
156

THE JINI DISTRIBUTED LEASING SPECIFICATION

long getExpirationC);

void cancel 0 throws UnknownLeaseException,
RemoteException;

void renew(long duration) throws LeaseDeniedException,
UnknownLeaseException,

RemoteException:

void setSerialFormatCint format);

int getSerialFormati);

LeaseMap createLeaseMap(long duration);

boolean canBatchCLease lease);
}

Particular instances of the Lease type will be created by the grantors of a
lease and returned to the holder of the lease as part of the return value from a call

that allocates a leased resource. The actual implementation of the object, includ-
ing the way [if any) in which the Lease object communicates with the grantor of
the lease, is determined by the lease grantor and is hidden from the lease holder.

The interface defines two constants that can be used when requesting a lease.
The first, FOREVER, can be used to request a lease that never expires. When granted
such a lease, the lease holder is responsible for ensuring that the leased resource is

freed when no longer needed. The second constant, ANY, is used by the requester
to indicate that no particular lease time is desired and that the grantor of the lease
should supply a time that is most convenient for the grantor.

If the request is for a particular duration, the lease grantor is required to grant
a lease of no more than the requested period of time. A lease may be granted for a
penodtfthneshonerthanthatrequemed.

A second pair of constants is used to determine the format used in the serial—

ized form for a Lease object; in particular, the serialized form that is used to rep-
resent the time at which the lease expires. If the serialized format is set to the

value DURATION, the serialized form will convert the time of lease expiration into a
duration (in milliseconds) from the time of serialization. This form is best used

when transmitting a Lease object from one address space to another (such as via
an RMI call) where it cannot be assumed that the address Spaces have sufficiently
synchronized clocks. If the serialized format is set to ABSOLUTE, the time of expi-
ration will be stored as an absolute time, calculated in terms of milliseconds since
the beginning of the epoch.

The first method in the Lease interface, getExpi ration, returns a long that
indicates the time, relative to the current clock, that the lease will expire. Follow-
ing the usual convention in the Java programming language, this time is repre-
sented as milliseconds from the beginning of the epoch, and can be used to

156

143

minions-aw.

157

,___——-. __

144 BASIC OPERATIONS

compare the expiration time of the leaSe with the result of a call to obtain the cur-

rent time, java. lang . System . currentTimeMill is .

The second method, cancel, can be used by the lease holder to indicate that it

is no longer interested in the resource or information held by the lease. If the
leased information or resource could cause a callback to the lease holder (or some

other object on behalf of the lease holder), the lease grantor should not issue such
a callback after the lease has been cancelled. The overall effect of a cancel call is

the same as lease expiration, but instead of happening at the end of a prc-agreed

duration, it happens immediately. If the lease being cancelled is unknown to the

lease grantor, an UnknownLeaseExcept-ion is thrown. The method can also threw
a RemoteExcepti on if the implementation of the method requires calling a

remote object that is the lease holder.

The third method, renew, is used to renew a lease for an additional period of

time. The length of the desired renewal is given, in milliseconds, in the parameter

to the call. This duration is not added to the original lease, but is used to determine

a new expiration time for the existing lease. This method has no return value; if

the renewal is granted, this is reflected in the lease object on which the call was

made. If the lease grantor is unable or unwilling to renew the lease, a
RenewFai 1 ed Exception is thrown. If a renewal fails, the lease is left intact for the

same duration that was in force prior to the call to renew. If the lease being

renewed is unknown to the lease grantor, an UnknownLeaseExcepti on is thrown.

The method can also throw a RemoteExcept-ion if the implementation of the

method requires calling a remote object that is the lease holder.
Two methods are concerned with the serialized format of a Lease object. The

first, setSeri al Format, takes an integer that indicates the appropriate format to

use when serializing the format. The current supported formats are a duration for-

mat that stores the length of time (from the time of serialization) before the lease

expires, and an absolute format, which stores the time (relative to the current

clock) that the lease will expire. The absolute format should be used when serial-

izing a Lease object for transmission from one machine to another; the durational

format should be used when storing a Lease object on stable store that will be

read back later by the same process or machine. The default serialization format is
durational. The second method, getSeri‘al Fo rm, returns an integer indicating the

format that will be used to serialize the Lease object.
The last two methods are used to aid in the batch renewal or cancellation of a

group of Lease objects. The first of these, createLeaseMap, creates a Map object
that can contain leases whose renewal or cancellation can be batched, and adds the

current lease to that map. The current lease will be renewed for the duration indi-

cated by the argument to the method when all of the leases in the LeaseMap are
renewed. The second method, batchw-i th (Lease lease), returns a boolean value

i indicating whether or not the lease given as an argument to the method can be

157

158

THE JINI DISTRIBUTED LEASING SPECIFICATION I45

batched (in renew and cancel calls) with the current lease. Whether or not tw0
Lease objects can be batched is an implementation detail determined by the
Objects.

Three types of Exception objects are associated with the basic lease inter-

face. All of these are used in the Lease interface itself, and two can be used by
methods that grant access to a leased resource.

The RemoteException is imported from the package java. rmi . This excep-
tion is used to indicate a problem with any communication that might occur
between the lease holder and the lease grantor if those objects are in separate vir~
[ual machines. The full specification of this exception can be found in the Java
Remote Method Invocation Specification.

The UnknownLeaseException n usedtoindnxnethatthe Leasecfljectused
is not known to the grantor of the lease. This can occur when a lease expires, or
when a copy of a lease has been cancelled by some other lease holder. This excep—
tmnfimfimdmz

package net.jini.core.lease;

public class UnknownLeaseException extends LeaseException {
public UnknoWnLeaseExceptionO {

super();

}

public UnknownLeaseExceptionCString reason) {
superCreason);

}

}

The final exception defined is the LeaseDeniedException. which can be
thrown by either a call to renew or a call to an interface that grants access to a
leased resource. This exception indicates that the requested lease has been denied
by the resource holder. The exception is defined as:

package net.jini.core.lease;

public class LeaseDeniedException extends LeaseException {
public LeaseDeniedExceptionO {

superC);

}

public LeaseDeniedException(String reason) {
superCreason);

}

('31)
f:CD
CDin_D
5

JG

158

159

146 BASIC OPERAflows

The LeaseExcepti on superciass is defined as:

package net. ji ni . core . l ease;

public class LeaseException extends Exception {

public LeaseExceptionO {

super();

}

public LeaseExceptionCString reason) {

super(reason);

}

}

The final basic interface defined for leasing is that of a LeaseMap, which

allows groups of Lease objects to be renewed or cancelled using a single opera»

tion. The LeaseMap interface is:

package net.j1‘ni .core.lease;

import java. rmi .RemoteException;

public interface LeaseMap extends java.util.Map -[

boolean canContainKeyCObject key);

void renewAllO throws LeaseMapException, RemoteException;

void cancelA'l'lO throws LeaseMapException,RemoteException;
}

A LeaseMap is an extension of the java. util .Map class that associates a Lease

object with a Long. The Long is the duration for which the lease should be

renewed whenever it is renewed. Lease objects and associated renewal durations

can be entered and removed from a LeaseMap using the usual Map methods. An

attempt to add a Lease object to a map containing other Lease objects for which

Lease. canBatCh Would return fa'l 5e will cause an 11 l egalArgumentExcepti on

to be thrown, as will attempts to add a key that is not a Lease object or a value that
is not a Long.

The first method defined in the LeaseMap interface, canContainKey, takes a

Lease object as an argument and returns t rue if that Lease object can be added to

the Map and 'Fa'l se otherwise. A Lease object can be added to a Map if that Lease

object can be renewed in a batch with the other objects in the LeaseMap. The

requirements for this depends on the implementation of the Lease object.

The second method, renewAl 1, will attempt to renew all of the Lease objects

in the LeaseMap for the duration associated with the Lease object. If all of the

Lease objects are successfully renewed, the method will return nothing. If some

159

160

THE JINI DISTRIBUTED LEASING SPECIFICATION

Lease objects fail to renew, those objects will be removed from the LeaseMap and
will be contained in the thrown LeaseMapExcepti on.

The third method, cancelAll, cancels all the Lease objects in the LeaseMap.

If all cancels are successful, the method returns normally and leaves all leases in
the map. If any of the Lease objects cannot be cancelled, they are removed from

the LeaseMap and the operation throws a LeaseMapExcepti on.
The LeaseMapException class is defined as:

package net.jini .core.lease;

import java.util.Map;

public class LeaseMapException extends LeaseException {
public Map exceptionMap;

public LeaseMapExceptionCString 5, Map exceptionMap) {
super(s);

this.exceptionMap = exceptionMap;

}

Objects of type LeaseMapException contain a Map object that maps Lease

objects (the keys) to Exception objects (the values). The Lease objects are the

ones that could not be renewed or cancelled, and the Exception objects reflect the
individual failures. For example, if a LeaseMap. renew call fails because one of

the leases has already expired, that lease would be taken out of the original

LeaseMap and placed in the Map returned as part of the LeaseMapException

object with an UnknownLeaseExcepti on object as the corresponding value.

LE.2.3 Leasing and Time

The duration of a lease is determined when the lease is granted (or renewed). A
lease is granted for a duration rather than until some particular moment of time,

since such a grant does not require that the clocks used by the client and the server
be synchronized.

The difficulty of synchronizing clocks in a distributed system is well known.

The problem is somewhat more tractable in the case of leases, which are expected
to be for periods of minutes to months, as the accuracy of synchronization
required is expected to be in terms of minutes rather than nanoseconds. Over a

particular local group of machines, a time service could be used that would allow

this level of synchronization.

However, leasing is expected to be used by clients and servers that are widely
distributed and might not share a particular time service. In such a case, clock drift

160

147

 Wm.wmaIMFW-mnzm

161

Y
] 48 .S'Ema”ZED FORMS

of many minutes is a common occurrence. Because of this, the leasing specifica-
tbnhficmmmnoumdumnmmrmmnflmnmmdumnme

The reasoning behind such a choice is based on the observation that the accu-

racy of the clocks used in the machines that make up a distributed system is

matched much more closely than the clocks on those systems. While there may be

minutes of difference in the notion of the absolute time held by widely separated

systems, there is much less likelihood of a significant difference over the rate of

change of time in those systems. While there is clearly some difference in the

notion of duration between systems {if there were not, synchronization for abso-

lute time would be much easier), that difference is not cumulative in the way
errors in absolute time are.

Thskdmmdmsmmnmmhdkmoflwwsmdgmmmoflmmsmmho

be aware of some of the consequences of the use of durations. In particular, the
amount of time needed to communicate between the lease holder and the lease

grantor, which may vary from call to call, needs to be taken into account when

renewing a lease. If a lease holder is calculating the absolute time (relative to the

lease holder’s clock) at which to ask for a renewal, that time should be based on
the sum of the duration of the lease and the time at which the lease holder

requested the lease, not on the duration and the time that the lease holder received
theleasc.

LE.2.4 Serialized Forms

 Class ser‘ia'lVersionUID Serialized Fields

LeaseExcepti on —790227254625749U469L all publtcfieids

Unknown LeaseExcepti on —29210993305| 1429288L none

LeaseDen'i edExcept‘i on 5704943735577343495L none

LeaseMapExcepti on 4854893779678486122L none

161

162

THE HM DISTRIBUTED LEASING SPECIFICATION 149 :

LE.3 Example Supporting Classes

THE basic Lease interface allows leases to be granted by one object and handed
i to another as the result of a call that creates or provides access to some leased

resource. The goal of the interface is to allow as much freedom as possible in

implementation to both the party that is granting the lease (and thus is giving out
the implementation that supports the Lease interface) and the party that receives
the lease. 7

! However, a number of classes can be supplied that can simplify the handling .

of leases in some common cases. We will describe examples of these supporting
classes and show how these classes can be used with leased resources.

LE.3.1 A Renewal Class

One of the common patterns with leasing is for the lease holder to request a lease

with the intention of renewing the lease until it is finished with the resource. The

; period of time during which the resource is needed is unknown at the time of
l requesting the lease, so the requester wants the lease to be renewed until an unde-
: termined time in the future. Alternatively, the lease requester might know how

long the lease needs to be held. but the lease holder might be unwilling to grant a

lease for the full period of time. Again, the pattern will be to renew the lease for

5 some period of time.
, 1f the lease continues to be renewed, the lease holder doesn’t want to be both-

ered with knowing about it, but if the lease is not renewed for some reason, the

E lease holder wants to be notified. Such a notification can be done using the usual
. inter-address space mechanisms for event notifications, by registering a listener of

the appropriate type. This functionality can be supplied by a class with an inter-

! face like the following

class LeaseRenew {

i . LeaseRenew(Lease toRenew,

long renewT'il,

LeaseExpir‘eListener listener) {Us}
a:
Fa

Ll":

162

163

150 A RENEWAI, CLASS

void addRenew£Lease toRenew, 1

long renewTil,

LeaseExpireListener listener) {m}

long getExpiration(Lease torLease) 1
throws UnknownLeaseException {m} 1

void setExpirationCLease forLease.long toExpire)
throws UnknownLeaseException {m}

void cancel(Lea5e toCancel)

throws UnknownLeaseException {m}

void setLeaseExpireListener(Lease ForLease,
LeaseExpireListener listener)

throws UnknownLeaseException {m}

void removeLeaseExpireListenerCLease forLease) .
throws UnknownLeaseException {m}

}

The constructor of this class takes a Lease object, presumably returned from some
call that reserved a leased resource; an initial time indicating the time until which
the lease should be renewed; and an object that is to be notified if a renewal fails
before the time indicated in renewTi'l. This returns a LeaseRenew object, which
will have its own thread of control that will do the lease renewals.

