
1 APPLE 1020

INIW

A Collection of JiniTM

Technology Helper
Utilities and Services

Specifications

This Collection of JiniTM Technology Helper Utilities and

Services Specifications defines a set ofstandard helper utilities

and services which extend the Jini Technology Core Platform.

These helperutilities and services encapsulate desirable

behaviors in the form ofa set ofreusable components that can be

used to help simplify the process ofdeveloping Jini technology-

enabled clients and services (Jim' clients andservices) for the Jini

technology application environment. Employing these utilities
and services to build such desirable behavior into a Jini client or

service can help to avoid poor design and implementation

decisions, greatly simplifying the development process.

®
«Mun

microsystems

Version 1.1
October 2000

1 APPLE 1020

2

ii

Copyright © 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA.

All rights reserved.

Sun Microsystems, Inc. has intellectual property rights (“Sun IPR”) relating to implementations of the technology
described in this publication (“the Technology”). In particular, and without limitation, Sun IPR may include one or more
patents or patent applications in the US. or other countries. Your limited right to use this publication does not grant you any
right or license to Sun IPR nor any right or license to implement the Technology. Sun may, in its sole discretion, make
available a limited license to Sun IPR and/or to the Technology under a separate license agreement. Please visit http://
WWW.sun.com/software/communitysource/ .

Sun, the Sun logo, Sun Microsystems, Jini, the Jini logo, JavaSpaces, Java, and JavaBeans are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN ANY TECHNOLOGY, PRODUCT, OR PROGRAM DESCRIBED IN
THIS SPECIFICATION AT ANY TIME.

3

Contents

US Introduction to Helper Utilities and Services 1

US.1 Summary .. 1

US.2 Terminology ... 3
US.2.1 Terms Related to Discovery and Join 3
US.2.2 Jini Clients and Services 4

US.2.3 Helper Service 4

US.2.4 Helper Utility .. 5

US.2.5 Managed Sets .. 5

US.2.6 What Exceptions Imply about Future Behavior 5

US.2.7 Unavailable Lookup Services 7

US.2.8 Discarding a Lookup Service 8
US.2.8.1 Active Communication Discarded Event 8

US.2.8.2 Active No-Interest Discarded Event 9

US.2.8.3 Passive Communication Discarded Event 9

US.2.8.4 Passive No-Interest Discarded Event 9

US.2.8.5 Changed Event 10

US.2.8.6 Remote Objects, Stubs, and Proxies 10
US.2.9 Activation ... 12

US.3 Introduction to the Helper Utilities 13
US.3.1 The Discovery Utilities 13

US.3.1.1 The D'i scove ryManagement Interface 14

US.3.1.2 The D1" scove ryGroupManagement Interface 14

US.3.1.3 The D'i scoveryLocatorManagement Interface . . . 14

US.3.1.4 The LookupD‘i scove ry Helper Utility 14

US.3.1.5 The LookupLocatorDi scovery Helper Utility . . . 15

US.3.1.6 The LookupD‘i scoveryManager Helper Utility . . . 15
US.3.1.7 The Constants Class 15

US.3.1.8 The Outgoi ngMul t1" castRequest Utility 15

US.3.1.9 The Incom‘i ngMu'l t'i castRequest Utility 15

US.3.1.10 The Outgoi ngMul t1" castAnnouncement Utility . . 16

4

iv

[38.31.11 The Incomi ngMul ti castAnnouncement Utility . 16

US.3.1.12 The Outgoi ngUni castRequest Utility 16

[38.31.13 The Incomi ngUm' castRequest Utility 16

[38.31.14 The Outgoi ngUm' castResponse Utility 16

US.3.1.15 The Incomi ngUni castResponse Utility 16
US.3.2 The Lease Utilities 17

US.3.2.1 The LeaseRenewal Manager Helper Utility 17
US.3.3 The Join Utilities 17

[38.3.3.1 The 301' nManager Helper Utility l7

US.3.4 The Service Discovery Utilities 18

[38.341 The Se rvi ceDi scoveryManager Helper Utility. . 18

USA Introduction to the Helper Services 19
US.4.1 The Lookup Discovery Service l9
US.4.2 The Lease Renewal Service 19

US.4.3 The Event Mailbox Service 20

USS Dependencies ... 21

DU Jini Discovery Utilities Specification 23

DU.1 Introduction .. 23

DU.1.1 Dependencies 23

DU.2 The Discovery Management Interfaces 25
DU.2.1 Overview .. 25

DU.2.2 Other Types .. 26

DU.2.3 The D1" scove ryManagement Interface 27
DU.2.3.1 The Semantics 27

DU.2.4 The D1" scove ryGroupManagement Interface 30
DU.2.4.1 The Semantics 30

DU.2.5 The D'i scove ryLocatorManagement Interface 32
DU.2.5.1 The Semantics 33

DU.2.6 Supporting Interfaces and Classes 34

DU.2.6.1 The Di scoveryL‘i stener Interface 34

DU.2.6.2 The D1' scoveryChangeLi stener Interface 35

DU.2.6.3 The Di scoveryEvent Class 36
DU.2.7 Serialized Forms 38

DU.3 LookupD'i scover'y Utility 39
DU.3.1 Other Types .. 39
DU.3.2 The Interface 40

