
316

A NOTE ON DISTRIBUTED COMPUTING

Ignoring the difference between the performanceof local and remote invoca-
tions can lead to designs whose implementations are virtually assured of having
performance problemsbecausethe design requires a large amountof communica-
tion between componentsthat are in different address spaces and on different
machines. Ignoring the difference in the time it takes to make a remote object
invocation and the time it takes to make a local object invocation is to ignore one
of the major design areas of an application. A properly designed application will
require determining, by understanding the application being designed, what
objects can be made remote and what objects must be clustered together.

The vision outlined earlier, however, has an answer to this objection. The
answeris two-pronged. Thefirst prongis to rely on the steadily increasing speed
of the underlying hardware to makethe difference in latency irrelevant. This,it is
often argued, is what has happenedto efficiency concerns having to do with every-
thing from high level languagesto virtual memory. Designingat the cutting edge
has always required that the hardware catch up before the design is efficient
enough for the real world. Arguments from efficiency seem to have gone out ot
style in software engineering, since in the past such concerns have always been
answered by speedincreases in the underlying hardware.

The secondprongofthe reply is to admit to the need for tools that will allow
one to see what the pattern of communication is between the objects that make up
an application. Once suchtools are available,it will be a matter of tuning to bring
objects that are in constant contact to the same address space, while moving those
that are in relatively infrequent contact to wherever is most convenient. Since the
vision allows all objects to communicate using the same underlying mechanism,
such tuning will be possible by simply altering the implementation details (such
as object location) of the relevant objects. However, it is important to get the
application correctfirst, and after that one can worry aboutefficiency.

Whether or notit will ever become possible to maskthe efficiency difference
between a local object invocation and a distributed object invocation is not
answerable a priori. Fully masking the distinction would require not only
advancesin the technology underlying remote object invocation, but would also
require changesto the general programming model used by developers.

If the only difference betweenlocal anddistributed object invocations wasthe
difference in the amountof time it took to makethecall, one could strive for a
future in which the two kinds of calls would be conceptually indistinguishable.
Whetherthe technology of distributed computing has moved far enough along to
allow one to plan products based on such technology would be a matter of judge-
ment, and rational people could disagree as to the wisdom of such an approach.

However, the difference in latency between the two kindsof calls is only the
most obvious difference. Indeed,this difference is not really the fundamental dif-
ference between the two kindsofcalls, and that even if it were possible to develop

316

317

314 A NOTE ONDISTRIBUTED COMPUTING

the technology of distributed calls to an extent that the difference in latency
betweenthe twosorts of calls was minimal, it would be unwise to construct a pro-
gramming paradigm that treated the twocalls as essentially similar. In fact, the
difference in latency between local and remote calls, becauseit is so obvious, has
been the only difference most see between the two, and has tended to mask the
moreirreconcilable differences.

A.4.2 Memory Access

A more fundamental (butstill obvious) difference between local and remote com-
puting concernsthe access to memoryin the two cases—specifically in the use of
pointers. Simply put, pointers in a local address space are not valid in another
(remote) address space. The system can paperoverthis difference, but for such an
approach to be successful, the transparency must be complete. Two choicesexist:
either all memory access mustbe controlled by the underlying system, or the pro-
grammer must be awareofthe different types of access—local and remote. There
is no inbetween.

If the desire is to completely unify the programming model—to make remote
accesses behave as if they were in fact local—the underlying mechanism must
totally control all memory access. Providing distributed shared memory is one
way of completely relieving the programmer from worrying about remote mem-
ory access(orthe difference between local and remote). Using the object-oriented
paradigm to the fullest, and requiring the programmerto build an application with
“objects all the way down,”(that is, only object referencesor values are passed as
method arguments) is another way to eliminate the boundary between local and
remote computing. The layer underneath can exploit this approach by marshalling
and unmarshalling method arguments and return values for intra-address space
transmission.

But adding a layer that allows the replacementofall pointers to objects with
object references only permits the developer to adopt a unified model of object
interaction. Such a unified model cannot be enforced unless one also removes the
ability to get address-space-relative pointers from the language used bythe devel-
oper. Such an approacherects a barrier to programmers who wantto start writing
distributed applications, in that it requires that those programmers learn a new
style of programming which does not use address-space-relative pointers. In
requiring that programmers learn such a language, moreover, one gives up the
complete transparency between local and distributed computing./4!

Even if one wereto provide a languagethat did not allow obtaining address-
space-relative pointers to objects (or returned an object reference whenever such a
pointer was requested), one would need to provide an equivalent way of making

317

318

A NOTE ON DISTRIBUTED COMPUTING

cross-address space reference to entities other than objects. Most programmers
use pointers as references for manydifferent kindsofentities. These pointers must
either be replaced with something that can be used in cross-address space calls or
the programmerwill need to be aware ofthe difference between such calls (which
will either not allow pointers to such entities, or do something special with those
pointers) and local calls. Again, while this could be done, it does violate the doc-
trine of complete unity between local and remote calls. Because of memory access
constraints, the two haveto differ.

The dangerlies in promoting the myth that “remote access and local access
are exactly the same” and notenforcing the myth. An underlying mechanism that
does not unify all memory accesses while still promoting this myth is both mis-
leading andproneto error. Programmers buying into the myth may believe that
they do not have to change the waythey think about programming. The program-
meris therefore quite likely to make the mistake of using a pointer in the wrong
context, producing incorrect results. “Remote is just like local,” such program-
mers think, “so we have just one unified programming model.” Seemingly, pro-
grammers need not change their style of programming. In an incomplete
implementation of the underlying mechanism, or onethat allows an implementa-
tion language that in turn allows direct access to local memory, the system does
not take care of all memory accesses, and errors are bound to occur. These errors
occur because the programmer is not aware of the difference between local and
remote access and whatis actually happening “underthe covers.”

The alternative is to explain the difference between local and remote access,
making the programmer aware that remote address space access is very different
from local access. Even if some of the pain is taken away by using an interface
definition language like that specified in [1] and having it generate an intelligent
language mapping for operation invocation on distributed objects, the program-
mer awareofthe difference will not make the mistake of using pointers for cross-
address space access. The programmerwill know itis incorrect. By not masking
the difference, the programmeris able to learn when to use one method of access
and whento use the other.

Just as with latency,it is logically possible that the difference betweenlocal
and remote memory access could be completely papered over and a single model
of both presented to the programmer. When weturn to the problemsintroduced to
distributed computing by partial failure and concurrency, however,it is not clear
that such a unification is even conceptually possible.

318

315

U03J0N
(2)
=

=
Ss
=
=e
=

ir)
ooa4

319

rr

316 A NOTE ON DISTRIBUTED COMPUTING

A.5 Partial Failure and Concurrency

While unlikely, it is at least logically possible that the differences in latency
and memoryaccess between local computing anddistributed computing could be
masked.It is not clear that such a masking could be done in such a waythat the
local computing paradigm could beused to producedistributed applications,butit
mightstill be possible to allow some new programming technique to be used for
both activities. Such a masking does not even seem to be logically possible, how-
ever,in the case ofpartial failure and concurrency. These aspects appear to be dif-
ferentin kind in the caseofdistributed and local computing.”

Partial failure is a central reality of distributed computing. Both the local and
the distributed world contain components that are subject to periodic failure. In
the case of local computing, such failures are either total, affecting all of the enti-
ties that are working together in an application, or detectable by some central
resourceallocator (such as the operating system on the local machine).

This is not the case in distributed computing, where one component(machine,
networklink) can fail while the others continue. Not only is the failure of the dis-
tributed components independent, but there is no common agent that is able to
determine what componenthas failed and inform the other components of that
failure, no global state that can be examined that allows determination of exactly
whaterror has occurred. In a distributed system, the failure of a network link is
indistinguishable from the failure of a processor on the otherside ofthat link.

These sorts of failures are not the same as mere exception raising or the
inability to complete a task, which can occurin the case oflocal computing. This
type of failure is caused when a machinecrashes during the execution of an object
invocation or a network link goes down, occurrencesthat cause the target object to
simply disappearrather than return controlto the caller. A central problem in dis-
tributed computingis insuring that the state of the whole system is consistent after
sucha failure; this is a problem that simply does not occurin local computing,

Thereality of partial failure has a profound effect on how one designsinter-
faces and on the semantics of the operationsin an interface, Partial failure requires
that programsdeal with indeterminacy. Whena local componentfails, it is possi-
ble to knowthe state of the system that caused the failure and the state of the sys-
tem after the failure. No such determination can be made in the case of a
distributed system. Instead, the interfaces that are used for the communication
mustbe designed in such a waythatit is possible for the objects to react in a con-
sistent way to possiblepartial failures,

? In fact, authors such as Schroeder"?! and Hadzilacos and Toueg!'9)take partial failure and
concurrency to be the defining problemsof distributed computing. |

319

320

A NOTEON DISTRIBUTED COMPUTING

Being robust in the face of partial failure requires some expression at the
interface level. Merely improving the implementation of one componentis not
sufficient. The interfaces that connect the components must be able to state when-
ever possible the cause of failure, and there must be interfaces that allow recon-
struction of a reasonable state when failure occurs and the cause cannot be

determined.

If an object is co-resident in an address space with its caller, partial failure is
not possible. A function may not complete normally, but it always completes.
There is no indeterminism about how muchof the computation completed. Partial
completion can occur only as a result of circumstances that will cause the other
components tofail.

The addition of partial failure as a possibility in the case of distributed com-
puting does not mean that a single object model cannot be used for both distrib-
uted computing and local computing. The question is not “can you make remote
method invocation look like local method invocation?” but rather “what is the

price of making remote method invocation identical to local method invocation?”
One of two paths must be chosenif one is going to have a unified model.

