
91

JINI LEASE UTILITIES SPECIFICATION, version 1.1 81

mootby intervening calls on the renewal manager. For example, the renewal man-
ager may deliver events regarding leases that were removed from the managedset
after the calls that removed the leases in question completed. Implementations
should keep the window wheresuchnotifications could occur as small as possible.

The equals method for this class returns true if and only if two instances of
this class refer to the same object. That is, x and y are equal instances ofthis class
if and only if x == y has the value true.

The constructor has two forms:

Thefirst form of the constructor takes no arguments. This form of the con-
structor instantiates a LeaseRenewalManager object that initially manages
no leases.

@ The second form of the constructor creates a LeaseRenewalManager that

initially managesa single lease. This form of the constructor requires that a
reference to the initial lease be supplied as an argument. This form of the
constructor also takes a desiredExpiration argument that represents the
desired expiration time for the lease and a reference to a LeaseListener
object that should receive notifications of events associated with the lease.

Creating a LeaseRenewalManager using the second form of the constructoris
equivalent to invoking the no-argumentconstructor followed by an invocation of
the three-argument form of the renewUnti1 method (describedlater).

The renewUntil method addsa lease to the set of leases being managed by
the LeaseRenewalManager. There are two versions of this method: a four-argu-
ment form that allows the client to specify the renewal duration directly, and a
three-argument form that infers the renewal duration from the desired expiration
argument. The four-argument form will be describedfirst.

This method takes as arguments: a reference to the lease to manage, the
desired expiration time of the lease, the renewal duration time for the lease, and a
reference to the LeaseListener object that will receive notification of events
associated with this lease. The LeaseListener argument may be nu11.

If nu11 is passed as the lease parameter, a Nul11PointerException will be
thrown. If the desiredExpiration parameter is Lease.FOREVER, the
renewDuration parameter may be Lease.ANY or any positive value; otherwise,
the renewDuration parameter must be a positive value. If the renewDuration
parameter does not meet these requirements, an I1]legalArgumentException
will be thrown.

If the lease passed to this methodis already in the set of managed leases, the
listener object, the desired expiration, and the renewal duration associated with

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

91

92

THE SEMANTICS

that lease will be replaced with the new listener, desired expiration, and renewal
duration.

A lease will remain in the set of managed leases until one of the following
occurs:

@ The lease’s desired expiration time is reached; this will generate a desired
expiration reached event.

@ An explicit removal of the lease from the set is requested via a cancel,
clear, or remove call on the renewal manager.

@ The lease’s actual expiration time is reached before its desired expiration;
this will generate a renewalfailure event.

@ The renewal managertries to renew the lease and gets a definite exception;
this will generate a renewalfailure event.

The renewUntil method interprets the value of the desiredExpiration
parameter as the desired absolute system time after which the lease is no longer
valid. This argument provides the ability to indicate an expiration time that
extends beyond the actual expiration of the lease. If the value passed for this argu-
ment does indeed extend beyondthe lease’s actual expiration time, then the lease
will be systematically renewed at appropriate times until one of the conditions
listed above occurs.If the value is less than or equal to the actual expiration time,
nothing will be done to modify the time when the lease actually expires. Thatis,
the lease will not be renewed with an expiration time that is less than the actual
expiration time of the lease at the time ofthe call.

The renewDuration parameteris interpreted as the renewal duration, in milli-
seconds, to associate with the lease.

If a non-nu11 object reference is passed in as the LeaseListener parameter,
this object will receive notification of exceptional conditions occurring upon a
renewal attempt of the lease. In particular, exceptional conditions include the
reception of a definite exception or the lease’s actual expiration being reached
before its desired expiration. If the listener implements the interface
DesiredExpirationListener it will also receive notification if the lease’s

desired expiration is reached while theleaseisstill in the set.
If a definite exception occurs during a lease renewal request, the exception

will be wrapped in an instance of the LeaseRenewalEventclass (describedlater)
and sent to the listener’s notify method.

If an indefinite exception (see Introduction to Helper Utilities and Services,
Section US.2.6, “What Exceptions Imply about Future Behavior”) occurs during a
renewal request for a particular lease, renewal requests will continue to be made
for that lease until: the lease is renewed successfully, a renewal attemptresults in a

92

93

JINI LEASE UTILITIES SPECIFICATION, version 1.1 83

definite exception, or the lease’s actual expiration time has been exceeded.If the
lease cannot be successfully renewed before its actual expiration is reached, the
exception associated with the most recent renewal attempt will be wrapped in an
instance of the LeaseRenewalEvent class and sent to the listener’s notify
method.

If the lease’s actual expiration is reached before the lease’s desired expiration
time andeither (1) the last renewal attempt succeeded or (2) there have been no
renewalattempts, a LeaseRenewalEvent containing a nu11 exception will be sent
to the listener’s notify method. Case 1 can occurif the extension granted by the
last renewal was very short. Case 2 can occur if the client adds a lease that has
already expired (or is about to) to the managedsetof leases.

If nu11 is passed as the value of the LeaseListener parameter, then no noti-
fications will be delivered.

Calling the three-argument form of renewUntil with a desiredExpiration
of Lease. ANY is equivalent to making the followingcall:

renewUntil(lease, Lease.FOREVER, Lease.ANY, listener);

Otherwise, the three-argument form is equivalentto:

renewUntil(lease, desiredExpiration, Lease.FOREVER,

listener);

Usage Note: Unless an application has a good reason for doing otherwise, it should
use Lease. ANY or Lease. FOREVERfor the renewal duration of a given lease.
Using these values gives the grantor of the lease the mostflexibility in the length of
time for which it grants renewals. In most cases, the grantor of a leaseis in a better
position than the lease holder to make trade-offs between renewal frequency and the
risk of holding on to resources longer than necessary. Specifying a value for the
renewal duration of a lease might make sense if the holder of the lease has more
information on the value of the leased resource than the grantor, or if the holder needs
to ensure that there is an upper bound on how longthe lease will remain valid.

The renewFor methodaddsa lease to the set of leases being managed by the
LeaseRenewalManager. Like renewUntil this method has both three- and four-
argument forms. The four-argument form of this method takes as parameters:
lease, a reference to the lease to manage; desiredDuration, a long represent-
ing the desired duration of lease; renewDuration, a long representing the
renewal duration; and listener, a reference to a LeaseListener object that will
receive notifications of events associated with this lease. Both desiredDuration

and renewDuration are expressed in milliseconds.
The semantics of the four-argument form of renewFor are similar to those of

the four-argument form of renewUntil, with desiredDuration + current time

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

93

94

84 THE SEMANTICS

being used for the value of the desiredExpiration parameter of renewUnti1.
The only exception is that, in the context of renewFor, the value of the
renewDuration parameter may be Lease.ANY only if the value of the
desiredDuration parameteris exactly Lease. FOREVER.

This methodtests for arithmetic overflow in the desired expiration time com-
puted from the value of desiredDuration parameter (desi redDuration + cur-
rent time). Should such overflow bepresent, a value of Lease. FOREVERis used to
represent the lease’s desired expiration time.