DU.3.3 The Semantics 40

DU.3.4 Supporting Interfaces and Classes 41

DU.3.4.1 The D1' scove ryManagement Interfaces 41

DU.3.4.2 Security and Multicast Discovery: The

D1" scove ryPe mi 551' on Class 42
DU.3.5 Serialized Forms 43

5

DU.4 The LookupLocator'Di scover'y Utility 45

DU.5

DU.6

DU.4.1 Overview .. 45

DU.4.2 Other Types .. 46
DU.4.3 The Interface 46

DU.4.4 The Semantics 47

DU.4.5 Supporting Interfaces 48

DU.4.5.1 The Di scove ryManagement Interfaces 48

The LookupDi scover'yManager' Utility 49
DU.5.1 Overview .. 49

DU.5.2 Other Types .. 49
DU.5.3 The Interface 50

DU.5.4 The Semantics 50

DU.5.5 Supporting Interfaces and Classes 53

DU.5.5.1 The Di scove ryManagement Interfaces 53

DU.5.5.2 Security and Multicast Discovery: The

Di scoveryPermission Class 53

Low-Level Discovery Protocol Utilities 55
DU.6.1 The Constants Class 55

DL'.6.1.1 Overview 55

DU.6.1.2 Other Types 55
DU.6.1.3 The Class Definition 56

DL'.6.1.4 The Semantics 56

DU.6.2 The Outgoi ngMuI ti castRequest Utility 57
DU.6.2.1 Overview 57

DL'.6.2.2 Other Types 57
DL'.6.2.3 The Interface 57

DU.6.2.4 The Semantics 58

DU.6.3 The Incomi ngMuI ti castRequest Utility 58
DL'.6.3.1 Overview 58

DU.6.3.2 Other Types 59
DU.6.3.3 The Interface 59

DL'.6.3.4 The Semantics 59

DU.6.4 The Outgoi ngMuI ti castAnnouncement Utility 60
DU.6.4.1 Overview 60

DL'.6.4.2 Other Types 60
DL'.6.4.3 The Interface 61

DU.6.4.4 The Semantics 61

DU.6.5 The Incomi ngMuI ti castAnnouncement Utility 62
DL'.6.5.1 Overview 62

DL'.6.5.2 Other Types 62
DU.6.5.3 The Interface 63

DL'.6.5.4 The Semantics 63

DU.6.6 The Outgoi ngUni castRequest Utility 64
DU.6.6.1 Overview 64

DU.6.6.2 Other Types 64

6

vi

DU.6.6.3 The Interface 64

DU.6.6.4 The Semantics 64

DU.6.7 The Incomi ngUn1' castRequest Utility 65
DU.6.7.1 Overview 65

DU.6.7.2 Other Types 65
DU.6.7.3 The Interface 65

DU.6.7.4 The Semantics 66

DU.6.8 The Outgoi ngUn'i castResponse Utility 66
DU.6.8.1 Overview 66

DU.6.8.2 Other Types 66
DU.6.8.3 The Interface 67

DU.6.8.4 The Semantics 67

DU.6.9 The Incomi ngUn1' castResponse Utility 68
DU.6.9.1 Overview 68

DU.6.9.2 Other Types 68
DU.6.9.3 The Interface 68

DU.6.9.4 The Semantics 68

EU Jini Entry Utilities Specification 71

EU.1 Entry Utilities .. 71
EU.1.1 AbstractEntry 71

EU.1.2 Serialized Form 72

LM Jini Lease Utilities Specification 73

LM.1 Introduction .. 73

LM.2 The LeaseRenewa'l Manager 75

LM.2.1 Other Types .. 76

LM.3 The Interface ... 77

LM.4 The Semantics .. 79

LM.5 Supporting Interfaces and Classes 87
LM.5.1 The LeaseL'i stener Interface 87

LM.5.1.1 The Semantics 88

LM.5.2 The Desi redExpi rationLi stener Interface 88
LM.5.2.1 The Semantics 89

LM.5.3 The LeaseRenewal Event Class 89

LM.5.3.1 The Semantics 90

LM.5.4 Serialized Forms 91

JU Jini Join Utilities Specification 93

JU.1 Introduction .. 93

JU.2 The Jo-i nManager' 95

JU.2.1 Other Types .. 96

7

JU.3 The Interface ... 97

JU.4 The Semantics .. 99

JU.5 Supporting Interfaces and Classes 105
JU.5.1 The D1' scove ryManagement Interface 105
IU.5.2 The Se rvi ceIDLi stener Interface 106

SD Jini Service Discovery Utilities Specification 107

SD.1 Introduction .. 107

SD.2 The Ser'V'i ceD'i scover'yManager' 109

SD.2.1 The Object Types 111

SD.3 The Interface ... 113

SD.4 The Semantics .. 115

SD.4.1 The Methods 115

SD.4.1.1 The Constructor 115

SD.4.1.2 The createLookupCache Method 116

SD.4.1.3 The ‘Iookup Method 120

SD.4.1.4 The getDi scove ryManager Method 123

SD.4.1.5 The getLeaseRenewa'l Manager Method 124
SD.4.1.6 The terminate Method 124

SD.4.2 Defining Service Equality 125

SD.4.3 Exporting RemoteEventL'i stener Objects 126

SD.5 Supporting Interfaces and Classes 129
SD.5.1 The Di scove ryManagement Interface 129
SD.5.2 The Se rvi ceItemFi 1 ter Interface 130

SD.5.2.1 The Semantics 131

SD.5.3 The Se rV'i ceD'i scoveryEvent Class 131
SD.5.3.1 The Semantics 132

SD.5.4 The Se rV'i ceD'i scoveryL'i stener Interface 133

SD.5.4.1 The Semantics 133

SD.5.5 The LookupCache Interface 135
SD.5.5.1 The Semantics 135

LS Jini Lookup Attribute Schema Specification 141

LS.1 Introduction... 141

LS.1.1 Terminology 142

LS.1.2 Design Issues 142

LS.1.3 Dependencies 143

LS.2 Human Access to Attributes 145

L821 Providing a Single View of an Attribute’s Value 145

LS.3 JavaBeans Components and Design Patterns 147
L831 Allowing Display and Modification of Attributes 147

LS.3.1.1 Using JavaBeans Components with Entry Classes 147

vii

8

viii

LS.3.2 Associating JavaBeans Components with Entry Classes 148

LS.3.3 Supporting Interfaces and Classes 150

LS.4 Generic Attribute Classes 151

L841 Indicating User Modifiability 151
LS.4.2 Basic Service Information 151

LS.4.3 More Specific Information 153

LS.4.4 Naming a Service 154

LS.4.5 Adding a Comment to a Service 154

LS.4.6 Physical Location 155
LS.4.7 Status Information 156

LS.4.8 Serialized Forms 157

LD Jini Lookup Discovery Service 159

LD.1 Introduction ... 159

LD.1.1 Goals and Requirements 162

LD.1.2 Other Types 162

LD.2 The Interface .. 163

LD.3 The Semantics ... 165

LD.3.1 Registration Semantics 165
LD.3.2 Event Semantics 168

LD.3.3 Leasing Semantics 170

LD.4 Supporting Interfaces and Classes 171
LD.4.1 The LookupDi scove ryRegi st ration Interface 171

LD.4.1.1 The Semantics 173

LD.4.2 The RemoteD‘i scove ryEvent Class 180
LD.4.2.1 The Semantics 182

LD.4.2.2 Serialized Forms 184

LD.4.3 The LookupUnmarshal Exception Class 184
LD.4.3.1 The Semantics 186

LD.4.3.2 Serialized Forms 187

LR Jini Lease Renewal Service Specification 189

LR.1 Introduction ... 189

LR.1.1 Goals and Requirements 190

LR.1.2 Other Types 191

LR.2 The Interface .. 193

LR.2.1 Events ... 200

LR.2.2 Serialized Forms 204

EM Jini Event Mailbox Service Specification 205

EM.1 Introduction ... 205

EM.1.1 Goals and Requirements 206

9

EM.1.2 Other Types 206

EM.2 The Interface ... 207

EM.3 The Semantics .. 209

EM.4 Supporting Interfaces and Classes 211
EM.4.1 The Semantics 212

ix

1010

11

US

Introduction to Helper
Utilities and Services

US.1 Summary

WHEN developing clients and services that will participate in the application
environment for JiniTM technology, there are a number of behaviors that the devel-

oper may find desirable to incorporate in the client or service. Some of these

behaviors may satisfy requirements described in the specifications of various Jini

technology components; some behaviors may simply represent design practices

that are desirable and should be encouraged. Examples of the sort of behavior that

is required or desirable include the following:

9 It is a requirement of the Jini discovery protocols that a service must con-

tinue to listen for and act on announcements from lookup services in which

the service has registered interest.

9 It is a requirement ofthe Jini discovery protocols that, until successful, a ser-

vice must continue to attempt to join the specific lookup services with which

it has been configured to join.