Once a LeaseRenew object has been created, other leases can be added to the
set that are renewed by that object using the addRenew call. This call takes a

Lease object, an expiration time or overall duration, and a listener to be informed
if the lease cannot be renewed prior to the time requested. Internally to the

LeaseRenew object, leases that can be batched can be placed into a LeaseMap.
The duration of a particular lease can be queried by a call to the method

getExpi ration. This method takes a Lease object and returns the time at which
that lease will be allowed to expire by the LeaseRenew object. Note that this is dif-
ferent from the Lease.getExpi ration method, which tells the time at which the

lease will expire if it is not renewed. If there is no Lease object corresponding to
the argument for this call being handled by the LeaseRe new object, an
UnknownLeaseExcept‘i on will be thrown. This can happen either when no such
Lease has ever been given to the LeaseRenew object, or when a Lease object that
has been held has already expired or been cancelled. Notice that since this object
is assumed to be in the same address space as the object that acquired the lease,
we can assume that it shares the same clock with that object, and hence can use

absolute time rather than a duration-based system.

The setExpi ration method allows the caller to adjust the expiration time of
any Lease object held by the LeaseRenew object. This method takes as arguments
the Lease whose time of expiration is to be adjusted and the new expiration time.

163

164

' ' THE JIM tJrsranoTEo LEASING SPECIFICATION ____

If no lease is held by the Leas eRen ew object corresponding to the first argument,I

' an UnknownLeaseExcepti on will be thrown.
E A call to cancel will result in the cancellation of the indicated Lease held by

l the LeaseRenew object. Again, if the lease has already expired on that object, an
l UnknownLeaseExcepti on will be thrown. It is expected that a call to this method
i will be made if the leased resource is no longer needed, rather than just dropping
I all references to the LeaseRenew object.

The methods setLeaseExp'i reL'i stener and removeLeaseExpi reLi stener

allow setting and unsetting the destination of an event handler associated with a

Particular Lease object held by the Leas eRen ew object. The handler will be called
if the Lease object expires before the desired duration period is completed. Note

that one of the properties Of this example is that only one LeaseExp‘i reL-i stener

can be associated with each Lease.

LE.3.2 A Renewal Service

Objects that hold a lease that needs to be renewed may themselves be activatable,
and thus unable to ensure that they will be capable of renewing a lease at some

particular time in the future (since they might not be active at that time). For such
Objects it might make sense to hand the lease renewal duty off to a service that
could take care of lease renewal for the object, allowing that object to be deacti—

vated without fear of losing its lease on some other resource.

: The most straightforward way of accomplishing this is to hand the Lease

i object off to some object whose job it is to renew leases on behalf of others. This
object will be remote to the objects to which it offers its service (otherwise it
would be inactive when the others become inactive) but might be local to the

machine; there could even be such services that are located on other machines.

The interface to such an object might look something like:

interface LeaseRenewService extends Remote {

EventRegistration renew£Lease toRenew,

long renewTil,

RemoteEventListenter notifyBeforeDrop.

Marshalledobject returnOnNotify)

throws RemoteException;

void onRenewFailure(Lease toRenew,

RemoteEventListenter toNotify,

Marshalledobject returnOnNotify)

throws RemoteException, UnknownLeaSeException;

'vz'mfyw:-x:.

164

165

152 A RENEWAL SEE was

The first method, renew, is the request to the object to renew a particular lease on

behalf of the caller. The Lease object to be renewed is passed to the

LeaseRenewServi ce object, along with the length of time for which the lease is to

be renewed. Since we are assuming that this service might not be on the same

machine as the object that acquired the original lease, we return to a duration-

based time system, since we cannot assume that the two systems have synchro-
nized clocks.

Requests to renew a Lease are themselves leased. The duration of the lease is

requested in the duration argument to the renew method, and the actual time of the

lease is returned as part of the EventRegist ration return value. While it might

seem odd to lease the service of renewing other leases, this does not cause an infi-

nite regress. It is assumed that the LeaseRenewServi ce will grant leases that are

longer (perhaps significantly longer) than those in the leases that it is renewing. In
this fashion, the LeaseRenewSe l'V'l ce can act as a concentrator for lease renewal

messages.

The renew method also takes as parameters a RemoteEventLi stener and

Marshalledobject objects to be passed to that RemoteEventLi stener. This is

because part of the semantics of the renew call is to register interest in an event

that can occur within the LeaseRenewSe rvi ce object. The registration is actually

for a notification before the lease granted by the renewal service is dropped. This

event notification can be directed back to the object that is the client of the

renewal service, and will (if so directed) cause the object to be activated (if it is

not already active). This gives the object a chance to renew the lease with the

LeaseRenewServi ce object before that lease is dropped.

The second method, onRenewFai 'I ure, allows the client to register interest in

the LeaseRenewSe r‘vice being unable to renew the Lease supplied as an argu-

ment to the call. This call also takes a RemoteEventL‘istener object that is the

target of the notification, and a Marshal l edObject that will be passed as part of
the notification. This allows the client to be informed if the LeaseRenewServi ce

is denied a lease renewal during the lease period offered to the client for such

renewal. This call does not take a time period for the event registration, but instead

will have the same duration as the leased renewal associated with the Lease object

passed into the call, which should be the same as the Lease object that was sup

plied in a previous invocation of the method renew. If the Lease is not known to

the LeaseRenewServi ce object, an UnknownLeaseExcepti on will be thrown.

There is no need for a method allowing the cancellation of a lease renewal

request. Since these requests are themselves leased, cancelling the lease with the

LeaseRenewServi ce will cancel both the renewing of the lease and any event reg—
istrations associated with that lease.

165

166

153

Panama“.FE
166

167

THE JIM DISTRIBUTED EVENT SPECIFICATION defines the distributed event

programming model used throughout the Jini architecture. These are

A

generalipurpose events that can be used by any service

for event notifications. The event. model is specifically

designed to aiiowfor usefiu‘ third parties that help

either the sender or receiver ofthe event. As you wiii

see, the lookup service uses these events to notify

interested parties of changes to its contents.

167

E1

allf
ten

21 d

kin

E‘

P3":

Sid
1.181

wt
SIS:

[hi
CV

DE

(1‘6

1'6

168

.wminm.“.:w..-:

 .-..-_ :..-—— , .-.\.,a.gafia e..-.._.

The Jini D1str1buted Event
Specification

EV.1 Introduction

THE purpose of the distributed event interfaces specified in this document is to
allow an object in one Java virtual machine (JVM) to register interest in the occur-
rence of some event occurring in an object in some other JVM, perhaps running on
a different physical machine, and to receive a notification when an event of that
kind occurs.

EV.'l.l Distributed Events and Notifications

Programs based on an object that is reacting to a change of state somewhere out—
side the object are common in a single address space. Such programs are often
used for interactive applications in which user actions are modeled as events to
which other objects in the program react; Delivery of such facet events can be

assumed to be Well ordered, very fast, predictable, and reliable. Further, the entity
that is interested in the event can be assumed to always want to know about the
event as soon as the event has occurred.

The same style of programing is useful in distributed systems, where the
object reacting to an event is in a different JVM, perhaps on a different physical
machine, from the one on which the event occurred. Just as in the single-JVM
case, the logic of such programs is often reactive, with actions occurring in
response to some change in state that has occurred elsewhere.

A distributed event system has a different set of characteristics and require-
ments than a single—address—space event system. Notifications of events from

168

155

169

156

GOA LS AND REQ UIREMENTS

remote objects may arrive in different orders on different clients, or may not arrive
at all. The time it takes for a notification to arrive may be long {in comparison to
the time for computation at either the object that generated the notification or the
object interested in the notification). There may be occasions in which the Object
wishing the event notification does not wish to have that notification as soon as
possible, but only on some schedule determined by the recipient. There may even
be times when the object that registered interest in the event is not the object to
which a notification of the event should be sent.

Unlike the single-address-space notion of an event, a distributed event cannot
be guaranteed to be delivered in a timely fashiOn. Because of the possibilities 0f
network delays or failures, the notification of an event may be delayed indefinitely
and even lost in the case of a distributed system.

Indeed, there are times in a distributed system when the object of a notifica—
tion may actively desire that the notification be delayed. In systems that allow
object activation (such as is allowed by Java Remote Method Invocation (RMI) in
the Java Development Kit, version 1.2, commonly called IDKl .2), an object might
wish to be able to find out whether an event occurred but not want that notification
to cause an activation of the object if it is otherwise quiescent. In such cases, the
object receiving the event might wish the notification to be delayed until the
object requests notification delivery, or until the object has been activated for
some other reason.

Central to the notion of a distributed notification is the ability to place a third-
party object between the object that generates the notification and the party that
ultimately wishes to receive the notification. Such third parties, which can be
strung together in arbitrary ways, allow ways of offloading notifications from
objects, implementing various delivery guarantees, storing of notifications until
needed or desired by a recipient, and the filtering and rerouting of notifications. In
a distributed system in which full applications are made up of components assem-
bled to produce an overall application, the third party may be more than a filter or
storage spot for a notification; in such systems it is possible that the third party is
the final intended destination of the notification.

EV.1.2 Goals and Requirements

The requirements of this set of interfaces are to:

o Specify an interface that can be used to send a notification of the occurrence
of the event

0 Specify the information that must be contained in such a notification

169

:..:w«.....-_w...V

170

THE JINI DISTRIB UTEIJ EVENT SPECIFICATYON

i In addition, the fact that the interfaces are designed to be used by Objects in

different virtual machines, perhaps separated by a network, imposes other require-

ments, including:
'fiummm'“wanna...”:W‘__

4v Allowing various degrees of assurance on delivery of a notification

0 Support for different policies of scheduling notification

o Explicitly allowing the interposition of objects that will collect, hold, filter,
and forward notifications

Notice that there is no requirement for a single interface that can be used to

register interest in a particuiar kind of event. Given the wide variety of kinds of
events, the way in which interest in such events can be indicated may vary from

object to object. This document will talk about a model that lies behind the sys-
tem‘s notion of such a registration, but the interfaces that are used to accomplish

such a registration are not open to general description.

EV.1.3 Dependencies

This document relies on the following other specifications:

O Java Remote Method Invocation Specification

0 Jim' Distributed Leasing Specification

170

171

l
iil!

EV.2 The Basic Interfaces

THE basic interfaces you are about to see define a protocol that can be used by
one object to register interest in a kind of state change in another object, and to
receive a notification of an occurrence of that kind of state change, either directly

or through some third-party, that is specified by the object at the time of registra-

tion. The protocol is meant to be as simple as possible. No attempt is made to indi-

cate the reliability or the timeliness of the notifications; such guarantees are not

part of the protocol but instead are part of the implementation of the various
objects involved.

In particular, the purpose of these interfaces is:

0 To show the information needed in any method that allows registration of

interest in the occurrence of a kind of event in an object

0 To provide an example of an interface that allows the registration of interest
in such events '

e To specify an interface that can be used to send a notification of the occur-
rence of the event

Implicit in the event registration and notification is the idea that events can be

classified into kinds. Registration of interest indicates the kind of event that is of
interest, while a notification indicates that an instance of that kind of event has
occurred.

EV.2.1 Entities Involved

An event is something that happens in an object, corresponding to some change in

the abstract state of the object. Events are abstract occurrences that are not directly

observed outside of an object, and might not correspond to a change in the actual

state of the object that advertises the ability to register interest in the event. How-

ever, an object may choose to export an identification of a kind of event and allow

other objects to indicate interest in the occurrence of events of that kind; this indi-

159

171

172

160 ENTITIES‘ INVOLVED

cates that the abstract state of the object includes the notion of this state changing.

The information concerning what kinds of events occur within an object can be

exported in a number of ways, including identifiers for the various events or meth—

ods allowing registration of interest in that kind of event.

An object is responsible for identifying the kinds of events that can occur

within that object, allowing other objects to register interest in the occurrence of

such events, and generating RemoteEvent objects that are sent as notifications to

the objects that have registered interest when such events occur.

Registration of interest is not temporally open ended but is limited to a given

duration using the notion of a lease. Full specification of the way in which leasing

is used is contained in the Jini Distributed Leasing Specification.

The basic, concrete objects involved in a distributed event system are:

0 The object that registers interest in an event

9 The object in which an event occurs (referred to as the event generator)

9 The recipient of event notifications (referred to as a remote event listener)

An event generator is an object that has some kinds of abstract state changes

that might be of interest to other objects and allows other objects to register inter-

est in those events. This is the object that will generate notifications when events

of this kind occur, sending those notifications to the event listeners that were indi-

cated as targets in the calls that registered interest in that kind of event.

A remote event listener is an object that is interested in the occurrence of

some kinds of events in some other object. The major function of a remote event
listener is to receive notifications of the occurrence of an event in some other

object (or set of obj ects).