The three-argument form of this method is equivalent to the following call:

renewFor(lease, desiredDuration, Lease.FOREVER,

listener);

Note that for both versions of renewFor, a value of Lease.ANY for the

desiredDuration parameter does not have any special semantics associated with
it. Calling either version of renewFor with a desiredDuration of Lease.ANY
will result in the lease having a desired expiration one millisecond in the past,
causing the lease to be immediately dropped from the managed set. The method
will not throw an exception in this circumstance. A renewalfailure event will be
generated if the actual expiration is before the desired expiration; otherwise a
desired expiration reached event will be generated.

The getExpiration method returns the current desired expiration time
requested for a particular lease, not the actual expiration that was granted when
the lease wascreated or last renewed. The only argumentto this methodis the ref-
erence to the lease object. If the lease is not in the set of managed leases, an
UnknownLeaseException will be thrown.

The setExpiration methodreplacesthe current desired expiration of a given
lease contained in the set of managed leases with a new desired expiration time.
The only arguments to this method are the reference to the lease object and the
new expiration time.

An invocation of this method with a lease that is currently a memberof the
managed set is equivalent to an invocation of the renewUntil method with the
lease’s current listener input to the 1istener parameter. In particular, if the value
of the expiration parameter is less than or equal to the lease’s current actual
expiration, this methodtakes no action.

An invocation of this method with a lease that is not in the set of managed
leases will result in an UnknownLeaseException.

The remove method removes a given lease from the set of managedleases.
The only argument to this method is the reference to the lease object. If the lease
is not in the set of managed leases, an UnknownLeaseException will be thrown.

Note that this method does not cancel the given lease; activities such as lease
cancellation are left the for the client to manage.

94

95

JINI LEASE UTILITIES SPECIFICATION, version 1.1 85

The cancel method both removes a given lease from the set of managed
leases and cancels the given lease. The only argumentto this method is the refer-
ence to the lease object. If the lease is not in the set of managed leases, an
UnknownLeaseExceptionwill be thrown.

Any exception (definite or otherwise) occurring during the cancellation of the
lease will have no effect on the removalof the lease from the managedset. Thatis,
even if an exception occurs during the cancel operation, the lease will have been
removed from the managedset upon return from this method.

Any exception thrown by the cancel method of the lease object itself may
also be thrown bythis method.

The clear method removesall leases from the set of managedleases. It does
not request the cancellation of those leases. This method takes no arguments.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

95

96

86

96

THE SEMANTICS

97

JINI LEASE UTILITIES SPECIFICATION, version 1.1 87

LM.5 Supporting Interfaces and Classes

Tue LeaseRenewalManager utility class depends on the interfaces
LeaseListener and DesiredExpirationListener. Both ofthese interfaces ref-
erence one class, LeaseRenewalEvent.

LM.5.1 The LeaseListener Interface

The public methodsspecified by the LeaseListener interface are as follows:

package net.jini. lease;

public interface LeaseListener extends EventListener

{

void notify(LeaseRenewalEvent e);

}

The LeaseListener interface defines the mechanism through whichthecli-
ent receives notification of renewal failure events generated by the renewal man-
ager. These events are delivered using the notify method. Renewalfailure events
are generated when the LeaseRenewalManager has failed to renew one of the
leases that it is managing. Such renewalfailures typically occur because one of
the following conditions is met:

@ After successfully renewing a lease any numberoftimes and experiencing
no failures, the LeaseRenewalManager determines—prior to the next
renewal attempt—that the actual expiration time of the lease has passed;
implying that any further attempt to renew the lease would befruitless.

@ An indefinite exception occurs during each attemptto renew a lease from the
point that the first such exception occurs until the point when the
LeaseRenewalManager determines that lease’s actual expiration time has
passed.

@ A definite exception occurs during a lease renewal attempt.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

97

98

88 SUPPORTING INTERFACES AND CLASSES

It is the responsibility of the client to pass into the LeaseRenewalManager a
reference to an object that implements the LeaseListener interface, which
defines the actions to take upon receipt of a renewal failure event notification.
Whenone of the above conditions occurs, the LeaseRenewalManager will send

an instance of LeaseRenewalEventto that listener object.

LM.5.1.1 The Semantics

The notify method is invoked by the LeaseRenewalManager whenit fails to
renew a lease because one of the conditions described above has occurred. This

method takes one parameter, an instance of the LeaseRenewalEventclass, which
contains information about the lease on which the failed renewal attempt was
made and information on what causedthefailure.

Note that prior to invoking the notify method, the LeaseRenewalManager
removesthe lease that could not be renewed from the managedset of leases. Note
also that because of the reentrancy guarantee made by the
LeaseRenewalManager, new leases can be addedsafely from within the notify
method.

LM.5.2 The DesiredExpirationListener Interface

The public methodsspecified by the Desi redExpirationListener interface
are as follows:

package net.jini. lease;

public interface DesiredExpirationListener
extends LeaseListener

void expirationReached(LeaseRenewalEvent e);

}

The expirationReached methodreceives desired expiration reached events.
These are generated when the LeaseRenewalManager removesa lease from the
managed set because the lease’s desired expiration has been reached. Note that
any object that has been registered to receive desired expiration reached events
will also receive renewalfailure events.

It is the responsibility of the client to pass into the LeaseRenewalManager a
reference to an object that implements the DesiredExpirationListener inter-

98

99

JINI LEASE UTILITIES SPECIFICATION, version 1.1

face, which defines the actions to take uponreceipt of a desired expiration reached
eventnotification.

LM.5.2.1 The Semantics

The expirationReached methodis invoked by the LeaseRenewalManager
whena lease in the managedset reachesits desired expiration. This method takes
one parameter: an instance of the LeaseRenewalEvent class, which contains
information about the lease who’s desired expiration has been reached.

Note that prior to invoking the expirationReached method, the
LeaseRenewalManager removes the affected lease from the managed set of
leases. Note also that because of the reentrancy guarantee made by the
LeaseRenewalManager, callbacks into the renewal manager can be madesafely
from within the expi rationReached method.

LM.5.3 The LeaseRenewalEvent Class

This class defines the local event that is sent by the LeaseRenewalManager to the
client’s registered listener when the LeaseRenewalManager generates a renewal
failure event or desired expiration reached event. As previously stated, a renewal
failure event typically occurs because the actual expiration time of a lease has
been reached before a successful renewal request could be made, or a renewal
request resulted in a definite exception. A desired expiration reached event occurs
whena lease reachesits desired expiration timeat or before its actual expiration.
The LeaseRenewalEvent class encapsulates information about the lease on which
such an event occurs and,if it is a renewal failure, the cause.

package net.jini. lease;

public class LeaseRenewalEvent extends EventObject
{

public LeaseRenewalEvent(LeaseRenewalManager source,
Lease lease,

long expiration,
Throwable ex) {...}

public Lease getLease() {...}

public long getExpiration() {...}

public Throwable getException() {...}

89

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

99

100

90 SUPPORTING INTERFACES AND CLASSES

The LeaseRenewalEvent class is a subclass of the EventObject class, add-
ing the following additional items of abstract state: a reference to the associated
Lease object; a long value representing the desired expiration of the lease; and
the exception (if any) that caused the event to be sent. In addition to the methods
of the EventObject class, this class defines methods through which this addi-
tional state may beretrieved.