9 Under many conditions, a Jini technology-enabled client (Jim' client) or ser-

vice will wish to regularly renew leases that it holds. For example, when a

Jini technology-enabled service (Jim' service) registers with a Jini lookup

service, the service is requesting residency in the lookup service. Residency

in a lookup service is a leased resource. Thus, when the requested residency

is granted, the lookup service also imposes a lease on that residency. Typi-

cally, such a registered service will wish to extend the lease on its residency

11

12

SUMMAR Y

beyond the original expiration time, resulting in a need to renew the lease on

a regular basis.

9 Many Jini services will need to maintain a dormant (inactive) state, becom-

ing active only when needed.

9 Many Jini clients and services will need to have a mechanism for finding and

managing Jini services.

0 Many Jini clients and services will find it desirable to employ a separate ser-

vice that will handle events, in some useful way, on behalfof the participant.

To help simplify the process of developing clients and services for the appli-

cation environment for Jini technology (Jini application environment), several

specifications in this document collection define reusable components that encap-

sulate behaviors such as those outlined above. Employing such utilities and ser-

vices to build such desirable behavior into a Jini client or service can help to avoid

poor design and implementation decisions, greatly simplifying the development

process.

What is presented first is terminology that may be helpful when analyzing

these specifications. Following the section on terminology, brief summaries of the

content of each of the current helper utilities and services specifications are pro-

vided. Finally, the other specifications on which these specifications depend are
listed for reference.

12

13

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 3

US.2 Terminology

THIS section defines terms and discusses concepts that may be referenced
throughout the helper utilities and services specifications. While the terms and

concepts that appear in this section are general in nature and may apply to multi-

ple components specified in this collection, each specification may define addi-

tional terms and concepts to further facilitate the understanding of a particular

component. Each specification may also present supplemental information about

some of the terms defined in this section and their relationship with the compo-

nent being specified.
Because this document makes use of a number of terms defined in the “JiniTM

Technology Glossary”, reviewing the glossary is recommended. A number of the

terms defined in the glossary are also defined in this section to provide easy refer-

ence because those terms are used extensively in the helper utilities and services

specifications. Additionally, this section augments the definitions of some of the

terms from the glossary with details relevant to those specifications.

In addition to the glossary, the JiniTM Technology Core Platform Specification

(referred to as the core specification) presents detailed definitions of a number of

terms and concepts appearing both in this section and throughout the helper utili-

ties and services specifications. When appropriate, the relevant specification will
be referenced.

US.2.1 Terms Related to Discovery and Join

The Jini Technology Core Platform Specification, “Discovery and Join ”, defines a

discovering entity as one or more cooperating software objects written in the

JavaTM programming language (Java software objects), executing on the same

host, that are in the process of obtaining references to Jini lookup services. That

specification also defines a joining entity as one or more cooperating Java soft-

ware objects, on the same host, that have received a reference to a lookup service

and are in the process of obtaining services from, and possibly exporting services

to, a federation of Jini technology-enabled services and/or devices and Jini lookup

services referred to as a aj'inn. The lookup services comprising a djinn may be

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

13

14

TERMINOLOGY

organized into one or more sets known as groups. Multiple groups may or may not

be disjoint. Each group of lookup services is identified by a logical name repre-

sented by a St ri ng object.

The Jini Technology Core Platform Specification, “Discovery and Join”

defines two protocols used in the discovery process: the multicast discoveryproto-

col and the unicast discovery protocol.

When a discovering entity employs the multicast discovery protocol to dis-

cover lookup services that are members of one or more groups belonging to a set

of groups, that discovery process is referred to as group discovery.

The utility class net.j1'n1' .core.d1' scovery. LookupLocator is defined in

The Jini Technology Core Platform Specification, “Discovery and Join”. Any

instance of that class is referred to as a locator. When a discovering entity

employs the unicast discovery protocol to discover specific lookup services, each

corresponding to an element in a set of locators, that discovery process is referred

to as locator discovery.

US.2.2 Jini Clients and Services

For the purposes of the helper utilities and services specifications, a Jini client is

defined as a discovering entity that can retrieve a service (or a remote reference to

a service) registered with a discovered lookup service and invoke the methods of

the service to meet the entity’s requirements. An entity that acts only as a client

never registers with (requests residency in) a lookup service.

A Jini service is defined as both a discovering and a joining entity containing

methods that may be of use to some other Jini client or service, and which regis-

ters with discovered lookup services to provide access to those methods. Note that
a Jini service can also act as a Jini client.

The term client-like entity may be used, in general, when referring to Jini cli-
ents and Jini services that act as clients.

Note that when the term entity is used, that term may be referring to a discov-

ering entity, a joining entity, a client-like entity, a service, or some combination of

these types of entities. Whenever that general term is used, it should be clear from

the context what type of entity is being discussed.

US.2.3 Helper Service

A Jini technology-enabled helper service is defined in this document as an inter-

face or set of interfaces, with an associated implementation, that encapsulates

behavior that is either required or highly desirable in service entities that adhere to

14

15

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1

the Jini technology programming model (or simply the Jini programming model).

A helper service is a Jini service that can be registered with any number of lookup
services and whose methods can execute on remote hosts.

In general, a helper service should be of use to more than one type of entity

participating in the Jini application environment and should provide a significant

reduction in development complexity for developers of such entities.

US.2.4 Helper Utility

This document distinguishes between a helper utility and a helper service. Helper

utilities are programming components that can be used during the construction of

Jini services and/or clients. Helper utilities are not remote and do not register with

a lookup service. Helper utilities are instantiated locally by entities wishing to

employ them.

US.2.5 Managed Sets

When performing discovery duties, entities will often maintain references to dis-

covered lookup services in a set referred to as the managed set oflookup services.

The entity may also maintain two other notable sets: the managed set ofgroups

and the managed set aflocators.

Each element of the managed set of groups is a name of a group whose mem-

bers are lookup services that the entity wishes to be discovered via group discov-

ery. The managed set of groups is typically represented as a String array, or a

Co11ect1'on of Stri ng elements.

Each element of the managed set of locators corresponds to a specific lookup

service that the entity wishes to be discovered Via locator discovery. Typically, this

set is represented as an array of net .j1'n1' .core . d1' scove ry. LookupLocator

objects or some other C01 1 ecti on type whose elements are LookupLocator

objects.

Note that when the general term managed set is used, it should be clear from

the context whether groups, locators, or lookup services are being discussed.

US.2.6 What Exceptions Imply about Future Behavior

When interacting with a remote object, an entity may call methods that result in

exceptions. The specification of those methods should define what each possible

exception implies (if anything) about the current state of the object. One important

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

15

16

TERMINOLOGY

aspect of an object’s state is whether or not fiirther interactions with the object are

likely to be fruitfiJl. Throughout the helper utilities and services specifications, the

following general terms may be used to classify what a given exception implies

about the probability of success of future operations on the object that threw the

exception:

0 Bad object exception: If a method invocation on an object throws a bad

object exception, it can be assumed that any further operations on that object
will also fail.

9 Bad invocation exception: If a method invocation on an object throws a bad

invocation exception, it can be assumed that any retries of the same method

with the same arguments that are expected to return the same value will also

fail. No new assertions can be made about the probability of success of any

future invocation of that method with different arguments or if a different

return value is expected, nor can any new assertions be made about the prob-

ability of success of invocations of the object’s other methods.