A remote event is an object that is passed from an event generator to a remote

event listener to indicate that an event of a particular kind has occurred. At a min-

imum, a remote event contains information about the kind of event that has

occurred, a reference to the object in which the event occurred, and a sequence

number allowing identification of the particular instance of the event. A notifica-

172

Hm»...w....,...\....i.......r.i....
''-mm«ww'"" -..mm'a.“

THE JEN! DI

tion will

interest it

EV.2.2

The even-

entity. a :

entity, an
faces deti

The t

face requ
in the kin

that defin

informati

The

EventReg

exceptior.
The i

that a par

by an int
listeners 1

eters that

[n additit

istration :

interest v.

the notitii

173

i

 THE ”N: nrsrRrs UTED EVENT specra'rcn rroN

tion will also include an object that was supplied by the object that registered
intereSt in the kind of event as part of the registration call.

1 . The remote event listener registers interest in a

particular kind of event with the event generator

.._. 7— -\\ :/.- -r-.\\ V.

emote event Event

‘ generate:-
! R I

L——listener -
/,2 The event generator fires a remote event to

indicate that an event of that kind has occurred

EV.2.2 Overview of the Interfaces and Classes

The event and notification interfaces introduced here define a single basic type of

entity, a set of requirements on the information that needs to be handed to that

entity, and some supporting interfaces and classes. All of the classes and inter—

faces defined in this specification are in the net. j 1' n1 .core . event package.

The basic type is defined by the interface RemoteEvent Li stener. This inter-

face requires certain information to be passed in during the registration of interest

in the kind of event that the notification is indicating. There is no single interface

that defines how to register interest in such events, but the ways in which such
information could be communicated will be discussed.

The supporting interfaces and classes define a RemoteEvent object, an

EventRegi stration object used as an identifier for registration, and a set of

exceptions that can be generated.

The RemoteEventLi stener is the receiver of RemoteEvents, which signals

that a particular kind of event has occurred. A RemoteEventL‘i stener‘ is defined

by an interface that contains a single method, noti fir, which informs interested

listeners that an event has occurred. This method returns no value, and has param-

eters that contain encugh information to allow the method call to he idempotent.

In addition, this method will return information that was passed in during the reg-

istration of interest-in the event. aIIOWing the registrant, the object that registered
interest with the event generator, to associate arbitrary information or actions with
the notification.

173

174

THE JEN! DISTRIBUTED EVENT SPEC1FTC/l WON 1 6]

tion Will also include an object that was supplied by the object that registered
interest in the kind of event as part of the registration call.

1 . The remote event listener registers interest. in a

particular kind of event with the event generator
/-' ' \ /‘ ' ' ' '\

‘\ .’ \s
r -- ~. .

I

Remote event I Event 1

! generator

listener F

\ J
2. The event generator fires a remote event to
indicate that an event of that kind has occurred

mummies.A-'-

EV.2.2 Overview of the Interfaces and Classes

The event and notification interfaces introduced here define a single basic type of
entity, 3 set of requirements on the information that needs to be handed to that
entity, and some supporting interfaces and classes. All of the classes and inter—

faces defined in this specification are in the net. jini .cor'e . event package.
The basic type is defined by the interface RemoteEventListene r. This inter-

face requires certain information to be passed in during the registration of interest
in the kind of event that the notification is indicating. There is no single interface
that defines how to register interest in such events, but the ways in which such
information could be communicated will be discussed.

The supporting interfaces and classes define a RemoteEvent object, an
EventRegistration object used as an identifier for registration, and a set of
exceptions that can be generated.

The RemoteEventListener is the receiver of RemoteEvents, which signals
that a particular kind of event has occurred. A RemoteEvent Listener is defined
by an interface that contains a single method, notify, which informs interested

listeners that an event has occurred. This method returns no value, and has param~
eters that contain enough information to allow the method call to be idempotent.
In addition, this method will return information that was passed in during the reg—
istration of interest in the event, allowing the registrant, the object that registered
interest with the event generator, to associate arbitrary information or actions with
the notification.

rm.muv

174

175

162
OVERVIEW OF THE INTERFACES AND CLASSES

The RemoteEventListener‘ interface extends from the Remote interface, so
the methods defined in RemoteEventLi stener are remote methods and objects
supporting these interfaces will be passed by RMI, by reference. Other objects
defined by the system will be local objects, passed by value in the remote calls.

The first of these supporting classes is RemoteEvent, which is sent to indicate
that an event of interest has occurred in the event generator. The basic form Of a
RemoteEvent contains:

9 An identifier for the kind of event in which interest has been registered

0 A reference to the object in which the event occurred

6 A sequence number identifying the instance of the event type

0 An object that was passed in, as part of the registration of interest in the event
by the registrant

These RemoteEvent notification objects are passed to a RemoteEventLi stener
as a parameter to the RemoteEventLi stener notify method.

The EventRegi stration class defines an object that returns the information
needed by the registrant and is intended to be the return value of remote event reg-
istration calls. Instances of the EventReg‘i strati on class contain an identifier for
the kind of event, the current sequence number of the kind of event, and a Lease
object for the registration of interest.

Although there is no single interface that allows for the registration of event
notifications, there are a number of requirements that would be put on any such
interface if it wished to conform with the remote event registration model. In par—
ticular, any such interface should reflect:

9 Event registrations are bounded in time in a way that allows those registra-
tions to be renewed when necessary. This can easily be reflected by return-
ing, as part of an event registration, a lease for that registration.

0 Notifications need not be delivered to the entity that originally registered
interest in the event. The ability to have third-party filters greatly enhances
the functionality of the system. The easiest way to allow such functionality
is to allow the specification of the RemoteEventLi stener to receive the
notification as part of the original registration call.

0 Notifications can contain a Marshall edObject supplied by the original reg—
istrant, allowing the passing of arbitrary information (including a closure
that is to be run on notification) as part of the event notification, so the reg
istration call should include a Marshal 'l edDbj ect that is to be passed as part
of the RemoteEvent.

175

176

THE JINI DISTRIBUTED EVENT SPECIFICAWON

EV.2.3 Details of the Interfaces and Classes

EV.2.3.1 The RemoteEventListener Interface

The RemoteEventLi stener interface needs to be implemented by any object that
wants to receive a notification of a RemoteEvent from some other object. The

object supporting the RemoteEventListener interface does not have to be the
object that originally registered interest in the occurrence of an event. To allow the
notification of an event’s Occurrence to be sent to an entity other than the one that

registered with the event generator, the registration call needs to accept a destina-
tion parameter that indicates the object to which the notification should be sent.
This destination must be an object that implements the RemoteEventListener
interface.

1. Registrant registers the remote event

/~— a listener with the event generator /— -—-k\

. l | Event I
Registrant o‘_.———————i generator i
\ __/ 2. Event generator returns an event \ ./

registration for the remote event 4. Event generator
listener to the registrant fires a remote event to

the listener to indicate

the kind of event

occurred

3. Registrant returns the event

registration to the remote event listener
2/ '

Remote ‘. event

i listener E

.\—

The RemoteEventL‘istener interface extends the Remote interface (indicat-

ing that it is an interface to a Remote object) and the java. ut'i'l .EventLi stener
interface. This latter interface is used in the Java Abstract Window Toolkit (AWT)

and J avaBeansTM components to indicate that an interface is the recipient of event

176

163

177

DETAILS OF THE INTERFACES AND CLASSES

notifications. The RemoteEventLi stener' interface consists of a single method,

notify:

public interface RemoteEventListener extends Remote,

java.util .EventListener

void notify(RemoteEvent theEvent)

throws UnknownEventException, RemoteException;

}

The noti “Fy method has a single parameter of type RemoteEvent that encapsu-

lates the information passed as part of a notification. The RemoteEvent base class

extends the class java.util . EventObj ect that is used in both JavaBeans com—

ponents and AWT components to propagate event information. The notify

method returns nothing but can throw exceptions.

EV.2.3.2 The RemoteEvent Class

The public part of the RemoteEvent class is defined as:

public class RemoteEvent extends java.util.Event0bject {

public RemoteEventtObject source,long eventID,

long seqNum, MarshalledObject handback)

public Object getSour‘ce O {...}

public long getIDO {...}

public long getSequenceNumberO {...}

public MarshalledObject getRegistrati onObjectO -[_..]-

}

The abstract state contained in a RemoteEvent object includes: a reference to the

object in which the event occurred, a long that identifies the kind of event relative

to the object in which the event occurred, a long that indicates the sequence num—

ber of this instance of the event kind, and a MarshalledObject that is to be
handed back when the notification occurs.

The combination of the event identifier and the object reference of the event

generator obtained from the RemoteEvent object should uniquely identify the

event type. If this type is not one in which the RemoteEventLi stener has regis—

tered interest (or in which someone else has registered interest on behalf of the

RemoteEventL‘i stener object), an UnknownEventExcept-ion may be generated

as a return from the remote event listener’s noti fy method.l

THE J'IN.’ DIS]!

On rec

is allowed

instance ar.

The so

value that

some earl:

required tn
identifier,

RemoteEv-

to allow r

RemoteEv

tifier, ther
than the st

A St“

choose 51

increase, '
same sour

sequence

event typ

sequence
ThCTI

Remote E'

transactit

The .

find out

notify
whether

the notit
occurrcr.

to note I

quickly

EV.2.3.L

The Unl

does no

177

178

THEJINIDISTRIBUTED EVENT SPECIFICA TION 165

. On receipt of an UnknownEventException, the caller of the notify method

i " is allowed to cancel the lease for the combination of the RemoteEventLi stener
instance and the kind of event that was contained in the noti 'Fy call.

The sequence number obtained from the RemoteEvent obj ect is an increasing

value that can act as a hint to the number of occurrences of this event relative to

some earlier sequence number. Any object that generates a RemoteEvent is

; required to ensure that for any two RemoteEvent objects with the same event
identifier, the sequence number of those events differ if and only if the

; RemoteEvent objects are a response to different events. This guarantee is required

to allow notification calls to be idempotent. A further guarantee is that if two

Remote Events, at and)2, come from the same source and have the same event iden—

tifier, then x occurred before y if and only if the sequence number of x is lower

than the sequence number of y.

A stronger guarantee is possible for those generators of RemoteEvents that 'i

choose support it. This guarantee states that not only do sequence numbers I

increase, but they are not skipped. In such a case, if RemoteEvent x and y have the

same source and the same event identifier, and x has sequence number m and y has

_ sequence number n, then if m < it there were exactly n—m—l events of the same

event type between the event that triggered x and the event that triggered y. Such

5 sequence numbers are said to be “fully ordered.”

There are interactions between the generation of sequence numbers for a

RemoteEvent object and the ability to see events that occur within the scope of a

transaction. Those interactions are discussed in Section E.V.2.4 on page 169. .

The common intent of a call to the notify method is to allow the recipient to

find out that an occurrence of a kind of event has taken place. The call to the ‘

noti i‘y method is synchronous to allow the party making the call to know

whether the call succeeded. However, it is not part of the semantics of the call that

the notification return can be delayed while the recipient of the call reacts to the

occurrence of the event. Simply put, the best strategy on the part of the recipient is

to note the occurrence in some way and then return from the noti 'Fy method as _

quickly as possible. i

EV.2.3.3 The UnknownEventExcept'ion

The UnknownEventException is thrown when the recipient of a RemoteEvent

does not recognize the combination of the event identified and the source of the

' There are cases in which the Unknown EventExcepti on may not be appropriate, even when the noti— |
fication is for a combination of an event and a source that is not expected by the recipient. Objects that
act as event mailboxes for other objects, for example, may be willing to accept any sort of notification
from a particular source until explicitly told otherwise.

178

179

166 DETAILS OF THE INTERFACES AND CLASSES

event as something in which it is interested. Throwing this exception has the effect

of asking the sender to not send further notifications of this kind of event from this
source in the future. This exception is defined as:

public class UnknownEventException extends Except-ion {

public UnknownEventExceptionO {
super();

}

public UnknownEventExceptionCString reason){

super(reason);

}

EV.2.3.4 An Example Eventcener'ator' Interface

Registering interest in an event can take place in a number of ways, depending on
how the event generator identifies its internal events. There is no single way of

identifying the events that are reasonable for all objects and all kinds of events,
and so there is no single way of registering interest in events. Because of this,

there is no single interface for registration of interest.

However, the interaction between the event generator and the remote event lis—

tener does require that some initial information be passed from the registrant to

the object that will make the call to its notify method.
The EventGenerator interface is an example of the kind of interface that

could be used for registration of interest in events that can (logically) occur within

an object. This is a remote interface that contains one method:

public interface EventGenerator extends Remote {

public EventRegistr‘at'ion registertlong evId,

MarshalledObject handback,
RemoteEventLi stener toInform,

long leaseLength

throws UnknownEventException, RemoteExcepti on;

}

The one method, register, allows registration of interest in the occurrence of an

event inside the object. The method takes an ele that is used to identify the class
of events, an object that is handed back as part of the notification, a reference to an

RemoteEventL-istener object, and a long integer indicating the leasing period

for the interest registration.