Thefirst path is to treat all objects as if they were local and designall inter-
faces as if the objects calling them, and being called by them, were local. The
result of choosing this path is that the resulting model, when used to producedis-
tributed systems, is essentially indeterministic in the face of partial failure and
consequently fragile and non-robust. This path essentially requires ignoring the
extra failure modesof distributed computing. Since one can’t get rid of those fail-
ures, the price of adopting the modelis to require that such failures are unhandled
and catastrophic.

The other path is to design all interfaces as if they were remote. That is, the
semantics and operationsareall designed to be deterministic in the face of failure,
both total and partial. However, this introduces unnecessary guarantees and
semantics for objects that are never intended to be used remotely. Like the
approach to memoryaccess that attempts to require thatall access is through sys-
tem-defined references instead of pointers, this approach mustalso either rely on
the discipline of the programmers using the system or change the implementation
languagesothatall of the forms of distributed indeterminacy are forced to be
dealt with on all object invocations.

This approach would also defeat the overall purpose of unifying the object
models. The real reason for attempting such a unification is to make distributed
computing morelike local computing and thus make distributed computingeasier.
This second approach to unifying the models makes local computing as complex
as distributed computing. Rather than encouraging the production of distributed
applications, such a modelwill discourage its own adoption by makingall object-
based computing moredifficult.

317

320

321

|

318 A NOTE ON DISTRIBUTED COMPUTING

Similar arguments hold for concurrency. Distributed objects by their nature
must handle concurrent method invocations. The same dichotomyapplies if one
insists on a unified programming model. Eitherall objects must bear the weight of
concurrency semantics, or all objects must ignore the problem and hope for the
best when distributed. Again, this is an interface issue and not solely an imple-
mentation issue, since dealing with concurrency can take place only by passing
information from one object to another through the agency ofthe interface. So
either the overall programming model must ignore significant modes offailure,
resulting in a fragile system; or the overall programming model must assume a
worst-case complexity model for all objects within a program, makingthe produc-
tion of any program,distributed or not, moredifficult.

One might argue that a multi-threaded application needs to deal with these
same issues. However, there is a subtle difference. In a multi-threaded application,
there is no real source of indeterminacy of invocations of operations. The applica-
tion programmerhas complete control over invocation order when desired. A dis-
tributed system by its nature introducestruly asynchronousoperation invocations.
Further, a non-distributed system, even when multi-threaded, is layered on top of
a single operating system that can aid the communication between objects and can
be used to determine and aid in synchronization and in the recovery of failure. A
distributed system, on the other hand, has nosingle point of resourceallocation,
synchronization, or failure recovery, and thusis conceptually very different.

A.6 The Myth of “Quality of Service”

Onecould take the position that the way an object deals with latency, memory
access, partial failure, and concurrency control is really an aspect of the imple-
mentation of that object, and is best described as part of the “quality of service”
provided by that implementation. Different implementations of an interface may
provide different levels of reliability, scalability, or performance. If one wants to
build a more reliable system, one merely needs to choose morereliable implemen-
tations of the interfaces making up the system.

On the surface, this seems quite reasonable. If I want a more robust system, I
go to my catalog of component vendors. I quiz them abouttheir test methods. I see
if they have ISO9000certification, and I buy my components from the oneI trust
the most. The componentsall comply with the defined interfaces, so I can plug
them right in; my system is robust and reliable, and I’m happy.

Let us imaginethat I build an application that uses the (mythical) queueinter-
face to enqueue work for some component. Myapplication dutifully enqueues
records that represent work to be done. Another application dutifully dequeues
them and performs the work. After a while, I notice that my application crashes

321

322

A NOTE ON DISTRIBUTED COMPUTING

dueto time-outs. I find this extremely annoying, but realize that it’s my fault. My
application just isn’t robust enough. It gives up too easily on a time-out. So I
change myapplication to retry the operation untilit succeeds. Now I’m happy.I
almost never see a time-out. Unfortunately, I now have another problem. Some of
the requests seem to get processed two,three, four, or more times. How can this
be? The componentI bought which implements the queue has allegedly beenrig-
orously tested. It shouldn’t be doing this. I’m angry. I call the vendor and yell at
him. After much fingerpointing and research, the culprit is found. The problem
turns out to be the way I’m using the queue. Because of my handling of partial
failures (which in my naivete, I had thought to betotal), I have been enqueuing
work requests multiple times.

Well, I yell at the vendor that it is still their fault. Their queue should be
detecting the duplicate entry and removingit. I’m not going to continueusingthis
software unlessthis is fixed. But, since the entities being enqueued are just values,
there is no way to do duplicate elimination. The only wayto fix this is to change
the protocol to add request IDs. Butsince this is a standardized interface, there is
no wayto dothis.

The moralofthis tale is that robustness is not simply a function of the imple-
mentations of the interfaces that make up the system. While robustness ofthe
individual components has someeffect on the robustness of the overall systems, it
is not the sole factor determining system robustness. Many aspects of robustness
can bereflected only at the protocol/interface level.

Similar situations can be found throughoutthe standard set of interfaces. Sup-
pose I wantto reliably remove a namefrom a context. I would be tempted to write
codethat looks like:

while (true) {

try f
context->remove (name) ;

break;

}
catch (NotFoundInContext) {

break;

}
catch (NetworkServerFaliure) {

continue;

}

}

Thatis, I keep trying the operation until it succeeds (or until I crash). The problem
is that my connection to the name server may have gone down,but anotherclient’s
may have stayed up. I may have,in fact, successfully removed the name but not

322

323

aa

320 A NOTE ON DISTRIBUTED COMPUTING

discovered it because of a network disconnection. The other client then adds the
same name, which I then remove. Unless the naming interface includes an opera-
tion to lock a naming context, there is no waythat I can make this operation com-
pletely robust. Again, we see that robustness/reliability needs to be expressed at
the interface level. In the design of any operation, the question has to be asked:
What happensif the client chooses to repeat this operation with the exact same
parameters as previously? What mechanisms are needed to ensure that they get
the desired semantics? These are things that can be expressed only at the interface
level. These are issues that can’t be answered by supplying a “more robust imple-
mentation” because the lack of robustness is inherent in the interface and not
something that can be changedbyaltering the implementation.

Similar arguments can be made about performance. Suppose an interface
describes an object which maintains sets of other objects. A defining property of
sets is that there are no duplicates. Thus, the implementation ofthis object needs
to do duplicate elimination. If the interfaces in the system do not provide a way of
testing equality of reference, the objects in the set must be queried to determine
equality. Thus, duplicate elimination can be done only by interacting with the
objects in the set. It doesn’t matter how fast the objects in the set implement the
equality operation. The overall performance of eliminating duplicates is going to
be governed by the latency in communicating over the slowest communications
link involved. There is no changein the set implementations that can overcome
this. An interface design issue has put an upper bound on the performanceofthis
operation.

A.7 Lessons From NFS

We do not need to look far to see the consequences of ignoring the distinction
between local and distributed computingat the interface level. NES®, Sun’s dis-
tributed computingfile system!'+5Iis an example ofa non-distributed application
programerinterface (API) (open, read, write, close, etc.) re-implementedin a dis-
tributed way.

Before NFS and other networkfile systems, an error status returned from one
of these calls indicated something rare: a full disk, or a catastrophe such as a disk
crash. Mostfailures simply crashed the application along with the file system.
Further, these errors generally reflected a situation that waseither catastrophic for
the program receiving the erroror onethat the user running the program could do
something about.

NFS opened the doorto partial failure within a file system. It has essentially
two modes for dealing with an inaccessible file server: soft mounting and hard
mounting. But since the designers of NFS were unwilling (for easily understand-

323

324

A NOTE ON DISTRIBUTED COMPUTING

able reasons) to change theinterface tothefile system to reflect the new, distrib-
uted nature of file access, neither option is particularly robust.

Soft mounts expose network orserverfailure to the client program. Read and
write operations return a failure status much more often than in the single-system
case, and programs written with no allowancefor these failures can easily corrupt
the files used by the program. In the early days of NFS, system administrators tried
to tune various parameters (time-out length, number of retries) to avoid these
problems. These efforts failed. Today, soft mounts are seldom used, and when
they are used, their use is generally restricted to read-only file systems or special
applications.

Hard mounts mean that the application hangs until the server comes back up.
This generally prevents a client program from seeingpartial failure, but it leads to
a malady familiar to users of workstation networks: one server crashes, and many
workstations—even those apparently having nothing to do with that server—
freeze. Figuring out the chain of causality is very difficult, and even when the
cause of the failure can be determined, the individual user can rarely do anything
about it but wait. This kind of brittleness can be reduced only with strong policies
and network administration aimed at reducing interdependencies. Nonetheless,
hard mounts are now almost universal.

Note that because the NFS protocolis stateless, it assumes clients contain no
state of interest with respect to the protocol; in other words, the server doesn’t
care what happensto the client. NFSis also a “pure” client-server protocol, which
meansthatfailure can be limited to three parties: the client, the server, or the net-
work. This combination of features means that failure modes are simpler than in
the more general case of peer-to-peer distributed object-oriented applications
where no suchlimitation on shared state can be made and whereservers are them-

selves clients of other servers. Such peer-to-peer distributed applications can and
will fail in far more intricate ways than are currently possible with NFS.

The limitations on the reliability and robustness of NFS have nothing to do
with the implementation of the parts of that system. There is no “quality of ser-
vice” that can be improved to eliminate the need for hard mounting NFS volumes.
The problem can be traced to the interface upon which NFSis built, an interface
that was designed for non-distributed computing where partial failure was not
possible. Thereliability of NFS cannot be changed without a changeto thatinter-
face, a change that will reflect the distributed nature of the application.