0 Indefinite exception: Ifa method invocation on an object throws an indefinite

exception, no new assertions can be made about the probability of success of

any future invocation of that method, regardless of the arguments used or

return value expected, nor can any new assertions be made about the proba-

bility of success of any other operation on the same object.

Unless otherwise noted, the throwing of a bad object, bad invocation, or indef-

inite exception by one object does not imply anything about the state of another

object, even if both objects are associated with the same remote entity.

These terms can be used in the specification of a method to describe the mean-

ing of exceptions that might be thrown, as well as in the specification of what a

given utility or service will, may, or should do when it receives an exception in the

course of interacting with a given object.

If a specification does not say otherwise, the following classification is used to

categorize each RuntimeException, Error, or java. rmi .RemoteExceptions as

a bad object, bad invocation, or indefinite exception:

0 Bad object exceptions:

' Any java. 1ang . Runt‘imeExcepti on

‘ Any java. 1ang . Error except one that is a java. 1 ang . L1' nkageError or

java. 1 ang .OutOfMemoryError

‘ Any java. rm1' .NoSuchObjectExcepti on

16

17

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 7

a Any java. rm1' .Ser‘verEr‘ror‘ with a detail field that is a bad object

exception

‘ Any java. rmi . Se rverExcepti on with a detail field that is a bad object

exception

9 Bad invocation exceptions:

‘ Any java.rmi.MarshalException with a detail field that is a

java.1'o.0bjectStreamExcept1'on

‘ Any java.rmi.Unmarsha1 Exception with a detail field that is a

java.1'o.0bjectStreamExcept1'on

‘ Any java. rmi . Se rverExcepti on with a detail field that is a bad invo-

cation exception

9 Indefinite exceptions

‘ Any java.1ang.0utOfMemoryError

' Any java.1ang . L1' nkageError

' Any java. rm1' .RemoteException except those that can be classified as

either a bad invocation or bad object exception

US.2.7 Unavailable Lookup Services

While interacting (or attempting to interact) with a lookup service, an entity may

encounter one of the exception types described in the previous section. When the

entity does receive such an exception, what may be concluded about the state of

the lookup service is dependent on the type of exception encountered.

If an entity encounters a bad object exception while interacting with a lookup

service, the entity can usually conclude that the associated proxy it holds can no

longer be used to interact with the lookup service. This can be due to any number

of reasons. For example, if the lookup service is administratively destroyed, the

old proxy will never be capable of communicating with any new incarnations of

the lookup service, allowing the entity to dispose of the old proxy since it is no

longer of any use to the entity.

If an indefinite exception occurs while interacting with a lookup service, the

entity can interpret such an occurrence as a communication failure that may or

may not be only temporary.

Finally, entities that encounter a bad invocation exception while interacting

with a lookup service should view the lookup service as being in an unknown,

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

17

18

TERMINOLOGY

possibly corrupt state, and should discontinue further interaction with that lookup

service until the problem is resolved.

Whenever an entity receives any of these exceptions while interacting with a

lookup service, the affected lookup service is referred to as unavailable or

unreachable. For most entities the unavailability of a particular lookup service

should not prevent the entity from continuing its processing, although in other sit-

uations an entity might consider at least some of these exceptional conditions

unrecoverable. In general, when an entity encounters an unreachable lookup ser-

vice, the exception or error indicating that the lookup service is unavailable should

be caught and handled, usually by requesting that the lookup service be discarded

(see the next section), and the entity should continue its processing.

US.2.8 Discarding a Lookup Service

When an already discovered lookup service is removed from the managed set of

lookup services, it is said to be discarded. The process of discarding a lookup ser-

vice is initiated either directly or indirectly by the discovering entity itself or by

the utility that the entity employs to perform the actual discovery duties.

Whenever a lookup service is discarded by a utility employed by the entity,

the utility sends to all of the entity’s discovery listeners, a notification event refer-

encing both the discarded lookup service and the member groups to which the

lookup service belongs. This event is referred to as a discarded event. It may be

useful to note that discarded events can be classified by two characteristics:

9 Whether the event was generated as a direct consequence of an explicit

request made by the entity itself (active) or as a consequence of a determi-

nation made by some utility employed by the entity (passive)

0 Whether the event is related to communication problems or to the entity los-

ing interest in discovering the affected lookup services

US.2.8.1 Active Communication Discarded Event

When the occurrence of exceptional conditions causes an entity to conclude that a

lookup service is unreachable, the entity typically will request that the lookup ser-

vice be discarded. When the entity itself requests that such an unreachable lookup

service be discarded, the resulting discarded event may be referred to as an active

communication discarded event. The term active is used because the entity takes

specific action to request that the lookup service be discarded. Because the entity

18

19

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 9

cannot communicate with the unreachable lockup service, the event is associated
with communication.

US.2.8.2 Active No—Interest Discarded Event

Whenever the entity makes a request that results in the removal of an element

from the relevant managed set of groups or locators, one or more of the lookup

services associated with the removed groups or locators may be discarded—even

though the lookup services are still reachable. The lookup services may be dis-

carded in this situation because the contents of the sets of groups and locators the

entity wishes to discover may have changed in such a way that one or more of the

previously discovered lookup services are no longer of interest to the entity. In this

case, if any already discovered lookup service is found to belong to none of the

groups in the new managed set of groups or if its locator no longer belongs to the

entity’s new managed set of locators, a discarded event is generated and sent to all

of the entity’s discovery listeners. This type of discarded event may be referred to

as an active no-interest discarded event (active because the entity itself executed

an action that resulted in the discarding of one or more lookup services).

US.2.8.3 Passive Communication Discarded Event

If the utility that the entity uses to perform group (multicast) discovery determines

that one of the previously discovered lookup services has stopped sending multi-

cast announcements, that utility may discard the lookup service. That is, the utility

may remove the lookup service from the managed set and send a discarded event

to notify the entity that the lookup service is unavailable. The discarded event sent

in this situation is often referred to as a passive communication discarded event.

US.2.8.4 Passive No-Interest Discarded Event

If the utility that the entity uses to perform group discovery determines that the

member groups of one of the previously discovered lookup services has changed,

the utility may discard that lookup service. The lookup service may be discarded

in this situation because the lookup service may no longer be a member of any of

the groups the entity wishes to discover; that is, the lookup service is no longer of

interest to the entity. In this case, the utility sends a discarded event to all of the

entity’s discovery listeners. This type of discarded event may be referred to as a

passive no—interest discarded event (passive because the entity itself did not

explicitly request that the lookup service be discarded).

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

19

20

10 TERMINOLOGY

If a lookup service is discarded because it was found to be unreachable (asso-

ciated with a communication discarded event), that lookup service will be made

eligible for rediscovery. In this case, the process of discarding a lookup service—

either actively or passively—can be viewed as a mechanism for the removal of

stale entries in the managed set of lookup services. Discarding such a lookup ser-

vice removes the need for operations such as lease renewal attempts on a lookup

service that is currently unavailable. Upon rediscovery of the discarded lookup

service, the entity typically processes the rediscovered lookup service as if it were
discovered for the first time.

Any lookup service corresponding to a no-interest discarded event is no

longer eligible for discovery until one of the following occurs:

9 The entity changes its managed set of locators or its managed set of groups

to include, either the discarded lookup service’s locator or at least one of its

member groups respectively.