The evID is a long that is obtained by a means that is not specified here. It

may be returned by other interfaces or methods, or be defined by constants associ—

179

__. _‘?_

t0

pI
ct

re

ex

Me

pt

31'
IT]

IS

ii I

180

THE JEN? DLS'TRIB UTED EVENI SPECIH CA HUN

ated with the class or some interface implemented by the class. If an ele is sup—

plied to this call that is not recognized by the EventGenerator object, an
Unknown EventExcept‘i on is thrown. The use of a long to identify kinds of events

is used only for illustrative purposes—objects may identify events by any number

of mechanisms, including identifiers, using separate methods to allow registration

in different events, or allowing various sorts of pattern matching to determine

what events are of interest.

The second argument of the register method is a Marshal 'I edObject that is

to be handed back as part of the notification generated when an event of the appro-

priate type occurs. This object is known to the remote event listener and should
contain any information that is needed by the listener to identify the event and to

react to the occurrence of that event. This object will be passed back as part of the

event object that is passed as an argument to the notify method. By passing a

Marshalledobject into the register method, the re-creation of the object is

postponed until the object is needed.
The ability to pass a Marshalledobject as part of the event registration

should be common to all event registration methods. While there is no single

method for identifying events in an object, the use of the pattern in which the

remote event listener passes in an object that is passed back as part of the notifica-

tion is central to the model of remote events presented here.

The third argument of the EventGenerator interface’s register method is a

Remote Event-Li stener implementation that is to receive event notifications. The

listener may be the object that is registering interest, or it. may be some other

RemoteEventLi stener, such as a third-party event handler or notification “mail-

box.” The ability to specify some third-party object to handle the notification is

also central to this model of event notification, and the capability of specifying the

recipient of the notification is also common to all event registration interfaces.

The final argument to the register method is a long indicating the requested

duration of the registration. This period is a request, and the period of interest

actually granted by the event generator may be different. The actual duration of

the registration lease is returned as part of the Lease object included in the

EventRegistration object.

The return value of the register method is an object of the

EventRegistrati on class. This object contains a long identifying the kind of

event in which interest was registered (relative to the object granting the registra-

tion), a reference to the object granting the registration, and a Lease object.

167

180

181

168 DETAILS OF THE INTERFACES AND CLASSES

EV.2.3.5 The EventReg‘istr-at'ion Class

Objects of the class EventRegistration are meant to encapsuiate the informa~

tion the client needs to identify a notification as a response to a registration

request and to maintain that registration request. It is not necessary for a method

that allows event interest registration to return an object of type

EventRegi strat'i on. However, the class does show the kind of. information that
needs to be returned in the event model.

The public parts of this class look like

public class EventRegistration implements java.io.Serializable
{ .

public EventRegistrationClong eventID,

Object eventSource,
Lease eventLease,

long seqNum) {m}

public long getID() {m}

public Object getSource() {m}

public Lease getLease() {m}

public long getSequenceNumberC) {m}

:I.

The getID method returns the identifier of the event in which interest was regis-

tered. This, combined with the return value returned by getSource, will uniquely

identify the kind of event. This information is needed to hand off to third-party

repositories to allow them to recognize the event and route it correctly if they are
to receive notifications of those events.

The result of the EventRegi stration.getID method should be the same as

the result of the RemoteEvent . getID method, and the result of the

EventRegistration.getSource method should be the same as the

RemoteEvent . getSource method.

The getSource method returns a reference to the event generator, which is

used in combination with the result of the getID method to uniquely identify an
event.

The getLease returns the Lease object for this registration. It is used in lease
maintenance.

The getSequenceNumber method returns the value of the sequence number

on the event kind that was current when the registration was granted, allowing

comparison with the sequence number in any subsequent notifications.

181

182

THE J1Ni DISTRIBUTED EVENT SPECIHCA TION

EV.2.4 Sequence Numbers, Leasing and Transactions

There are cases in which event registrations are all
transaction, in such a way that the notifications of t
the scope of the transaction. This means

may see some events whose visibility is hidden by the transaction from entities
outside of the transaction. This has an effect on the generation of sequence num-
bers and the duration of an event registration lease.

An event registration that ocwrs within a transaction is considered to be
scoped by that transaction. This means that any occurrence of. the kind of event of
interest that happens as part of the transaction will cause a notification to be sent
to the recipients indicated by the registration that occurred in the transaction. Such
events must have a separate event identification number (the long returned in the
RemoteEvent getID method) to allow third-party store—and—forward entities to
distinguish between an event that happens within a transaction and those that hap-
pen outside of the transaction. Notifications of these events will not be sent to
entities that registered interest in this kind of event outside the scope of the trans-
action until and unless the transaction is committed.

Because of this isolation requirement of tra
inside a transaction will have a different se
the same events

nsactions, notifications sent from

quence number than the notifications of

would have outside of the transaction. Within a transaction, all
Remote-Event objects for a given kind of event are given a sequence number rela—
tive to the transaction, even if the event that triggered the RemoteEvent occurs
outside of the scope of the transaction (but is visible within the transaction). One
counter-intuitive effect of this is that an object could register for notification of
some event E both outside a transaction and within a transaction, and receive two
distinct RemoteEvent objects with different sequence numbers for the same event.
One of the RemoteEvent objects would contain the event with a sequence number
relative to the transaction, while the other would contain the event with a sequence
number relative to the source object.

The other effect of transactions on event registrations is to limit the duration
of a lease. A registration of interest in some kind of event that occurs within the

scope ofa transaction should be leased in the same way as other event interest reg-

It is still reasonable to lease event interest registrations, even in the scope of a
transaction, because the requested lease may be shorter than the transaction in

182

owed within the scope of a
hese events can occur within

that other participants in the transaction

169

183

“a—r'_‘

SERIA UZED FORMS

question. However, no Such interest registration will survive the transaction in
which it occurs.

EV.2.S Serialized Forms

Class

RemoteEvent

UnknownEventExcepti on

EventRegi strat'i on

serial Vers-ionUID

1777278867291906446L

5563758083292687048L

4055207527458053347L

Serialized Fields

Object source

long eventID

long seqNum

Marshal ledObject handback

120116

Object sou rce

long eventID
Lease lease

long seqNum

183

t

THE JIN: 1);,

—___.__

EV.3

0NE of
party obje
uted event

which allt

interfaces.

The 11:

this object
to send 1h:

ward the r.

that allows

The 56

may be lO(
notificatioi

object that
The fit

for anothei

fications h:

in the ever

out losing

EV.3.1

A store-am

the actual I

This it;

agent coult
that call fai

again at 3

Either way:

delivery 01

(which mtg

184

__________;*

THE 1m"! DISTR1'3 UTED EVENT SPECIFIC“ HON .17]

Wm."-.".,' w.-.'wNW.W,.,
gn is to allow the production of third—
enhanee a system built using distrib-uted events and notifications. Now we will look at three examples oWiww 3.‘4 o

8':
CD0 H “U!

. _o ‘.F‘
0%;"n:

:.-.E” '5- 5’. (J m:3 :7CD C8c1. 8

fications be delivered. This design allows the listener obj
in the event type to select the times at which a notificati
out losing any notifications that would have otherwise h

ect that registered interest
on can be delivered with—

ave been delivered.

 EV.3.1 Store-and-Forward Agents s the object generating a notification to hand off‘ the actual notification of those wh

184

185

*

T72 STORE-AND—FOR WARD AGENTS

From the point of View of the remote event listener, there is no difference

between the notification delivered by a store-anduforward agent and one delivered

directly from the object in which the event that generated the original notification

occurred. This transparency allows the decision to use a store-and-forward agent

to be made by the object generating the notification, independent of the object

receiving the notification. There is no need for distributed agreement; all that is

required is that the object using the agent know about the agent.

A store-and-forward agent is used by an object that generates notifications.

When an object registers interest in receiving notifications of a particular event

type, the object receiving that registration will pass the registration along to the

store—and-forward agent. This agent will keep track of which objects need to be

notified of events that occur in the original object.

When an event of interest occurs in the original object, it need send only a sin-

gle notification to the store~andeforward agent. This notification can return imme-

diatel y, with processing further happening inside the store-and-forward agent. The

object in which the event of interest occurred will now be freed from informing

those that registered interest in the event.

Notification is taken over by the store-and-forward agent. This agent will now

consult the list of entities that have registered interest in the occurrence of an event

and send a notification to those entities. Note that these might not be the same as

the objects that registered interest in the event; the object that should receive the

event notification is specified during the event interest registration.

The store-and-forward agent might be able to make use of network-level mul-

ticast (assuming that the RemoteEvent object to be returned is identical for multi-

ple recipients of the notify call), or might send a separate notification to each of

the entities that have registered interest. Different store-and-forward agents could

implement different levels of service, from a simple agent that sends a notification

and doesn’t care whether the notification is actually delivered (for example, one

that simply caught RemoteExceptions and discards them) to agents that will

repeatedly try to send the notification, perhaps using different fallback strategies,
until the notification is known to be successful or some number of tries have been

attempted.

The store—and—forward agent does not need to know anything about the kinds

of events that are triggering the notifications that it stores and forwards. All that is

needed is that the agent implement the RemoteEvent Li starter interface and some

interface that allows the object producing the initial notification to register with

the agent. This combination of interfaces allows such a service to be offered to

any number of different objects without having to know anything about the possi—

ble changes in abstract state that might be of interest in those objects.

Note that the interface used by the object generating the original notifications

to register with the store-and-forward agent does not need to be standard. Differ-

185

186

“Mama;...:W-.:

THE JEN! DISIRIBUTED EVENT SPECIIYCA TION

ent qualities of service concerning the delivery of notifications may require differ-
ent registration protocols. Whether or not the relationship between the notification
originator and the store-andaforward agent is leased or not is also up to the imple-
mentation of the agent. If the relationship is leased, lease renewal requests would
need to be forwarded to the agent.

In fact, an expected pattern of implementation would be to place a store-and-
forward agent on every machine on which objects were running that could pro-
duce events. This agent, which could be running in a separate JVM (on hardware
that supported multiple processes) could offload the notification-generating
objects from the need to send those notifications to all objects that had registered
interest. It would also allow for consistent handling of delivery guarantees across
all objects on a particular machine. Since the store-and-forward agent is on the
same machine as the objects using the agent, the possibilities of partial failure
brought about by network problems (which wouldn’t affect communication
between objects on the same machine) and server machine failure (which would
induce total, rather than partial, failure in this case) are limited. This allows the
reliability of notifications to be offloaded to these agents instead of being a prob—
lom that needs to be solved by all of the objects using the notification interfaces.

A store-and-forward agent does require an interface that allows the agent to
know what notifications it is supposed to send, the destinations of those notifica-
tions, and on whose behalf those notifications are being sent. Since it is the store-
and-forward agent that is directing notification calls to the individual recipients,
the agent will also need to hold the Object (if any) that was passed in during
interest registration to be returned as part of the RemoteEvent object.

In addition, the store-and—forward agent could be the issuer of Lease objects
to the object registering interest in some event. This could offload any lease
renewal calls from the original recipient of the registration call, which would need
to know only when there were no more interest registrations of a particular event
kind remaining in the store~and-forward agent.

EV.3.2 Notification Filters

Similar to a store-and-forward agent is a notification filter, which can be used by
either the generator of a notification or the recipient to intercept notification calls,
do processing on those calls, and act in accord with that processing (perhaps for-
warding the notification, or even generating new notifications).

Again, such filters are made possible because of the uniform signature of the
method used to send all notifications and because of the ability of an object to
indicate the recipient of a notification when registering for a notification. This unis
formity and indirection allow the composition of third—party entities. A filter could

186

I73

187

174 NOTIFICATION FILTERS

receive events from a store-and-forward agent without the client of the original

registration knowing about the store-and-forward agent or the server in which the

notifications are generated knowing about the filter. This composition can be

extended further; store-and-forward agents could use other store-and-forward

agents, and filters can themselves receive notifications from other filters.

EV.3.2.1 Notification Multiplexing

One example of such a filter is one that can he used to concentrate notifications in

a way to help minimize network traffic. If a number of different objects on a single

machine are all interested in some particular kind of event, it could make sense to

create a notification filter that would register interest in the event. When a notifica-

tion was received by the filter, it would forward the notification to each of the

(machine local) objects that had expressed interest.

1. Notification filter /"'\
—— registers interest in a __, .- Object .

/ \ kind of event / \ 4. Notification X j/

l filter fires

2. Remote event
5 . t

! Remote ' . Notification even .\.event §:::::::i;::£2; filter mgnwct ‘1
generator (registrant) EIOUficallonJ \Y‘ o _

each
3. Remote event .

interested
i enerator fires a .i g . object .r' l t t I

k--. -/ i§$§£§§§£ a: and \# _;/
of event occurred

EV.3.2.2 Notification Demultiplexing

Another example of such a filter is an object that generates an event in response to

a series of events that it has received. There might be an object that is interested

only in some particular sequence of events in some other object or group of

objects. This object could register interest in all of the different kinds of events,

asking that the notifications be sent to a filter. The purpose of the filter is to receive

the notifications and, when the notifications fit the desired pattern (as determined

187

188

THE JINI DISTRIBUTED EVENT SPECIFICH TION

by some class passed in from the object that has asked the notifications be sent to
the filter), generate some new notification that is delivered to the client object.