LM.5.3.1 The Semantics

The constructor of the LeaseRenewalEventclass takes the following parameters
as input:

A referenceto the instance of the LeaseRenewalManager that generated the
event

@ The lease associated with this event

@ The desired expiration time of the lease

@ The Throwable associated with the last renewal attempt(if any)

The getLease methodreturns a reference to the Lease object associated with
the event. This method takes no arguments.

The getExpiration method returns a long value representing the desired
expiration of the Lease object associated with the event. This method takes no
arguments.

The getException method returns the exception, if any, that is associated
with the event. This method takes no arguments. If the LeaseRenewalEventrep-
resents a desired expiration reached event this method will return nu11.

If the LeaseRenewalEvent represents a renewal failure event the
getException method will return the exception that caused the event to be sent.
The conditions under which a renewalfailure event may be sent, and the related
values returned by this method,are as follows:

@ Whenanylease in the managedset has passedits actual expiration time, and
either the most recent renewal attempt was successful or there have been no
renewal attempts, the LeaseRenewalManager will cease any further
attempts to renew the lease, and will send a LeaseRenewalEvent with no
associated exception.In this case, invoking this method will return nu11.

@ For any lease from the managed set for which the most recent renewal
attempt was unsuccessful because of the occurrence of a indefinite excep-
tion, the LeaseRenewalManager will continue to attempt to renew the

100

101

JINI LEASE UTILITIES SPECIFICATION, version 1.1 91

affected lease at the appropriate timesuntil: the renewal succeeds,the lease’s
actual expiration time has passed, or a renewal attempt throws a definite
exception. If a definite exception is thrown or the lease expires, the
LeaseRenewalManager will cease any further attempts to renew the lease,
and will send a LeaseRenewalEvent containing the exception associated
with the last renewal attempt.

@ If, while attempting to renew a lease from the managedset, a definite excep-
tion is encountered, the LeaseRenewalManager will cease any further
attempts to renew the lease, and will send a LeaseRenewalEventcontaining
the particular exception that occurred.

LM.5.4 Serialized Forms

Class serialVersionUID Serialized Fields

LeaseRenewalEvent -626399341646348302L Lease lease

long expiration
Throwable ex

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

101

102

92

102

SUPPORTING INTERFACES AND CLASSES

103

JU

Jini Join Utilities

Specification

JU.1 Introduction

Tus specification defines helper utility classes, along with supporting inter-
faces and classes, that encapsulate functionality that can help Jini services demon-
strate good behavior in their discovery and registration related interactions with
Jini lookup services. In particular, the Jini join utilities perform functions related
to lookup service discovery and registration (joining), as well as lease renewal and
attribute management, which the Jini technology programming model requires of
a well-behaved Jini technology-enabled service. Currently, this specification
defines only one helperutility class:

@ The JoinManager helperutility

103

93

104

94

104

INTRODUCTION

105

JINIJOIN UTILITIES SPECIFICATION, version 1.1 95

JU.2 The JoinManager

Tz goal of any well-behaved Jini technology-enabled service (Jini service),
implemented within the bounds defined by the Jini technology programming
model, is to advertise the service it provides by requesting residency within at
least one Jini lookup service. Making such a request of a Jini lookup serviceis
knownasregistering with, orjoining, a lookup service. To demonstrate this good
behavior, a service must comply with both the multicast discovery protocol and
the unicast discovery protocol to discover the lookup services it is interested in
joining. The service must also comply with the join protocol to register with the
desired lookup services. The details of the discovery and join protocols are
described in, The Jini Technology Core Platform Specification, “Discovery and
Join”.

For the service to maintain its residency in the lookup services it has joined,
the service must provide for the coordination, systematic renewal, and overall
managementofall leases on that residency. In addition to handling all discovery
and join duties, as well as managingall leases on lookup residency, the service
must provide for the coordination and management of any attribute sets with
which it may haveregistered.

With respect to the duties described above, a Jini service may perform all but
the attribute set management duties by using the helper utility classes
LookupDiscoveryManager and LeaseRenewalManager. (For information on
these classes, refer to The Jini Technology Core Platform Specification, “Discov-
ery and Join” and Jini Lease Renewal Service Specification).

Rather than writing a service to use these classes in a coordinated fashion (in
addition to providing for attribute management), the service may be written to
employ the JoinManager class from the net. jini. lookup package. This utility
class performs all of the functions related to discovery, joining, service lease
renewal, and attribute managementthat the Jini technology programming model
requires of a well-behaved Jini service. Each of these activities is intimately
involved with the maintenance of a service’s residency in one or more lookupser-
vices (the service’sjoin state), hence the name JoinManager.

The JoinManager class provides an implementation of the functionality
described above. The useofthis class in a wide variety of services can help mini-

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

105

106

96 THE JoinManager

mize the work resulting from having to repeatedly implementthis required func-
tionality in each service.

The JoinManager is a utility class, not a remote service. Jini services that
wishto use this utility will create an instance of the JoinManager in the service’s
address space to managethe entity’s join state locally.

Note that when the term service is used,it refers to the object that has created
an instance of the JoinManager andavailsitself of the public methodsofthat util-
ity class.

JU.2.1 Other Types

The types defined in the specification of the JoinManager utility class are in the
net.jini. lookup package. The following types may be referenced in this chap-
ter. Whenever referenced, these object types will be referenced in unqualified
form:

net.jini.core.lease.Lease

net.jini.core.entry.Entry

net.jini.core. lookup.ServiceID

net.jini.core. lookup.ServiceRegistrar

net. jini.core. lookup.ServiceRegistration

net.jini.discovery.DiscoveryListener

net.jini.discovery.DiscoveryManagement

net.jini. lookup.entry.ServiceControlled

net.jini. lease.LeaseRenewalManager

net.jini.discovery.LookupLocatorDiscovery

net.jini.discovery.LookupDiscoveryManager

java.io.IOException

java.rmi.MarshalledObject

java.util.EventListener

106

107

JINIJOIN UTILITIES SPECIFICATION, version 1.1 97

JU.3 The Interface

Tz public methods provided by the JoinManager classare as follows:
package net.jini. lookup;

public class JoinManager {

public

public

public

public

public

public

public

public

public

public

public

JoinManager(Object obj,

Entry[] attrSets,

ServiceIDListener callback,

DiscoveryManagement discoveryMgr,

LeaseRenewalManager leaseMgr)

throws IOException {...}

JoinManager(Object obj,

Entry[] attrSets,

ServiceID servicelD,

DiscoveryManagement discoveryMgr,

LeaseRenewalManager leaseMgr)

throws IOException {...}

DiscoveryManagement getDiscoveryManager() {...}

LeaseRenewalManager getLeaseRenewalManager() {...}

ServiceRegistrar[] getJoinSet() {...}

Entry[] getAttributes(){...}

void addAttributes(Entry[] attrSets) {..}

void addAttributes(Entry[] attrSets,

boolean checkSC) {...}

void setAttributes(Entry[] attrSets) {..}

void modifyAttributes(Entry[] attrSetTemplates,

Entry[] attrSets) {..}

void modifyAttributes(Entry[] attrSetTemplates,

Entry[] attrSets,

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

107

108

98

public void terminate() {...}

108

THE INTERFACE

boolean checkSC) {...}

109

JINIJOIN UTILITIES SPECIFICATION, version 1.1 99

JU.4 The Semantics

Tz JoinManager helperutility class defines a number of public methods in
addition to the constructor. This utility defines an accessor methodthat allows the
entity to retrieve the set of lookup services with which the entity has been regis-
tered (by the JoinManager), as well as methods that allow the entity to retrieve
references to the objects the JoinManager uses for discovery management and
lease renewal management. Additionally, the JoinManager class defines methods
the entity may use to manage the attributes associated with the entity, and a
method that allows the entity to terminate the join processing being performed on
its behalf.

