est in those events. This is the object that will generate notifications when events
of this kind occur, sending those notifications to the event listeners that were indi-
cated as targets in the calls that registered interest in that kind of event.

A remote event listener is an object that is interested in the occurrence of
some kinds of events in some other object. The major function of a remote event
listener is to receive notifications of the occurrence of an event in some other

object (or set of objects).
A remote event is an object that is passed from an event generator to a remote

eventlistener to indicate that an event ofa particular kind has occurred. At a min-
imum, a remote event contains information about the kind of event that has
occurred, a reference to the object in which the event occurred, and a sequence
numberallowing identification of the particular instance of the event. A notifica-

172

ianceapibiaillaonceaadipic
orirantvatbnmsresiaitiahlaces

THE JINI D1

tion will

interestir

EV.2.2

The even

entity, a:
entity, an
faces defi

The t

face requ
in the kin

that defin

informati

The

EventRe¢

exceptior
The |

that a pat
by an int
listeners |

eters that

In additic

istration \

interest 4

the notifi

173

 THE JINI DISTRIBUTED EVENTSPECIFICATION

 tion will also include an object that was supplied by the object that registered
rest in the kind of eventas part ofthe registration call. inte

1. The remote event listenerregisters interest in a
particular kind of event with the event generator

r — / ~\
Remote event Event

listener | generator

“5 The event generatorfires a remote event to

indicate that an event of that kind has occurred

EV.2.2 Overview of the Interfaces and Classes

The event and notification interfaces introduced here define a single basic type of
entity, a set of requirements on the information that needs to be handed to that
entity, and some supporting interfaces and classes. All of the classes and inter-
faces defined in this specification are in the net. jini.core.event package.

Thebasic type is defined by the interface RemoteEventListener. This inter-
face requires certain information to be passed in during the registration of interest
in the kind of event that the notification is indicating. There is no single interface
that defines how to register interest in such events, but the ways in which such
information could be communicated will be discussed.

The supporting interfaces and classes define a RemoteEvent object, an
| EventRegistration object used as an identifier for registration, and a set of

exceptions that can be generated.
The RemoteEventListener is the receiver of RemoteEvents, which signals

that a particular kind of event has occurred. A RemoteEventListener is defined
by an interface that contains a single method, notify, which informs interested
listeners that an event has occurred. This method returns no value, and has param-
eters that contain enough information to allow the method call to be idempotent.
In addition, this method will return information that was passed in during the reg-
istration of interest in the event, allowing the registrant, the object that registered
interest with the event generator, to associate arbitrary information or actions with
the notification.

|

173

174

THE JINI DISTRIBUTED EVENT SPECIFICATION 161

tion will also include an object that was supplied by the object that registered
interest in the kind of eventaspart of the registration call.

1. The remote eventlistener registers interestin a
particular kind of event with the event generator

fo ™~ oo —
‘ f ‘

|
Remote event

listener

2. The event generator fires a remote eventto
indicate that an eventofthat kind has occurredailsjabiiclhelialle

EV.2.2 Overview of the Interfaces and Classes

The event and notification interfaces introducedhere define a single basic type of
entity, a set of requirements on the information that needs to be handed to that
entity, and some supporting interfaces and classes, All of the classes and inter-
faces defined in this specification are in the net. jini.core.event package.

The basic type is defined bythe interface RemoteEventListener. This inter-
face requires certain information to be passedin during the registration ofinterest
in the kind of event that the notification is indicating. There is no single interface
that defines how to register interest in such events, but the ways in which such
information could be communicated will be discussed.

The supporting interfaces and classes define a RemoteEvent object, an
EventRegistration object used as an identifier for registration, and a set of
exceptions that can be generated.

The RemoteEventListener is the receiver of RemoteEvents, which signals
that a particular kind of event has occurred. A RemoteEventListener is defined
by an interface that contains a single method, notify, which informs interested
listeners that an event has occurred. This method returns no value, and has param-
eters that contain enough information to allow the methodcall to be idempotent.
In addition, this method will return information that was passed in during the reg-
istration of interest in the event, allowing the registrant, the object that registered
interest with the event generator, to associate arbitrary information or actions with
the notification.

eetco

174

175

162
OVERVIEW OF THE INTERFACES AND CLASSES

The RemoteEventListener interface extends from the Remote interface, so
the methods defined in RemoteEventListener are remote methods and objects
supporting these interfaces will be passed by RMI, by reference. Other objects
defined by the system will be local objects, passed byvalue in the remote calls.

Thefirst of these supporting classes is RemoteEvent, whichis sentto indicate
that an event of interest has occurred in the event generator. The basic form of a
RemoteEvent contains:

@ Anidentifier for the kind of event in which interest has been registered
@ A reference to the object in which the event occurred
@ A sequence numberidentifying the instance of the event type
@ An object that was passedin,as part of the registration ofinterest in the event

by the registrant

These RemoteEvent notification objects are passed to a RemoteEventListener
as a parameter to the RemoteEventListener notify method.

The EventRegistrationclass defines an object that returns the information
needed by the registrant and is intendedto be the return value of remote event reg-
istration calls. Instances of the EventRegi stration class contain an identifier for
the kind of event, the current sequence number of the kind of event, and a Lease
object for the registration of interest.

Althoughthere is no single interface that allows for the registration of event
notifications, there are a number of requirements that would be put on any such
interface if it wished to conform with the remote event registration model. In par-
ticular, any such interface shouldreflect:

@ Eventregistrations are bounded in time in a way that allows those registra-
tions to be renewed when necessary. This can easily be reflected by return-
ing, as part of an event registration, a lease for that registration.

@ Notifications need not be delivered to the entity that originally registered
interest in the event. The ability to have third-party filters greatly enhances
the functionality of the system. The easiest way to allow such functionality
is to allow the specification of the RemoteEventListener to receive the
notification as part ofthe originalregistration call.

@ Notifications can contain a Marshal ledObject supplied by the original reg-
istrant, allowing the passing of arbitrary information (including a closure
that is to be run on notification) as part of the event notification, so the reg-
istration call should include a Marshal ledObject that is to be passed as part
of the RemoteEvent.

175

176

THE JINI DISTRIBUTED EVENTSPECIFICATION 163

EV.2.3 Details of the Interfaces and Classes

EV.2.3.1 The RemoteEventListener Interface

The RemoteEventListener interface needs to be implementedby any object that
wants to receive a notification of a RemoteEvent from some other object. The
object supporting the RemoteEventListener interface does not have to be the
object that originally registered interest in the occurrence of an event. To allow the
notification of an event’s occurrenceto be sentto an entity other than the one that
registered with the event generator, the registration call needs to accept a destina-
tion parameterthat indicates the object to which the notification should be sent.
This destination must be an object that implements the RemoteEventListener
interface.

1. Registrant registers the remote event

— listener with the event generator ———~\

| | Event |

| Registrant | | generator|
XS ;_/ 2. Bventgenerator returns an event=_ TS

"registration for the remote event : 4. Event generator
listener to the registrant fires a remote eventto

the listener to indicate

the kind of event

occurred

3. Registrant returns the event oO
registration to the remote eventlistener {/ Remote }

| event |
| listener |
KY

The RemoteEventListener interface extends the Remote interface (indicat-
ing thatit is an interface to a Remoteobject) and the java.util.EventListener
interface. This latter interface is used in the Java Abstract Window Toolkit (AWT)
and JavaBeans™ componentsto indicate that an interface is the recipient of event

176

177

DETAILS OF THE INTERFACES AND CLASSES

notifications. The RemoteEventListener interface consists of a single method,
notify:

public interface RemoteEventListener extends Remote,

java.util.EventListener

void notify(RemoteEvent theEvent)

throws UnknownEventException, RemoteException;

}

The notify method has a single parameter of type RemoteEvent that encapsu-
lates the information passedaspart ofa notification. The RemoteEvent baseclass
extends the class java.util.EventObject that is used in both JavaBeans com-
ponents and AWT components to propagate event information. The notify
method returns nothing but can throw exceptions.

EV.2.3.2 The RemoteEvent Class

The public part of the RemoteEvent. class is defined as:

public class RemoteEvent extends java.util.EventObject {
public RemoteEvent (Object source, long eventID,

long seqNum, MarshalledObject handback)

public Object getSource () {...}
public long getIDQ@{...}

public long getSequenceNumber() {...}
public MarshalledObject getRegistrationObject() {...}

}

The abstract state contained in a RemoteEvent object includes: a reference to the
object in which the event occurred, a long that identifies the kind of eventrelative
to the object in which the event occurred, a Jong that indicates the sequence num-
ber of this instance of the event kind, and a MarshalledObject that is to be
handed back whenthe notification occurs.

The combination of the event identifier and the object reference of the event

generator obtained from the RemoteEvent object should uniquely identify the
event type. If this type is not one in which the RemoteEventListener hasregis-
tered interest (or in which someoneelse has registered interest on behalf of the
RemoteEventListener object), an UnknownEventException may be generated
as areturn from the remote event listener’s notify method.!

THE JINI DIS'1

On rec

is allowed

instance ar

The se

value that

some earl:

required t
identifier,
RemoteEv:

to allow r

RemoteEv

tifier, ther
than the si

A stro

choose s1

increase,
same soul

sequence

event typ

sequence
Ther

RemoteE:

transacti(

The|

find out

notify
whether

the notif
occurrer

to note |

quickly

EV.2.3.:

The Un!

does no

177

178

THE JINI DISTRIBUTED EVENT SPECIFICATION 165

Onreceipt of an UnknownEventException, the caller of the notify method

Le is allowed to cancel the lease for the combination of the RemoteEventListener
instance and the kind of event that was contained in the notify call.

The sequence number obtained from the RemoteEvent objectis an increasing
value that can act as a hint to the numberof occurrences of this event relative to
some earlier sequence number. Any object that generates a RemoteEvent is
required to ensure that for any two RemoteEvent objects with the same event
identifier, the sequence number of those events differ if and only if the
RemoteEvent objects are a responseto different events. This guarantee is required
to allow notification calls to be idempotent. A further guarantee is that if two
RemoteEvents, x and y, come from the same source and have the same event iden-
tifier, then x occurred before y if and only if the sequence numberof x is lower
than the sequence numberofy.