This is not to say that NFS hasnot been successful. In fact, NFS is arguably the
most successful distributed application that has been produced. Butthe limitations
on the robustness have set a limitation on the scalability of NFS. Because of the
intrinsic unreliability of the NFS protocol, use of NFS is limited to fairly small
numbers of machines, geographically co-located and centrally administered. The
way NEShas dealt with partial failure has been to informally require a centralized

324

321 oO
a)
&
5FQ

SCTEaT as)

325

a|

322 A NOTE ON DISTRIBUTED COMPUTING

resource manager (a system administrator) who can detect system failure, initiate
resource reclamation and insure system consistency. But byintroducing this cen-
tral resource manager, one could argue that NFS is no longer a genuinely distrib-
uted application.

A.8 Taking the Difference Seriously

Differences in latency, memory access, partial failure, and concurrency make
merging of the computational models of local and distributed computing both
unwise to attempt and unable to succeed. Merging the models by making local
computing follow the model of distributed computing would require major
changes in implementation languages (or in how those languages are used) and
makelocal computing far more complex than is otherwise necessary. Merging the
models by attempting to make distributed computing follow the model oflocal
computing requires ignoring the different failure modes andbasic indeterminacy
inherentin distributed computing, leading to systems that are unreliable and inca-
pable of scaling beyond small groups of machines that are geographically co-
located and centrally administered.

A better approach is to accept that there are irreconcilable differences
between local and distributed computing, and to be conscious of those differences
at all stages of the design and implementation of distributed applications. Rather
than trying to merge local and remote objects, engineers need to be constantly
remindedof the differences between the two, and know whenit is appropriate to
use each kind of object.

Accepting the fundamental difference between local and remote objects does
not meanthat either sort of object will require its interface to be defined differ-
ently. An interface definition language such as IDL"! can still be used to specify
the set of interfaces that define objects. However, an additional part of the defini-
tion of a class of objects will be the specification of whether those objects are
meant to be used locally or remotely. This decision will need to consider what the
anticipated message frequencyis for the object, and whetherclients of the object
can accept the indeterminacy implied by remote access. The decision will be
reflected in the interface to the object indirectly, in that the interface for objects
that are meant to be accessed remotely will contain operationsthat allowreliabil-
ity in the face ofpartial failure.

It is entirely possible that a given object will often need to be accessed by
some objects in ways that cannotallow indeterminacy, and byother objects rela-
tively rarely and in a way that does allow indeterminacy. Such cases should be
split into two objects (which might share an implementation) with one having an

325

326

A NOTE ON DISTRIBUTED COMPUTING

interface that is best for local access and the other having an interface that is best
for remote access.

A compiler for the interface definition language used to specify classes of
objects will need to alter its output based on whetherthe class definition being
compiled is for a class to be used locally or a class being used remotely. For inter-
faces meant for distributed objects, the code produced might be very much like
that generated by RPC stub compilers today. Code for a local interface, however,
could be much simpler, probably requiring little more than a class definition in the
target language.

While writing code, engineers will have to know whether they are sending
messages to local or remote objects, and access those objects differently. While
this might seem to add to the programmingdifficulty, it will in fact aid the pro-
grammer by providing a framework under which he or she can learn what to
expect from the different kinds of calls. To program completely in the local envi-
ronment, according to this model, will not require any changes from the program-
mer’s point of view. The discipline of defining classes of objects using an
interface definition language will insure the desired separation of interface from
implementation, but the actual process of implementing an interface will be no
different than what is done today in an object-oriented language.

Programming a distributed application will require the use of different tech-
niques than those used for non-distributed applications. Programming a distrib-
uted application will require thinking about the problem in a different way than
before it was thought about when the solution was a non-distributed application.
But that is only to be expected. Distributed objects are different from local
objects, and keeping that difference visible will keep the programmer from forget-
ting the difference and making mistakes. Knowing that an objectis outside ofthe
local address space, and perhaps on a different machine, will remind the program-
mer that he or she needs to program in a waythat reflects the kinds of failures,
indeterminacy, and concurrency constraints inherent in the use of such objects.
Making the difference visible will aid in making the difference part of the design
of the system.

Accepting that local and distributed computing are different in an irreconcil-
able way will also allow an organization to allocate its research and engineering
resources more wisely. Rather than using those resources in attempts to paper over
the differences between the two kinds of computing, resources can be directed at
improving the performance andreliability of each.

One consequenceof the view espousedhereis that it is a mistake to attempt to
construct a system that is “objects all the way down”if one understands the goal
as a distributed system constructed of the same kind of objectsall the way down.
There will be a line where the object model changes; on oneside of the line will
be distributed objects, and on the other side of the line there will (perhaps) be

326

327

ay

324 A NOTE ON DISTRIBUTED COMPUTING

local objects. On eitherside ofthe line, entities on the other side of the line will be
opaque; thus one distributed object will not know (orcare) if the implementation
of another distributed object with which it communicates is made up of objects or
is implemented in some other way. Objects on different sides of the line will differ
in kind and notjust in degree; in particular, the objects will differ in the kinds of |
failure modes with which they mustdeal.

A.9 A Middle Ground

As noted in Section A.2, the distinction between local and distributed objects as
we are using the terms is not exhaustive. In particular, there is a third category of
objects made up of those that are in different address spaces but are guaranteed to
be on the same machine. Theseare the sorts of objects, for example, that appear to
be the basis of systemssuch as Spring!!®or Clouds!"“!. These objects have some of
the characteristics of distributed objects, such as increased latency in comparison
to local objects and the need for a different model of memory access. However,
these objects also share characteristics of local objects, including sharing underly-
ing resource management and failure modes that are more nearly deterministic.

It is possible to make the programming model for such “local-remote” objects
more similar to the programming model for local objects than can be done for the
general case of distributed objects. Even though the objects are in different
address spaces, they are managed by a single resource manager. Becauseofthis,
partial failure and the indeterminacythat it brings can be avoided. The program-
ming modelfor such objects will still differ from that used for objects in the same
address space with respectto latency, but the added latency can be reduced to gen-
erally acceptable levels. The programming models will still necessarily differ on
methods of memory access and concurrency, but these do not have as great an
effect on the construction of interfaces as additional failure modes.

The other reason for treating this class of objects separately from either local
objects or generally distributed objects is that a compiler for an interface defini-
tion language can be significantly optimized for such cases. Parameter and result
passing can be done via shared memoryif it is known that the objects communi- |
cating are on the same machine. Atthe very least, marshalling of parameters and
the unmarshalling of results can be avoided.

Theclass of locally distributed objects also forms a group that can leadto sig-
nificant gains in software modularity. Applications made up of collections of such
objects would have the advantage of forced and guaranteed separation between
the interface to an object and the implementation of that object, and would allow
the replacement of one implementation with another without affecting other parts
of the system. Becauseofthis, it might be advantageous to investigate the uses of

327

328

 A NOTE ON DISTRIBUTED COMPUTING

such a system. However, this activity should not be confused with the unification
of local objects with the kinds of distributed objects we have been discussing.

A.10 References

[1] The Object Management Group. “Common Object Request Broker: Archi-
tecture and Specification.” OMG Document Number 91.12.1 (1991).

[2] Parrington, Graham D. “Reliable Distributed Programming in C++: The
Agjuna Approach.” USENIX 1990 C++ Conference Proceedings (1991).

[3] Black, A., N. Hutchinson, E. Jul, H. Levy, and L. Carter. “Distribution and
Abstract Types in Emerald.” JEEE Transactions on Software Engineering
SE-13, no. 1, January 1987).

[4] Dasgupta, P., R. J. Leblanc, and E. Spafford. “The Clouds Project: Design-
ing and Implementing a Fault Tolerant Distributed Operating System.”
Georgia Institute of Technology Technical Report GIT-ICS-85/29. (1985).

[5] Microsoft Corporation. Object Linking and Embedding ProgrammersRefer-
ence. version 1. Microsoft Press, 1992,

[6] Linton, Mark. “A Taste of Fresco.” Tutorial given at the 8th Annual X Tech-
nical Conference (January 1994).

[7] Jaayeri, M., C. Ghezzi, D. Hoffman, D. Middleton, and M. Smotherman.
“CSP/80: A Language for Communicating Sequential Processes.” Proceed-
ings: Distributed Computing CompCon(Fall 1980).

[8] Cook, Robert. “MOD— A Language for Distributed Processing.” Proceed-
ings of the Ist International Conference on Distributed Computing Systems
(October 1979).

[9] Birrell, A. D. and B. J. Nelson. “Implementing Remote Procedure Calls.”
ACM Transactions on Computer Systems 2 (1978).

[10] Hutchinson, N. C., L. L. Peterson, M. B. Abott, and S. O’Malley. “RPC in
the x-Kernel: Evaluating New Design Techniques.” Proceedings of the
Twelfth Symposium on Operating Systems Principles 23, no. 5 (1989),

[11] Zahn, L., T. Dineen, P. Leach, E. Martin, N. Mishkin,J. Pato, and G. Wyant.
Network Computing Architecture. Prentice Hall, 1990.

[12] Schroeder, Michael D. “A State-of-the-Art Distributed System: Computing
with BOB.” In Distributed Systems, 2nd ed., 5. Mullender, ed., ACM Press,
1993.

328

329

[rg

326 A NOTE ON DISTRIBUTED COMPUTING

[13] Hadzilacos, Vassos and Sam Toueg. “Fault-Tolerant Broadcasts and Related
Problems.” In Distributed Systems, 2nd ed., S. Mullendar, ed., ACM Press,
1993.