The equals methodfor the JoinManager class returns true if and only if two
instancesofthis class refer to the same object. That is, x and y are equal instances
of this class if and only if x == y has the value true.

The constructor of the JoinManager class has two forms. Each form of the
constructor throws IOException because construction of a JoinManager mayini-
tiate the multicast discovery process, which can throw IOException.

The first form of the constructor takes the following parameters as input:

A reference to the service requesting the services of the JoinManager

@ Anarray containing the service’s attributes

@ Areference to an object that implements the ServiceIDListener interface
(belonging to the package net. jini. lookup)

@ A reference to an object that implements the DiscoveryManagement inter-
face

An instance of the LeaseRenewalManager utility class

Passing nu11 as the value of the attrSets parameter is equivalent to passing an
empty Entryarray.

The assignmentof a service ID to the service will result in an event notifica-
tion being sent to the listener object that was passed as the ServiceIDListener

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

109

110

100 THE SEMANTICS

argument (callback). If a nu11 value is passed in through this argument, then no
such notification will be sent.

To use the JoinManager,the service supplies an object through whichnotifi-
cations that indicate a lookup service has been discovered or discarded will be
received. At a minimum, this object must satisfy the contract defined in the
DiscoveryManagement interface. That is, this object must provide the
JoinManager with the ability to set discovery listeners and to discard previously
discovered lookup services when they are found to be unavailable.

The DiscoveryManagement argument maybesetto a value of nu11. If nul]
is the value of this argument, then an instance of the LookupDiscoveryManager
utility class will be constructed to listen for events announcing the discovery of
only those lookup services that are membersofthe public group.

The LeaseRenewalManager argument maybesetto a value of nu11. If nu11
is the value of this argument, an instance of the LeaseRenewalManager class will
be created, initially managing no Leaseobjects. This feature allows a service that
employs the JoinManager either to use a single entity to manageall ofits leases,
or to use separate entities: one to manage the leases unrelated to the join process,
and one to managetheleasesthat result from the join process and that are accessi-
ble only within the JoinManager.

Thefirst form of the constructor is typically used by services that have not yet
been assigned a service ID, but that have been pre-configured to join lookup ser-
vices that the service identifies through the initialization of a discovery manager.

The second form of the constructor takes the same arguments as thefirst,
except that an instance of the ServiceID replaces an instance of the
ServiceIDListener interface. Note that the ServiceID class is defined in The

Jini Technology Core Platform Specification, “Lookup Service”, and_ the
ServiceIDListener interface is describedlater.

The second form of the constructor applies the same semantics to the attr-
Sets, discoveryMgr, and leaseMgr arguments as is applied bythefirst form of
the constructor.

The second form of the constructor should be used by services that have
already been assigned a service ID (possibly by the service provideror as a result
of a prior registration with some lookup service), and that may or may not have
been pre-configured to join lookup services identified by group or by specific
location.

The getDiscoveryManager method returns the instance’ of
DiscoveryManagement that was either passed into the constructor by the entity or
that was created as a result of nul1 being passed as that parameter. This method
takes no arguments as input.

110

111

JINIJOIN UTILITIES SPECIFICATION, version 1.1 101

The object returned by this method encapsulates the mechanism by which
either the JoinManager orthe entity itself can set discovery listeners and discard
previously discovered lookup services when they are found to be unavailable.

The getLeaseRenewalManager method returns an instance of the

LeaseRenewalManager class. This method takes no arguments as input.
The object returned by this method managesthe leases requested and held by

the JoinManager. Although it may also manageleases unrelated to the join pro-
cess that are requested and held bythe serviceitself, the leases with which the
JoinManager is concerned are the leases that correspondto the service registra-
tion requests the JoinManager has made with each lookup service the service
wishesto join.

The getJoinSet method returns an array of ServiceRegistrar objects,
each corresponding to a lookup service with which the service is currently regis-
tered (joined). If there are no lookup services with which the service is currently
registered, this method returns the empty array. This method takes no arguments
as input and will return a new array upon each invocation.

The getAttributes method returns an array containing the set of attributes
currently associated with the service.Ifthe service is not currently associated with
an attribute set, this method returns the empty array. This method takes no argu-
ments as input and will return a new array upon each invocation.

Note that although a new array is returned by getAttributes, the elements
of that array are not copies. Thus, it important that the elements of the array
returned by getAttributes not be modified; doing so could causethestate of the
JoinManager to becomecorrupted or inconsistent. This potential for corruption
or inconsistency is whythe effects of modifying the elements of the array returned
by getAttributesare undefined.

The addAttributes method associates a new set ofattributes with the ser-

vice, in addition to the service’s current set of attributes. The association of this

new set of attributes with the service will be propagated to each lookup service
with which the service is registered. This propagation must be performed asyn-
chronously, so there is no guarantee that the propagation of the attributes to all
lookup services with which the service is registered will have completed upon
return from this method.

Theset of attributes consisting of the union of the new set with the old set will
be associated with the service in all future join processing.

There are two forms of the addAttributes method. Both forms of this

method take as input an argument (attrSets) representing the set of attributes to
associate with the service. This set is represented as an array of Entry objects,
none of whose elements may be nu11. If at least one element of this input set is
nul], aNul1PointerException is thrown.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

114

112

102 THE SEMANTICS

An invocation of either form of this method with duplicate elements in the
attrSets parameter (where duplication meansattribute equality as defined by
calling the MarshalledObject.equals method on field values) is equivalent to
performing the invocation with the duplicates removed from that parameter. If
nul] is passedin as the value of this parameter, a Nu11PointerExceptionwill be
thrown.

The second form of this method also takes as input a flag indicating whether
or not this method should determineif the attributes in the input set are instances
of the ServiceControlled interface, which is a marker interface that is used to

control which entities may modify a service’s attribute set. For more information
on this interface, refer to Jini Lookup Attribute Schema_Specification,
Section LS.4.1, “Indicating User Modifiability”. If the value of this flag is true
and at least one of the attributes to be added is an instance of the

ServiceControl led interface, a SecurityException will be thrown and propa-
gated through this method.

Note that because there is no guarantee that attribute propagation will have
completed upon return from this method, services that invoke this method must
take care not to modify the contents of the input array. Doing so could cause the
service’s attribute state to be corrupted or inconsistent on a subset of the lookup
services with which the service is registered as compared with the state reflected
on the remaining lookupservices.It is for this reason that the effects of modifying
the contents of the input array, after this method is invoked, are undefined.