A stronger guarantee is possible for those generators of RemoteEvents that i
choose support it. This guarantee states that not only do sequence numbers
increase, but they are not skipped. In such a case, if RemoteEvent x and y have the
same source and the same eventidentifier, and x has sequence number m and y has
sequence numbern, then if m <n there were exactly n-m-1 events of the same
event type between the event that triggered x and the event that triggered y. Such
sequence numbersare said to be “fully ordered.”

There are interactions between the generation of sequence numbers for a
RemoteEvent object and the ability to see events that occur within the scope of a
transaction. Those interactions are discussed in Section EV.2.4 on page 169. |

The commonintent ofa call to the notify methodis to allow the recipient to |
find out that an occurrence of a kind of event has taken place. The call to the
notify method is synchronous to allow the party making the call to know
whetherthe call succeeded, However,it is not part of the semantics ofthecall that
the notification return can be delayed while the recipient of the call reacts to the
occurrence of the event. Simplyput, the best strategy on the part of the recipientis
to note the occurrence in some way and then return from the notify method as
quickly as possible. |

EV.2.3.3 The UnknownEventException

The UnknownEventException is thrown when the recipient of a RemoteEvent
does not recognize the combination of the event identified and the source of the

1 There are cases in which the UnknownEventException maynot be appropriate, even when the noti- |
fication is for a combination of an event and a source that is not expected bythe recipient. Objects that
act as event mailboxes for other objects, for example, may be willing to accept any sortofnotification
from a particular source until explicitly told otherwise.

178

179

sy
166 DETAILS OF THE INTERFACES AND CLASSES TE

event as something in whichit is interested. Throwing this exception has the effect at
of asking the senderto not sendfurthernotificationsof this kind of event from this pl
source in the future. This exception is defined as: Ur

public class UnknownEventException extends Exception { is
public UnknownEventException() { of

super(); in
} WwW
public UnknownEventException(String reason) {

super(reason); to
} pl

} ccre

ey

EV.2.3.4 An Example EventGenerator Interface Mz

Registering interest in an event can take place in a numberof ways, depending on pm
how the event generator identifies its internal events. There is no single way of sk
identifying the events that are reasonable for all objects and all kinds of events, m
and so there is no single way of registering interest in events. Because of this, re
there is no single interface for registration of interest. tir

However, the interaction between the event generator and the remote eventlis-
tener does require that some initial information be passed from theregistrant to Re
the objectthat will makethe call to its notify method. li:

The EventGenerator interface is an example of the kind of interface that Ri
could be used for registration of interest in events that can (logically) occur within bi
an object. This is a remote interface that contains one method: al

public interface EventGenerator extends Remote { i
public EventRegistration register(long evId,

MarshalledObject handback, di
RemoteEventListener tolnform, a
long leaseLength th

throws UnknownEventException, RemoteException; E
} E!

The one method, register, allowsregistration of interest in the occurrence of an i e
event inside the object. The method takes an evIDthatis used to identify the class ti
of events, an object that is handedbackaspart ofthe notification, a reference to an
RemoteEventListener object, and a long integer indicating the leasing period
for the interest registration.

The evID is a long that is obtained by a meansthat is not specified here. It
maybereturned by other interfaces or methods, or be defined by constants associ-

179

180

THE JINI DISTRIBUTED EVENTSPECIFICATION

ated with the class or some interface implemented by theclass. If an evID is sup-
plied to this call that is not recognized by the EventGenerator object, an
UnknownEventExceptionis thrown. Theuse of a long to identify kinds of events
is used only for illustrative purposes—objects may identify events by any number
of mechanisms,including identifiers, using separate methodsto allow registration
in different events, or allowing various sorts of pattern matching to determine
what eventsare of interest.

The second argumentof the register method is aMarshalledObject thatis
to be handed backaspart ofthe notification generated when an event of the appro-

priate type occurs. This object is knownto the remote event listener and should
contain any information that is needed bythelistener to identify the event and to
react to the occurrence of that event. This object will be passed back as part of the
event object that is passed as an argument to the notify method. By passing a
MarshalledObject into the register method, the re-creation of the object is

postponeduntil the object is needed.
The ability to pass a MarshalledObject as part of the event registration

should be common toall event registration methods. While there is no single
method for identifying events in an object, the use of the pattern in which the
remote event listener passes in an object that is passed back as part of the notifica-
tion is central to the model of remote events presented here.

The third argument of the EventGenerator interface’s register method is a
RemoteEventListener implementation that is to recerve event notifications. The
listener may be the object that is registering interest, or it may be some other
RemoteEventListener, such as a third-party event handler or notification “mail-
box.” The ability to specify some third-party object to handle the notification is
also central to this model of event notification, and the capability of specifying the
recipient of the notification is also commonto all event registration interfaces.

The final argumentto the register method is a long indicating the requested
duration of the registration, This period is a request, and the period of interest
actually granted by the event generator may be different. The actual duration of
the registration lease is returned as part of the Lease object included in the
EventRegistration object.

The return value of the register method is an object of the
EventRegistration class. This object contains a long identifying the kind of
event in which interest was registered (relative to the object granting the registra-
tion), a reference to the object granting the registration, and a Lease object.

167

180

181

168 DETAILS OF THE INTERFACES AND CLASSES

EV.2.3.5 The EventRegistration Class

Objects of the class EventRegistration are meant to encapsulate the informa-
tion the client needs to identify a notification as a response to a registration
request and to maintain that registration request. It is not necessary for a method
that allows event interest registration to return an object of type
EventRegistration. However, the class does show the kind of information that
needs to be returned in the event model.

The public parts of this class look like

public class EventRegistration implements java.io.Serializable
{

public EventRegistration(long eventID,

Object eventSource,
Lease eventLease,

long seqNum) {...}

public long getIDQ {...3

public Object getSource() {..}

public Lease getLease() {...}

public long getSequenceNumber() {...}

}

The getID methodreturns the identifier of the event in which interest was regis-
tered. This, combined with the return value returned by getSource, will uniquely
identify the kind of event. This information is needed to hand off to third-party
repositories to allow them to recognize the event and route it correctly if they are
to receive notifications of those events.

The result of the EventRegistration.getID method should be the same as
the result of the RemoteEvent.getID method, and the result of the

EventRegistration.getSource method should be the same as_ the
RemoteEvent.getSource method.

The getSource method returns a reference to the event generator, which is
used in combination with the result of the getID method to uniquely identify an
event.

The getLease returns the Lease object for this registration. It is used in lease
maintenance.

The getSequenceNumber method returns the value of the sequence number
on the event kind that was current when the registration was granted, allowing
comparison with the sequence numberin any subsequentnotifications.

181

182

THE JINI DISTRIBUTED EVENT SPECIFICATION

EV.2.4 Sequence Numbers, Leasing and Transactions

There are cases in which eventregistrations are allowed within the scope of a
transaction, in such a way that the notifications of these events can occur within
the scope ofthe transaction. This means that other participants in the transaction
may see some events whosevisibility is hidden by the transaction from entities
outside of the transaction. This has an effect on the generation of sequence num-
bers and the duration of an eventregistration lease.

An event registration that occurs within a transaction is considered to be
scoped bythattransaction. This meansthat any occurrenceof the kind ofevent of
interest that happensaspart ofthe transaction will cause a notification to be sent
to the recipients indicated by theregistration that occurred in the transaction. Such
events must have a separate eventidentification number(the long returned in the
RemoteEvent getID method) to allow third-party store-and-forward entities to
distinguish betweenan eventthat happenswithin a transaction andthose that hap-
pen outside of the transaction. Notifications ofthese events will not be sent to
entities that registeredinterest in this kind of event outside the scope ofthe trans-
action until and unless the transaction is committed.

Becauseofthis isolation requirementof transactions, notifications sent from
inside a transaction will have a different sequence numberthanthe notifications of
the same events would have outside of the transaction. Within a transaction,all
RemoteEvent objects for a given kind ofeventare given a sequence numberrela-
tive to the transaction, even if the event that triggered the RemoteEvent occurs
outside of the scope of the transaction (but is visible within the transaction). One
counter-intuitive effect of this is that an object could register for notification of
some event £ both outside a transaction and within a transaction, and receive two
distinct RemoteEvent objects with different sequence numbers for the sameevent.
One of the RemoteEvent objects would contain the event with a sequence number
relative to the transaction, while the other would contain the event with a sequence
numberrelative to the source object.

The other effect of transactions on event registrations is to limit the duration
of a lease. A registration of interest in some kindof event that occurs within the
scope ofa transaction should be leased in the same way as other eventinterest reg-
istrations. However, the duration of the registration is the minimum ofthe length
of the lease and the duration of the transaction. Simply put, whenthe transaction
ends (either because of a commit or a rollback), the interest registration also ends.
This is true evenif the lease for the event registration has not expired and nocall
has been made to cance] the lease.

It is still reasonable to lease eventinterest registrations, even in the scope of a
transaction, because the requested lease may be shorter than the transaction in

182

169

183

SERIALIZED FORMS THE JINI Di.

question. However, no such interest registration will survive the transaction in
which it occurs.

—

EV.3
EV.2.5 Serialized Forms

Class serial VersionUID Serialized Fields

RemoteEvent 1777278867291906446L Object source
long eventIDlong seqNum Orn: of
MarshalledObject handback | party obje

. i uted event
UnknownEventException 5563758083292687048L none | which allc
EventRegistration 4055207527458053347L Object source interfaces.

long eventID The fi
Lease lease i this object
long seqNum to send th

ward the r

that allows

| The se
i may be loc

notificatio!

objectthat
| The fir

for anothe:

fications bi

in the ever

out losing

EV.3.1

A store-an

the actual 1

This a
agent coulc
that call fai

i again at a
Either way,
delivery oi
(which mig

183

184

eea

THE JINI DISTRIBUTED EVENT SPECIFICATION iniibabeuiasenunuiasesiails:
Beninebiahebehtesiyahkagh
TR i

The second example, whi
maybelocal to either the eve ch we will call a notification filter, is an object that

nt generator or the event listener. This ag
read that will respond, using a method suobject that originally registered interest in events of that kind.