0 The set of member groups of the discarded lookup service is changed to

include one or more of the groups the entity is currently interested in discov-

ering.

US.2.8.5 Changed Event

An event related to the discarded event is referred to as a changed event. This

event notifies the entity of changes in the contents of the member groups of one or

more of the lookup services in the managed set. If the entity registers interest in

such an event and if the utility that the entity uses to perform group discovery

determines that one or more of those member group sets has indeed changed, then

a changed event is sent.

US.2.8.6 Remote Objects, Stubs, and Proxies

The “JiniTM Technology Glossary” defines a remote object as an object whose

methods can be invoked from a Java virtual machine (JVM)1, potentially on a dif-

ferent host. Furthermore, the glossary states that such an object is described by

one or more remote interfaces.

When invoking methods remotely through Java Remote Method Invocation

(RMI), it is useful to think of the invocation as consisting of two components: a

client component and a server component. When the client component initiates a

1 The terms “Java virtual machine” or “JVM” mean a virtual machine for the Java platform.

20

21

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 1 1

remote method call, the server component carries out the execution of the remote

method, and RMI facilitates the necessary communication between the two par-

ties. Note that in discussing concepts related to RMI, the term server (or remote

server) is sometimes used in place of the term remote object.

To initiate an invocation of a remote method, the client must have access to an

object referred to as the stub of the remote object. The stub is an object local to the

client that acts as the “representative” of the remote object. The stub implements

the same set of remote interfaces that the remote object implements. From the

point of view of the client, the stub is the remote object. When the client invokes a

method on the local stub, communication with the remote object occurs, resulting

in the execution of the corresponding method in the remote object’s JVM.

The termproxy is used extensively throughout the helper utilities and services

specifications. With respect to remote objects in general, and entities operating

within a Jini application environment in particular, a proxy is simply an intermedi-

ary object through which one entity (the client) may request the invocation of the

methods provided by another entity (the remote object or the service).

Proxies can take a number of different forms. A smartproxy typically consists

of a set of local methods and a set of one or more remote object references (stubs).
Clients invoke one or more of the local methods to access the methods of the

remote objects referenced in the proxy.

Another form that a proxy can take is that of the stub of a remote object. That

is, all stubs are simply proxies to their corresponding remote objects. Except for

the local methods equals and hashCode, this type of proxy consists of remote

methods only.

Some proxies are implemented as strictly local. Proxies of this form consist of

only local methods, each executing in the client’s JVM. Unlike smart proxies, no

remote invocations result when any method of a strictly local proxy is invoked.

Typically, Jini services provide a proxy that has one of the forms described

above. When a service registers with a lookup service, the service’s proxy is cop-

ied (through serialization) into the lookup service. When a client looks up the ser-

vice, the service’s proxy is downloaded to the client. The client can then invoke

the methods contained in the service’s proxy. If the invoked method is a local

method, then execution will occur in the JVM of the client. If the invoked method

is a remote method (or results in a remote invocation), then execution is initiated

in the client’s JVM, but ultimately occurs in the JVM of the service.

Note that the term front-end proxy (or simply front end) is often used inter-

changeably with the term proxy. Similarly, the term back-end server (or simply,

back end) is often used interchangeably with the term remote object. Thus, the

back end of a service is the part of the service’s implementation that satisfies the
contract advertised in the service’s remote interface.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

21

22

12 TERMINOLOGY

US.2.9 Activation

The glossary defines active object as a remote object that is instantiated and

exported in a JVM on some system. Remote objects can be implemented with the

ability to change their state from inactive to active, or from active to inactive; the

process of doing so is referred to as activation or deactivation, respectively. Many

Jini services that wish to conserve computational resources may find this capabil-

ity desirable. When the back end of any Jini service is implemented with the abil-

ity to activate and deactivate, the service is referred to as an activatable service.

Refer to the JavaTM Remote Method Invocation Specification for the details of
activation.

22

23

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 13

US.3 Introduction to the Helper Utilities

US.3.1 The Discovery Utilities

THE Jini Discovery Utilities Specification defines a set of general-purpose util-
ity interfaces collectively referred to as the discovery management interfaces.

Those interfaces define the policies to apply when implementing helper utilities

that manage an entity’s discovery duties. Currently, the set of discovery manage-

ment interfaces consists of the following three interfaces:

9 Di scove ryManagement

9 Di scoveryGroupManagement

9 Di scove ryLocato rManagement

Because the discovery management interfaces provide a uniform way to

define utility classes that perform discovery-related management duties on behalf

of an entity, the discovery utilities specification defines a number of helper utility

classes that implement one or more of these interfaces. Those classes are:

9 LookupDi scove ry

9 LookupLocator‘Di scovery

9 LookupDi scove ryManage r

The discovery utilities specification closes with a discussion of a set of low-

level utility classes that can be useful when applying the discovery management

policies to build higher-level helper utilities for discovery. Those classes are:

9 Constants

9 Outgoi ngMu'Iti castRequest

o Incomi ngMu'Iti castRequest

9 Outgoi ngMu'I ti castAnnouncement

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

23

24

14 INTRODUCTION TO THE HELPER UTILITIES

o Incom1' ngMu'Iti castAnnouncement

0 0utgo1' ngUnicastRequest

o Incom1' ngUnicastRequest

o Outgoi ngUnicastResponse

o Incom1'ngUn1' castResponse

US.3.1.1 The D'i scover'yManagement Interface

The Di scoveryManagement interface defines methods related to the discovery

event mechanism and discovery process termination. Through this interface an

entity can register or unregister Di scove ryL1' stener‘ objects to receive discovery

events, retrieve proxies to the currently discovered lookup services, discard a

lookup service so that it is eligible for rediscovery, or terminate the discovery pro-
cess.

US.3.1.2 The D-i scoveryGroupManagement Interface

The D1" scove r'yG roupManagement interface defines methods and constants related

to the management of the set containing the names of the groups whose members

are the lookup services that are to be discovered via group discovery. The methods

of this interface define how an entity retrieves or modifies the managed set of

groups to discover.

US.3.1.3 The D'i scoveryLocatorManagement Interface

The Di scove ryLocatorManagement interface defines methods related to the

management of the set of LookupLocator' objects corresponding to the specific

lookup services that are to be discovered via locator discovery. The methods of

this interface define how an entity retrieves or modifies the managed set of loca-
tors to discover.

US.3.1.4 The LookupD'i scove ry Helper Utility

The LookupDi scove ry helper utility encapsulates the functionality required of an

entity that wishes to employ multicast discovery to discover a lookup service

located within the entity’s multicast radius. This utility provides an implementa-

tion that makes the process of acquiring lookup service instances, based on no

24

25

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.]

information other than group membership, which is much simpler for both ser-
vices and clients.

US.3.1.5 The LookupLocatorD'i scover‘y Helper Utility

The LookupLocatorDi scove ry helper utility encapsulates the functionality

required of an entity that wishes to employ the unicast discovery protocol to dis-

cover a lookup service. This utility provides an implementation that makes the

process of finding specific instances of a lookup service much simpler for both
services and clients.