The setAttributes method replaces the service’s current set of attributes
with the given newset of attributes. This method takes a single argumentas input:
an array of Entry objects, none of whose elements may be nu11, which represents
the set of attributes that will replace the current set of attributes. If at least one ele-
mentofthis input set is nul1, a Nu11PointerExceptionis thrown.

The replacement of the service’s current set of attributes with the new set of
attributes will be propagated to each lookupservice with which the service is reg-
istered. This propagation must be performed asynchronously, so there is no guar-
antee that the propagation of the attributes to all lookup services with which the
service is registered will have completed upon return from this method.

The service’s new set of attributes will be associated with the service in all

future join processing.
Aninvocation of this method with duplicate elements in the attrSets param-

eter (where duplication means attribute equality as defined by calling the
Marshal ledObject.equals method onfield values) is equivalent to performing
the invocation with the duplicates removed from that parameter. If nu11 is input to
setAttributes, a NullPointerException will be thrown.

112

113

JINIJOIN UTILITIES SPECIFICATION, version 1.1 103

For the same reason as noted above in the description of the addAttributes
method, the effects of modifying the contents of the input array after the method
setAttributesis invoked, are undefined.

The modi fyAttributes method changesthe service’s currentset of attributes
using the same semantics as the modifyAttributes method of the class
ServiceRegistration (see The Jini Technology Core Platform Specification,
“Lookup Service’). This method has two forms. Thefirst form takes two argu-
ments, the second form takes three arguments. Both forms will take an array of
templates in the first argument and an array ofattributes in the second argument.
The templates are used to identify which elements to modify from the service’s
currentset of attributes. The attribute array contains the actual modifications to be
made. The additional argument in the signature of the second form of
modifyAttributesis a flag indicating whether or not this method should deter-
mine if the attributes in the input set are instances of the ServiceControlled
interface, which is a markerinterface used to control which entities may modify a
service’s attribute set (see Jini Lookup Attribute Schema_Specification,
Section LS.4.1, “Indicating User Modifiability”). If the value of this flag is true
and at least one of the attributes to be modified is an instance of the

ServiceControl led interface, a SecurityException will be thrown and propa-
gated through this method.

The association of the newset of attributes with the service will be propagated
to each lookup service with whichthe serviceis registered. This propagation must
be performed asynchronously. Because of this asynchronousbehavior, there is no
guarantee that the propagation ofthe attributes to all lookup services with which
the service is registered will have completed uponreturn from this method.

The set of attributes that results after the modifications have been applied will
be associated with the service in all future join processing.

The modifyAttributes method throws an I1legalArgumentException if

one of the following conditionsissatisfied:

The length of the array containing the templates does not equal the length of
the array containing the attributes

@ Any element of either array is not an instance of a valid Entry class (for
example,the class is not public, does not contain a no-arg constructor, or has
at least one public field which is a non-static, non-final primitive)

@ The class of attrSets[7] is neither the sameas, nor a superclass of, the
class of attrSetsTemplate[7]

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

113

114

104 THE SEMANTICS

For the same reason as that noted above in the description of the
addAttributes method, the effects of modifying the contents of the attrSets
parameter, after modi fyAttributesis invoked, are undefined.

The terminate method performscleanup duties related to the termination of
the lookup service discovery event mechanism,as well as to the lease and thread
management performed by the JoinManager. This method will cancelall of the
service’s managed leases that were granted by the lookup services with which the
service is registered, and will terminate all threads that have been created.

If the discovery manager employed by the JoinManager wascreated by the
JoinManager itself, this method will terminate al/ discovery processing being
performedby that manager object on behalf of the service; otherwise, the discov-
ery managersupplied bythe serviceis still valid.

Whetheran instance of the LeaseRenewalManager class was supplied by the
service or created by the JoinManager itself, any reference to that object obtained
by the service prior to termination will still be valid after termination.

The JoinManager makescertain concurrency guarantees with respect to an
invocation of the terminate method while other method invocations are in

progress. The termination process described above will not begin until completion
of all invocations of the methods defined in the public interface of the
JoinManager. Upon completion of the termination process, the semantics of all
current and future method invocations on the current instance of the JoinManager

are undefined, although the reference to the LeaseRenewalManager object
employed by the JoinManager is still valid.

114

115

JINIJOIN UTILITIES SPECIFICATION, version 1.1 105

JU.5 Supporting Interfaces and Classes

Ti JoinManager class depends on the interfaces DiscoveryManagement and
ServiceIDListener discussed below.

JoinManager also references the concrete classes LookupDi scoveryManager
and LeaseRenewalManager, each described in a separate specification.

JU.5.1 The DiscoveryManagement Interface

Although it is not necessary for the JoinManager itself to execute the discovery
process, it does need to be notified when one of the lookup services it wishes to
join is discovered or discarded. Thus, at a minimum, the JoinManager requires
access to the discovery events sent to the listeners registered with the discovery
process’ event mechanism. The instance of DiscoveryManagement that is passed
as an argumentto the constructor of the JoinManager provides a mechanism for
acquiring access to those events. For a complete description of the semantics of
the methodsofthis interface, refer to the Jini Discovery Utilities Specification.

One noteworthy item about the semantics of the JoinManager is the effect
that invocations of the discard method of DiscoveryManagement will have on

any discovery listeners created by the JoinManager. The DiscoveryManagement
interface specifies that the discard method will remove a particular lookup ser-
vice from the managedset of lookup services that have already been discovered,
allowing that lookup service to be rediscovered. Invoking this method will result
in the flushing of the lookup service from the appropriate cache, ultimately caus-
ing a discard notification to be sent to all DiscoveryListener objects registered
with the event mechanism of the discovery process, including all listeners regis-
tered by the JoinManager.

The receipt of an event notification indicating that a lookup service has been
discarded ultimately results in the removal (but not cancellation) of the registra-
tion lease granted by the discarded lookup service, and that is managed by the
LeaseRenewalManager on behalf of the JoinManager. After removal occurs, the

lease will eventually expire.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

115

116

106 SUPPORTING INTERFACES AND CLASSES

JU.5.2. The ServiceIDListener Interface

The ServiceIDListener interface defines the methods used bya serviceto regis-
ter a request for notification from the JoinManager upon the assignment of a
servicelD by a lookupservice.It is the responsibility of the service to create and
pass into the JoinManager an object that implements this interface. That imple-
mentation must provide the definition of the actions to take upon receipt of the
notification. Typically, the action taken will be to persist the assigned serviceID
reference.

package net.jini. lookup;

public interface ServiceIDListener extends EventListener {

public void serviceIDNotify(ServiceID servicelID);
}

The intent of this interface is to allow the entity to receive the ServiceID
instance assignedto it by the lookupservice. It is not part of the semantics of the
call that the return from the ServiceIDNotify method can be delayed while the
recipient ofthe call processes the information delivered by the method. Thus,it is
highly recommended that implementationsofthis interface avoid time consuming
operations, and return from the method as quickly as possible. For example, one
strategy might be to simply notify a separate thread, operating asynchronously,
whichis designed to place the ServiceIDinstance in persistent storage.