Thefinal objectis a notificati j
for another object (a remote event listener) until that object requests that the noti-fications bedelivered. This design allows the listener object that registered interestin the event type to select the times at whicha notification can be delivered With-out losing any notifications that would have otherwise have been delivered.

ent gets the
pplied by the

 EV.3.1 Store-and-Forward Agents

> La) ~Q=P =] Ss5h QO5° “Ssa o=" &go =>° =anS=oO s A store-and-forward agent enables the object generating a notification to hand off

184

185

i|

172 STORE-AND-FORWARD AGENTS

From the point of view of the remote event listener, there is no difference
between the notification delivered by a store-and-forward agent and one delivered
directly from the object in which the event that generated the original notification
-occurred. This transparency allows the decision to use a store-and-forward agent
to be made by the object generating the notification, independent of the object
receiving the notification. There is no need for distributed agreement; all that is
required is that the object using the agent know aboutthe agent.

A store-and-forward agent is used by an object that generates notifications.
When an object registers interest in receiving notifications of a particular event
type, the object receiving that registration will pass the registration along to the
store-and-forward agent. This agent will keep track of which objects need to be
notified of events that occur in the original object.

When an event of interest occursin the original object, it need send only a sin-
gle notification to the store-and-forward agent. This notification can return imme-
diately, with processing further happening inside the store-and-forward agent. The
object in which the event of interest occurred will now be freed from informing
those that registered interest in the event.

Notification is taken over by the store-and-forward agent. This agent will now
consult the list of entities that have registered interest in the occurrence of an event
and send a notification to those entities. Note that these might not be the same as
the objects that registered interest in the event; the object that should receive the
event notification is specified during the event interest registration.

The store-and-forward agent might be able to make use of network-level mul-
ticast (assuming that the RemoteEvent objectto be returned is identical for multi-
ple recipients of the notify call), or might send a separate notification to each of
the entities that have registered interest. Different store-and-forward agents could
implementdifferent levels of service, from a simple agent that sends a notification
and doesn’t care whether the notification is actually delivered (for example, one
that simply caught RemoteExceptions and discards them) to agents that will
repeatedly try to send the notification, perhaps using different fallback strategies,
until the notification is known to be successful or some numberof tries have been

attempted.
The store-and-forward agent does not need to know anything about the kinds

of events that are triggering the notificationsthat it stores and forwards. All thatis
neededis that the agent implement the RemoteEventListener interface and some
interface that allows the object producing the initial notification to register with
the agent. This combination of interfaces allows such a service to be offered to
any numberof different objects without having to know anything about the possi-
ble changes in abstract state that might be of interest in those objects.

Note that the interface used by the object generating the original notifications
to register with the store-and-forward agent does not need to be standard. Differ-

185

186

ibibosynrnouoNh

THE JINI DISTRIBUTED EVENTSPECIFICATION

ent qualities of service concerning the delivery ofnotifications may require differ-
ent registration protocols. Whether or not the relationship between thenotification
originator and the store-and-forward agentis leased or notis also up to the imple-
mentation of the agent.If the relationship is leased, lease renewal requests would
need to be forwarded to the agent.

In fact, an expected pattern of implementation would be to place a store-and-
forward agent on every machine on which objects were running that could pro-
duce events. This agent, which could be running in a separate JVM (on hardware
that supported multiple processes) could offload the notification-generating
objects from the need to send those notificationstoall objects that had registered
interest. It would also allow for consistent handling of delivery guarantees across
all objects on a particular machine. Since the store-and-forward agent is on the
same machine as the objects using the agent, the possibilities of partial failure
brought about by network problems (which wouldn’t affect communication
between objects on the same machine) and server machine failure (which would
inducetotal, rather than partial, failure in this case) are limited. This allows the
reliability of notifications to be offloaded to these agents instead of being a prob-
Jem that needsto be solved byall of the objects using the notification interfaces.

A store-and-forward agent does require an interface that allows the agent to
know what notifications it is supposed to send, the destinations of those notifica-
tions, and on whose behalf those notifications are being sent. Sinceit is the store-
and-forward agent that is directing notification calls to the individualrecipients,
the agent will also need to hold the Object (if any) that was passed in during
interest registration to be returned as part of the RemoteEvent object.

In addition, the store-and-forward agent could be the issuer of Lease objects
to the object registering interest in some event. This could offload any lease
renewalcalls from the original recipient of the registration call, which would need
to know only whenthere were no moreinterest registrations of a particular event
kind remaining in the store-and-forward agent.

EV.3.2 Notification Filters

Similar to a store-and-forward agentis a notification filter, which can be used by
either the generator ofa notification or the recipient to intercept notificationcalls,
do processing on thosecalls, and act in accord with that processing (perhaps for-
warding the notification, or even generating new notifications).

Again, such filters are made possible because ofthe uniform signature of the
method used to send all notifications and because of the ability of an object to
indicate the recipientof a notification when registering for a notification. This uni-
formity and indirection allow the composition of third-party entities. A filter could

186

173

187

174 NOTIFICATION FILTERS

receive events from a store-and-forward agent without the client of the original
registration knowing about the store-and-forward agent or the server in which the
notifications are generated knowing about the filter. This composition can be
extended further; store-and-forward agents could use other store-and-forward
agents, andfilters can themselves receive notifications from otherfilters.

EV.3.2.1 Notification Multiplexing

One example of suchafilter is one that can be used to concentratenotifications in
a way to help minimize network traffic. If a numberof different objects on a single
machineare all interested in some particular kind of event, it could makesenseto
create a notification filter that would register interest in the event. Whena notifica-
tion was received by thefilter, it would forward the notification to each of the
(machinelocal) objects that had expressedinterest.

1. Notification filter /a~\——._ registers interest in a ee { Object \(> kind of event (\ 4. Notification xX /
Y

| filter fires

2. Remote event vent
| Remote Z s— Notification “°°” aNSen rENef area(Onjet
generator (registrant) notification) Nr,| 3 :

|
each

3. Remote event .
interested| | generatorfires a object / Object\

) remote eventto : \ gZ)QO _’ indicate that the kind \ LE)
of event occurred

EV.3.2.2 Notification Demultiplexing

Another example ofsuchafilter is an object that generates an event in response to
a series of events that it has received. There might be an object that is interested
only in some particular sequence of events in some other object or group of
objects. This object could register interest in all of the different kinds of events,
askingthat the notifications be senttoafilter. The purpose ofthefilter is to receive
the notifications and, when the notifications fit the desired pattern (as determined

187

188

THE JINI DISTRIBUTED EVENT SPECIFICATION

by some class passed in from the object that has asked the notifications be sent to
the filter), generate some newnotification that is delivered to the client object.

4, Notification

™ filter notifies the (— ™!' Notification | Tsistrant that \(onject 2. Object ¥ fires——$__>-

_¥
-—_————_—_—_——__ Registrant |

_/ move _ filler J allofthe kinds |- a, of events have NO - SL
occurred

EV.3.3 Notification Mailboxes

The purpose of a notification mailbox is to store the notifications sent to an object
until such time as the object for which the notifications were intended desires
delivery.

Such delivery can be in a single batch, with the mailbox storing any notifica-
tions received after the last request for delivery until the next request is received.
Alternatively, a notification mailbox can be viewed as a faucet, with notifications
turned on (delivering any that have arrived since the notifications were last turned
off) and then delivering any subsequent notifications to an object immediately,
until told by that object to hold the notifications.

The ability to have notification mailboxes is important in a system that allows
objects to be deactivated (for example, to be saved to stable storage in such a way
that they are no longer taking up any computing resource) and re-activated. The
usual mechanism for activating an object is a method call. Such activation can be
expensive in both time and computing resources; it is often too expensive to be
justified for the receipt of what would otherwise be an asynchronous event notifi-
cation. An event mailbox can be used to ensure that an object will not be activated
merely to handle an event notification.

Use of a mailbox is simple; the object registering interest in receiving an event
notification simply gives the mailbox as the place to send the notifications. The
mailbox can be maderesponsible for renewing leases while an object is inactive,
and for storing all (or the most recent, or the most recent and the count of other)

188

175

189

 _

176 COMPOSITIONALITY

notifications for each type of eventofinterest to the object. When the object indi-
cates that it wishes to receive any notifications from the mailbox, those notifica-
tions can be delivered. Delivery can continue until the object requests storage to
occur again, or storage can resume automatically.

Such a mailbox is a type offilter. In this case, however, the mailbox filters
over time rather than over events. A pure mailbox need not be concerned with the
kinds of notifications that it stores. It simply holds the RemoteEvent objects until
they are wanted.

It is because of mailboxes and otherclient-side filters that the information

returned from an event registration needs to include a wayofidentifying the event
and the source of the event. Such client-side agents need a way of distinguishing
between the events they are expected to receive and those that should generate an
exception to the sender. This distinction cannot be made without some simple way
of identifying the event and the object of origin.

EV.3.4 Compositionality

All of the above third-party entities work because of two simple features of the
RemoteEventListener interface:

There is a single method, notify, that passes a single type of object,
RemoteEvent(or a subtypeof that object) for all notifications

@ There is a level of indirection in delivery allowed by the separate specifica-
tion of a recipient in the registration methodthat allowsthe client ofthat call
to specify a third-party object to contact for notifications

Thefirst of these features allows the composition of notification handlers to
be chained, beginning with the object that generates the notification. Since the
ultimate recipient of the event is knownto be expecting the event througha call to
the single notify method, other entities can be composed and interposed in the
call chain as long as they produce this call with the right RemoteEvent object
(which will include a field indicating the object at which the notification origi-
nated). Because there is a single method call for all notifications, third-party han-
diers can be producedto accept notifications of events without having to know the
kind of event that has occurred or any otherdetail of the event.