4. Notification

a \\ filter notifies the K ‘\63630): 2- Obie“ Y fires D ‘ Notification“ ragiw‘mt that _ i
Y ' an event filter —.b Registrant:

\ / ‘ ‘ all of the kinds .c_/ of events have \H __ __ /
occurred

EV.3.3 Notification Mailbdxes

The purpose of a notification mailbox is to store the notifications sent to an object

until such time as the object for which the notifications were intended desires

delivery.

Such delivery can be in a single batch, with the mailbox storing any notifica-

tions received after the last request for delivery until the next request is received.

Alternatively, a notification mailbox can be viewed as a faucet, with notifications

turned on (delivering any that have arrived since the notifications were last turned

off) and then delivering any subsequent notifications to an object immediately,

until told by that object to hold the notifications.

The ability to have notification mailboxes is important in a system that allows

objects to be deactivated (for example, to be saved to stable storage in such a way

that they are no longer taking up any computing resource) and re-activated. The

usual mechanism for activating an object is a method call. Such activation can be

expensive in both time and computing resources; it is often too expensive to be

justified for the receipt of what would otherwise be an asynchronous event notifi-

cation. An event mailbox can be used to ensure that an object will not be activated

merely to handle an event notification.

Use of a mailbox is simple; the object registering interest in receiving an event

notification simply gives the mailbox as the place to send the notifications. The

mailbox can be made responsible for renewing leases while an object is inactive,

and for storing all (or the most recent, or the most recent and the count of other)

188

175

189

 __.

176 COMPOSITIONALITY

notifications for each type of event of interest to the object. When the object indi-

cates that it wishes to receive any notifications from the mailbox, those notifica-

tions can be delivered. Delivery can continue until the object requests storage to

occur again, or storage can resume automatically.

Such a mailbox is a type of filter. In this case, however, the mailbox filters

over time rather than over events. A pure mailbox need not be concerned with the

kinds of notifications that it stores. It simply holds the RemoteEvent objects until

they are wanted.
It is because of mailboxes and other client-side filters that the information

returned from an event registration needs to include a way of identifying the event

and the source of the event. Such client-side agents need a way of distinguishing

between the events they are expected to receive and those that should generate an

exception to the sender. This distinction cannot be made without some simple way
of identifying the event and the object of origin.

EV.3.4 Compositionality

All of the above third-party entities work. because of two simple features of the
RemoteEventLi stene r interface:

c There is a single method, notify. that passes a single type of object,

RemoteEvent (or a subtype of that object) for all notifications

0 There is a level of indirection in delivery allowed by the separate specifica—

tion of a recipient in the registration method that allows the client of that call

to specify a third-party object to contact for notifications

The first of these features allows the composition of notification handlers to

be chained, beginning with the object that generates the notification. Since the

ultimate recipient of the event is known to be expecting the event through a call to

the single notify method, other entities can be composed and interposed in the
call chain as long as they produce this call with the right RemoteEvent object

(which will include a field indicating the object at which the notification origi—

nated). Because there is a single method call for all notifications, third-party han-

dlers can be produced to accept notifications of events without having to know the
kind of event that has occurred or any other detail of the event.

Compositionality in the other direction (driven by the recipient of the notifica-
tion) is enabled by allowing the object registering interest to indicate the first in an

arbitrary chain of third parties to receive the notification. Thus the recipient can
build a chain of filters, mailboxes, and forwarding agents to allow any sort of

189

190

THE 111W DISTRIBUTED E VENT SPECIFICA WON

delivery policy that object desires, and then register interest with an indication that

all notifications should be delivered to the beginning of that chain. From the point
a of View of the object in which the notification originates, the series of objects the

L} notification then goes through is unknown and irrelevant.
|
|

and:m

190

191

As we noted previously, distributed notification differs from local notification
(such as the notification used in user interface programming) in a number of ways.
In particular, a distributed notification may be delayed, dropped, or otherwise fail
between the object in which the event occurred and the object that is the ultimate
recipient of the notification of that event. Additionally, a distributed event notifica-
tion may require handling by a number of third~party objects between the object
that is interested in the notification and the object that generates the notification.
These third-party objects need to be able to handle arbitrary events, and so from
the point of view of the type system, all of the events must be delivered in the
same fashion.

Although this model differs from the event model used for user interface tools
such as the AWT or Java Foundation Classes (JFC), such a difference in model is
to be expected. The event model for such user interface toolkits was never meant
to allow the components that communicate using these local event notifications to
be distributed across virtual or physical machines; indeed, such systems assume
that the event delivery will be fast, reliable, and not open to the kinds of partial
failures or delays that are common in the distributed case.

In between the requirements of a local event model and the distributed event
model presented here is the event model used by software components to commu-
nicate changes in state. The delegation event model, which is the event model for
JavaBeans components, written in the Java programming language, is built as an
extension of the event model used for AWT and JFC. This is completely appropri-
ate, as most JavaBeans Components will be located in a single address space and
can assume that the communication of events between components will meet the
reliability and promptness requirements of that model.

However, it is also possible that JavaBeans components will be distributed
across virtual, and even physical, machines. The assumption that the event propa-
gation will be either fast or reliable can lead to subtle program errors that will not
be found until the components are deployed (perhaps on a slow or unreliable net-
work). In such case, an event and notification model such as that found in this
specification is more appropriate.

191

179

192

188 DIE-'17ERENCES WITH T1111' J'A VABEANS COMPONENT EVENT MODEL

One approach would be to add a second event model to the JavaBeans compo_
nent specification that dealt oniy with distributed events. While this would havg
the advantage of exporting the difference between local and remote components
to the component builder, it would also complicate the JavaBeans component
model unnecessarily.

We will show how the current distributed event model can be fit into the exist-

ing Java platform‘s event model. While the mapping is not perfect (nor can it be,
since there are essential differences between the two models), it will allow the cur:

rent tools used to assemble JavaBeans components to be used when those compo—
nents are distributed.

EV.4.1 Differences with the JavaBeans Component Event Model

The JavaBeans component event model is derived from the event model used in

the AWT in JDK 1.2. The model is characterized by:

e Propagation of event notifications from sources to listeners by Java technol—
ogy method invocations on the target listener objects

0 Identification of the kind of event notification by using a different method in
the listener being called for each kind of event

0 Encapsulation of any state associated with an event notification in an object
that inherits from java. util .EventDbject and that is passed as the sole
argument of the notification method

9 Identification of event sources by the convention of those sources defining
registration methods, one for each kind of event in which interest can be reg-
istered, that follow a particular design pattern

The distributed event and notification model that we have defined is similar in

a number of ways:

0 Distributed event propagation is accomplished by the use of Remote meth-
ods.

0 State passed as part of the notification is encapsulated in an object that is
derived from java.uti1 .EventObject and is passed as the sole argument
of the notification method.

0 The RemeteEventListener interface extends the more basic interface
java . uti'l .EventLi stener.

192

193

THE JINI DISTRIBUTED EVENT SPECYFICA NON

However, there are also differences between the JavaBeans component event
model and the distributed event model proposed here:

0 Identification of the kind of event is accomplished by passing an identifier
frOm the source of the notification to the listener; the combination of the

object in which the event occurred and the identifier uniquely identifies the
kind of event.

4 Notifications are accomplished through a single method, notify, defined in
the RemoteEventLi stener interface rather than by a different method for
each kind of event.

9 Registration of interest in a kind of event is for a (perhaps renewable) period
of time, rather than being for a period of time bound by the active cancella-
tion of interest.

9 Objects registering interest in an event can, as part of that registration,
include an object that will be passed back to the recipient of the notification
when an eVCnt of the appropriate type occurs.

Most of these differences in the two models can be directly traced to the distrib-
uted nature of the events and notifications defined in this specification.

For example, as you have seen, reliability and recovery of the distributed noti-
fication model is based on the ability to create third-party objects that can provide
those guarantees. HOWever, for those third—party objects to be able to work in gen-
eral cases, the signature for a notification must be the same for all of the event
notifications that are to be handled by that third party. If we were to follow the
JavaBeans component model of having a different method for each kind of event
notification, third party objects would need to support every possible notification
method, including those that had not yet been defined when the third—party object
was implemented. This is clearly impossible.

Note that this is not a weakness in the JavaBeans component event model,
merely a difference required by the different environments in which the event
models are assumed to be used. The JavaBeans component event model, like the
AWT model on which it is based, assumes that the event notification is being
passed between objects in the same address space. Such notifications do not need

various delivery and reliability guarantees—delivery can be considered to be (vir-
tually) instantaneous and can be assumed to be fully reliable.

Being able to send event notifications through a single Remote method also
requires that the events be identified in some way other than the signature of the
notification delivery method. This leads to the inclusion of an event identifier in

the event object. Since the generation of these event identifiers cannot be guaran-
teed to be globally unique across all of the objects in a distributed system, they

193

181

194

182 CONVERTING DISTRIBUTED EVENTS T0 JAVABEANS EVENTS

must be made relative to the object in which they are generated, thus requiring the

combination of the object of origin and the event identifier to completely identify
the kind of event,

The sequence number being included in the event object is also an outgrowth
of the distributed nature of the interfaces. Since no distributed mechanism can

guarantee reliability, there is always the possibility that a particular notification

will not be delivered, or could be delivered more than once by some notification

agent. This is not a problem in the single-address-space environment of AWT and

JavaBeans components, but requires the inclusion of a sequence number in the
distributed case.

EV.4.2 Converting Distributed Events to JavaBeans Events

Translating between the event models is fairly straightforward. All that is required
is:

9 Allow an event listener to map from a distributed event listener to the appro—
priate call to a notification method

9 Allow creation of a RemoteEvent from the event object passed in the Java—
Beans component event notification method

o Allow creation of a JavaBeans component event object from a RemoteEvent
object without loss of information

Each of these is fairly straightforward and can be accomplished in a number of
ways.

More complex matings of the two systems could be undertaken, including

third-party objects that keep track of the interest registrations made by remote

objects and implement the corresponding JavaBeans component event notification

methods by making the remote calls to the RemoteEventListener notify

method with properly constructed RemoteEvent objects. Such objects would need
to keep track of the event sequence numbers and would need to deal with the addi-

tional failure modes that are inherent in distributed calls. However, their imple-
mentation would be fairly straightforward and would fit into the JavaBeans

component model of event adapters.

194

195

381

195

196

THE JINI TRANSACTION SPECIFICATION defines the lightweight distributed

transactioI-i mechanismfor the Jini architecture. The purpose is to allow

any set ofparticipants to cooperate with the

transaction 's manager to provide transactional

A behavior: The participant services need not know about
each other—the client, simply by using the same

U transaction with multiple services, can use the
transaction ’5 manager to drive them all to completion on

ifnecessary, abort all the operations. The specification

covers both the general transaction mechanism and the

m specific ones that implement the standard Jini transactions

1 N I with their associated semantics. The lookup service does not
use transactions, but a shared transaction mechanism for

Jini services is important enough to put this specification

into the core ofJini specifications.

196

197

 The Jini Transaction

Specification

$at
5CD
a:
n

' E".
o
5U:

TX.1 Introduction

TRANSACTIONS are a fundamental tool for many kinds of computing. A transac-
tion allows a set of operations to be grouped in such a way that they either all sues
ceed or all fail; further, the operations in the set appear from outside the

transaction to occur simultaneously. Transactional behaviors are especially impor—

tant in distributed computing, where they provide a means for enforcing consis—

tency over a set of operations on one or more remote participants. If all the
participants are members of a transaction, one response to a remote failure is to
abort the transaction, thereby ensuring that no partial results are written.

Traditional transaction systems often center around transaction processing

monitors that ensure that the correct implementation of transactional semantics is

provided by all of the participants in a transaction. Our approach to transactional
semantics is somewhat different. Within our system we leave it to the individual

5 objects that take part in a transaction to implement the transactional semantics in
i the way that is best for that kind of object. What the system primarily provides is

the coordination mechanism that those objects can use to communicate the infor- .

mation necessary for the set of objects to agree on the transaction. The goal of this i
system is to provide the minimal! set of protocols and interfaces that allow objects
to implement transaction semantics rather than the maximal set of interfaces, prod

tocols, and policies that ensure. the correctness of any possible transaction seman-
tics. So the completion protocol is separate from the semantics of particular
transactions.

This document presents this completion protocol, which consists of a two-

phase commit protocol for distributed transactions. The two-phase commit prolor

197

198

i 1 86 MODEL AND mam

_ col defines the communication patterns that allow distributed objects and
ii resources to wrap a set of operations in such a way that they appear to be a single

I operation. The protocol requires a manager that will enable consistent resolution
of the operations by a guarantee that all participants will eventually know whether
they should commit the operations (roll forward) or abort them [roll backward). A
participant can be any object that supports the participant contract by implement-
ing the appropriate interface. Participants are not limited to databases or other per-
sistent storage services.

Clients and servers will also need to depend on specific transaction semantics.

The default transaction semantics for participants is also defined in this document.