[14] Walsh, D., B. Lyon, G. Sager, J. M. Chang, D. Goldberg, S. Kleiman,T.
Lyon, R. Sandberg, and P. Weiss. “Overview of the SUN Network File Sys-
tem.” Proceedingsof the Winter Usenix Conference (1985).

[15] Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. “Design
and Implementation of the SUN Network File System.” Proceedings of the
Summer Usenix Conference (1985).

[16] Khalidi, Yousef A. and Michael N. Nelson. “An Implementation of UNIX on
an Object-Oriented Operating System.” Proceedings of the Winter Usenix
Conference (1993). Also Sun Microsystems Laboratories, Inc. Technical
Report SMLI TR-92-3 (December 1992).

A.11 Observations for this Reprinting

[A] When this note was written, the major system programming languages (C,
C++, Modula3, etc.) all allowed direct access, to a greater or lesser degree,
to pointers to internal memory. This paragraph points out that adding
indirect references to such languages would allow two kinds of reference,
one of which was distribution transparent while the other was not. Java, of
course, does not have direct access to pointers. Because of the Java use of
references within the language,it does provide a platform in which address-
space-relative pointers are missing. Thus Java not only permits a unified
addressing scheme,it enforces that scheme.

[B] There are actually a number of interface definition languages that are
referred to by the initials IDL. When this note was originally written,
wewerereferring to the CORBAinterface definition language. However, the
other languagesthat use this name share the characteristics discussed here,
so the argument presented would apply equally to them.

329

330

APPENDIX B

The Example Code

The first rule ofmagic is simple:
Don’t waste your time waving your hands and hoping

when a rock or a club will do,
—McCloctnik the Lucid

Tue following pages contain the complete code for the examples used in the
introductory chapters of this book. The sources are listed in alphabetical order by
the full name, including the package name. For your convenience, here is a map-
ping from the simple class nameto its fully-qualified class name:

ChatMessage........... chat.ChatMessage...........-2-.000005 328
ChatProxy chat.ChatProxy0 cece eee eens330
ChatServer............ chat.ChatServer 0.0.0.0. 0 0.0 cece332

ChatServerAdmin....... chat.ChatServerAdmin...............-333

ChatServerImp] chat.ChatServerImpl]l.........-....---337
ChatSpeaker........... chat.ChatSpeaker-200008,344
ChatStream..........-- chat.ChatStream...........0.ee eee eee 345

ChatSubject chat.ChatSubject.............0.0 eee 347 j
Chatter05. chatter.Chatter..............2..0--. 348

ChatterThread......... chatter.ChatterThread............... 350 |
FortuneAdmin.......... fortune. FortuneAdmin...........00.05 360

FortuneStream......... fortune.FortuneStream...............362 |
FortuneStreamImpl fortune.FortuneStreamImp]363
FortuneTheme fortune.FortuneTheme368

MessageStream......... message.MessageStream.............4. 369
ParseUtil util.ParseUtil 0.0... ee eee 370

StreamReader client.StreamReader.................352

You can also find the code at http: //java.sun.com/docs/books/jini/

327

330

331

a

328
chat. ChatMessage

package chat;

import java.io.Serializable;

f**
* A single message in the <CODE>ChatStream</CODE>. This is the

* type of <CODE>Gbject</CODE> returned by <CODE>ChatStream.nextMessage</CODE>.*

* @see ChatStream

ra

public class ChatMessage implements Serializable {
fee

* The speaker of the message.
* @serial

xf

private String speaker;

[tt

* The contents of the message.
* @serial

*/

private String[] content;

fr

* The serial version UID. Stating it explicitly is good.*

* @see fortune. FortuneTheme#serialVersionUID
xf

static final long serialVersionUID =

-1852351967189107571L;

[/**

* Create a new <CODE>ChatMessage</CODE> with the given
* <CODE>speaker</CODE> and <CODE>content</CODE>.
*/

public ChatMessage(String speaker, String[] content) {
this.speaker = speaker;
this.content = content;

{ex

* Return the speaker of the message.
xf

public String getSpeaker() { return speaker; }

fee

* Return the content of the message. Each string in the array
* represents a single line of content.

331

332

329

chat. ChatMessage

*/

public String[] getContent(Q) { return content; }

// inherit doc comment from superclass

public String toString® {
StringBuffer buf = new StringBuffer (speaker) ;
buf.append(": ");
for Cint 1 = @; 1 < content.length; i++)

buf. append(content[i]).append(’\n");
buf.setLength(buf.length() - 1); // strip newline
return buf.toString();

332

333

Neeneeeeeeeeee

330
chat. ChatProxy

package chat;

import java.io. EOFException;
import java.io.Serializable;
import java.rmi.RemoteException;

[Re
* The client-side proxy for a <CODE>ChatServer</CODE>-based
* <CODE>ChatStream</CODE> service. This forwards most requests to the
* server, remembering the last successfuly retrieved message index.
*/

class ChatProxy implements ChatStream, Serializable {
/**

* Reference to the remote server.
* @serial

*/

private final ChatServer server;

fet
* The index of the last entry successfully received.
* @serial

*/

private int lastIndex = -1;

/™*
* Cache of the subject of the chat.*
/

private transient String subject;

fR*

* Create a new proxy that will talk to the given server object.
*f

ChatProxy(ChatServer server) {
this.server = server;

// inherit doc comment from ChatStream

public synchronized Object nextMessage()
throws RemoteException, EOFException

t
ChatMessage msg = server.nextInLine(lastIndex);
lastIndex++;
return msg;

}

// inherit doc comment from ChatStream

public void add(String speaker, String[] msg)
throws RemoteException

333

334

331
chat. ChatProxy

{

server.add(speaker, msg);
}

, . es)
// inherit doc comment from ChatStream ; ae
public synchronized String getSubjectQ |

throws RemoteException g i
{ c

if (subject == null) oO
subject = server.getSubjectQ); aor

return subject;
}

// inherit doc comment from ChatStream

public String[] getSpeakersQ) throws RemoteException {
return server.getSpeakers();

334

335

333
chat. ChatServerAdmin

package chat;

import util.ParseUtil;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.0bjectInputStream;
import java.io.0bjectOutputStream;
import java.rmi.activation.Activatable;
import java.rmi.activation.ActivationDesc;
import java.rmi.activation.ActivationException;
jmport java.rmi.activation.ActivationGroup;
import java.rmi.activation.ActivationGroupDesc.CommandEnvi ronment;
import java.rmi.activation.ActivationGroupDesc;
import java.rmi.activation.ActivationGroupID;
import java.rmi.activation.ActivationSystem;
import java.rmi.MarshalledObject;
import java.rmi.Remote;
import java.rmi.RemoteException;
jmport java.util.Properties;

fee

* The administrative program that creates a new <CODE>ChatServerImp] </CODE>*
*

Lo
Ca

chat stream service. It’s invocation is:
<pre>

java [<i>java-options</i>] chat.ChatServerAdmin <i>dir subject</i>
[<i>groups|lookupURL classpath codebase policy-file</i>]

</pre>
* Where the options are:

*+

++&HF
%
=

oF
*

<d1>

<dt><i><CODE>java-options</CODE></i>
<dd>Options to the Java VM that will run the admin program. Typically
this includes a security policy property.
<p>

<dt><i><CODE>di r</CODE></i>

<dd>The directory in which all the chats in the same group will live.
<p>

<dt><i><CODE>subject</CODE></i>
<dd>The subject of the chat. This must be unique within the group.
<p>

<dt><i><CODE>groups</CODE></i> | <i><CODE>1ookupURL</CODE></1>
<dd>Either a comma-separated list of groups in which all the services
in the group will be regsitered or a URL to a specific lookup service.
<p>

335

336

a|

334
chat.ChatServerAdmin

* <dt><i><CODE>classpath</CODE></i>

* <dd>The classpath for the activated service (<CODE>ChatServerImp1 </CODE>
will be loaded from this).
<p>

<dt><i><CODE>codebase</CODE></i>

<dd>The codebase for users of the service (<CODE>ChatProxy</CODE> wil]
be loaded from this).

* <p>
* <dt><i><CODE>policy-file</CODE></i>
* edd>The policy file for the activated service’s virtual machine.
* </d1>

* <p>The last four parameters imply creation of a new group. If any
* are specified they must all be specified. If none are specified the
* new chat stream will be in the same activation group as the others
* who use the same storage directory, and so will use the same values
* for the last four parameters.
*/

public class ChatServerAdmin {
fe

* The main program for <CODE>ChatServerAdmin</CODE>.
*f

public static void main(String[] args) throws Exception
{

++
ES
*

if (args.Jength != 2 && args.lJength != 6) {
usage(); // print usage message
System,exit(1);

File dir = new File(args[@]);
String subject = args[1];

ActivationGroupID group = null;
if Cargs.length = 2)

group = getGroup(dir);
else {

String[] groups = ParseUtil,.parseGroups(args[2]);
String lookupURL =

(args(2].indexOf(’:’) > @ ? args[2] : null);
String classpath = args[3];
String codebase = args[4];
String policy = args[5];
group = createGroup(dir, groups, lJookupURL,

classpath, codebase, policy);

File data = new File(dir, subject);
MarshalledObject state = new MarshalledObject(data);
ActivationDesc desc =

336

337

new ActivationDesc(group, "chat.ChatServerImp1",
null, state, true);

Remote newObj = Activatable.register(desc);
ChatServer server = (ChatServer)newObj;
String s = server.getSubject(); // force server up
System.out.printin("server created for " + s);