US.3.1.6 The LookupD'i scover'yManager' Helper Utility

The LookupDi scove ryManager is a helper utility class that organizes and man-

ages all discovery-related activities on behalf of a Jini client or service. Rather

than providing its own facility for coordinating and maintaining all of the neces-

sary state information related to group names, locators, and listeners, such an

entity can employ this class to provide those facilities on its behalf.

US.3.1.7 The Constants Class

The Constants class provides easy access to defined constants that may be useful

when participating in the discovery process.

US.3.1.8 The Outgoi ngMu'l t'i castRequest Utility

The Outgoi ngMu1 t1' castRequest class provides facilities for marshalling multi-

cast discovery requests into a form suitable for transmission over a network to

announce one’s interest in discovering a lookup service.

US.3.1.9 The Incom'i ngMu'l t'i castRequest Utility

The facilities provided by the Incomi ngMu'I t1" castRequest class encapsulate the

details of the process of unmarshalling received multicast discovery requests into

a form in which the individual parameters of the request may be easily accessed.

15

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

25

26

16 INTRODUCTION TO THE HELPER UTILITIES

US.3.1.10 The Outgoi ngMu'l t'icastAnnouncement Utility

The Outgoi ngMul ti castAnnouncement class encapsulates the details of the pro-

cess of marshalling multicast discovery announcements into a form suitable for

transmission over a network to announce the availability of a lookup service to

interested parties.

US.3.1.11 The Incom'i ngMu'l t'icastAnnouncement Utility

The Incom1' ngMul ti castAnnouncement class encapsulates the details of the pro-

cess of unmarshalling multicast discovery announcements into a form in which

the individual parameters of the announcement may be easily accessed.

US.3.1.12 The Outgoi ngUn‘icastRequest Utility

The Outgoi ngUnicastRequest class encapsulates the details of the process of

marshalling unicast discovery requests into a form suitable for transmission over a

network to attempt discovery of a specific lookup service.

US.3.1.13 The Incom'i ngUn‘icastRequest Utility

The Incom1' ngUnicastRequest class encapsulates the details of the process of

unmarshalling unicast discovery requests into a form in which the individual

parameters of the request may be easily accessed.

US.3.1.14 The Outgoi ngUn'icastResponse Utility

The Outgoi ngUni castResponse class encapsulates the details of the process of

marshalling a unicast discovery response into a form suitable for transmission

over a network to respond to a unicast discovery request.

US.3.1.15 The Incom'i ngUn‘icastResponse Utility

The Incom1' ngUm' castResponse class encapsulates the details of the process of

unmarshalling a unicast discovery response into a form in which the individual

parameters of the request may be easily accessed.

26

27

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1

US.3.2 The Lease Utilities

The Jini Lease Utilities Specification defines helper utility classes, along with sup-

porting interfaces and supporting classes, that encapsulate functionality which

provides for the coordination, systematic renewal, and overall management of a

set of leases associated with some object on behalf of another object. Currently,

this specification defines only one helper utility class:

9 LeaseRenewal Manage r

US.3.2.1 The LeaseRenewa'l Manager Helper Utility

The LeaseRenewal Manage r is a helper utility class that organizes and manages all

of the activities related to the renewal of the leases granted to a Jini client or ser-

vice by another Jini service. Rather than providing its own facility for coordinat-

ing and maintaining all of the necessary state information related to lease renewal,

such an entity can employ this class to provide those facilities on its behalf.

US.3.3 The Join Utilities

The Jini Join Utilities Specification defines helper utility classes, supporting inter-

faces, and supporting classes, that encapsulate functionality related to discovery

and registration interactions that a well-behaved Jini service will typically have

with a lookup service. Currently, this specification defines only one helper utility
class:

O 301' nManager

US.3.3.1 The Jo-inManager Helper Utility

The 301' nManager is a helper utility class that performs all of the functions related

to lookup service discovery, joining, lease renewal, and attribute management,

functions that the programming model requires of a well-behaved Jini service.

Rather than providing its own facility for providing such functions, a Jini service

can employ this class to provide those facilities on its behalf.

17

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

27

28

18 INTRODUCTION TO THE HELPER UTILITIES

US.3.4 The Service Discovery Utilities

The Jini Service Discovery Utilities Specification defines helper utility classes

(with supporting interfaces and classes) that encapsulate functionality that aids a

Jini service or client in acquiring services of interest, registered with the various

lookup services with which the service or client wishes to interact. Currently, the

service discovery utilities specification defines only one helper utility class:

9 Se rvi ceD1' scove ryManager

US.3.4.1 The ServiceD'i scoveryManager Helper Utility

The Se rvi ceD1' scove ryManager class is a helper utility class that any entity can

use to create and populate a cache of service references, and with which the entity

can register for notification of the availability of services of interest. Although the

Se rv1' ceD1' scove ryManager performs lookup discovery event handling for clients

and services, the primary functionality the Se rvi ceD1' scove ryManager provides

is service discovery and management.

The Se rv1' ceD1' scove ryManager class can be asked to “discover” services an

entity is interested in using and to cache the references to those services as each is

found. The cache can be viewed as a set of services that the entity can access

through a set of public, non-remote methods. The Se rv1' ceD1' scove ryManager

class also provides a mechanism for an entity to request notification when a ser-

vice of interest is discovered for the first time or has encountered a state change

(such as removal from all lookup services or attribute set changes).

For convenience, the Servi ceDiscoveryManager class also provides ver-

sions of a method named lookup, which employs invocation semantics similar to

the semantics of the lookup method of the Se rvi ceRegi st rar interface, speci-

fied in The Jini Technology Core Platform Specification, “Lookup Service”. Enti-

ties needing to find services on only an infrequent basis, or in which the cost of

making a remote call is outweighed by the overhead of maintaining a local cache

(for example, because of limited resources), may find this method useful.

All three mechanisms described above—local queries on the cache, service

discovery notification, and remote lookups—employ the same template-matching

scheme as that described in The Jini Technology Core Platform Specification,

“Lookup Service”. Additionally, each mechanism allows the entity to supply an

action object referred to as a filter. Such an object is a non-remote object that

defines additional matching criteria that will be applied when searching for the

entity’s services of interest. This filtering facility is particularly usefill to entities

that wish to extend the capabilities of the standard template-matching scheme.

28

29

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 19

US.4 Introduction to the Helper Services

US.4.1 The Lookup Discovery Service

UNDER certain circumstances, a discovering entity may find it useful to allow a
third party to perform the entity’s discovery duties. For example, an activatable

entity that wishes to deactivate may wish to employ a separate helper service to

perform discovery duties on the entity’s behalf. Such an entity may wish to deacti-

vate for various reasons, one being to conserve computational resources. While

the entity is deactivated, the helper service, running on the same or a separate

host, would employ the discovery protocols to find lookup services in which the

entity has expressed interest and would notify the entity when a previously

unavailable lookup service becomes available. Such a helper service is referred to

as a lookup discovery service.

The LookupDi scove rySe rv1' ce interface defines the lookup discovery helper

service. Through that interface, other Jini services and clients may request that

discovery processing be performed on their behalf.