Compositionality in the other direction (driven by the recipient of the notifica-
tion) is enabled by allowing the object registering interest to indicate thefirst in an
arbitrary chain ofthird parties to receive the notification. Thus the recipient can
build a chain offilters, mailboxes, and forwarding agents to allow any sort of

189

190

 THE JINI DISTRIBUTED EVENTSPECIFICATION

 delivery policy that objectdesires, and thenregisterinterest with an indication that
all notifications should be deliveredto the beginning of that chain. From the point

a of view of the object in which the notification originates, the series of objects the
notification then goes through is unknownandirrelevant.F

:

190

191

praiseifeliia

ianinalcni

EV.4 Integration with JavaBeans Components

As we noted previously, distributed notification differs from local notification
(such asthe notification used in user interface programming) in a numberof ways.
In particular, a distributed notification may be delayed, dropped,or otherwise fail
between the object in which the event occurred and the object that is the ultimate
recipient of the notification of that event. Additionally, a distributed event notifica-
tion may require handling by a numberof third-party objects between the object
that is interested in the notification and the object that generates the notification.
These third-party objects need to be able to handle arbitrary events, and so from
the point of view of the type system, all of the events must be delivered in the
same fashion.

Although this model differs from the event modelusedfor user interface tools
such as the AWT or Java Foundation Classes (JFC), such a difference in modelis
to be expected. The event model for such userinterface toolkits was never meant
to allow the components that communicate using these local eventnotifications to
be distributed across virtual or physical machines; indeed, such systems assume
that the event delivery will be fast, reliable, and not open to the kindsofpartial
failures or delays that are commonin the distributed case.

In between the requirements of a local event model and the distributed event
model presented here is the event model used by software components to commu-
nicate changesin state. The delegation event model, which is the event model for
JavaBeans components, written in the Java programming language, is built as an
extension of the event model used for AWT and JFC.This is completely appropri-
ate, as most JavaBeans components will be located in a single address space and
can assume that the communication of events between components will meet the
reliability and promptness requirements of that model.

However, it is also possible that JavaBeans components will be distributed
across virtual, and even physical, machines. The assumptionthat the event propa-
gation will be either fast or reliable can lead to subtle program errors that will not
be found until the componentsare deployed (perhaps on a slow orunreliable net-
work). In such case, an eventand notification model such as that found in this
specification is more appropriate.

191

179

192

180 DIFFERENCES WITH THE JAVABEANS COMPONENT EVENTMODEL

One approach wouldbe to add a second event model to the JavaBeans compo-
nent specification that dealt only with distributed events. While this would have
the advantage of exporting the difference between local and remote components
to the component builder, it would also complicate the JavaBeans component
model unnecessarily.

Wewill show how thecurrent distributed event model canbefit into the exist-
ing Java platform’s event model. While the mapping is not perfect (norcanit be,
sincethere are essential differences between the two models), it will allow the cur-
rent tools used to assemble JavaBeans components to be used when those compo-
nents are distributed.

EV.4.1 Differences with the JavaBeans Component Event Model

The JavaBeans component event modelis derived from the event model used in
the AWT in JDK 1.2. The modelis characterized by:

¢ Propagation of eventnotifications from sourcesto listeners by Java technol-
ogy method invocationson thetargetlistener objects

Identification of the kind of event notification by using a different method in
the listener being called for each kind of event

Encapsulation of any state associated with an eventnotification in an object
that inherits from java.util. EventObject andthatis passed as the sole
argumentofthe notification method

Identification of event sources by the convention of those sources defining
registration methods, onefor each kind ofevent in whichinterest can be reg-
istered, that follow a particular design pattern

The distributed event and notification model that we have definedis similarin
a numberof wavs:

¢ Distributed event propagation is accomplished by the use of Remote meth-
ods.

¢ State passed as part ofthe notification is encapsulated in an object that is
derived from java.util.EventObject andis passed as the sole argument
of the notification method.

@ The RemoteEventListener interface extends the more basic interface
java.util .EventListener.

192

193

THE JINI DISTRIBUTED EVENTSPECIFICATION

However, there are also differences between the JavaBeans component event
modeland the distributed event model proposedhere:

¢ Identification of the kind of event is accomplished by passing an identifier
from the source of the notification to the listener; the combination of the
object in which the event occurred and the identifier uniquely identifies the
kind of event.

¢ Notifications are accomplished through a single method, notify, defined in
the RemoteEventListener interface rather than by a different methodfor
each kind of event.

¢ Registration of interest in a kind of eventis for a (perhaps renewable) period
of time, rather than being for a period of time bound by the active cancella-
tion of interest.

r ¢ Objects registering interest in an event can, as part of that registration,
: include an object that will be passed back to the recipientofthe notification

whenan eventof the appropriate type occurs,

Mostofthese differences in the two models can be directly traced to the distrib-
uted nature of the events and notifications defined in this specification.

For example, as you haveseen,reliability and recovery ofthe distributed noti-
fication model is based on the ability to create third-party objects that can provide
those guarantees. However, for those third-party objects to be able to workin gen-
eral cases, the signature for a notification must be the same for all of the event
notifications that are to be handled by that third party. If we were to follow the
JavaBeans component model of having a different method for each kind of event
notification, third party objects would need to support every possible notification
method, including those that had not yet been defined whenthe third-party object
was implemented. This is clearly impossible.

Note that this is not a weakness in the JavaBeans component event model,
merely a difference required by the different environments in which the event
models are assumed to be used. The JavaBeans component event model, like the
AWT model on which it is based, assumes that the event notification is being
passed between objects in the same address space. Suchnotifications do not need
various delivery and reliability guarantees—delivery can be considered to be (vir-
tually) instantaneous and can be assumedto be fully reliable.

Being able to send event notifications through a single Remote method also
requires that the events be identified in some way other than the signature of the
notification delivery method. This leads to the inclusion of an event identifier in
the event object. Since the generation of these event identifiers cannot be guaran-
teed to be globally unique across all of the objects in a distributed system, they

181

193

194

182 CONVERTING DISTRIBUTED EVENTS TO JAVABEANS EVENTS

must be maderelative to the object in which they are generated, thus requiring the
combination of the object of origin and the eventidentifier to completely identify
the kind of event.

The sequence numberbeing includedin the event object is also an outgrowth
of the distributed nature of the interfaces. Since no distributed mechanism can

guarantee reliability, there is always the possibility that a particular notification
will not be delivered, or could be delivered more than once by somenotification
agent. This is not a problem in the single-address-space environment of AWT and
JavaBeans components, but requires the inclusion of a sequence numberin the
distributed case.

EV.4.2 Converting Distributed Events to JavaBeans Events

Translating between the event modelsis fairly straightforward. All that is required
is:

¢ Allow an eventlistener to map from a distributed event listener to the appro-
priate call to a notification method

@ Allow creation of a RemoteEvent from the eventobject passed in the Java-
Beans componenteventnotification method

¢ Allow creation of a JavaBeans componentevent object from a RemoteEvent
object without loss of information

Each of theseis fairly straightforward and can be accomplished in a number of
ways.

More complex matings of the two systems could be undertaken, including
third-party objects that keep track of the interest registrations made by remote
objects and implementthe corresponding JavaBeans componenteventnotification
methods by making the remote calls to the RemoteEventListener notify
method with properly constructed RemoteEvent objects. Such objects would need
to keep track of the event sequence numbers and would needto deal with the addi-
tional failure modes that are inherent in distributed calls. However, their imple-
mentation would be fairly straightforward and would fit into the JavaBeans
component model of event adapters.

194

195

of3=

195

196

THE JINI TRANSACTION SPECIFICATION defines the lightweight distributed
transaction mechanismfor the Jini architecture. The purpose is to allow

any set ofparticipants to cooperate with the
transaction’s managerto provide transactional

aN behavior. The participant services need not know about
each other—the client, simply by using the same

Senet transaction with multiple services, can use the
transaction’s managerto drive themall to completion or,

if necessary, abort all the operations. The specification
covers both the general transaction mechanism and the

_, Specific ones that implement the standard Jini transactions

[N [with their associated semantics. The lookup service does not
use transactions, but a shared transaction mechanism for
Jini services is important enough to putthis specification
into the core ofJini specifications.

196

197

 The Jini Transaction

Specification

TX.1 Introduction

Transactions are a fundamental tool for many kinds of computing. A transac-
tion allows a set of operations to be grouped in such a way thatthey either all suc-
ceed or all fail; further, the operations in the set appear from outside the
transaction to occur simultaneously. Transactional behaviors are especially impor-
tant in distributed computing, where they provide a means for enforcing consis-
tency over a set of operations on one or more remote participants. If all the
participants are membersofa transaction, one response to a remote failure is to
abort the transaction, thereby ensuring that nopartial results are written.

Traditional transaction systems often center around transaction processing
monitors that ensure that the correct implementation of transactional semanticsis
provided byall of the participants in a transaction. Our approachtotransactional
semantics is somewhat different. Within our system weleaveit to the individual
objects that take part in a transaction to implement the transactional semanticsin
the waythat is best for that kind of object. What the system primarily providesis
the coordination mechanism that those objects can use to communicate the infor-
mation necessary for the set of objects to agree on the transaction. The goal ofthis
system is to provide the minimal set of protocols andinterfaces that allow objects
to implement transaction semanticsrather than the maximalset of interfaces, pro-
tocols, and policies that ensure the correctness of any possible transaction seman-
tics. So the completion protocol is separate from the semantics of particular
transactions.

This document presents this completion protocol, which consists of a two-
phase commitprotocol for distributed transactions. The two-phase commitproto-

i)
=ifs]
ro
°
fF
>
i)wa

197

198

186
MODELAND TERMS

col defines the communication patterns that allow distributed objects and
resources to wrap a set of operations in such a way that they appear to be a single
operation. The protocol requires a managerthat will enable consistent resolution
of the operations by a guaranteethatall participants will eventually know whether
they should commit the operations (roll forward) or abort them (roll backward). A
participant can be any object that supports the participant contract by implement-
ing the appropriate interface. Participants are not limited to databases or other per-
sistent storage services.