}

{**
* Print a usage message for the user.
*/

private static void usage() {
System.out.printin("usage: java [java-options] " +

ChatServerAdmin.class + " dir subject " +
" [groups|lookupURL classpath codebase policy-file]\n");

[**
* Create a new group with the given parameters.
*f

private static ActivationGroupID
createGroup(File dir, String[] groups, String lookupURL,

String classpath, String codebase,
String policy)

throws IOException, ActivationException

if (!dir.isDirectoryQ)
dir.mkdirsQ);

Properties props = new Properties();
props.put("java.rmi.server.codebase", codebase);
props.put("java.security.policy", policy);
String[] argv = new String[] { "-cp", classpath };
CommandEnvironment cmd =

new CommandEnvironment("java", argv);
ActivationSystem actSys = ActivationGroup.getSystem();
ActivationGroupDesc groupDesc =

new ActivationGroupDesc(props, cmd);
ActivationGroupID id = actSys.registerGroup(groupDesc);

FileOutputStream fout =

new FileOutputStream(groupFile(dir));
ObjectOutputStream out = new ObjectOutputStream(

new BufferedOutputStream(fout)) ;
out.writeObjectCid);
out.writeObject (groups);
out.writeObject(lookupURL);
out. flush(); // force bits out of buffer

335

chat. ChatServerAdmin

337

338

336
chat. ChatServerAdmin

fout.getFDQ).syncQ; // force bits to the disk
out.close();

return id;

[**
Return a <CODE>File</CODE> object contains the group description.
This assumes that nobody will create a group with the subject
<CODE>"grpdesc"</CODE>. This is probably a bad assumption -- a
fully robust implementation should either check this and forbid it

* or figure out a way to store this someplace that does not conflict
* with subject names.
*/

static File groupFile(File dir) {
return new File(dir, “grpdesc");

++&Ft

{**
* Get the ActivationGroupID for the existing group in the given
* directory.
xf

private static ActivationGroupID getGroup(File dir)
throws IOException, ClassNotFoundException

ObjectInputStream in = null;
try {

in = new ObjectInputStream(new BufferedInputStream(
new FileInputStream(groupFilecdir))));

return (ActivationGroup1ID) in. readObject();
} finally {

if Cin != null)
in.close();

338

339

package chat;

import net.jini.core.discovery.LookupLocator;
import net.jini.core.entry.Entry;
import net.jini.core. lookup.ServiceID;

import com.sun.jini.lease.LeaseRenewalManager;
import com.sun.jini. lookup. JoinManager;
import com.sun.jini. lookup.ServicelDListener;
import com.sun.jini.reliableLog.LogHandler;
import com.sun.jini.reliableLog.ReliableLog;

import java.io.File;

import java.io.FileInputStream;
import java.io.InputStream;
import java.io. IOException;
import java.io.ObjectinputStream;
import java.io.ObjectOutputStream;
import java.io.OutputStream;
import java.rmi.activation.Activatable;
import java.rmi.activation.ActivationID;
import java.rmi.MarshalledObject;
import java.util.ArrayList;
import java.util.HashSet;

import java.util.List;
import java.util.Set;

fr*

* The implementation of <CODE>ChatServer</CODE>. This runs inside an
* activation group defined by the persistent state from the activation
* service.

af

public class ChatServerImp] implements ChatServer {
[ee

* The join manager we’re using.
*/

private JoinManager joinMgr;

fe*

* Our subject of discussion.
*/

private String subject;

fe*

* The set of known speakers.
*f

private Set speakers = new HashSet();

339

chat. ChatServerImp?

a
SRAene

340

|

338
chat. ChatServerImp?

[e*

* The list of messages.
*/

private List messages = new ArrayList();

[ee
* The list of service attributes.
e
/

private List attrs;

fr
* The service ID (Cor <CODE>nul1</CODE>).
*/

private ServiceID serviceID;

ft

* Our persistent storage.
*/

private ChatStore store;

fr*

* Groups to register with (or an empty array).
ef

private String[] groups = new String[@];

[**
* URL to specific join manager (or <CODE>nul1l</CODE>).
*/

private String TookupURL;

{**

* The lease renewal manager for all servers in our group.
* We share it because this gives it more leases it might be

* able to compress into single renewal messages.
*/

private static LeaseRenewalManager renewer;

{**

* The storage for a <CODE>ChatServerImp]</CODE>.
*/

class ChatStore extends LogHandler
implements ServiceIDListener

jt

* The reliable log in which we store our state.
*/

private ReliableLog log;

340

341

fre*
*
&
*

Create a new <CODE>ChatStore</CODE> object for the given
directory. The directory is the full path for the specific
storage for this chat on the subject. The parent directory
is the one for the group.

*f

ChatStore(File dir) throws IOException {

*

*/

public void snapshot(OutputStream out) throws Exception {

// If the directory exists, recover from it. Otherwise

// create it as a a new subject.
if (dir.exists()) {

log = new ReliableLog(dir.toString(), this);
log. recover();

} else {

subject = dir.getName();

log = new ReliableLog(dir.toString(), this);
attrs = new ArrayListQ);

attrs.add(new ChatSubject(subject));
log.snapshot();

// Read in the lookup groups and lookupURL for our service
ObjectInputStream in = null;
try {

in = new ObjectInputStream(
new FileInputStream(

ChatServerAdmin.groupFi le(dir.getParentFile())));
in.readObject(); // skip over the group ID
groups = (String[])in.readObjectQ;
lJookupURL = (String)in.readObject();

} catch (ClassNotFoundException e) {
unexpectedException(e);

} catch (IOException e) {
unexpectedException(e);

} finally {
if Cin != null)

in.close(Q);
}

Stores the current information in storage. In our case only
the start state is snapshoted -- everything else is added
incrementally anyway and so the log of changes is the
state. Part of <CODE>ReliableLogHandler</CODE>.

ObjectOutputStream oo = new ObjectOutputStream(out);
oo.writeObject (subject);

chat. ChatServerImp]

 Eeeoiace

341

342

Tsiiji._i.gi.gi.gigi..cccccccccc

340

chat. ChatServerImp?

oo.writeObject(attrs);

/**

* Recovers the information from storage. Part of
* <CODE>ReliableLogHandler</CODE>.*

* @see #snapshot
*/

public void recover(InputStream in) throws Exception {
ObjectInputStream oi = new ObjectInputStream(in):
subject = (String)oi.readObject();
attrs = (List)oi.readObjectQ;

[re

* Apply an update from the log during recovery. The types
* of data we add happen to all be distinct so we know exactly
* what something is based on its type alone Clucky us). Part
* of <CODE>ReliableLogHandler</CODE>.
*/

public void applyUpdate (Object update) throws Exception {
if Cupdate instanceof ChatMessage) {

messages .add(update);

addSpeaker (((ChatMessage) update) .getSpeaker());
} else if (update instanceof Entry) {

attrs.add(update);

} else if (update instanceof ServiceID) {
serviceID = (ServiceID)update;

} else {

throw new I1legalArgumentException(
“Internal error: update type " +
update .getClass().getName() +", "4 update);

fue

* Invoked when the serviceID is first assigned to the service.
* Part of <CODE>ServiceIDListener</CODE>.
*/

public void serviceIDNotify(ServiceID serviceID) {
try {

log.update(serviceID) ;
} catch (IOException e) {

unexpectedException(e);
}

ChatServerImp].this.serviceID = servicelID;

342

343

/**

* Add a new speaker to the persistent storage log.
*/

synchronized void add(ChatMessage msg) {
try {

log.update(msg, true);
} catch (IOException e) {

unexpectedException(e);
}

}
}

{**
* The activation constructor for <CODE>ChatServerImpl</CODE>. The

* <CODE>state</CODE> object contains the directory which is our
* reliable log directory.
*/

public ChatServeriImp](ActivationID actID,
MarshalledObject state)

throws IOException, ClassNotFoundException

File dir = (File) state.get();
store = new ChatStore(dir);

ChatProxy proxy = new ChatProxy(this);

LookupLocator[] locators = null;
if ClookupURL != null) {

LookupLocator loc = new LookupLocator(lookupURL);
locators = new LookupLocator[] { loc };

3

joinMgr = new JoinManager(proxy, getAttrs(), groups,
locators, store, renewer);

Activatable.exportQbject(this, actID, 0);

f**
* Return the attributes as an array for use in JoinManager.
*/

private Entry[] getAttrs() {
return (Entry[])attrs.toArray(new Entry[attrs.sizeQ]);

}

// inherit doc comment from ChatServer

public String getSubject(Q) {
return subject;

343

341

chat. ChatServerImp]

344

Neea

342
chat. ChatServerImp]

// inherit doc comment from ChatServer

public String[] getSpeakers() {

return (String[]) speakers. toArray(new String[speakers.size()]);
}

// inherit doc comment from ChatServer

public synchronized void add(String speaker, String[] lines)
{

ChatMessage msg = new ChatMessage(speaker, lines);
store.add(msqg);
addSpeaker(speaker);
messages.add(msq);
notifyAl1();

}

f**

* Add a speaker to the known list. If the speaker is already
* known, this does nothing.
*f

private synchronized void addSpeaker(String speaker) {
if (speakers. contains(speaker))

return;

speakers.add(speaker);
Entry speakerAttr = new ChatSpeaker(speaker);
attrs.add(speakerAttr);

joinMgr.addAttributes(new Entry[] { speakerAttr });

// inherit doc comment from ChatServer

public synchronized ChatMessage nextInLine(int index) {
try {

int nextIndex = index + 1;

while (nextIndex >= messages.size())
wait;

return (ChatMessage)messages.get(nextIndex) ;
} catch (InterruptedException e) {

unexpectedException(e);

return null; // keeps the compiler happy

fre

* Turn any unexpected exception into a runtime exception reflected
* back to the client. These are both unexpected and unrecoverable
* exception (such as "file system full").
*f

private static void unexpectedException(Throwable e) {

344

345

343

chat. ChatServerImp?