US.4.2 The Lease Renewal Service

The lease renewal service—defined by the

net .j1'n1' .1ease . LeaseRenewal Se rvi ce interface—is a helper service that can

be employed by both Jini clients and services to perform all lease renewal duties

on their behalf. Services that wish to remain inactive until they are needed may

find the lease renewal service quite useful. Such a service can request that the

lease renewal service take on the responsibility of renewing the leases granted to

the service, and then safely deactivate without risking the loss of access to the

resources corresponding to the leases being renewed.
Entities that have continuous access to a network but that cannot be continu-

ously connected to that network (for example, a cell phone), may also find this

service usefiil. By allowing a lease renewal service (which can be continuously

connected) to renew the leases on the resources acquired by the entity, the entity

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

29

30

20 INTRODUCTION TO THE HELPER SERVICES

may remain disconnected until needed. This lease renewal service removes the

need to perform the discovery and lookup process each time the entity reconnects

to the network, potentially resulting in a significant increase in efficiency.

US.4.3 The Event Mailbox Service

The event mailbox service defined by the net. ji m' . event. EventMai 1 box inter-

face is a helper service that can be employed by entities to store event notifications

on their behalf. When an entity registers with the event mailbox service, that ser-

vice will collect events intended for the registered entity until the entity initiates

delivery of the events.

A service such as the event mailbox service can be particularly useful to enti-

ties that desire more control over the delivery of the events sent to them. Some

entities operating in a distributed system may find it undesirable or inefficient to

be contacted solely for the purpose of having an event delivered, preferring to

defer the delivery to a time that is more convenient, as determined by the entity
itself.

For example, an entity wishing to deactivate or detach from a network may

wish to have its events stored until the entity is available to retrieve them. Addi-

tionally, some entities may wish to batch process event notifications for eificiency.

In both scenarios, the entities described may find the event mailbox service useful

in achieving their respective event delivery goals.

30

31

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 21

US.5 Dependencies

THE helper utilities and services specifications rely on one or more of the fol-
lowing specifications:

. JavaTM Remote Method Invocation Specification

9 JavaTM Object Serialization Specification

9 JiniTM Technology Glossary

9 JiniTM Technology Core Platform Specification

‘ Section DJ “Discovery and Join”

' Section LE “Distributed Leasing”

‘ Section TX “Transaction”

‘ Section LU “Lookup Service”

9 Jini Lookup Attribute Schema Specification

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

31

32

22

32

DEPENDENCIES

33

DU

Jini Discovery Utilities

Specification

DU.1 Introduction

EACH discovering entity in a Java virtual machine (JVM)1 on a given host is
independently responsible for obtaining references to lookup services. In this

specification we first cover a set of discovery management interfaces that define

the policies to apply when implementing helper utilities that manage an entity’s

discovery duties: in particular, the management of multicast (group) discovery

and unicast (locator) discovery. After the discovery management interfaces are

defined, a set of standard helper utility classes that implement one or more of

those interfaces is presented. This specification closes with a discussion of a set of

lower-level utility classes that can be useful when applying the discovery manage-

ment policies to build higher-level helper utilities for discovery.

DU.1.1 Dependencies

This specification relies on the following other specifications:

9 Java Object Serialization Specification

9 The Jini Technology Core Platform Specification, “Lookup Service”

9 The Jini Technology Core Platform Specification, “Discovery and Join”

1 The terms “Java virtual machine” and “JVM” mean a virtual machine for the Java platform.

33

23

34

24

34

INTRODUCTION

35

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 25

DU.2 The Discovery Management Interfaces

DU.2.1 Overview

DISCOVERY is one behavior that is common to all entities wishing to interact
with a Jini lookup service. Whether an entity is a client, a service, or a service act-

ing as a client, the entity must first discover a lookup service, before the entity can

begin interacting with that lookup service.

The interfaces collectively referred to as the discovery management interfaces

specify sets of methods that define a mechanism that may be used to manage vari-

ous aspects of the discovery duties of entities that wish to participate in an appli-

cation environment for Jini technology (a Jini application environment). These

interfaces provide a uniform way to define utility classes that perform the neces-

sary discovery-related management duties on behalf of a client or service. Cur-

rently, there are three discovery management interfaces belonging to the package

net . j i ni .di scover‘y:

9 Di scove ryManagement

9 Di scoveryGroupManagement

9 Di scove ryLocato Management

The Di scove r'yManagement interface defines semantics for methods related

to the discovery event mechanism and discovery process termination. Through

this interface, an entity can register or un-register for discovery events, discard a

lookup service, or terminate the discovery process.

The Di scove ryGroupManagement interface defines methods related to the

management of the sets of lookup services that are to be discovered using the mul-

ticast discovery protocols (see The Jini Technology Core Platform Specification,

“Discovery and Join”). The methods of this interface define how an entity

accesses or modifies the set of groups whose members are lookup services that the

entity is interested in discovering through group discovery.

The Di scove ryLocato rManagement interface defines methods related to the

management of the set of lookup services that are to be discovered using the uni-

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

35

36

26 THE DISC0VERY [MANAGEMENT INTERFA CES

cast discovery protocol (as defined in the Jini Discovery and Join Specification).

The methods of this interface define how an entity accesses or modifies the con-

tents of the set of LookupLocator objects corresponding to the specific lookup

services the entity has targeted for locator discovery.

Although each interface defines semantics for methods involved in the man-

agement of the discovery process, the individual roles each interface plays in that

process are independent of each other. Because of this independence, there may

be scenarios where it is desirable to implement some subset of these interfaces.

For example, a class may wish to implement the functionality defined in

D1" scove r'yManagement, but may not wish to allow entities to modify the groups

and locators associated with the lookup services to be discovered. Such a class

may have a “hard-coded” list of the groups and locators that it internally registers

with the discovery process. For this case, the class would implement only

D1" scove ryManagement.

Alternatively, another class may not wish to allow the entity to register more

than one listener with the discovery event mechanism; nor may it wish to allow

the entity to terminate discovery. It may simply wish to allow the entity to modify

the sets of lookup services that will be discovered. Such a class would implement

both D1" scoveryGroupManagement and D1" scoveryLocatorManagement, but not

D1" scove r'yManagement.

A specific example of a class that implements only a subset of the set of inter-

faces specified here is the LookupDiscove ry utility class defined later in this

specification. That class implements both the D1" scove ryManagement and

D1" scove r'yG roupManagement interfaces, but not the

D1" scove ryLocato rManagement interface.

Throughout this discussion of the discovery management interfaces, the

phrase implementation class refers to any concrete class that implements one or

more of those interfaces. The phrase implementation object should be understood

to mean an instance of such an implementation class. Additionally, whenever a

description refers to the discovering entity (or simply, the entity), that phrase is

intended to be interpreted as the object (the client or service) that has created an

implementation object, and which wishes to use the public methods specified by

these interfaces and provided by that object.