116

117

SD

Jini Service Discovery
Utilities Specification

SD.1 Introduction

Tus specification defines helper utility classes, along with supporting inter-
faces and classes, that encapsulate functionality that can help a Jini technology-
enabledservice or client (Jini service or Jini client) in acquiring services of inter-
est that are registered with the various lookup services with which the service or
client wishes to interact. Currently, the service discovery utilities specification
defines only one helperutility class:

@ The ServiceDiscoveryManager helperutility

117

107

118

108 INTRODUCTION

118

119

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 109

SD.2 The ServiceDiscoveryManager

Tue interactions of an entity that operates in a client-like fashion within a Jini
application environment are generally distinguished bythe fact that the entity first
discovers one or more Jini lookup services, then queries one or more of the dis-
covered lookup services for references to Jini services that the entity may employ
in some task. This process, in which Jini services as well as Jini clients may par-
ticipate, is often referred to as service discovery. Since services and clients can
perform both lookup discovery and service discovery, the primary characteristic
that distinguishes a Jini service from a client is the service’s ability to be regis-
tered with a lookup service. Thus, with respect to service discovery, there is no
difference between a Jini service and a Jini client.

Because there is no need to make such a distinction, the terms entity and
client-like entity will be used interchangeably throughout this specification to
refer to Jini clients or services that create an instance of the

ServiceDiscoveryManager (from the package net.jini.lookup) and use the
public methodsofthat class to perform and managetheir service discovery duties.

Once a client-like entity discovers a set of lookup services andretrievesrefer-
ences to desired services from those lookup services, the entity may chooseto dis-
continue query-related discovery processing. That is, having obtained references
to all of the services it wishes to employ, the entity may view the references it
holds to the lookup services as no longer necessary.

But over the execution life of any such entity, partial failures such as system
crashes or network outages may intermittently affect the availability of some of
those services of interest. This results in a need to re-query the lookup services to
find references to new instances of the service that can replace the unavailable
instance. Such scenarios makeit desirable for a client-like entity to maintain its
references to the lookup services it queries. If an instance of a service is found to
be unavailable, the entity can query those lookup services to obtain an instance of
the service that is available.

Since a query on a lookupservice is a remotecall, such calls are much more
costly in terms of overhead andfailure risk than are local calls. This cost is magni-
fied when an entity must make frequent queries for multiple services, so an entity
may find it desirable to cache the services it obtains from the original queries on

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

119

120

110 THE ServiceDiscoveryManager

the lookup services. Furthermore, by populating the cache with multiple instances
of the desired services, redundancyin the availability of those services can be pro-
vided. Thus, if an instance of a service is found to be unavailable when needed,

the entity can execute a local query on the cache rather than one or more remote
queries on the lookup services to obtain an instance whichis available.

Typically, an entity will request the creation of a separate cache for each ser-
vice type of interest. The cache provides a method with which the entity can
retrieve an elementof the cache. In general, the particular service reference thatis
returned should not matter to the entity. It should only matter that a service refer-
ence has been returned, not which service reference. If for some reason it does

matter to an entity which service reference is returned, then the cache also pro-
vides a mechanism that will allow the entity to retrieve all elements of the cache.
The entity can then iterate through each element, selecting the particular reference
it desires.

Although interacting with a local cache of services in this way can be very
useful to entities that need frequent access to multiple services, someclient-like
entities may wish to interact with the cache in a reactive manner. For example, an
entity such as a service browser typically wishes to be notified of the arrival of
new services of interest as well as any changesin the state of the current services
in the cache. Polling for such changes is usually viewed as undesirable. If the
cache were to also provide an event mechanism with notification semantics, the
needs of both types of entity could besatisfied.

From the scenarios discussed above, one could conclude that whenacting in a
client-like fashion, it is desirable for an entity to maintain, as muchaspossible,
up-to-date knowledge ofthe availability of the Jookup services of interest as well
as the state information associated with all other types of services in which the
entity is interested. By maintaining current service state information, the entity
can implementefficient mechanismsfor service access and usage.

The ServiceDiscoveryManager classis a helperutility class that any entity
can use to create and populate a cache suchas that described previously, and with
which the entity can register for notification of the availability of services of inter-
est. Like the JoinManager utility class, this class needs to be notified when a
desired lookup service is discovered. For information on the JoinManager utility
class, refer to the Jini Join Utilities Specification.

Unlike the JoinManager, the ServiceDiscoveryManager doesnotregister
the entity as a service with discovered lookup services. Although both the
JoinManager and the ServiceDiscoveryManager perform lookup discovery
event handling for the entities that employ them, the JoinManager performs join
processing for Jini services, while the ServiceDiscoveryManager performs ser-
vice discovery and managementprocessing both for clients and for services. Thus,
typical usage patterns for Jini services wishingto find and use other Jini services

120

121

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 111

generally indicate the employment of both the JoinManager and the
ServiceDiscoveryManager utilities, whereas Jini clients would typically use
only the ServiceDiscoveryManager.

The ServiceDi scoveryManager class can be asked to “discover” services an

entity is interested in using, and to cache the references to those services as each is
found. The cache can be viewed asa set of service references that the entity can
access locally as needed through oneof the public, non-remote methods provided
in the cache’s interface. A service reference added to the cache will be removed

from the cache when all of the lookup services with which that service is regis-
tered have been discarded.

The ServiceDiscoveryManager class also provides a mechanism for an
entity to request that it be notified when a service of interest is discovered for the
first time or has encountered a state change such as removal from all lookup ser-
vices or attribute set changes.

For convenience,this class also provides versions of a method named lookup,
which employs invocation semantics similar to the semantics of the lookup
method of the ServiceRegistrar interface defined in The Jini Technology Core
Platform Specification, “Lookup Service”. This method maybe useful to entities
that need to find services on an infrequent basis, or when the cost of making a
remote call is outweighed by the overhead of maintaining a local cache (for exam-
ple, because of limited resources).

All three mechanisms described above—local queries on the cache, service
discovery notification, and remote lookups—employ the same template matching
scheme as that described in The Jini Technology Core Platform Specification,
“Lookup Service”. Additionally, each mechanism allows the entity to supply an
object referred to as a filter. Such an object is a non-remote object that defines
additional matching criteria that the ServiceDiscoveryManager applies when
searching for the entity’s services of interest. Thisfiltering facility is particularly
useful to entities that wish to extend the capabilities of the standard template
matching scheme.

The ServiceDiscoveryManager is a utility class, not a remote service. Cli-
ent-like entities that wish to use this utility will create an instance of the
ServiceDiscoveryManager in the entity’s address space so as to manage the
entity’s “lookupstate” locally.

SD.2.1 The Object Types

The types defined in the specification of the ServiceDiscoveryManager utility
class are in the net.jini. lookup package. The following types maybe refer-

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

121

122

112 THE ServiceDiscoveryManager

enced in this chapter. Wheneverreferenced, these object types will be referenced
in unqualified form:

net.

net.

net.

net.

net.

net.

net.

net.

net.

net.

net.

net.

net.

net.

net.

java.

java.

java.

java.

java.

java.

java.

jini

jini

jini

jini

jini

jini

jini

jini

jini

jini

jini

jini

jini

jini

jini

.core

.core.