Clients and servers will also need to dependon specific transaction semantics.
The default transaction semantics for participants is also definedin this document.

The two-phase commit protocol presented here, while common in many tradi-
tional transaction systems, has the potential to be used in more than just tradi-
tional transaction processing applications. Since the semantics of the individual
operations and the mechanismsthat are used to ensure various properties of the
meta-operation joined by the protocolare left up to the individual objects, varia-
tions of the usual properties required by transaction processing systemsare possi-
ble using this protocol, as long as those variances can be resolved by this protocol.
A groupofobjects could use the protocol, for example, as part of a process allow-
ing synchronization of data that have been allowedto drift for efficiency reasons.
While this use is not generally consideredtobea classical use of transactions, the
protocol defined here could be used for this purpose. Some variations will not be
possible underthese protocols, requiring subinterfaces and subclasses of the ones
provided or entirely new interfaces and classes.

Because of the possibility of application to situations that are beyond the
usual use of transactions, calling the two-phase commit protocol a transaction
mechanism is somewhat misleading. However, since the most common use of
such a protocolis in a transactional setting, and because we do define a particular
set of default transaction semantics, we will follow the usual naming conventions
used in such systemsrather than attempting to invent a new,parallel vocabulary.

The classes andinterfaces defined by this specification are in the packages
net.jini.core.transaction and net.jini.core. transaction.server. In
this document you will usually see these types used without a package prefix; as
each typeis defined, the packageit is in is specified.

TX.1.1 Model and Terms

A transaction is created and overseen by a manager. Each manager implements
the interface TransactionManager. Each transaction is represented by a long
identifier that is unique with respectto the transaction’s manager.

198

199

THE JINI TRANSACTIONSPECIFICATION 17

Semantics are represented by semantic transaction objects, such as the ones

that represent the default semantics for services. Even though the manager needs
to know only how to complete transactions, clients and participants need to share
a common view of the semantics of the transaction. Therefore clients typically
create, pass, and operate on semantic objects that contain the transaction identifier
instead of using the transaction’s identifier directly, and transactable services typi-
cally accept parameters of a particular semantic type, such as the Transaction
interface used for the default semantics.

As shown in Figure TX.1.1, a client creates a transaction by a request to the
manager, typically by using a semantic factory class such as
TransactionFactory to create a semantic object. The semantic object created is
then passed as a parameter when performing operations ona service. If the service
is to accept this transaction and govern its operations thereby, it must join the
transaction as a participant. Participants in a transaction must implement the
interface TransactionParticipant. Particular operations associated with a
given transaction are said to be performed underthat transaction. The client that
created the transaction might or might not be a participant in the transaction.

“EESR
a

(FZ)I)

long id
join Manager <>TransactionFactory
ve) create (semantic class)
4 (2) create

@) Transaction
~|W(4)(semantic class)
Client

Participant,“ op,(Transaction,| ...

opg(Transaction, ...)

Participant,

FIGURE TX.1.1: Transaction Creation and Use

A transaction completes when any entity either commits or aborts the transac-
tion. If a transaction commits successfully, then all operations performed under
that transaction will complete. Aborting a transaction means that all operations
performed under that transaction will appear never to have happened.

Committing a transaction requires each participant to vote, where a vote is
either prepared (ready to commit), not changed (read-only), or aborted (the trans- E |
action should be aborted). If all participants vote “prepared”or “not changed,” the

199

200

188 DISTRIBUTED TRANSACTIONS AND ACID PROPERTIES

transaction manager will tell each “prepared” participant to roll forward, thus
committing the changes. Participants that voted “not changed” need do nothing
more.If the transaction is ever aborted, the participants are told to roll back any
changes made underthe transaction.

TX.1.2 Distributed Transactions and ACID Properties

The two-phase commit protocol is designed to enable objects to provide ACID
properties. The default transaction semantics define one way to preserve these
properties. The ACID properties are:

i ¢ Atomicity;: All the operations grouped under a transaction occur or none of

them do. The protocol allows participants to discover which of these alter- |
natives is expected by the other participants in the protocol. However,it is
up to the individual object to determine whether it wishes to operate in con-
cert with the other participants.

iF Consistency: The completion of a transaction must leave the system in a
consistent state. Consistency includes issues known only to humans,such as
that an employee should always have a manager. The enforcementof con-
sistency is outside of the realm of the transaction itself—a transactionis a
tool to allow consistency guarantees and not itself a guarantor of consis-
tency.

¢ Isolation: Ongoing transactions should not affect each other. Participants in
a transaction should see only intermediate states resulting from the opera-
tions of their own transaction, not the intermediate states of other transac-
tions. The protocol allows participating objects to know what operations are
being done within the scopeof a transaction. However, it is up to the indi-
vidual object to determineif such operationsare to be reflected only within
the scope ofthe transaction or can be seen by others whoare notparticipat-

| ing in the transaction.

@ Durability: The results of a transaction should be as persistent as the entity
on which the transaction commits. However, such guarantees are up to the
implementation of the object.

The dependency on the participant’s implementation for the ACID properties
is the greatest difference between this two-phase commit protocol and moretradi-
tional transaction processing systems. Such systems attempt to ensure that the
ACID properties are met and go to considerable trouble to ensure that no partici-
pant can violate any of the properties.

200

201

THE JINI TRANSACTION SPECIFICATION

This approach differs for both philosophical and practical reasons. The philo-
sophical reason is centered on a basic tenet of object-oriented programming,
which is that the implementation of an object should be hidden from any part of
the system outside the object. Ensuring the ACID properties generally requires
that an object’s implementation correspond to certain patterns. We believe that if
these properties are needed,the object (or, moreprecisely, the programmer imple-
menting the object) will know best how to guarantee the properties. Forthis rea-
son, the manager is solely concerned with completing transactions properly.
Clients and participants must agree on semantics separately.

The practical reason for leaving the ACID properties up to the object is that
there are situations in which only some of the ACID properties make sense, but
that can still make use of the two-phase commit protocol. A group of transient
objects might wish to group a set of operations in such a way that they appear
atomic; in such a situation it makeslittle sense to require that the operations be
durable. An object might want to enable the monitoring ofthe state of some long-
running transactions; such monitoring would violate the isolation requirement of
the ACID properties. Binding the two-phase commit protocolto all of these prop-
erties limits the use of such a protocol.

Wealso know that particular semantics are needed for particular services. The
default transaction semantics provide useful general-purpose semantics built on
the two-phase commit completion protocol.

Distributed transactions differ from single-system transactions in the same
way that distributed computingdiffers from single-system computing. The clear-
est difference is that a single system can have a single view of the state of several
services. It is possible in a single system to makeit appear to any observerthatall
operations performed under a transaction have occurred or none have, thereby
achieving isolation. In other words, no observer will ever see only part of the
changes made underthetransaction.In a distributed system it is possible fora cli-
ent using twoservers to see the committed state of a transaction in one server and
the pre-committed state of the same transaction in anotherserver. This can be pre-
vented only by coordination with the transaction manager or the client that com-
mitted the transaction. Coordination betweenclients is outside the scope ofthis
specification.

TX.1.3 Requirements

Thetransaction system hasthe following requirements:

¢ Define types and contracts that allow the two-phase commit protocol to gov-
ern operations on multiple servers of differing types or implementations.

201

189

ta

ey—¥]
|w
)QO
=
i=]
i]wm

202

190 DEPENDENCIES

¢ Allow participation in the two-phase commit protocol by any object in the
Java programming language, where “participation” meansto perform oper-
ations on that object undera given transaction.

Each participant may provide ACID properties with respect to that partici-
pant to observers operating undera given transaction.

@ Use standard Java programming language techniques and tools to accom-
plish these goals. Specifically, transactions will rely upon Java Remote
Method Invocation (RMI) to communicate between participants.

Define specific default transaction semantics for use by services.

TX.1.4 Dependencies

This documentrelies upon the following other specifications:

@ Java Remote Method Invocation Specification

Jini Distributed Leasing Specification

202

203

i

THE JINI TRANSACTION SPECIFICATION 191

=inn

*
| TX.2 The Two-Phase Commit Protocol

Se ==

a
i]
=a
o
377)

Tx two-phase commit protocolis defined using three primary types:

@ TransactionManager: A transaction managercreates new transactions and
coordinates the activities of the participants.

@ NestableTransactionManager: Sometransaction managersare capable of
supporting nested transactions.

@ TransactionParticipant: Whenan operation is performed undera trans-
action, the participant must join the transaction, providing the manager with
areference to a TransactionParticipant object that will be askedto vote,
roll forward, or roll back.

The following types are imported from other packages and are referenced in
unqualified form in the rest of this specification:

java.rmi.Remote

java.rmi.RemoteException
java. rmi .NoSuchObjectException
java.io.Serializable
net.jini.core. lease.LeaseDeniedException
net. jini.core. lease.Lease

All the methods defined to throw RemoteException will do so in the circum-
stances described by the RMIspecification.

Eachtype is defined where it is first described. Each methodis described
where it occurs in the lifecycle of the two-phase commitprotocol. All methods,
fields, and exceptions that can occur during thelifecycle of the protocol will be
specified. The section in which each methodor field is specified is shown in a
comment, using the § abbreviation for the word “section.”