DU.2.2 Other Types

The types defined in the specification of the discovery management interfaces are

in the net. j1" n1" . d1" scove ry package. The following additional types may also be

36

37

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 27

referenced in this specification. Whenever referenced, these object types will be

referenced in unqualified form:

net.jini.core.discovery.LookupLocator

net.jini.core.lookup.ServiceRegistrar

net.jini.discovery.DiscoveryEvent

net.jini.discovery.DiscoveryListener

net.jini.discovery.DiscoveryChangeListener

net.jini.discovery.LookupDiscovery

net.jini.discovery.LookupDiscoveryManager

java.io.IOException

java.security.Permission

java.uti1.EventListener

java.uti1.Event0bject

java.uti1.Map

DU.2.3 The Di scover'yManagement Interface

The public methods specified by the Di scove ryManagement interface are:

package net .ji ni .di scovery;

public interface DiscoveryManagement {

public void addDiscoveryListener

(DiscoveryListener listener);

public void removeDiscoveryListener

(DiscoveryListener listener);

public ServiceRegistrarE] getRegistrarsC);

public void discardCServiceRegistrar proxy);

public void terminateC);

DU.2.3.1 The Semantics

The Di scoveryManagement interface defines methods related to the discovery

event mechanism and discovery process termination. Through this interface, an

entity can register or un-register Di scove ryLi stener objects to receive discovery

events (instances of Di scove ryEvent), retrieve proxies to the currently discov-

ered lookup services, discard a lookup service so that it is eligible for re-discov-

ery, or terminate the discovery process.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

37

38

28 THE DISC0VERY [MANAGEMENT INTERFA CES

Implementation classes of this interface may impose additional semantics on

any method. For example, such a class may choose to require that rather than sim-

ply terminate discovery processing, the terminate method additionally should

cancel all leases held by the implementation object and terminate all lease man-

agement being performed on behalf of the entity.

For information on any additional semantics imposed on a method of this

interface, refer to the specification of the particular implementation class.

The D1" scove r'yEvent, D1' scove ryL1' stener‘, and D1" scove r'yChangeLi stener

classes are defined later in this specification.

The addDi scove ryL1' stener‘ method adds a listener to the set of objects lis-

tening for discovery events. This method takes a single argument as input: an

instance of D1' scove ryL1' stener‘ corresponding to the listener to add to the set.

Once a listener is registered, it will be notified of all lookup services discov-

ered to date, and will then be notified as new lookup services are discovered or

existing lookup services are discarded.

If the added listener is also an instance of D1' scoveryChangeLi stener (a sub-

class of D1' scove ryL1' stener‘), then in addition to receiving events related to dis-

covered and discarded lookup services, that listener will also be notified of group

membership changes that occur in any of the lookup services targeted for at least

group discovery.

If null is input to this method, a NullPo1' nterException is thrown. If the

listener input to this method duplicates (using the equals method) another ele-

ment in the set of listeners, no action is taken.

Implementations of the D1' scove ryManagement interface must guarantee

reentrancy with respect to D1' scoveryListener objects registered through this

method. Should the instance of D1' scove ryManagement invoke a method on a reg-

istered listener (a local call), calls from that method to any method of the

D1' scove ryManagement instance are guaranteed not to result in a deadlock condi-
tion.

The removeDi scove ryL1' stener method removes a listener from the set of

objects listening for discovery events. This method takes a single argument as

input: an instance of D1' scove ryL1' stene r corresponding to the listener to remove
from the set.

If the listener object input to this method does not exist in the set of listeners

maintained by the implementation class, then this method will take no action.

The getRegi st rars method returns an array consisting of instances of the

Se rv1' ceRegi st rar interface. Each element in the returned set is a proxy to one

of the currently discovered lookup services. Each time this method is invoked, a

new array is returned. If no lookup services have been discovered, an empty array

is returned. This method takes no arguments as input.

38

39

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1

The discard method removes a particular lookup service from the managed

set of lookup services, and makes that lookup service eligible to be re-discovered.

This method takes a single argument as input: an instance of the Se rv1' ceRegi s—

trar interface corresponding to the proxy to the lookup service to discard.

If the proxy input to this method is null, or if it matches (using the equa1s

method) none of the lookup services in the managed set, this method takes no
action.

Currently, there exist utilities such as the LookupDi scove ry and

LookupDi scove ryManager helper utilities that will, on behalf of a discovering

entity, automatically discard a lookup service upon determining that the lookup

service has become unreachable or uninteresting. Although most entities will typ-

ically employ such a utility to help with both its discovery as well as its discard

duties, it is important to note that if the entity itself determines that the lookup ser-

vice is unavailable, it is the responsibility of the entity to invoke the discard

method. This scenario usually happens when the entity attempts to interact with a

lookup service, but encounters an exceptional condition (for example, a communi-

cation failure). When the entity actively discards a lookup service, the discarded

lookup service becomes eligible to be re-discovered. Allowing unreachable

lookup services to remain in the managed set can result in repeated and unneces-

sary attempts to interact with lookup services with which the entity can no longer

communicate. Thus, the mechanism provided by this method is intended to pro-

vide a way to remove such “stale” lookup service references from the managed
set.

Invoking the discard method defined by the D1' scoveryManagement inter-

face will result in the flushing of the lookup service from the appropriate cache,

ultimately causing a discard notification—referred to as a discarded event—to be

sent to all listeners registered with the implementation object. When this method

completes successfully, the lookup service is guaranteed to have been removed

from the managed set, and the lookup service is then said to have been “dis-

carded”. No such guarantee is made with respect to when the discarded event is

sent to the registered listeners. That is, the event notifying the listeners that the

lookup service has been discarded may or may not be sent asynchronously.

The terminate method ends all discovery processing being performed on

behalf of the entity. This method takes no input arguments.

After this method has been invoked, no new lookup services will be discov-

ered, and the effect of any new operations performed on the current implementa-

tion object are undefined.

Any additional termination semantics must be defined by the implementation
class.

29

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

39

40

30 THE DISC0VERY [MANAGEMENT INTERFA CES

DU.2.4 The Di scoveryGroupManagement Interface

The public methods specified by the Di scoveryGroupManagement interface are
as follows:

package net .jini .di scovery;

pub1ic interface DiscoveryGroupManagement {

pub1ic static fina1 String[] ALL—GROUPS = "”11;

pub1ic static fina1 String[] N0_GROUPS = new String[0];

pub1ic String[] getGroupsC);

pub1ic void addGroupsCString[] groups) throws IOException;

pub1ic void setGroupsCString[] groups) throws IOException;

pub1ic void removeGroupsCStringU groups);

DU.2.4.1 The Semantics

The Di scove ryG roupManagement interface defines methods and constants related

to the management of the set containing the names of the groups whose members

are the lookup services that are to be discovered using the multicast discovery pro-

tocols; that is, lookup services that are discovered by way of group discovery. The

methods of this interface define how an entity retrieves or modifies the managed

set of groups to discover, where phrases such as “the groups to discover” or “dis-

covering the desired groups” refer to the discovery of the lookup services that are

members of those groups.

The methods that modify the managed set of groups each take a single input

parameter: a String array, none of whose elements may be nu11. Each of these

methods throws a Nu1 1 Poi nterExcepti on when at least one element of the input

array is nu11.

The empty set is denoted by an empty array, and “no set” is indicated by nu11.

Invoking any of these methods with an input array that contains duplicate group

names is equivalent to performing the invocation with the duplicates removed

from the array.

The ALL_GROUPS and the NO_GROUPS constants are defined for convenience,

and represent no set and the empty set respectively.

The getG roups method returns an array consisting of the names of the groups

in the managed set; that is, the names of the groups the implementation object is

currently configured to discover.

40