throw new RuntimeException("unexpected exception: " + e);

345

346

rr

344

chat. ChatSpeaker

package chat;

import net. jini.entry.AbstractEntry;
import net. jini. lookup. entry. ServiceControlled;

[re

* An attribute for the <CODE>ChatStream</CODE> service that marks a
* speaker as being present in a particular stream.*

* @see ChatStream
*/

public class ChatSpeaker extends AbstractEntry
implements ServiceControlled

{

{**

* The serial version UID. Stating it explicitly is good.*

* @see fortune. FortuneTheme#serialVersionUID
*f

static final long serialVersionUID =

6748592884814857788L:;

fe*

* The speaker’s name.
* @serial

*f

public String speaker:

fre

* Public no-arg constructor. Required for all <CODE>Entry</CODE>
* objects.
*f

public ChatSpeaker() { }

{**

* Create a new <CODE>ChatSpeaker</CODE> with the given speaker.*/

public ChatSpeaker(String speaker) {
this.speaker = speaker;

}
$

346

347

345

chat.ChatStream

package chat;

import message.MessageStream;

import java.rmi.RemoteException;

fu*

* A type of <CODE>MessageStream</CODE> whose contents are a chat

* session. The <CODE>nextMessage</CODE> method blocks if there is
* as yet no next message in the stream. The messages in the stream
* are ordered, so <CODE>nextMessage</CODE> must be idempotent -- should
* the client receive a <CODE>RemoteException</CODE>, the next invocation

* must return the next message that the client has not yet seen.
* <p>

* Each message returned by <CODE>nextMessage</CODE> is a
* <CODE>ChatMessage</CODE> object that has a speaker and what they
* said.
*

* @see ChatMessage
* @see ChatSpeaker
* @see ChatSubject
*/

public interface ChatStream extends MessageStream {
[rr

* Add a mew message to the stream. If the speaker is previously
* unknown in the stream, a <CODE>ChatSpeaker</CODE> attribute
* will be added to the service. |*
*

@see ChatSpeaker
*f

public void add(String speaker, String[] message)

throws RemoteException;

* lifetime of the service. This subject will also exist as a
* <CODE>ChatSubject</CODE> attribute on the service.ve

* @see ChatSubject
cd /

public String getSubjectQ) throws RemoteException;

j**
* Return the list of speakers currently known in the stream.
* The order is not significant.*

|1
|

/**
* Return the subject of the chat. This does not change during the

* @see ChatSpeaker

347

348

346
chat. ChatStream

*/

public String[] getSpeakers() throws RemoteException;

348

349

package chat;

import net.jini.entry.AbstractEntry;
import net.jini. lookup. entry. ServiceControl led;

{**
* An attribute for the <CODE>ChatStream</CODE> service that marks the

* subject of discussion.*

* @see ChatStream

*/
public class ChatSubject extends AbstractEntry

implements ServiceControlled
{

fe*

* The serial version UID. Stating it explicitly is good.

* @see fortune. FortuneTheme#serialVersionUID

*/
static final long serialVersionUID =

-4036337828321897774L;

jt
* The subject of the discussion.
* @serial

*f

public String subject;

/**

* Public no-arg constructor. Required for all <CODE>Entry</CODE>
* objects.
*f

public ChatSubjectQ) { }

[r*

* Create a new <CODE>ChatSubject</CODE> with the given subject.
*f

public ChatSubject(String subject) {
this.subject = subject;

}
}

349

347
chat. ChatSubject

sue)Pyttteste

350

SSSeae

348
chatter. Chatter

package chatter;

import chat.ChatStream;

import chat.ChatMessage:
import client.StreamReader;
import message.MessageStream;

import java.rmi.RemoteException;

{**

* A client that talks to a <CODE>ChatStream</CODE>, allowing the user
* to add messages as well as read them. The user’s login name is used
* as their name in the chat. The usage is:
* <pre>

* java [java-options] chatter.Chatter args...
* </pre>

* The arguments are the same as those for <CODE>client.StreamReader</CODE>
* except that you cannot specify the <CODE>-c</CODE> option. The stream
* used will] be at least a <CODE>chat.ChatStream</CODE> service.

* @see client.StreamReader
* @see ChatterThread
*/

public class Chatter extends StreamReader {
{ue

* Start up the service.
*/

public static void main(String[] args) throws Exception
{

String[] fullargs = new String[args.length + 3];
fullargs[@] = "=c";

fullargs[1] = String.valueOf(Integer .MAX_VALUE);
system.arraycopy(args, @, fullargs, 2, args.length);
fullargs[fullargs.length - 1] = “chat.ChatStream";
Chatter chatter = new Chatter(fullargs);
chatter. execute ();

{**

* Create a new <CODE>Chatter</CODE>. The <CODE>args</CODE> are
* passed to the superclass.
xf

private Chatter(String[] args) {
super(args);

}

(**

* Overrides <CODE>readStream</CODE> to start up a

350

351

349
chatter.Chatter

* <CODE>ChatterThread</CODE> when the stream is found. The

* <CODE>ChatterThread</CODE> lets the user type messages, while this
* thread continually reads them.
xf

public void readStream(MessageStream msgStream)
throws RemoteException

{

ChatStream stream = (ChatStream)msgStream;
new ChatterThread(stream) .start();
super. readStream(stream);

f**

* Print out a message, marking the speaker for easy reading.
*f

public void printMessageCint msgNum, Object msg) {
if (! (msg instanceof ChatMessage))

super.printMessage(msgNum, msg);
else {

ChatMessage cmsg = (ChatMessage)msg;
System.out.printin(cmsg.getSpeaker() + ":");
String[] lines = cmsg.getContent();
for Cint i = @; i < lines.Jength; i++) {

System.out.print(" ");
System.out.printinClines[i]);

351

352

a_

350
chatter. ChatterThread

package chatter;

import chat.ChatStream;

import java.io.BufferedReader;
import java.io. InputStreamReader;
import java.io. IOException;
import java.rmi.RenoteException;
import java.util.ArrayList;
import java.util.List;

f**

* The thread that <CODE>Chatter</CODE> uses to let the user type
* new messages.
wf

class ChatterThread extends Thread {
[ee

* The stream to which we’re adding.
*/

private ChatStream stream;

fee

* Create a new <CODE>ChatterThread</CODE> to write to the given stream.
*f

ChatterThread(ChatStream stream) {
this.stream = stream;

[e*

* The thread’s workhorse. Read what the user types and put it into
* the stream as messages from the user. The user’s name is read from

* the <CODE>user.name</CODE> property. A message consists of a series
* of lines ending in backslash until one that doesn't.
*f

public void rund) {

BufferedReader in = new BufferedReader(
new InputStreamReader(System.in));

String user = System.getProperty("user.name");
List msg = new ArrayList();
String[] msgArray = new String[@];
for (33) {

try {
String line = in.readLine();
if Cline == null)

System. exit(@);

boolean more = line.endsWith("\\");
if (more) { // strip trailing backslash

352

353

int stripped = line.length() - 1;
line = line.substring(@, stripped);

}

msg.add(line);
if C!more) {

msgArray = (String[])
msg.toArrayCnew String[msg.size()]);

stream.add(user, msgArray);
msg.clearQ;

}
} catch (RemoteException e) {

System.out.printiIn("RemoteException: retry");
for (33) {

try {
Thread.sleep(100@) ;

stream.add(user, msgArray);
msg.clear();
break;

} catch (RemoteException re) {
continue; /f try again

} catch (InterruptedException ie) {
System.exit(1);

}
}

} catch (IOException e) {
System. exit(1);

351
chatter. ChatterThread

353

354

SO ————————————————

352
client. StreamReader

package client;

import net.jini.core.discovery.LookupLocator;
import net.jini.core.entry.Entry;
import net.jini.core. lookup. ServiceRegistrar;
import net. jini.care. lookup.ServiceTemplate;
import net.jini.discovery.DiscoveryEvent;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.LookupDiscovery;

import message.MessageStream;

import java.io.BufferedReader;
import java.io, EOFException;
import java.io. InputStreamReader;
import java.io.Reader;

import java. lang.reflect.Constructor;
import java. lang. reflect .InvocationTargetException:
import java.rmi.RemoteException;
import java. rmi.RMISecurityManager;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;

import java.util.StringTokenizer;

fee

* This class provides a client that reads messages from a
* <code>MessageStream</code> service. It’s use is:
* <pre>

java [<i>java-options</i>] client.StreamReader [-c <i>count</i>)* <i>groups| lookupURL</i>
* [<i>service-type</i>|<i>attribute</i> cael
* </pre>

Where the options are:
<d1>

<dt><i><CODE>java-options</CODE></i>

<dd>Options to the Java VM that will run the admin program. Typically
this includes a security policy property.
<p>

<dt><i><CODE>-c <i>count</i></CODE></j>
* <dd>The number of messages to print.
* <p>

* <dt><i><CODE>groups</CODE></i> | <i><CODE>1ookupURL</CODE></i>
* <dd>Either a comma-separated list of groups in which all the services
* in the group will be regsitered or a URL to a specific lookup service.
* <p>

* <dt><i><CODE>service-type</CODE></i>| <i><CODE>attribute</CODE></i>

+ s+
*

354

355

353

client. StreamReader

* <dd>A combination (in any order) of service types and attribute definitions.
* Service types are specfied as types that the service must be an instance of.
* Attribute definitions are either <CODE>Entry</CODE> type names,
* which declare that the service must have an attribute of that type,

* or <CODE>Entry</CODE> type names with a single <CODE>String</CODE>
* parameter for the constructor, as in
* <CODE><i>AttributeType</i>:<i>stringArg</i></CODE>.
* </d|>

* <p>The lookups are searched for a <CODE>MessageStream</CODE> that
supports any additional service types specfied and that matches all

* specified attributes. If one is found, then <CODE><i>count</i></CODE>
messages are printed from it. If a <CODE>RemoteException</CODE>
occurs the <CODE>nextMessage</CODE> invocation is retried up to
a maximum number of times.