The two—phase commit protocol presented here, while common in many tradi-
tional transaction systems, has the potential to be used in more than just tradi—
tional transaction processing applications. Since the semantics of the individual
operations and the mechanisms that are used to ensure various properties of the
meta-operation joined by the protocol are left up to the individual objects, varia—
tions of the usual properties required by transaction processing systems are possi-
ble using this protocol, as long as those variances can be resolved by this protocol.
A group of objects could use the protocol, for example, as part of a process allow-
ing synchronization of data that have been allowed to drift for efficiency reasons.
While this use is not generally considered to be a classical use of transactions, the
protocol defined here could be used for this purpose. Some variations will not be
possible under these protocols, requiring subinterfaces and subclasses of the ones
provided or entirely new interfaces and classes.

_ Because of the possibility of application to situations that are beyond the
5. usual use of transactions, calling the two~phase commit protocol a transaction

mechanism is somewhat misleading. However, since the most common use of

I such a protocol is in a transactional setting, and because we do define a particular
5 set of default transaction semantics, we will follow the usual naming conventions

used in such systems rather than attempting to invent a new, parallel vocabulary.
The classes and interfaces defined by this specification are in the packages

‘. net . ji ni . core . transaction and net. ji m . core. transaction. server. In
' this document you will usually see these types used without a package prefix; as

each type is defined, the package it is in is specified.

TX.1.1 Model and Terms

A transaction is created and overseen by a manager. Each manager implements

the interface Transacti onManager. Each transaction is represented by a long

identifier that is unique with respect to the transaction’s manager.

198

199

THE JINI TWSACi"!ON SPECIFICA NON

Semantics are represented by semantic transaction objects, such as the ones

that represent the default semantics for services. Even thOugh the manager needs
to know only how to complete transactions, clients and participants need to share

a common view of the semantics of the transaction. Therefore clients typically

create, pass, and operate on semantic objects that contain the transaction identifier

instead of using the transaction’s identifier directly, and transactable services typi—

Cally accept parameters of a particular semantic type1 such as the Transaction
interface used for the default semantics.

As shown in Figure TXJ. l, a ciienr creates a transaction by a request to the

manager, typically by using a semantic factory class such as

Transacti on Factory to create a semantic object. The semantic object created is

then passed as a parameter when performing operations on a service. If the service

is to accept this transaction and govern its operations thereby, it must join the

transaction as a participant. Participants in a transaction must implement the

interface Tran sacti onPa rti ci pant. Particular operations associated with a

given transaction are said to be performed under that transaction. The client that
created the transaction might or might not be a participant in the transaction.

/§\a.)

iong i d

join Manager —"‘Transacti onFacto ry
(‘0 cpeate (semantic ciass)
_J jO'i n Kg) Ct‘eate

. Cf) Transaction
' (it) (semantic class)
Client

Participant.4

opatTransacti on, ...)

Participants

FIGURE Tx.l.l: Transaction Creation and Use

A transaction compieres when any entity either commits or aborts the transac-

tion. If a transaction commits successfully, then all operations performed under

that transaction will complete. Aborting a transaction means that all operations

performed under that transaction will appear never to have happened.

Committing a transaction requires each participant to vote, where a vote is

either prepared (ready to commit), not changed (read—only), or aborted (the trans—

action should be aborted). If all participants vote “prepared” or “not changed,” the

199

187

'WWEGNWMW

'9Ar!

200

188 DISTRIBUTED TRANSACTIONS ANDACID PROPERTIES

transaction manager will tell each “prepared” participant to roll forward, thus

committing the changes. Participants that voted “not changed” need do nothing

more. If the transaction is ever aborted, the participants are told to roll back any

changes made under the transaction.

TX.1.2 Distributed Transactions and ACID Properties

The two—phase commit protocol is designed to enable objects to provide ACID

properties. The default transaction semantics define one way to preserve these ,

properties. The ACID properties are: .

i, o Ammicity: All the operations grouped under a transaction occur or none of _

them do. The protocol allows participants to discover which of these alter-

natives is expected by the other participants in the protocol. However, it is

up to the individual object to determine whether it wishes to operate in con-
cert with the other participants.

i’- 0 Consistency: The completion of a transaction must leave the system in a

consistent state. Consistency includes issues known only to humans, such as

that an employee should always have a manager. The enforcement of con-

sistency is outside of the realm of the transaction itselfea transaction is a

tool to allow consistency guarantees and not itself a guarantor of consis-

tency.

0 Isolation: Ongoing transactions should not affect each other. Participants in

a transaction should see only intermediate states resulting from the opera-

tions of their own transaction, not the intermediate states of other transac-

tions. The protocol allows participating objects to know what operations are

being done within the scope of a transaction. However, it is up to the indi-

vidual object to determine if such operations are to be reflected only within

, the scope of the transaction or can be seen by others who are not participat-

I ‘ ing in the transaction.

0 Durability: The results of a transaction should be as persistent as the entity

on which the transaction commits. However, such guarantees are up to the

implementation of the object.

The dependency on the participant’s implementation for the ACID properties

is the greatest difference between this two-phase commit protocol and more tradi-

tional transaction processing systems. Such systems attempt to ensure that the

ACID properties are met and go to considerable trouble to ensure that no partici—

I pant can violate any of the properties.

200

201

THE JEN! TRANSACTION SPECIFICATION

This approach differs for both philosophical and practical reasons. The philo-
sophical reason is centered on a basic tenet of object—oriented programming,
which is that the implementation of an object should be hidden from any part of
the system outside the object. Ensuring the ACID properties generally requires
that an object’s implementation correSpond to certain patterns. We believe that if

these properties are needed, the object (or, more precisely, the programmer imple-
menting the object) will know best how to guarantee the propenies. For this rea-
son, the manager is solely concerned with completing transactions properly.
Clients and participants must agree on semantics separately.

The practical reason for leaving the ACID preperties up to the object is that
there are situations in which only some of the ACID properties make sense, but
that can still make use of the two-phase commit protocol. A group of transient
Objects might wish to group a set of operations in such a way that they appear
atomic; in such a situation it makes little sense to require that the operations be
durable. An object might want to enable the monitoring of the state of some long-
running transactions; such monitoring would violate the isolation requirement of
the ACID properties. Binding the two-phase commit protocol to all of those prop-
erties limits the use of such a protocol.

We also know that particular semantics are needed for particular services. The
default transaction semantics provide useful general—purpose semantics built on
the two-phase commit completion protocol.

Distributed transactions differ from single—system transactions in the same

way that distributed computing differs from single—system computing. The clear-
est difference is that a single system can have a single view of the state of several
services. It is possible in a single system to make it appear to any observer that all
operations performed under a transaction have occurred or none have, thereby
achieving isolation. In other words, no observer will ever see only part of the
changes made under the transaction. In a distributed system it is possible for a clis
ent using two servers to see the committed state of a transaction in one server and

the pro-committed state of the same transaction in another server. This can be pre-
vented only by coordination with the transaction manager or the client that com~
mitted the transaction. Coordination between clients is outside the scope of this
specification.

TX.1.3 Requirements

The transaction system has the following requirements:

0 Define types and contracts that allow the two-phase commit protocol to gov-
ern operations on multiple servers of differing types or implementations.

201

189

suononsueu,

202

190 DEPENDENCIE‘S

0 Allow participation in the two—phase commit protocol by any object in the
Java programming language, where “participation” means to perform oper—
ations on that object under a given transaction.

0 Each participant may provide ACID properties with respect to that partici—

pant to observers operating under a given transaction.

0 Use standard Java programing language techniques and tools to accom—

plish these goals. Specifically, transactions will rely upon Java Remote
Method Invocation (RMI) to communicate between participants.

0 Define specific default transaction semantics for use by services.

TX.1.4 Dependencies

This document relies upon the following other specifications:

o Java Remote Method Invocation Specification

0 Jini Distributed Leasing Specification

202

203

tr

THE JINI TRANSA CTION SPECIFICA TION 191

-aasimmafimfifi‘sfimywfifluawm’fiufib‘t‘z‘c‘ua

TX.2 The Two-Phase Commit Protocol

'1WEM:E&m?§M€¥RWfiE-fi. fl
2’... _.

“2:
fl

' :r.
O
5=7:

THE two-phase commit protocol is defined using three primary types:

9 Transacti onManage r: A transaction manager creates new transactions and

coordinates the activities of the participants.

0 Nestabl eTransact-i onManager: Some transaction managers are capable of

supporting nested transactions.

0 Transact‘i onParti ci pant: When an operation is performed under a trans-

action, the participant mustjoin the transaction, providing the manager with
a reference to a Transacti on Pa rti c1" pant object that will be asked to vote,

roll forward, or roll back.

The following types are imported from other packages and are referenced in
unqualified form in the rest of this specification:

java. rmi .Remote

java. rm'i . RemoteException

java. rm‘i .NoSuchObjectExcepti on .

java.'io.Seri al‘izable

net.ji ni .core . lease . LeaseDen-i edException

net.jini .core.‘|ease.Lease

All the methods defined to throw RemoteException will do so in the circum-

stances described by the RMI specifi cation.

Each type is defined where it is first described. Each method is described
where it occurs in the lifecycle of the two-phase commit protocol. All methods,
fields, and exceptions that can occur during the lifecycle of the protocol will be
specified. The section in which each method or field is specified is shown in a
comment, using the § abbreviation for the word “section.”

203

204

STARTING A TRANSACTION

TX.2.1 Starting a Transaction

The TransactionManager interface is implemented by servers that manage the

[woephase commit protocol:

package net.jini.core.transaction.server;

pubiic interface TransactionManager

extends Remote, TransactionConstants // §TX.2.4

pubiic static c1ass Created impiements Seriaiizab1e {

pubiic finai Wong id;

pubiic final Lease iease;

pubiic Created(1ong id, Lease lease) {m}

}

Created createCiong leaseFor) // §TX.2.1

throws LeaseDeniedException, RemoteException;

void joinCiong id, TransactionParticipant part,

iong crashCount) // §TX.2.3

throws UnknownTransactionException.

CannotJoinException, CrashCountException,

RemoteException;

int getState(1ong id) // §TX.2.7

throws UnknownTransactionException, RemoteException;

void committ1ong id) // §TX.2.5

throws UnknownTransactionExcepti0n,

CannotCommi tExcepti on,

RemoteException;

void commitCiong id, iong waitFor) // §TX.2.5

throws UnknownTransactionException,

CannotCommitException,

TimeoutExpiredException. RemoteException;

void abort(1ong id) // §TX.2.5

throws UnknownTransactionException,

CannotAbortException,

RemoteException;

void abort(1ong id, iong waitFor) // §TX.2.5

throws UnknownTransactionException,

CannotAbortException,

TimeoutExpiredException, RemoteException;

204

205

{HE JINI TRANSA CT TON SPECIFICA TION

A client obtains a reference to a TransactionManager object via a lookup

service or Some other means. The details of obtaining such a reference are outside
the scope of this Specification.

A client creates a new transaction by invoking the manager’s create method,

providing a desired "leaseFor time in milliseconds. This invocation is typically
indirect via creating a semantic object. The time is the client’s expectation of how

long the transaction will last before it completes. The manager may grant a shorter
lease or may deny the request by throwing LeaseDeni edExcepti on. If the

granted lease expires or is cancelled before the transaction manager receives a
commit or abort of the transaction, the manager will abort the transaction.

The purpose of the Created nested class is to allow the create method to

return two values: the transaction identifier and the granted lease. The constructor

simply sets the two fields from its parameters.

TX.2.2 Starting a Nested Transaction

The TransactionManager.create method returns a new top-level transaction.

Managers that implement just the TransactionManager interface support only

topslevel transactions. Nested transactions, also known as subtransactions, can be

created using managers that implement the Nestahl eTransacti onManager inter-
face:

package net . ji ni . core . transaction . server;

public interface NestableTransactionManager

extends TransactionManager

TransactionWanager.Created

create(NestableTransactionManager parentMgr,'

long parentID, long leaseFor) // §TX.2.2

throws UnknownTransactionException,

CannotJoinException, LeaseDeniedException,

RemoteException;

void promote(long id, TransactionParticipant[] parts,

long[] crashCounts.

TransactionParticipant drop)

throws UnknownTransactionException,

CannotJoinException, CrashCountException.

RemoteException; // §TX.2.7

205

193

1?#2

as.
as;~33;

c.
=-In

206

194 STARTING A NESTED TRMSACTION

The create method takes a parent transaction—represented by the manager for
the parent transaction and the identifier for that transaction—and a desired lease
fimemHMMmmmammnmmmamanmdUMMMMnmmmembwdhnm
specified parent along with the granted lease.

When you use a nested transaction you allow changes to a set of objects to
abort without forcing an abort of the parent transaction, and you allow the commit
of those changes to still be conditional on the commit of the parent transaction.

When a nested transaction is created, its manager joins the parent transaction.
When the two managers are different, this is done explicitly via join (§TX.2.3).
When the two managers are the same, this may be done in a manager-specific
fashion.