203

204

STARTING A TRANSACTION

TX.2.1 Starting a Transaction

The TransactionManager interface is implemented by servers that manage the
two-phase commit protocol:

package net.jini.core.transaction.server;

public interface TransactionManager
extends Remote, TransactionConstants // §TX.2.4

public static class Created implements Serializable {
public final long id;

public final Lease lease;
public Created(long id, Lease lease) {..}

}

Created create(long leaseFor) // §TX.2.1
throws LeaseDeniedException, RemoteException;

void joinClong id, TransactionParticipant part,
long crashCount) // §TX.2.3

throws UnknownTransactionException,

CannotJoinException, CrashCountException,
RemoteException;

int getState(long id) // §1X.2.7
throws UnknownTransactionException, RemoteException;

void commitClong id) // §TX.2.5

throws UnknownTransactionException,

CannotCommitException,
RemoteException;

void commit(long id, long waitFor) // §TX.2.5
throws UnknownTransactionException,

CannotCommitException,

TimeoutExpiredException, RemoteException;
void abort(Clong id) // §TX.2.5

throws UnknownTransactionException,

CannotAbortException,

RemoteException;
void abortClong id, long waitFor) // §TX.2.5

throws UnknownTransactionException,

CannotAbortException,

TimeoutExpiredException, RemoteException;

204

205

THE JINI TRANSACTION SPECIFICATION

A client obtains a reference to a TransactionManager object via a lookup
service or some other means. The details of obtaining such a referenceare outside
the scope of this specification.

A client creates a new transaction by invoking the manager’s create method,
roviding a desired leaseFor time in milliseconds. This invocation is typically

indirect via creating a semantic object. Thetimeis the client’s expectation of how
Jong the transaction willlast before it completes. The manager may grant a shorter
lease or may deny the request by throwing LeaseDeniedException. If the
granted lease expires or is cancelled before the transaction managerreceives a
commit or abort of the transaction, the managerwill abort the transaction.

The purpose of the Created nested class is to allow the create method to
return two values: the transaction identifier and the granted lease. The constructor
simply sets the twofields from its parameters.

TX.2.2 Starting a Nested Transaction

The TransactionManager.create method returns a new top-level transaction.
Managers that implement just the TransactionManager interface support only
top-level transactions. Nested transactions, also known as subtransactions, can be
created using managers that implement the NestableTransactionManager inter-
face:

package net.jini.core.transaction.server;

public interface NestableTransactionManager
extends TransactionManager

TransactionManager.Created

create(NestableTransactionManager parentMgr, |
long parentID, long leaseFor) // §TX.2.2

throws UnknownTransactionException,

CannotjJoinException, LeaseDeniedException,
RemoteException:

void promote(long id, TransactionParticipant[] parts,
long[] crashCounts,

TransactionParticipant drop)
throws UnknownTransactionException,

CannotJoinException, CrashCountException,
RemoteException; // §TX.2.7

205

193

648) SUOT)IBSUBLT,

206

194 STARTING A NESTED TRANSACTION

The create method takes a parent transaction—represented by the managerfor
the parent transaction and the identifier for that transaction—andadesired lease
time in milliseconds, and returns a new nested transaction that is enclosed bythe
specified parent along with the granted lease.

When youuse a nested transaction you allow changes to a set of objects to
abort without forcing an abort of the parent transaction, and you allow the commit
of those changestostill be conditional on the commitof the parent transaction.

Whena nested transaction is created, its manager joins the parent transaction,
Whenthe two managersare different, this is done explicitly via join (§TX.2.3).
When the two managers are the same, this may be done in a manager-specific
fashion.

The create method throws UnknownTransactionException if the parent
transaction is unknownto the parent transaction manager, either because thetrans-
action ID is incorrect or because the transaction is no longer active andits state
has been discarded by the manager.

package net.jini.core. transaction;

public class UnknownTransactionException
extends TransactionException

public UnknownTransacti onException() {..}
public UnknownTransactionException(String desc) {..}

3

public class TransactionException extends Exception {
public TransactionException() f...}
public TransactionException (String desc) {..}

}

The create method throws CannotJoinException if the parent transaction is
knownto the manager but is no longeractive.

package net.jini .core, transaction;

public class CannotJoinException extends TransactionException
{

public CannotJoinException() {..}
public CannotJoinException(String desc) {...}

206

207

 THE JINI TRANSACTION SPECIFICATION

7TX.2.3 Joining a Transaction

Thefirst time a client tells a participant to perform an operation under a given
transaction, the participant must invoke the transaction manager’s join method
with an object that implements the TransactionParticipant interface. This
object will be used by the manager to communicate with the participant about the
transaction.

package net.jini.core. transaction. server;

public interface TransactionParticipant
extends Remote, TransactionConstants // §TX.2.4

{

int prepare(TransactionManager mgr, long id) // §TX.2.6
throws UnknownTransactionException, RemoteException;

void commt(TransactionManager mgr, long id) // §TX.2.6
throws UnknownTransactionException, RemoteException;:

void abort (TransactionManager mgr, long id) // §TX.2.6
throws UnknownTransactionException, RemoteException;

int prepareAndCommit (TransactionManager mgr, long id)
// §TX.2.7

throws UnknownTransactionException, RemoteException:
}

If the participant’s invocation of the join method throws RemoteException,
the participant should not perform the operation requested by the client and
should rethrow the exception or otherwise signal failure to the client.

The join method’s third parameteris a crash countthat uniquely defines the
version of the participant’s storage that holds the state of the transaction. Each
timethe participantlosesthe state of that storage (because of a system crash if the
storageis volatile, forexample) it must changethis count. For example, the partic-
ipant could store the crash count in stable storage.

When a managerreceives a join request, it checksto seeif the participant has
already joined the transaction. Ifit has, and the crash countis the same as the one
specified in the original join, the join is acceptedbut is otherwise ignored. If the
crash count is different, the manager throws CrashCountException and forces
the transaction to abort.

package net.jini.core.transaction. server;

public class CrashCountException extends TransactionException
{

207

oy&
aa —|

msi

Ss
S
|fs]

208

TRANSACTION STATES

public CrashCountExceptionQ {...}
public CrashCountException(String desc) {...}

}

The participant should reflect this exception backto the client. This check makes
join idempotent whenit should be, but forces an abort for a second join of a
transaction by a participant that has no knowledgeofthefirst join and hence has
lost whatever changes were made afterthe first join.

An invocation of join can throw UnknownTransactionException, which
meansthe transaction is unknown to the manager, either because the transaction
ID wasincorrect, or because the transaction is no longeractive andits state has
been discarded by the manager. The join method throws CannotJoinException
if the transaction is known to the managerbut is no longeractive. In either case
the join has failed, and the method that was attempted under the transaction
should reflect the exception backto the client. This is also the proper responseif
join throws a NoSuchObjectException.

TX.2.4 Transaction States

The TransactionConstants interface defines constants used in the communica-
tion between managers and participants.

package net.jini.core.transaction.server;

public interface TransactionConstants {
int ACTIVE = 1;

int VOTING = 2;

int PREPARED = 3;

int NOTCHANGED = 4;

int COMMITTED = 5;

int ABORTED = 6;

}

These correspond to the states and votes that participants and managers go
through during the lifecycle of a given transaction.

208

THI

T
}

In

=-¢-7FR

209

fully reaches the ABORTED state, or if t
reachedthat state due to an earlier commit or abort. If the transaction is known to
have previously reached the COMMITTEDstate due to an earlier commi t, then abort
throws CannotAbo rtException.

THE JINI TRANSACTION SPECIFICATION

TX.2.5 Completing a Transaction: The Client’s View

In the client’s view, a transaction goes throughthe followingstates:

creat®
cewwrns conan ©

oreswi8©
ACTIVE xVOTING 0)aD

apor*

 ABORTED cleanup

For the client, the transaction starts out ACTIVE as soon as create returns, Thecli-
ent drives the transaction to completion by invoking commit or abort on the
transaction manager, or by cancelling the lease or letting the lease expire (both of
which are equivalent to an abo rt).

The one-parameter commit method retumsas soon asthe transaction success-
fully reaches the COMMITTEDstate, or if the {ansaction is known to have previ-
ously reached that state due to an earlier commit. If the transaction reaches the
ABORTEDstate, or is known to have previously reachedthat state due to an earlier
commit or abort, then commit throws CannotCommitException.

package net.jini.core. transaction;

public class CannotCommi tException
extends TransactionException

{

public CannotCommitException() {...}
public CannotCommitException(String desc) {..}

}

The one-parameter abort method returns as soon as the transaction success-
he transaction is known to have previously

209

197

210

198 COMPLETING A TRANSACTION: THE CLIENT'S Virw

package net.jini.core.transaction;

| public class CannotAbortException extends TransactionException
ri {

public CannotAbortException() {..}
public CannotAbortException(String desc) {..}

}

Both commit and abort can throw UnknownTransactionException, which
means the transaction is unknownto the manager. This may be becausethetrans-
action ID wasincorrect, or because the transaction has proceeded to cleanup due
to an earlier commit or abort, and has been forgotten.

Overloads of the commit and abort methods take an additional waitFor
timeout parameter specified in millisecondsthattells the manager to wait until it
has successfully notified all participants about the outcome of the transaction
before the methodreturns.If the timeout expires before all participants have been
notified, a TimeoutExpiredException will be thrown. If the timeout expires
before the transaction reaches the COMMITTED or ABORTEDstate, the manager must
wait until one of those states is reached before throwing the exception. The
committedfield in the exceptionis set to true if the transaction committed or to
falseif it aborted.

package net.jini.core.transaction;

public class TimeoutExpiredException extends
TransactionException

{

public boolean committed;
public TimeoutExpiredException(boolean committed) {..}
public TimeoutExpiredException(String desc,

boolean committed) {...}

}

210

211

THE JINI TRANSACTIONSPECIFICATION 199

TX.2.6 Completing a Transaction: A Participant’s View

In a participant’s view, a transaction goes through the followingstates:

NOTCHANGED

ACTIVE emma IG ABORTED cleanup
PREPARED

For the participant, the transaction starts out ACTIVE as soon as join returns. Any
operations attempted undera transaction are valid only if the participant has the
transaction in the ACTIVE state. In any other state, a request to perform an opera-
tion under the transaction should fail, signaling the invoker appropriately.

Whenthe managerasks the participant to prepare, the participant is VOTING
until it decides what to return. There are three possible return values for prepare:

Theparticipant had no changesto its state made underthe transaction—that
is, for the participant the transaction was read-only. It should release any
internal state associated with the transaction. It must signal this with a return
of NOTCHANGED, effectively entering the NOTCHANGEDstate. As noted below,
a well-behaved participant should stay in the NOTCHANGEDstate for some
time to allow idempotency for prepare.