* <P>

* This class is designed to be subclassed. As an example, see
* <CODE>chatter.Chatter</CODE>.

* Seuse
+%
*

* @see message.MessageStream
* @see chatter.Chatter t
*/

public class StreamReader implements DiscoveryListener {
[r*

* The number of messages to print.
“ff |

private int count; |

f**

* The lookup groups (or an empty array).*
/

private String[] groups = new String[@]; ||

fre

* The lookup URL (or <code>null</code>).
*/

private String lookupURL;

j**
* The stream and attribute types.
*f

private String[] typeArgs;

f**

* The list of unexamined registrars.
*/

private List registrars = new LinkedListQ);

{*r*

355

356

354

client. StreamReader

* How long to wait for matches before giving up.
*f

private final static int MAX_WAIT = 5000; // Five seconds

fee
* Maximum number of retries of <code>nextMessage</code>.
*f

private final static int MAX_RETRIES = 5;

(**
* Run the program.*

* @param args The command-line arguments*

* @see #StreamReader

*/

public static void main(String[] args) throws Exception
{

StreamReader reader = new StreamReader(args);
reader.execute();

fee

* Create a new <code>StreamReader</code> object from the
* given command line arguments.
*/

public StreamReader(String[] args) {

// parse command into the fields count, groups,
// lookupURL, and typesArgs...
if (args.length == @) {

usage();

throw new I] legalArgumentException() ;
}

int start;

if Clargs[®].equals("-c")) {
count = 1;
start = Q;

} else {
count = Integer.parseInt(args[1]);
start = 2;

}

if Cargs[start] .indexOf(':") < @)
groups = util.ParseUtil.parseGroups(args[start]);

else

TookupURL = args[start] ;
typeArgs = new String[args.length - start - 1];

356

357

355

client. StreamReader

System.arraycopy(args, start + 1, typeArgs, 0, typeArgs. length);

}

fee : fea
* Print out a usage message. i 5
*/ : =

private void usage() { ace
System.err.printin("usage: java [java-options] " + StreamReader.class + oe

" [-¢ count] groups|lookupURL [service-type|attribute ...]"); Q
} &

* Execute the program by consuming messages.
*/

public void execute() throws Exception {
if (System.getSecurityManagerQ == null)

System. setSecurityManager(new RMISecurityManager());

// Create lookup discovery object and have it notify us
LookupDiscovery Id = new LookupDiscovery(groups);
Id.addDiscoveryListener(this);

searchDiscovered(); // search discovered lookup services

fee |
* Search through an discovered lookup services. |
xf |

private synchronized void searchDiscovered() |
throws Exception

ServiceTemplate serviceTmp] = buildTmp](typeArgs);

// Loop searching in discovered lookup services
long end = System.currentTimeMillis() + MAX_WAIT;
for (;;) f

// wait until a lookup is discovered or time expires
long timeLeft = end - System.currentTimeMillisQ;
while (timeLeft > @ && registrars.isEmpty()) {

wait(timeLeft);

timeLeft = end - System.currentTimeMillisQ;
}
if (timeLeft <= @)

break;

// Check out the next lookup service
ServiceRegistrar reg =

(ServiceRegistrar) registrars.remove(@);

357

358

ss

356
client. StreamReader

try {
MessageStream stream =

(MessageStream) reg. lookup(serviceTmp]) ;
if (stream != null) f

readStream(stream);
return;

}

} catch (RemoteException e) {

continue; // skip on to next
}

}

System.err.printin("No service found");
System.exit(1); // nothing happened in time

}

pre

* Build up a <code>ServiceTemplate</code> object for
* matching based on the types listed on the command line.
*f

private ServiceTemplate buildTmp1(String[] typeNames)
throws ClassNotFoundException, Tl legalAccessException,

InstantiationException, NoSuchMethodException,
InvocationTargetException

Set typeSet = new HashSet(); // service types
Set attrSet = new HashSet(); // attribute objects

// MessageStream class is always required
typeSet.add(MessageStream.class);

for (int i = @; i « typeNames. length; i++) {
// break the type name up into name and argument
StringTokenizer tokens = // breaks up string

new StringTokenizer(typeNames[i], ":");:
String typeName = tokens .nextTokenQ);
String arg = null; // string argument
if (tokens. hasMoreTokens())

arg = tokens.nextToken();
Class cl = Class. forName(typeName);

// test if it is a type of Entry (an attribute)
if (Entry.class.isAssignableFrom(cl))

attrSet.add(attribute(cl, arg));
else

typeSet.add(cl);

// create the arrays from the sets

358

359

357
client. StreamReader

Entry{] attrs = (Entry[])

attrSet.toArray(new Entry[attrSet.size()]);
Class[] types = (Class[])

typeSet.toArray(new Class[typeSet.size()]);

return new ServiceTemplate(null, types, attrs):

/s*

* Create an attribute from the class name and optional argument.
*/

private Object attribute(Class cl, String arg)
throws I]legalAccessException, InstantiationException,

NoSuchMethodException, InvocationTargetException
{

if (arg == null)

return cl.newInstance();
else {

Class[] argTypes = new Class[] { String.class };
Constructor ctor = cl.getConstructor(argTypes) ;
Object[] args = new Object[] { arg };
return ctor.newInstance(args);

}
}

f**

* Notified by <code>LookupDiscovery</code> code when it finds one
* or more registries. This implementation adds it to the list of
* known registries and notifies any waiting thread.
*f

public synchronized void discovered(DiscoveryEvent ev) {
ServiceRegistrar[] regs = ev.getRegistrars();
for Cint i = 0; i < regs.Jength; i++)

registrars.add(regs[i]);

notifyAl1(); // notify waiters that the list has changed

{**

* Notified by <code>LookupDiscovery</code> code when one or more
* found registries vanishes. This implementation removes it from
* the list of known registries. No notification is necessary
* since the only waiting threads are waiting for additions, not
* subtractions.

*f

public synchronized void discarded(DiscoveryEvent ev) {
ServiceRegistrar[] regs = ev.getRegistrarsQO;
for Cint i = @; i < regs.length; i++)

359

Pejute)aiduexg:
I
t|a

360

ggggg

358
client. StreamReader

registrars.remove(regs[i]);

notifyAll); // notify waiters that the list has changed

[e*

* Read the required number of messages from the given stream.
*f

public void readStream(MessageStream stream)
throws RemoteException

{

int errorCount = @; // # of errors seen this message
int msgNum = @; // # of messages
while (msgNum < count) {

try {

Object msg = stream.nextMessage();
printMessage(msgNum, msg);
msgNum++ ; // successful read

errorCount = @; // clear error count
} catch C(EOFException e) {

System, out.printin("---EOF---");
break;

} catch (RemoteException e) {
e.printStackTrace();

if (++errorCount > MAX_RETRIES) {

if (msgNum == Q) // got no messages
throw e;

else {

System.err.printin("too many errors");
System.exit(1);

3
try {

Thread.sleep(1000); // wait 1 second, retry
} catch (InterruptedException je) {

System.err.printIn("---Interrupted---"):
System.exit(1);

fn

* Print out the message in a reasonable format.
*/

public void printMessage(int msgNum, Object msg) {
if (msgNum > @) // print separator

System.out.printin("---");

360

361

359

client. StreamReader

System.out.printIn(msg);

||

361

362

rr_|

360
fortune. FortuneAdmin

package fortune;

import message.MessageStream;

import java.io.DataQutputStream;
import java.io.File;

import java.io.FileQutputStream;
import java.io. IOException:
import java.io.RandomAccessFile;
import java.util.ArrayList;
import java.util.List;

‘imp

f**

a
*f

pub

ort java.rmi.activation.ActivationException;

Administer a <code>FortuneStreamImp]</code>.
<pre>

java [<i>java options</i>] fortune. FortuneAdmin <i>database-dir</i>
</pre>

The database is initialized from the fortune set in the directory’s
<code>fortunes</code> file, creating a file named <code>pos</code> that
contains each fortune’s starting position. The <code>fortunes</code>
file must be present. The <code>pos</code> file, if it exists, will
be overwritten.

@see FortuneStreamImp1]

lic class FortuneAdmin {
[rx

* Run the FortuneAdmin utility. The class comment describes the
* possibilities,w

* @param args

= The arguments passed on the command line*

* @see FortuneAdmin
*ff

public static void main(String[] args) throws Exception {
if (args.length != 1)

usage(};
else

setup(args[@]);

Set up a directory, reading its <code>fortunes</code> file and
* creating a correct <code>pos</code> file.

362

363

361
fortune, FortuneAdmin

* @param dir
* The fortune database directory.

* @throws java.io. IOException
Some error accessing the database files.