The create nnfihod finows UnknownTransactionExceptionifthc pmtnt
transaction is unknown to the parent transaction manager, either because the trans—
action ID is incorrect or because the transaction is no longer active and its state
has been discarded by the manager.

package net.ji ni .cor'e . transacti on;

public class UnknownTransactionException
extends TransactionException

public UnknownTransactionExceptionO {...}
public UnknownTransactionExceptionCStr'ing desc) {...}

}

public class TransactionException extends Exception {
public TransactionExceptionO {...}
public TransactionExceptionCString desc) {...}

}

The create method throws CannotloinException if the parent transaction is
known to the manager but is no longer active.

package net.jini .core.transaction;

public class CannotJoinException extends TransactionException
{

public CannotJoi nExcepti onO {...}
public CannotJoinException(String desc) {...}

206

207

 THE JINI TRANS/l CTI0N SPECIFICAN0N

TX-2-3 Joining a 'Ii'ansaction

The first time a client tells a participant to perform an Operation under a given
transaction, the participant must invoke the transaction manager’s join method
with an object that implements the TransactionParticipant interface. This
object will be used by the manager to communicate with the participant about the
transaction.

package net.jini.core.transaction.server;

public interface TransactionParticipant

extends Remote, TransactionConstants // §TX.2.4
{

int prepare(TransactionManager mgr, long id) // §TX.2.6
throws UnknownTransactionException, RemoteException;

void commit(TransactionManager mgr, long id) // §TX.2.6
throws UnknownTransactionException, RemoteException:

void abort(Tran5actionManager mgr, long id) // §TX.2.6
throws UnknownTransactionException, RemoteException;

int prepareAndCommit(TransactionManager mgr, long id)
// §TX.2.7

throws UnknownTransactionException, RemoteException;
}

if the participant’s invocation of the join method throws RemoteException,
the participant should not perform the operation requested by the client and
should rethrow the exception or otherwise signal failure to the client.

The join method’s third parameter is a crash count that uniquely defines the
version of the participanfs storage that holds the state of the transaction. Each
time the participant loses the state of that storage (because of a system crash if the
storage is volatile, for'example) it must change this count. For example, the partic-
ipant could store the crash count in stable storage.

When a manager receives a join request, it checks to see if the participant has
already joined the transaction. If it has, and the crash count is the same as the one
specified in the original join, the join is accepted but is otherwise ignored. If the
crash count is different, the manager throws CrashCountException and forces
the transaction to abort.

package net. ji ni .core . transaction . server;

public class CrashCountException extends Trans
{

actionException

207

:93:
A:

HE?
R

5sO
5En

208

196 Y'MNSA CWON STA TES

public CrashCountExceptionO {...}

public CrashCountExceptioMStri ng desc) {___]-
}

The participant should reflect this exception back to the client. This check makes
join idempotent when it should be, but forces an abort for a second jo-in of a
transaction by a participant that has no knowledge of the first join and hence has
lost whatever changes were made after the first jot n.

An invocation of join can throw UnknownTransact'i onException, which

means the transaction is unknown to the manager, either because the transaction

ID was incorrect, or because the transaction is no longer active and its state has
been discarded by the manager. The join method throws CannotJo'inExcepti on
if the transaction is known to the manager but is no longer active. In either case

the join has failed, and the method that was attempted under the transaction
should reflect the exception back to the client. This is also the proper respOnse if

join throws a NoSuchObjectExcepti on.

TX.2.4 Transaction States

The Transacti onConstants interface defines constants used in the communica-

tion between managers and participants.

package net . j1' n1' . core . transaction . server;

public interface TransactionConstants {
int ACTIVE = 1;

int VOTING = 2;

int PREPARED = 3;

int NOTCHANGED : 4;

int COMMITTED = 5;

int ABORTED = 6;

}

These correspond to the states and votes that participants and managers go
through during the lifecycle of a given transaction.

208

THE

'1“
i

In

.1”(Tim

209

THE JEN! TRANSACTION SPECIFICA WON

Tx,2.5 Completing 21 Transaction: The Client’s View

In the client’s View, a transaction goes through the following states:

COMMITTED

 cleanup

For the client, the transaction starts out ACT

ent drives the transaction to completion
transaction manager, or by cancelling the l
which are equivalent to an abort).

The one—parameter commit method returns as soon as the transaction success-
fully reaches the COMMITI'ED state, or if the transaction is knowu to have previ—
ously reached that state due to an earlier commit. If the transaction reaches the
ABORTED state, or is known to have previously reached that state due to an earlier
commit or abort, then commit throws CannotCommitException.

IVE as soon as create returns. The clia
by invoking commit or abort on the
ease or letting the lease expire (both of

package net.jini . core. transaction;

public class CannotCommitException
extends TransactionException

{

public CannotCommitExceptionO {...}
public CannotCommitExceptionCString desc) {...}

209

197

210

198 COMPLETING A TRANSACTION: THE CLIENTS VIEW

package net . ji m' . core . transaction ;

3:: public class CannotAbor‘tException extends TransactionException
i. {

public CannotAbortExceptionO {...}

public CannotAbo'rtException(String desc) {...}
}

Both commit and abort can throw UnknownTr-ansactionException, which

means the transaction is unknown to the manager. This may be because the trans-

action ID was incorrect, or because the transaction has proceeded to cleanup due
to an earlier commit or abort, and has been forgotten.

Overloads of the commit and abort methods take an additional waitFor'

timeout parameter specified in milliseconds that tells the manager to wait until it
has successfully notified all participants about the outcome of the transaction
before the method returns. If the timeout expires before all participants have been

notified, a TimeoutExpi redException will be thrown. If the timeout expires
before the transaction reaches the COMMITFED or ABORTED state, the manager must

wait until one of those states is reached before throwing the exception. The

committed field in the exception is set to true if the transaction committed or to
fal 5e if it aborted.

package net . ji ni . core . transacti on ;

public class TimeoutExpiredException extends
TransactionException

{

public bool ean committed;

public TimeoutExpi redException(boolean committed) {...}

public TimeoutExpi redExceptionCString desc,
boolean committed) {...}

}

210

211

We!

.N(,..mwl._._._r wins“;w.

THE hm IRA ,vsa CHON .spscmca nos!

TX.2.6 Completing a Transaction: A Participant’s View

In a participant’s View, a transaction goes through the following states:

NOTCHANG ED

VOTING " cleanup

For the participant, the transaction starts out ACTIVE as soon as join returns. Any

operations attempted under a transaction are valid only if the participant has the

transaction in the ACTIVE state. In any other state, a request to perform an opera-

tion under the transaction should fail, signaling the invoker appropriately.

When the manager asks the participant to prepare, the participant is VOTING

until it decides what to return. There are three possible return values for prepare:

0 The participant had no changes to its state made under the transaction—that

is, for the participant the transaction was read—only. It should release any

internal state associated with the transaction. It must signal this with a return

of NOTCHANGED, effectively entering the NOTCHANGED state. As noted below,

a well—behaved participant should stay in the NOTCHANGED state for some

time to allow idempotency for prepare.

0 The participant had its state changed by operations performed under the

transaction. It must attempt to prepare to roll those changes forward in the

event of a future incoming commit invocation. When the participant has suc—

cessfully prepared itself to roll forward (§TX.2.8), it must return PREPARED,

thereby entering the PREPARED state.

0 The participant had its state changed by operations performed under the

transaction but is unable to guarantee a future successful roll forward. It

211

199

212

200

COMPLETING A TRANSACTION: A PARTICIPW’S VIEW

must signal this with a return of ABORTED, effectively entering the ABORTED
state.

For top—level transactions, when a participant returns PREPARED it is stating

that it is ready to roll the changes forward by saving the necessary record of the

operations for a future commit call. The record of changes must be at least as
durable as the overall state of the participant. The record must also be examined

during recovery (§TX.2.8) to ensure that the participant rolls forward or rolls back

as the manager dictates. The participant stays in the PREPARED state until it is told

to commit or abort. It cannot, having returned PREPARED, drop the record except

by following the “roll decision” described for crash recovery [§TX.2.8.1).

For nested transactions, when a participant returns PREPARED it is stating that

it is ready to roll the changes forward into the parent transaction. The record of

changes must be as durable as the record of changes for the parent transaction.

If a participant is currently executing an operation under a transaction when

p repa re is invoked for that transaction, the participant must either: wait until that

operation is complete before returning from prepare; know that the operation is

guaranteed to be read-only, and so will not affect its ability to prepare; or abort the
transaction.

If a participant has not received any communication on or about a transaction

over an extended period, it may choose to invoke getState on the manager. if

getState throws UnknownTransacti on Excepti on or NoSuchObj ectExcept'i on,

the participant may safely infer that the transaction has been aborted. If getState

throws a RemoteExcepti on the participant may choose to believe that the mana

ager has crashed and abort its state in the transaction—this is not to be done

lightly, since the manager may save state across crashes, and transient network

failures could cause a participant to drop out of an otherwise valid and committa-

ble trans action. A participant should drop out of a transaction only if the manager

is unreachable over an extended period. However, in no case should a participant

drop out of a transaction it has PREPARED but not yet rolled forward.

If a participant has joined a nested transaction and it receives a prepare call
for an enclosing transaction, the participant must complete the nested transaction,

using getState on the manager to determine the proper type of completion.

If a participant receives a prepare call for a transaction that is already in a

post-VOTING state, the participant should simply respond with that state.

If a participant receives a prepare call for a transaction that is unknown to it,
it should throw UnknownTransact-i onException. This may happen if the partici-

pant has crashed and lost the state of a previously active transaction, or if a previ-
ous NDTCHANGED or ABDRTED response was not received by the manager and the

participant has since forgotten the transaction.

212

“...-[Mm..

diam-heme.......-.t.

A!

m

tr;

[0

Th

[In
me

213

THE JJWI TRANSACTION SPECIFICATION

Note that a return value of NOTCHANGED may not be idempotent. Should the

participant return NOTCHANGED it may proceed directly to ciean up its state. If the
manager receives a RemoteException because of network failure, the manager
will likely retry the p re pare. At this point a participant that has dropped the infor-

mation about the transaction will throw UnknownTransact'ionException, and the

manager will be forced to abort. A well-behaved participant should stay in the

NOTCHANGED state for a while to allow a retry of prepare to again return

NOTCHANGED, thus keeping the transaction alive, although this is not strictly

required. No matter what it voted, 3 well—behaved participant should also avoid
exiting for a similar period of time in case the manager needs to resinvoke

prepare.

If a participant receives an abort call for a transaction, whether in the
ACTIVE, VOTING, or PREPARED state, it should move to the ABORTED state and roll

back all changes made under the transaction.

If a participant receives a commit call for a PREPARED transaction, it should

move to the COMMITFED state and roll forward all changes made under the
transaction.

The participant’s implementation of prepareAndComm'it must be equivalent
to the following:

public int prepareAndCommit(Transact'ionManager mgr, long id)

throws UnknownTransact‘ionException, RemoteException
{

int resuit = prepare(mgr. id);

if (result == PREPARED) {

commit(mgr, id);

result = COMVIITI'ED;

}

return resuit;

}

The participant can often implement prepareAndCommi t much more efficiently

than shown, but it must preserve the above semantics. The manager’s use of this
method is described in the next section.

213

201

214

202

COMPLETING A TRANéH CTION: THE MANAGER ’5' VIEW

TX.2.7 Completing 3 Transaction: The Manager’s View

In the manager’s view, a transaction goes through the following states:

1; Culling

WWW-“F ACTIVE

abort

COMMITTED

i

ABDRTED ‘ cleanup

When a transaction is created using create, the transaction is ACTIVE. This is the

only state in which participants may join the transaction. Attempting to join the

transaction in any other state throws a CannotJoi nExcept'I'on.

Invoking the manager’s commit method causes the manager to move to the

VOTING state, in which it attempts to complete the transaction by rolling forward.

Each participant that has joined the transaction has its prepare method invoked to
vote on the outcome of the transaction. The participant may return one of three

votes: NOTCHANGED, ABORTED, or COMMITTED.

If a participant votes ABORTED, the manager must abort the transaction. If
prepare throws UnknownTransactionExcept'ion or NoSuchObjectException,

the participant has lost its state of the transaction, and the manager must abort the
transaction. If prepare throws RemoteExce-ption, the manager may retry as long
as it wishes until it decides to abort the transaction.

To abort the transaction, the manager moves to the ABORTED state. In the

ABORTED state, the manager should invoke abort on all participants that have

voted PREPARED. The manager should also attempt to invoke abort on all partici-

pants on which it has not yet invoked prepare. These notifications are not strictly
necessary for the one-parameter forms of commit and abort, since the partici-

pants will eventually abort the transaction either by timing out or by asking the

manager for the state of the transaction. However, informing the participants of

the abort can speed up the release of resources in these participants, and so

attempting the notification is strongly encouraged.

If a participant votes NOTCHANGED, it is dropped from the list of participants,

and no further communication will ensue. If all participants vote NOTCHANGED then

the entire transaction was read-only and no participant has any changes to roll for-
ward. The transaction moves to the COMMITTED state and then can immediately

214

215

THE JIM TMNSA CTION SPECIFICA HON

move to cleanup, in which resources in the manager are cleaned up. There is no
behavioral difference to a participant between a NOTCHANGED transaction and one

that has completed the notification phase of the COMMITTED state.