.core

.core.

.core.

.core

.core.

.discovery.DiscoveryListener

.discovery .DiscoveryManagement

.discovery.LookupDiscoveryManager

. lease. LeaseRenewalManager

. lookup. LookupCache

. lookup. ServiceDiscoveryEvent

. lookup. ServiceDiscoveryListener

. lookup. ServiceItemFilter

10. IOException

rmi.server.UnicastRemoteObject

rmi .MarshalledObject

rmi .RemoteException
util.EventListener

util.EventObject
util.Set

.discovery.LookupLocator
lJease.Lease

. lookup. ServiceEvent

lookup. ServiceItem

lookup. ServiceMatches

. lookup. ServiceRegistrar

lookup. ServiceTemplate

122

123

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1

SD.3 The Interface

Tz public interface provided by the ServiceDiscoveryManager class defines
methods that allow an entity to request that references to services matchingcrite-
ria defined by the entity be found in discovered lookup services and cached for
local retrieval. This interface also defines methods for retrieving the manager
objects employed bythis utility, and for performing termination processing.

package net.jini. lookup;

public class ServiceDiscoveryManager {

public ServiceDiscoveryManager

(DiscoveryManagement discoveryMgr,

LeaseRenewalManager leaseMgr)

throws IOException {...}

public LookupCache createLookupCache

(ServiceTemplate tmpl,

ServiceItemFilter filter,

ServiceDiscoveryListener listener)

throws RemoteException {...}

public ServiceItem lookup(ServiceTemplate tmpl,

ServiceItemFilter filter) {...}

public ServiceItem lookup(ServiceTemplate tmpl,

ServiceItemFilter filter,

long waitDur)

throws InterruptedException,

RemoteException {...}

public ServiceItem[] lookup

(ServiceTemplate tmpl,

int maxMatches,

ServiceItemFilter filter) {...}

public ServiceItem[] lookup(ServiceTemplate tmp1,

int minMatches,

int maxMatches,

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

123

124

114 THE INTERFACE

ServiceItemFilter filter,

long waitDur)

throws InterruptedException,

RemoteException {...}

public DiscoveryManagement getDiscoveryManager() {...}

public LeaseRenewalManager getLeaseRenewalManager() {...}

public void terminate() {...}

124

125

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 115

SD.4 The Semantics

Tz ServiceDiscoveryManager makes certain concurrency guarantees with
respect to the methodsit defines. When a method of ServiceDiscoveryManager
invokes a remote method, although such an invocation may block other remote
calls made in the ServiceDiscoveryManager, invocations of local methods will
not be blocked.

SD.4.1 The Methods

The ServiceDiscoveryManager helperutility class defines a number of public
methods in addition to its constructor. This utility defines a factory method that
allows the entity to create a local cache for storing references to desired services
that have been previously discovered. Additionally, this class defines a set of
methods that the entity may use to query (remotely) each discovered lookup ser-
vice for other services that are of interest to the entity.

The equals method for the ServiceDiscoveryManager class returns true if

and only if two instances ofthis class refer to the same object. That is, x and y are
equal instancesofthis class if and only if x == y has the value true.

SD.4.1.1 The Constructor

The constructor of the ServiceDiscoveryManager takes two arguments: an
object that implements the DiscoveryManagement interface and a reference to a
LeaseRenewalManager object. The constructor throws an IOException because
construction of a ServiceDiscoveryManager mayinitiate the multicast discov-
ery process, a process that can throw IOException.

To use the ServiceDiscoveryManager, an entity supplies an object through
which notifications that indicate a lookup service has been discovered or dis-
carded will be received. At a minimum,this object must satisfy the contract
defined in the DiscoveryManagement interface. That is, this object must provide
the ServiceDiscoveryManager with the ability to set discovery listeners and to

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

125

126

116 THE SEMANTICS

discard previously discovered lookup services whenthey are found to be unavail-
able.

A value of null may be passed as the DiscoveryManagement argument. If
the value of the argument is nu11, an instance of the LookupDiscoveryManager
utility class will be constructed to discover only those lookup services that are
members ofthe public group.

A value of null may be passed as the LeaseRenewalManager argument. If
the value of the argumentis nu11, an instance of the LeaseRenewalManager class
will be created, initially managing no Lease objects.

SD.4.1.2. The createLookupCache Method

The createLookupCache method allows an entity to request that the
ServiceDiscoveryManager create a new managedset (or cache) and populate it
with services, which matchcriteria defined by the entity, and whosereferences are
registered with one or more of the lookup services the entity has targeted for dis-
covery.

This method returns an object of type LookupCache. Through this return
value, the entity can query the cache for services of interest, manage the cache’s
event mechanism for service discoveries, or terminate the cache. The definition of

the LookupCache interface is presented later in this specification.
An entity typically uses the object returned by this method to provide /ocal

storage of, and access to, references to servicesthatit is interested in using. Enti-
ties that need frequent access to numerousservices will find the object returned by
this method quite useful because acquisition of those service references is pro-
vided through local method invocations. Additionally, because the object returned
by this method provides an event mechanism,it is also useful to entities wishing
to simply monitor, in an event-driven manner, the state changes that occur in the
services ofinterest.

The createLookupCache method takes three arguments: an instance of
ServiceTemplate, an instance of ServiceItemFilter, and an instance of
ServiceDiscoveryListener. Both the interfaces ServiceItemFilter and

ServiceDiscoveryListener are presented later in this chapter.
Together, the tmp] and the filter arguments define the criteria with which

service-matching should be performed. The listener argument references an
object that will receive notifications when services matching the inputcriteria are
discovered for the first time, or have encountered a state change such as removal
from all lookup servicesorattribute set changes. If nu11 is input to the listener
argument for a particular invocation of this method, the cache resulting from that
invocation will send no suchnotifications.

126

127

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1

The tmp] argument employs template matching semanticsthat are identical to
the semantics described in The Jini Technology Core Platform Specification, “Ser-
viceTemplate and Item Matching”) to identify the service(s) to acquire from
lookupservices in the managed set. The object passed to the filter argumentis
then used to apply additional matching criteria to any service references found
through template matching. The additional matching criteria defined by the
filter parameter are application-specific, and therefore must be defined by the
client-like entity itself (as described in Section SD.5.2, “The ServiceltemFilter
Interface”). Furthermore, once an instanceofthe cacheis created,the filter associ-
ated with that instance will not change during the life of that particular cache. If
the filter is changed so that its original behavior is modified, the effect on the
cache is undefined.

AS a convenience, a nul] reference input to the tmp] argumentis treated as
equivalent to inputting a ServiceTemplate constructed with all nul] arguments
(all wildcards). That is, the cache will attempt to discoverall services contained in
each lookup service in the managedset. If a nu11 value is passedasthefilter argu-
ment, then only template matching will be employedto find the desired services.