The participant had its state changed by operations performed under the
transaction. It must attempt to prepare to roll those changes forward in the
event ofa future incoming commit invocation, Whenthe participant has suc-
cessfully prepared itself to roll forward (8TX.2.8), it must return PREPARED,
thereby entering the PREPAREDstate.

¢ The participant had its state changed by operations performed under the
transaction but is unable to guarantee a future successful roll forward. It

211

212

200

COMPLETING A TRANSACTION: A PARTICIPANT'S VIEW

must signal this with a return of ABORTED,effectively entering the ABORTED
state.

For top-level transactions, when a participant returns PREPAREDit is stating
that it is ready to roll the changes forward by saving the necessary record of the
operations for a future commit call. The record of changes must be at least as
durable as the overall state of the participant. The record must also be examined
during recovery (§TX.2.8) to ensure that the participant rolls forwardor rolls back
as the managerdictates. The participant stays in the PREPAREDstate until it is told
to commit or abort. It cannot, having returned PREPARED, drop the record except
by following the “roll decision” described for crash recovery (§TX.2.8.1).

For nested transactions, when a participant returns PREPAREDit is stating that
it is ready to roll the changes forward into the parent transaction. The record of
changes mustbe as durable as the record of changes for the parenttransaction.

If a participant is currently executing an operation undera transaction when
prepareis invoked for that transaction, the participant must either: wait until that
operation is complete before returning from prepare; know that the operation is
guaranteedto be read-only, and so will notaffectits ability to prepare; or abort the
transaction.

If a participant has not received any communication on or abouta transaction
over an extended period, it may choose to invoke getState on the manager. If
getState throws UnknownTransactionException or NoSuchObjectException,
the participant may safely infer that the transaction has been aborted. If getState
throws a RemoteException the participant may choose to believe that the man-
ager has crashed and abort its state in the transaction—this is not to be done
lightly, since the manager may save state across crashes, and transient network
failures could cause a participant to drop out of an otherwise valid and committa-
ble transaction. A. participant should drop outofa transaction only if the manager
is unreachable over an extended period. However, in no case should a participant
drop out of a transaction it has PREPARED but notyet rolled forward.

If a participant has joined a nested transaction and it receives a preparecall
for an enclosing transaction, the participant must complete thenested transaction,
using getState on the manager to determine the proper type of completion.

If a participant receives a preparecall for a transaction that is already in a
post-VOTING state, the participant should simply respond with thatstate.

If a participant receives a preparecall for a transaction that is unknowntoit,
it should throw UnknownTransactionException. This may happenif the partici-
pant has crashed andlost the state of a previously active transaction,orif a previ-
ous NOTCHANGED or ABORTED response wasnotreceived by the manager and the
participant has since forgotten the transaction.

212

ake

m

tri

to

Th

the
me

213

THE JINI TRANSACTION SPECIFICATION

Note that a return value of NOTCHANGED may not be idempotent. Should the
participant return NOTCHANGEDit may proceed directly to clean upits state. If the
manager receives a RemoteException because of network failure, the manager
will likely retry the prepare. Atthis pointa participant that has dropped the infor-
mation aboutthe transaction will throw UnknownTransactionException, and the
manager will be forced to abort. A well-behaved participant should stay in the
NOTCHANGED state for a while to allow a retry of prepare to again return
NOTCHANGED, thus keeping the transaction alive, although this is not strictly
required. No matter whatit voted, a well-behaved participant should also avoid
exiting for a similar period of time in case the manager needs to re-invoke
prepare.

If a participant receives an abort call for a transaction, whether in the
ACTIVE, VOTING, or PREPAREDstate, it should move to the ABORTED state androll

back all changes made underthetransaction.
If a participant receives a commit call for a PREPARED transaction, it should

move to the COMMITTEDstate and roll forward all changes made under the
transaction.

The participant’s implementation of prepareAndCommit must be equivalent
to the following:

public int prepareAndCommit(TransactionManager mgr, long id)
throws UnknownTransactionException, RemoteException

{

int result = prepare(mgr, id);
if Cresult == PREPARED) {

commit(mgr, id);

result = COMMITTED;

}

return result;

}

The participant can often implement prepareAndCommit much more efficiently
than shown,but it must preserve the above semantics. The manager’s use ofthis
methodis described in the next section.

213

201

214

202

COMPLETING A TRANSACTION: THE MANAGER’S Virw

TX.2.7 Completing a Transaction: The Manager’s View

In the manager’s view, a transaction goes through the followingstates:

cveat®
tevr

apor*

COMMITTED

|

ABORTED > cleanup

Whena transaction is created using create, the transaction is ACTIVE. Thisis the
only state in which participants may join the transaction. Attempting to join the
transaction in any other state throws a CannotJoinException.

Invoking the manager’s commit method causes the manager to move to the
VOTINGstate, in which it attempts to complete the transaction by rolling forward.
Eachparticipant that has joined the transaction hasits prepare method invoked to
vote on the outcome of the transaction. The participant may return one of three
votes: NOTCHANGED, ABORTED, or COMMITTED.

If a participant votes ABORTED, the manager must abort the transaction. If
prepare throws UnknownTransactionException or NoSuchObjectException,
the participant haslostits state of the transaction, and the manager must abort the
transaction. If prepare throws RemoteException, the manager mayretry as long
as it wishes until it decides to abort the transaction.

To abort the transaction, the manager moves to the ABORTED state. In the
ABORTED state, the manager should invoke abort on all participants that have
voted PREPARED. The manager should also attempt to invoke abort on all partici-
pants on whichit has not yet invoked prepare. Thesenotificationsare notstrictly
necessary for the one-parameter forms of commit and abort, since the partici-
pants will eventually abort the transaction either by timing out or by asking the
managerfor the state of the transaction. However, informing the participants of
the abort can speed up the release of resources in these participants, and so
attempting the notification is strongly encouraged.

If a participant votes NOTCHANGED,it is dropped from the list of participants,
and no further communication will ensue. If all participants vote NOTCHANGED then
the entire transaction was read-only and noparticipant has any changestoroll for-
ward. The transaction moves to the COMMITTEDstate and then can immediately

214

215

THE JINI TRANSACTION SPECIFICATION

move to cleanup, in which resources in the managerare cleaned up. There is no
behavioral difference to a participant between a NOTCHANGEDtransaction and one
that has completed the notification phase of the COMMITTEDstate.

If no participant votes ABORTED andat least one participant votes PREPARED,
the transaction also moves to the COMMITTEDstate. In the COMMITTEDstate the
manager must notify each participant that returned PREPAREDto roll forward by
invoking the participant’s commit method. Whenthe participant’s commit method
returns normally, the participant has rolled forward successfully and the manager
need not invoke commit on it again. As long as there exists at least one participant
that has not rolled forward successfully, the manager mustpreserve thestate of the
transaction and repeat attempts to invoke commit at reasonable intervals. If a par-
ticipant’s commit method throws UnknownTransactionException, this means
that the participant has already successfully rolled the transaction forward even
though the managerdid not receive the notification, either due to a network failure
on a previous invocation that was actually successful or because the participant
called getStatedirectly.

If the transaction is a nested one and the manageris preparedto roll the trans-
action forward, the members of the nested transaction must become members of

the parent transaction. This promotion of participants into the parent manager
must be atomic—all must be promoted simultaneously, or none must be. The
multi-participant promote method is designed for this use in the case in which the
parent and nested transactions have different managers.

The promote method takes arrays of participants and crash counts, where
crashCounts [i] is the crash count for parts[i]. If any crash countis different
from a crash countthat is already known to the parent transaction manager, the
parent manager throws CrashCountException and the parent transaction must
abort. The drop parameter allows the nested transaction managerto dropitself out
of the parent transaction as it promotes its participants into the parent transaction
if it no longer has any needto beaparticipantitself.

The manager for the nested transaction should remain available until it has

successfully driven each participant to completion and promoted its participants
into the parent transaction. If the nested transaction’s manager disappears before a
participant 1s positively informed of the transaction’s completion, that participant
will not know whetherto roll forward or back, forcing it to vote ABORTEDin the
parent transaction. The manager may cease commit invocationsonits participants
if any parent transaction is aborted. Aborting any transaction implicitly aborts any
uncommitted nested transactions. Additionally, since any committed nested trans-
action will also have its results dropped, any actions taken on behalf ofthat trans-
action can be abandoned.

Invoking the manager’s abort method, cancelling the transaction’s lease, or
allowing the lease to expire also moves the transaction to the ABORTEDstate as

203

215

216

204

CRASH RECOVERY

described above. Any transactions nested inside that transaction are also moved
directly to the ABORTEDstate.

The manager may optimize the VOTING state by invoking a participant’s
prepareAndCommi t methodif the transaction has only one participant that has not
yet been asked to vote and all previous participants have returned NOTCHANGED.
(Note that this includes the special case in which the transaction has exactly one
participant.) If the manager receives an ABORTEDresult from prepareAndCommit,
it proceeds to the ABORTEDstate. In effect, a prepareAndCommit moves through
the VOTINGstate straight to operating on the results.

A getStatecall on the manager can return any of ACTIVE, VOTING, ABORTED,
NOTCHANGED, or COMMITTED. A manager is permitted, but not required, to return
NOTCHANGEDifit is in the COMMITTEDstate and all participants voted NOTCHANGED,

TX.2.8 Crash Recovery

Crash recovery ensures that a top-level transaction will consistently abort or roll
forward in the face of a system crash. Nested transactions are not involved.

The manager has one commit point, where it must save state in a durable fash-
ion. This is when it enters the COMMITTEDstate with at least one PREPAREDpartici-

pant. The manager must, at this point, commit the list of PREPARED participants
into durable storage. This storage mustpersist until all PREPARED participants suc-
cessfully roll forward. A manager may chooseto also store the list of PREPARED
participants that have already successfully rolled forward or to rewrite the list of
PREPAREDparticipantsas it shrinks, but this optimization is not required (although
it is recommended as good citizenship). In the event of a managercrash, the list of
participants must be recovered, and the manager must continue acting in the
COMMITTEDstate until it can successfully notify all PREPARED participants.