If no participant votes ABORTED and at least one participant votes PREPARED,

the transaction also moves to the COMMITTED state. In the COMMITTED state the

manager must notify each participant that returned PREPARED to roll forward by

invoking the participant’s commit method. When the participant’s commit method

returns normally, the participant has rolled forward successfully and the manager

need not invoke commit on it again. As long as there exists at least one participant

that has not rolled forward successfully, the manager must preserve the state of the

transaction and repeat attempts to invoke commit at reasonable intervals. If a par-

ticipant’s commit method throws UnknownTransact'ionException, this means

that the participant has already successfully rolled the transaction forward even

though the manager did not receive the notification, either due to a network failure

on a previous invocation that was actually successful or because the participant
called getState directly.

If the transaction is a nested one and the manager is prepared to roll the trans-
action forward, the members of the nested transaction must become members of

the parent transaction. This promotion of participants into the parent manager

must be atomic—mall must be promoted simultaneously, or none must be. The

multi-participant promote method is designed for this use in the casein which the

parent and nested transactions have different managers.

The promote method takes arrays of participants and crash counts, where

crashCounts [1'] is the crash count for parts [i]. If any crash count is different

from a crash count that is already known to the parent transaction manager, the

parent manager throws CrastountExcepti on and the parent transaction must

abort. The drop parameter allows the nested transaction manager to drop itself out

of the parent transaction as it promotes its participants into the parent transaction

if it no longer has any need to be a participant itself.

The manager for the nested transaction should remain available until it has

successfully driven each participant to completion and promoted its participants

into the parent transaction. If the nested transaction’s manager disappears before a

participant is positively informed of the transaction’s completion, that participant
will not know whether to roll forward or back, forcing it to vote ABORTED in the

parent transaction. The manager may cease commit invocations on its participants

if any parent transaction is aborted. Aborting any transaction implicitly aborts any
uncommitted nested transactions. Additionally, since any committed nested trans-

action will also liave its results dropped, any actions taken on behalf of that trans-
action can be abandoned.

Invoking the manager‘s abort method, cancelling the transaction’s lease, or

allowing the lease to expire also moves the transaction to the ABORTED state as

215

203

216

204

CRASH RECOVERY

described above. Any transactions nested inside that transaction are also moired

directly to the ABORTED state.

The manager may optimize the VOTING state by invoking a participant’s

prepareAn dCommi t method if the transaction has only one participant that has not

yet been asked to vote and all previous participants have returned NOTCHANGED,

(Note that this includes the special case in which the transaction has exactly one

participant.) If the manager receives an ABORTED result from prepareAndCommi-t,

it proceeds to the ABORTED state. In effect, a prepareAndCommi t moves through
the VOTING state straight to operating on the results.

A getState call on the manager can return any of ACTIVE, VOTING, ABORTED,

NOTCHANGED, or COMMITTED. A manager is permitted, but not required, to return

NOTCHANGED if it is in the COMMITTED state and all participants voted NOTCHANGED.

TX.2.8 Crash Recovery

Crash recovery ensures that a top-level transaction will consistently abort or roll

forward in the face of a system crash. Nested transactions are not involved.

The manager has one commit point, where it must save state in a durable fash-

ion. This is when it enters the COMMITTED state with at least one PREPARED partici-

pant. The manager must, at this point, conunit the list of PREPARED participants

into durable storage. This storage must persist until all PREPARED participants suc-

cessfully roll forward. A manager may choose to also store the list of PREPARED

participants that have already successfully rolled forward or to rewrite the list of

PREPARED participants as it shrinks, but this optimization is not required (although

it is recommended as good citizenship). In the event of a manager crash, the list of

participants must he recovered, and the manager must continue acting in the

COMMITTED state until it can successfully notify all PREPARED participants.

The participant also has one commit point, which is prior to voting PREPARED.

When it votes PREPARED, the participant must have durably recorded the record of

changes necessary to successfully roll forward in the event of a future invocation

of commit by the manager. It can remove this record when it is prepared to suc-

cessfully rEtum from commit.

Because of these commitments, manager and participant implementations

should use durable forms of RMI references, such as the Acti vatabl e references

introduced in the Java Development Kit software (JDK), version 1.2. An unreach-

able manager causes much havoc and should be avoided as much as possible. A

vanished PREPARED participant puts a transaction in an untenable permanent state

in which some, but not all, of the participants have rolled forward.

216

217

THE JIN! TERA N534 CTION SPECIFIC/1 NON

TX.2.8.1 The Roll Decision

If a participant votes PREPARED for a top—level

will execute a recovery process if it crashes between completing its durable record
and receiving a commi 1: notification from the manager. This recovery process must
read the record of the crashed participant and make a roll decision—whether to
roll the recorded changes forward or roll them back.

To make this decision, it invokes the getState method on the transaction
manager. This can have the following results:

transaction, it must guarantee that it

o getState returns COMMITTED: The rec
overy should move the participant tothe COMMITTED state.

0 getState throws either an Unknow
NoSuchObjectException: The recover
ABORTED state.

nTransactionException or a

y should move the participant to the

9 getState throws RemoteException: The
recovery should repeat the

attempt after a pause.

TX.2.9 Durability

Durability is a commitment, but it is not a guarantee. It is impossible to guarantee
that any given piece of stable storage can never be lost; one can only achieve

, but it is less durable than data committe
redundant disks. When we speak of “
relative to the expectations of the hu
communication.

With multi-participant transactions it

durability” in this system it is always used
man who decided which entities to use for

is entirely possible that different partici-
pants have different durability levels. The manager may be on a tightly replicated
system with its durable storage duplicated on several host systems, giving a high
degree of durability, while a participant may be using only one disk. Or a partici-
pant may always store its data in memory, expecting to lose it in a system crash (a

one participant than another. Determining, or even defining and exposing, varyinglevels of durability is outside the scope of this specification.

217

205

:5

ast :5

353O
BU!

—*

218

THE JINI TRANSACTION SPECIFICATION

TX.3 Default Transaction Semantics

THE two-phase commit protocol defines how a transaction is created and later
driven to completion by either committing or aborting. It is neutral with respect to

the semantics of locking under the transaction or other behaviors that impart
semantics to the use of the transaction. Specific clients and servers, however, must

be written to expect specific transaction semantics. This model is to separate the
completion protocol from transaction semantics, where transaction semantics are

represented in the parameters and return values of methods by which clients and
participants interact.

This chapter defines the default transaction semantics of services. These

semantics preserve the traditional ACID properties (you will find a brief descrip-
tion of the ACID properties in §TX.].2). The semantics are represented by the
Transaction and NestableTransaction interfaces and their implementation

classes Se rve rT ransacti on and Nestabl eServe rTrans action. Any participant

that accepts as a parameter or returns any of these types is promising to abide by
the following definition of semantics for any activities performed under that trans-
action.

TX.3.1 Transaction and Nestabl eTransaction Interfaces

The client’s View of transactions is through two interfaces: Transaction for top-
level transactions and Nes tabl eTransacti on for transactions under which nested

transactions can be created. First, the Transaction interface:

package net.jini .core.transaction;

public interface Transaction {

public static class Created implements Serializable {

public final Transaction transaction;

public final Lease lease;

CreatedCTransaction transaction. Lease lease) {...}

218

207

e
3

QBh

:53D
=U!

219

._ _____‘

2,08 Transaction AND Nes tab leTransa ction JNI‘ERPHCES

void commitC) // §TX.2.5

throws UnknownTransactionException,

CannotCommitException,

! RemoteException;
‘ void commit(long waitFor) // §TX.2.5

throws UnknownTransactionException,

CannotCommitException,

TimeoutExpiredException, RemoteException;

void abortC) // §TX.2.5

throws UnknownTransactionException,

CannotAbortException,

RemoteException;

void abortClong waitFor) // §TX.2.S

throws UnknownTransactionException,

CannotAbortException,

TimeoutExpiredException. RemoteException;

}

The Created nested class is used in a factory create method for top-level trans-

actions (defined in the next section) to hold two return values: the newly created

Transaction object and the transaction‘s lease, which is the lease granted by the

transaction manager. The commit and abort methods have the same semantics as
discussed in §TX.2.5.

Nested transactions are created using Nestabl eTransaction methods:

package net.jini.core.transaction;

public interface NestableTransaction extends Transaction {

public static class Created implements Serializable {

public final NestableTransaction transaction;

public final Lease lease;

CreatedCNestableTransaction transaction. Lease lease)

{m}

}

Created create(long leaseFor) // §TX.2.2

throws UnknownTransactionException,

CannotJoinException, LeaseDeniedException,

RemoteException;

Created create(NestableTransactionManager mgr,

long leaseFor) // §TX.2.2

throws UnknownTransactionException,

219

220

rye JIM mama CHON space-“rm new

CannotJoinException, LeaseDeniedException,

RemoteException;

}

The Created nested class is used to hold two return values: the newly created
Transaction object and the transaction’s lease, which is the lease granted by the
transaction manager. In both create methods, leaseFor is the requested lease

time in milliseconds. In the one-parameter create method the nested transaction
is created with the same transaction manager as the transaction on which the
method is invoked. The other create method can be used to specify a different

transaction manager to use for the nested transaction.

TX.3.2 TransactionFactory Class

The Transacti'onFactory class is used to create top—level transactions.

package net .jini . core . transaction;

public class TransactionFactory {

public Static Transaction.Created

create(TransactionManager mgr, long leaseFor)

// §TX.2.1

throws LeaseDeniedException, RemoteException {m}

public static VestableTransaction.Created

create(NestableTransactionManager mgr,long leaseFor)

// §TX.2.2

throws LeaseDeniedException, RemoteException {m}

}

The first create method is usually used when nested transactions are not

required. However, if the manager that is passed to this method is in fact a

NestableTransactionManager, then the returned Transaction can in fact be
cast to a NestableTransacti on. The second create method is used when it is

known that nested transactions need to be created. In both cases, a Created

instance is used to hold two return values: the newly created transaction object

and the granted lease.

220

a
s

ask

:53D
5U!

221

.i 210 ServerTransactt‘ on AND Nestab?BServerTransaCtion CLASSES

TX.3.3 ServerTransaction and Nestabl eServer'Transaction
Classes

t': :._: ' II The Se rverTransacti on class exposes functionality necessary for writing partic-
ipants that support top-level transactions. Participants can cast a Transaction to a
ServerTransaction to obtain access to this functionality.

public class ServerTransaction

implements Transaction, Serializable

E {
' public final TransactionManager mgr;

public final long id;

public ServerTransaction(TransactionManager mgr, long id)
{m}

public void joinCTransactionParticipant part,
long crashCount) // §TX.2.3

throws UnknownTransactionException,

CannotJoinException, CrashCountException,

RemoteException {m}

public int getState() // §TX.2.7
throws UnknownTransactionException, RemoteException

{...}

public boolean isNestedC) {m} // §TX.3.3
}

The mg r field is a reference to the transaction manager that created the transaction.
The id field is the transaction identifier returned by the transaction manager’s
create method.

The constructor should not be used directly; it is intended for use by the

Transacti on Facto ry implementation.

The methods join, commit, abort, and getState invoke the corresponding
methods on the manager, passing the transaction identifier. They are provided as a
convenience to the programmer, primarily to eliminate the possibility of passing
an identifier to the wrong manager. For example, given a ServerTransaction
object tr, the invocation

tr.join(participant. crashCount);

is equivalent to

tr.mgr.join(tr.id, participant, crashCount);

The isNested method returns true if the transaction is a nested transaction

(that is, if it is a Nesta'oleServerTransaction with a non-null parent) and

221

222

THE IINI TRANSACTION SPECIFICATION 21 1

false otherwise. It is provided as a method on Serve rTransaction for the con-

venience of participants that do not support nested transactions.
The has hCode method returns the id cast to an int XORed with the result of

mgr.hashCode(). The eQuals method relums true if the specified object is a
serverTransaction object with the same manager and transaction identifier as

the object on which it is invoked.

The Nestab'ieServer‘Transaction class exposes functionality that is neces-

sary for Writing participants that support nested transactions. Participants can cast
a Nestabl eTransacti on to a Nestabl eServerTransaction to obtain access to

this functionality.

aH

g
fig
9411we“.

0
={A

package net.ji ni .core . transaction . server;

public class NestableServerTr-ansaction

extendsServerTransaction implements NestableTransaction

...—-..v,«Ha,~..
t...n-,sm-_.;,.,,m..wi..a_w......

public final NestableServerTransaction parent;

public NestableServerTransaction(E

NestableTransactionManager mgr. long id,

NestableServerTransaction parent) {m}

public void promoteCTransactionParticipant[] parts,

longE] crashCounts,

TransactionParticipant drop)

// §TX.2.7

throws UnknownTransactianxception,

CannotJoinException, CrashCountException,

RemoteException {m}

public boolean enclosedByCNestableTransaction enclosing)

{...}

}

The parent field is a reference to the parent transaction if the transaction is nested

(§TX.2.2) or null if it is a top-level transaction.

The constructor should not be used directly; it is intended for use by the

Transacti on Facto ry and Nestabl eServerTransacti on implementations.

Given a Nestabl eSe rve rTransacti on object t r, the invocation

tr.promote(parts, crashCounts. drop)

is equivalent to 1

((Nestabl eTransacti onManager)tr . mgr) . p romote (tr . id , parts . l
crashCounts, drop)

222