Entities that invoke this method must take care not to modify the contents of
the object input through the tmp] parameter after the cache has been created.
Doing so could cause the state of the cache to becomecorruptedor inconsistent. It
is for this reason that the effects of modifying the contents of the tmp] parameter,
after this methodis invoked, are undefined.

Events and the Cache

To keep its contents up to date, the cache must register with the event mechanism
of each lookup service in the managedset. From the point of view of the cache, a
service is “discovered” whenit receives a remote event from one of those lookup
services notifying the cache of the existence of a service matching the inputcrite-
ria. In addition, whenever one of the cache’s discovered services experiences a
state change in one of the lookup services in whichit is registered, the cache will
receive a remote event identifying that state change wheneverthe changesatisfies
the matchingcriteria.

For a numberofreasons the cache may receive multiple events corresponding
to the same Jini service. For example, a particular Jini service may be registered
with more than one lookup service from the managedset. If the cache requests
events from each lookupservice using a template configured with norestriction
along the service ID search axis andlittle or no restriction along the attribute
search axis, the cache will receive a notification each time one of the following
events occurs at any of the those lookup services:

117

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

127

128

118 THE SEMANTICS

@ The service, matching the template, is registered with one of the lookupser-
vices.

@ The lease of the matching service is cancelled or expires.

Anattribute set associated with the matching service is modified in some
way.

Just as the cache requests that it be notified of state changes in matchingser-
vices occurring within each lookupservice, an entity may request that the cache
deliver events that indicate analogous state changes in the service references
stored in the cache.

There are two significant differences in the event mechanism between the
lookup services and the cache, and the event mechanism between the cache and
the client-like entity. First and foremost, the events sent from the lookup services
to the cache are remote events, whereas the events sent from the cacheto the entity
are Jocal events. Second, each registration or state-change event sent from the
cache to the entity may actually have been a result of multiple corresponding
events received by the cache from a set of lookup services. Thus, there is a many-
to-one relationship between the events received by the cache and the events sent
by the cache.

For manyentities that use the cache’s event mechanism to interact with the
cache’s discovered services, knowledge of the number of distinct service refer-
ences, as well as identification of the lookup services with which those references
are registered, is of no interest. Such entities typically are interested only in
acquiring a reference—notall references—to the desired services. Thus,the rela-
tionship between the two event mechanisms described previously allows the
ServiceDiscoveryManager to hide the lookup services with which the cache
interacts from the entity. For entities that are interested in the additional informa-
tion, the cache provides methodsseparate from the event mechanism for obtaining
such information.

To summarize, although the cache may receive multiple events signaling a
state changerelated to a particular matching service, the cache will typically send
only a single correspondingevent to the entity. That is, for any matchingservice:

@ The cache will send a service discovery event to the entity only once: after
the cache acquiresthefirst reference to the matchingservice.

@ The cache will send a service removal event to the entity only once: after
every reference to the service has had its lease expire or cancelled; that is,
only after all references to the matching service have been removed from
every lookup service in the cache’s managedset.

128

129

JINI SERVICE DISCOVERYUTILITIES SPECIFICATION, version 1.1 119

Foreach set of event(s) notifying the cache that a particular modification has
been madeto the attribute set associated with one of the service references,

one service modification event will be sent to the entity, but only if the
attribute set state reflected in the received event represents an actual change
in the service’s current attribute set state (as maintained by the cache).

With respect to the state of the attribute sets associated with the service refer-
ences stored in the cache, the cache should be viewed as maintaining a single
attribute set state for each collection of service references that represent the same
service. That single state will always be equivalentto the state reflected in the last
attribute set modification event received by the cache.

For example, suppose each of three different references to a service that
matchesthe inputcriteria is registered with three lookup services in the managed
set. Supposethe attribute sets associated with each service reference are modified
in exactly the same way. For this specific case, the cache would receive three
events—one from each lookup service—signaling these modifications. Upon
receipt of the first event, the cache modifies its current notion of the service’s
attribute set state, and then notifies the entity of the change, but only if the state
reflected in the event represents a changein the current state. Because the remain-
ing two events received by the cache represent the samestate changeas that repre-
sented in the first event, the cache sends no othernotification.

Next, suppose a second modification, different from thefirst, is made on only
two of the service references, and a third unique modification is made on the
remaining service reference. In this case, the cache will still receive three events,
but how the cache handles the events is dependent on the order of arrival of the
events. For simplicity, call the three events e,, e,, and e,. Use s to represent the
cache’s current notion of the service’s attribute set state, and use s, and s, to rep-
resent the states resulting after each attribute modification has occurred. In this
example, e, and e, will be sent to the cache after the each of the service’s
attribute sets is modified to s, in their respective lookup services. Event e, is sent
after the service’s attribute sets are modified to s, in the remaining lookupservice.

If the order ofarrival is e,, e,, and then e,, the cache will change s into s,
and notify the entity after the arrival of e, but will do nothing uponthearrival of
e,. Uponthe arrival of e,, the cache will change s (which is now s,) into s,. If
the orderofarrival of the events is e, , e,, and then e,, the cache will first change
s into s,, then into s,, and then back into s, again. Furthermore, for each state

change made,the cache will send a notification to the entity.
Thus, the events generated by the cache’s event mechanism and sent by the

cache to the entity are more representative of the state changes that occur in the
cache than in the lookupservices.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

129

130

120 THE SEMANTICS

An entity may register for events from the cache in one of two ways. The
entity may supply an instance of ServiceDiscoveryListener to the listener
argument of the createLookupCache method, or it may invoke a method on the
cache to addalistener to the cache. Thus, an entity may register for events from
the cache at any time during the execution life of the cache.

Similarly, the cache provides a methodthat an entity, which is currently regis-
tered for events from the cache, mayuseat any time to unregister with the cache’s
event mechanism.

SD.4.1.3. The lookup Method

The lookup method queries each available lookup service in the managedset for
service reference(s) that match criteria defined by the entity that invokes this
method. Entities typically employ this method whenthey need infrequent access
to services and whenthe cost of making remote queries is outweighed by the over-
head of maintaining a local cache (for example, because of resource limitations).

The lookup method has four versions, each version falling into one of two
categories: those versions of this method that return a single instance of
ServiceItem and those versions that return a set of service references as an array
of ServiceItem objects.

Two arguments are commonto all versions of this method: an instance of
ServiceTemplate and an instance of ServiceItemFi Iter.

Within each category, the versions of lookup differ only in whether or not a
particular version provides whatis referred to as a “wait” (or blocking) feature.
That is, each category contains both a non-blocking version of lookup which
returns immediately when unable to find the desired service, and a blocking ver-
sion which returns only after waiting a specified amount of time for the desired
service to be discovered. The particular version of lookup that an entity employs
is typically determinedby the entity’s intended usagepattern.

The descriptions that follow refer to all versions of the lookup method, except
where explicitly noted.

The tmp] argumentand the filter argument both have semantics identical to
that defined for these arguments in the description of the createLookupCache
method above.In particular,

@ Anu11 reference value for the tmp1 parameteris treated as the equivalent of
a “wildcarded” ServiceTemplate.

@ If nu11 is the value for the filter parameter, only template matching will
be employedto find the desired services.

130