The participant also has one commit point, whichis prior to voting PREPARED.
Whenit votes PREPARED, the participant must have durably recorded the record of
changes necessary to successfully roll forward in the event of a future invocation
of commit by the manager. It can remove this record whenit is prepared to suc-
cessfully return from commit.

Because of these commitments, manager and participant implementations
should use durable forms of RMIreferences, such as the Activatable references

introduced in the Java Development Kit software (JDK), version 1.2. An unreach-
able manager causes much havoc and should be avoided as much as possible. A
vanished PREPARED participant puts a transaction in an untenable permanentstate
in which some, butnotall, of the participants have rolled forward.

216

THEJ

TX..

If a’
will

and
reac

roll

mal

217

THE JINI TRANSACTION SPECIFICATION

TX.2.8.1 The Roll Decision

If a participant votes PREPAREDfor a top-level
will execute a recoveryprocessif it crashes between completing its durable record
and receiving a commit notification fromthe manager. This recovery process must
read the record of the crashed Participant and makea rol] decision—whetherto
roll the recorded changesforwardorroll them back.

To make this decision, it invokes the getState method on the transaction
manager. This can have the following results:

transaction, it must guaranteethatit

@ getState returns COMMITTED: Therecovery should move the participant tothe COMMITTEDstate.

 getState throws either an Unknow
NoSuchObjectException: The recover
ABORTEDstate.

nTransactionException or a
y should movethe participant to the

getState throws RemoteException: The recovery should repeat theattemptafter a pause.

TX.2.9 Durability

Durability is a commitment, butit is not a guarantee.
that any given piece of stable Storage can never be lost; one can only achieve
decreasing probabilities of loss. Data that is force-written to a disk may be consid-
ered durable, butit is less durable than data committed to two or more separate,
redundant disks. When we speak of “durability” in this system it is always usedrelative to the expectations of the human who decided which entities to use for
communication,

It is impossible to guarantee

With multi-participant transactions it is entirely possible that different partici-
pants have different durability levels. The manager may be ona tightly replicated
system with its durable storage duplicated on several host systems, giving a highdegree of durability, while a participant may be using only one disk. Or a partici-
pant may alwaysstoreits data in memory, expecting to lose it ina system crash (adatabase of people currently logged intothe host, for example, need not survive a

one participant than another. Determining, or even defining and exposing, varyinglevels of durability is outside the scope ofthis specification,

217

205

ey

rrwe
Se

S
=]wa

ce

218

THE JINI TRANSACTION SPECIFICATION

TxXx.3 Default Transaction Semantics

Tix two-phase commit protocol defines howatransaction is created and later
driven to completion by either committing or aborting. It is neutral with respect to
the semantics of locking under the transaction or other behaviors that impart
semantics to the use of the transaction. Specific clients and servers, however, must
be written to expect specific transaction semantics. This model is to separate the
completion protocol from transaction semantics, where transaction semanticsare
represented in the parameters and return values of methods by whichclients and
participants interact,

This chapter defines the default transaction semantics of services. These

semantics preserve the traditional ACID properties (you will find a brief descrip-
tion of the ACID properties in §TX.1.2). The semantics are represented by the
Transaction and NestableTransaction interfaces and their implementation
classes ServerTransaction and NestableServerTransaction. Anyparticipant
that accepts as a parameter orreturns any of these types is promising to abide by
the following definition of semantics for any activities performed underthattrans-
action.

TX.3.1 Transaction and NestableTransaction Interfaces

Theclient’s view oftransactions is through twointerfaces: Transactionfor top-
level transactions and NestableTransactionfor transactions under which nested
transactions can be created. First, the Transactioninterface:

package net.jini.core.transaction;

public interface Transaction {

public static class Created implements Serializable {
public final Transaction transaction;
public final Lease lease;
Created(Transaction transaction, Lease lease) {..}

218

|
5

by

Loses
=
=}wn

219

rs

208 Transaction AND NestableTransaction INTERFACES

void commit() // §TX.2.5

throws UnknownTransactionException,
CannotCommitException,

’ RemoteException;
void commit(long waitFor) // §TX.2.5

throws UnknownTransactionException,

CannotCommitException,

TimeoutExpiredException, RemoteException;
void abort() // §TX.2.5

throws UnknownTransactionException,

CannotAbortException,

RemoteException;

void abort(long waitFor) // §TX.2.5
throws UnknownTransactionException,

CannotAbortException,

TimeoutExpiredException, RemoteException;
}

The Created nested class is used in a factory create method for top-level trans-
actions (defined in the next section) to hold two return values: the newly created
Transaction object and the transaction’s lease, which is the lease granted by the
transaction manager. The commit and abort methods have the same semanticsas
discussed in §TX.2.5.

Nested transactions are created using NestableTransaction methods:

package net.jini.core.transaction;

public interface NestableTransaction extends Transaction {
public static class Created implements Serializable {

public final NestableTransaction transaction;
public final Lease lease;
Created(NestableTransaction transaction, Lease lease)

{...}

}

Created create(long leaseFor) // §TX.2.2
throws UnknownTransactionException,

CannotJoinException, LeaseDeniedException,
RemoteException;

Created create(NestableTransactionManager mgr,

long leaseFor) // §TX.2.2
throws UnknownTransactionException,

219

220

JINI TRANSACTIONSPECIFICATIONTHE

CannotJoinException, LeaseDeniedException,

RemoteException;

}

The Created nested class is used to hold two return values: the newly created
Transaction object and the transaction’s lease, which is the lease granted by the
transaction manager. In both create methods, leaseFor is the requested lease
time in milliseconds. In the one-parameter create method the nested transaction
is created with the same transaction manager as the transaction on which the
method is invoked. The other create method can be used to specify a different
transaction managerto usefor the nested transaction.

TX.3.2 TransactionFactory Class

The TransactionFactoryclass is used to create top-level transactions.

package net.jini.core.transaction;

public class TransactionFactory f
public static Transaction.Created

create(TransactionManager mgr, long leaseFor)
// 8TX.2.1

throws LeaseDeniedException, RemoteException {...}

public static NestableTransaction. Created
create(NestableTransactionManager mgr,long leaseFor)

/f §TX.2.2

throws LeaseDeniedException, RemoteException {...}

}

The first create method is usually used when nested transactions are not
required. However, if the manager that is passed to this method is in fact a
NestableTransactionManager, then the returned Transaction can in fact be
cast to a NestableTransaction. The second create method is used whenit is

known that nested transactions need to be created. In both cases, a Created

instance is used to hold two return values: the newly created transaction object
and the granted lease.

=:
|

séK

8s=
=7]

220

221

310 ServerTransaction ANDNestableServerTransaction CLASSES

TX.3.3 ServerTransaction and Nestab! eServerTransaction
Classes

ee The ServerTransaction class exposes functionality necessary for writing partic-
i ipants that support top-level transactions. Participants can cast a Transaction toa

ServerTransactionto obtain access to this functionality.

itl public class ServerTransaction
implements Transaction, Serializable

| {
i public final TransactionManager mgr;

public final long id;
public ServerTransaction(TransactionManager mgr, long id)

{...$

public void join(TransactionParticipant part,
Jong crashCount) // §1X.2.3

throws UnknownTransactionException,
CannotJoinException, CrashCountException,
RemoteException {...}

public int getStateQ) // §TX.2.7
throws UnknownTransactionException, RemoteException
{...}

public boolean isNestedQ) {..} // §1X.3.3
3

The mgr field is a referenceto the transaction manager that created the transaction.
The id field is the transaction identifier returned by the transaction manager’s
create method.

The constructor should not be used directly; it is intended for use by the
TransactionFactory implementation.

The methods join, commit, abort, and getState invoke the corresponding
methods on the manager,passing the transaction identifier. They are provided as a
convenience to the programmer, primarily to eliminate the possibility of passing
an identifier to the wrong manager. For example, given a ServerTransaction
object tr, the invocation

tr.join(participant, crashCount) ;

is equivalentto

tr.mgr.join(tr.id, participant, crashCount);

i The isNested method returns true if the transaction is a nested transaction
(that is, if it is a NestableServerTransaction with a non-null parent) and

221

222

THE JINI TRANSACTION SPECIFICATION

false otherwise. It is provided as a method on ServerTransactionfor the con-
venience of participants that do not support nestedtransactions.

The hashCode method returns the id cast to an int XORed with the result of

mgr.hashCode(). The equals method returns true if the specified object is a
ServerTransaction object with the same manager andtransaction identifier as
the object on whichit is invoked.

The NestableServerTransaction class exposes functionality that is neces-

sary for writing participants that support nested transactions. Participants can cast
a NestableTransaction to a NestableServerTransaction to obtain access to
this functionality.

package net.jini.core.transaction. server;

public class NestableServerTransaction
extendsServerTransaction implements NestableTransaction

public final NestableServerTransaction parent;
public NestableServerTransaction(

NestableTransactionManager mgr, long id,
NestableServerTransaction parent) {...}

public void promote(TransactionParticipant[] parts,
long[] crashCounts,
TransactionParticipant drop)

// §TX.2.7

throws UnknownTransactionException,

CannotJoinException, CrashCountException,

RemoteException {..}
public boolean enclasedBy(NestableTransaction enclosing)

{...}

i

The parent field is a reference to the parent transactionif the transaction is nested
(§TX.2.2) or nu11 ifit is a top-level transaction.

The constructor should not be used directly; it is intended for use by the
TransactionFactory and NestableServerTransaction implementations.

Given a NestableServerTransaction object tr, the invocation

tr.promote(parts, crashCounts, drop)

is equivalent to

((NestableTransactionManager)tr.mgr).promote(tr.id, parts,
crashCounts, drop)

222

(XD) STSRecAB