*f

private static void setup(String dir) throws IOException {
File fortuneFile = new File(dir, "“fortunes");

File posFile = new File(dir, "“pos");
if (posFile.lastModified() > fortuneFile.lastModifiedQ)) {

System.out.printin(C"positions up to date");
return;

System.out.print("positions out of date, updating");
// Open the fortunes file
RandomAccessFile fortunes =

new RandomAccessFile(new File(dir, “fortunes"), "r");

// Remember the start of each fortune

List positions = new ArrayList(Q);
positions.add(new Long(@));
String line;
while (Cline = fortunes.readLine()) != null)

if Cline.startswith("%%"))

positions.add(new Long(fortunes.getFilePointer()));
fortunes. close();

// Write the pos file
DataOutputStream pos =

new DataOutputStream(new FileOQutputStream(new File(dir, "pos")));
int size = positions.size(Q);
pos.writeLong(size);
for Cint i = @; i < size; i++)

pos.writeLong(((Long) positions.get(i)).longValue()) ;
pos.close();
System.out.printing);

f**
* Print out-a usage message.
ef

private static void usage() {
System.out.printIn("usage: java [java-options] " + FortuneAdmin.class +

" database-dir");:

363

364

362
fortune. FortuneStream

package fortune;

import message.MessageStream;

import java.rmi.Remote;

import java.rmi.RemoteException;

[/**

* A <CODE>FortuneStream</CODE> is a <CODE>MessageStream</CODE> whose
* <CODE>nextMessage</CODE> method returns a random saying on some theme.
* The theme is returned by the <CODE>getTheme</CODE> method.*

* @see FortuneTheme

*/

interface FortuneStream extends MessageStream, Remote {
[ee

* Return the theme of the stream. This is also represented in the
* lookup service as a <CODE>FortuneTheme</CODE> object.
*/

String getTheme() throws RemoteException;

364

365

fortune. FortuneStreamImp]

package fortune;

import message.MessageStream;
import util.ParseUtil;

import net.jini.core.discovery.LookupLocator;
import net.jini.core.entry.Entry;

import net.jini.core. lookup.ServiceID;

import com.sun.jini.]lease.LeaseRenewalManager;
import com.sun.jini.lookup.JoinManager;

import java.io.BufferedInputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.EOFException;
import java.io.File;
import java.io.FileInputStream;
import java.io. IOException;
import java.io.RandomAccessFi le;
import java.rmi.Remote;
import java.rmi.RMISecurityManager ;
import java.rmi.server.UnicastRemoteObject;
import java.util.Random;

[r*

*ff

Implement a <code>MessageStream</code> whose
<code>nextMessage</code> method returns ‘‘fortune cookie’’ selected
at random. The stream is an activatable remote object. It requires

no special proxy because there is no client-side state or smarts --
the simple RMI stub works perfectly for this use.

<code>FortuneStreamImp]1</code> objects are created using the
<code>create</code>. It’s only public constructor is designed for
use by the activation system itself. The class
<code>FortuneAdmin</code> provides a program that will invoke
<code>create</code>.

@see FortuneAdmin

public class FortuneStreamImp] implements FortuneStream {
[es

* Groups to register with (or an empty array).
*/

private String[] groups = new String[@];

f**

* URL to specific join manager Cor <CODE>nul1</CODE>).

365

363

366

364

fortune. FortuneStreamImp!

xf

private String lookupURL;

fre

* The directory we work in.
*/

private String dir;

fre
* The theme of this stream.

*/
private String theme;

/**
* The random number generator we use.
*f

private Random random = new Random();

f**

* The positions of the start of each fortune in the file.
*/

private long[] positions;

fue
* The file that contains the fortunes.

*f

private RandomAccessFile fortunes;

{**

* The join manager does most work required of services in Jini systems.
*f

private JoinManager joinMgr;

[ee

* @param args The command line arguments.
*f

public static void main(String[] args) throws Exception
{

FortuneStreamImp] f = new FortuneStreamImp1 (args) ;
f.execute();

}

fee

* Create a stream that reads from the given directory.

* @param dir The directory name.
*/

private FortuneStreamImp1 (String args[])

366

367

365

fortune. FortuneStreamImp]

throws IOException

// Set the groups, TookupURL, dir, and theme
// Fields...

if (args.length != 3) {
usage();

throw new I] legalArgumentException();
}

if Cargs[@].indexOf¢’:’) < @)

groups = util.ParseUtil.parseGroups(args[@]):
else

lookupURL = args[@];
dir = args[1];
theme = args[2];

f**

* Print out a usage message.
af

private void usage() {

System.err.printin("usage: java " + FortuneStreamImp].class +
" groups|lookupURL database-dir theme");

{[**re

* Export this service as a UnicastRemoteObject for debugging purposes.*

* @see #main

*/

private void execute() throws IOException {
System. setSecuri tyManager (new RMISecurityManager());
UnicastRemoteObject.exportObject(this) ;

// Set up the fortune database
setupFortunes();

// set our FortuneTheme attribute

FortuneTheme themeAttr = new FortuneTheme(theme);
Entry[] initialAttrs = new Entry[] { themeAttr };

LookupLocator[] locators = null;
if ClookupURL != null) {

LookupLocator loc = new LookupLocator(]ookupURL);
locators = new LookupLocator[] { loc }:

3

joinMgr = new JoinManager(this, initialAttrs,
groups, locators, null, null);

367

368

366
fortune. FortuneStreamImp1

{**
* Called when the database needs to be set up. This can be called

* multiple times, for example if the database has been modified while
* the service is running.

* @throws java.io. IOException
Some problem occurred accessing the database files.

-

*/

private synchronized void setupFortunes() throws IOException {
// Read in the position of each fortune
File posFile = new File(dir, “pos");
DataInputStream in = new DataInputStream(

new BufferedInputStream(new FileInputStream(posFile)));
int count = Cint) in.readLong();

positions = new long[count];
for Cint i = @; i < positions.length; i++)

positions[i] = in.readLong();
in.close();

// Close the fortune file if previously opened
if (fortunes != null)

fortunes.close();

// Open up the fortune file
fortunes = new RandomAccessFile(new File(dir, "fortunes"), "r");

f**
* Return the next message from the stream. Since messages are

selected at random, any message is as good as any other and so
this is idempotent by contract: there will be no violation of
the contract if the client calls it a second time after getting

* a <code>RemoteException</code>. The <CODE>Object</CODE> returned
is a <CODE>String</CODE> with embeded newlines, but no trailing
newline.

+
ES
rs

ee
@throws java.io.EOFException

The database has been corrupted -- no more messages
* from this stream.

*/

public synchronized Object nextMessage() throws EOFException {
try {

int which = random,nextInt (positions. length) ;
fortunes.seek (positions [which]);

StringBuffer buf = new StringBuffer);
String line;
while (Cline = fortunes.readLineQ)) != null && !line.equals("%%")) {

if (buf.lJengthQ) > @)

ES

368

369

buf.append(’*\n’);
buf.append(line);

+
return buf.toString();

} catch (IOException e) {
throw new EOFException("directory not available:'

}

// inherit doc comment from interface
public String getTheme() {

return theme;

}

369

367
fortune. FortuneStreamImp]

+ e.getMessage());

370

368
fortune. FortuneTheme

package fortune;

import net.jini.entry.AbstractEntry;
import net. jini. lookup.entry.ServiceControl led;

fe
* This class is used as an attribute in the lookup system to tell
* the user what theme of fortunes a stream generates.

wf

public class FortuneTheme extends AbstractEntry
implements ServiceControlled

* The serial version UID. Stating it explicitly allows future

* evolution with a guaranteed consistency of the UID itself. It
* is also more efficient since otherwise the UID must be calculated
* when the class is serialized. A good specification should include

the serial version UID of each class.
*

*/
static final long serialVersionUID =

-1696813496901296488L;

* The theme of this collection of fortunes.

* @see fortune. FortuneStream#getTheme
* @serial

*/

public String theme;

[**

* Public no-arg constructor. Required for all <CODE>Entry</CODE>
* objects.
ef

public FortuneThemeQ) { }

{**
* Create a new <CODE>FortuneTheme</CODE> with the given theme.
*/

public FortuneTheme(String theme) {
this.theme = theme;

370

371

369
message.MessageStream

package message;

import java.io.EOFException;
import java.rmi.RemoteException;

{ee
* This interface defines a message stream service. Successive
* invocations of <code>nextMessage</code> return the next message in
* turn. Subinterfaces may add methods to rewind the stream or
* otherwise move around within the stream if appropriate.
*/

public interface MessageStream {
[**

* Return the next message in the stream. Each message is an
* object whose default method of display is a string returned by

its <CODE>toString</CODE> method. This method is idempotent: if
the client receives a <code>RemoteException</code>, the next
invocation from the client should return an equivalent message.
A service may specify which kinds of messages will be returned.

*oo
*+

@returns The next message as an <CODE>Object</CODE>.

* @throws java.io.EOFException
* The end of the stream has been reached.

* @throws java.rmi.RemoteException
* A remote exception has occurred.
*/

Object nextMessage()
throws EOFException, RemoteException;

371

372

370
util.ParseUti]

package util;

import java.util.HashSet;
import java.util.Set;
import java.util .StringTokenizer;

ft
* This class holds the static <CODE>parseGroups</CODE> method.
*/

public class ParseUtil {
{**

* Break up a comma-separated list of groups into an array of strings.

* @param groupDesc A comma-separated list of groups.
* @returns An array of strings (empty if none were specified).
*/

public static String[] parseGroups(String groupDesc) {
if (groupDesc.equals(""))

return new String{] {""};

Set groups = new HashSet();
StringTokenizer strs = new StringTokenizer(groupDesc, ", \t\n");
while (strs.hasMoreTokens())

groups.add(strs.nextToken());
return (String[]) groups.toArray(new String[groups.size()]);

}

}

372

373

| A

| aborted votes, 187
ABSOLUTE constant, 143
AbstractEntry class

equals, hashCode, and to String
functions of, 133-134

| serialized forms of, 134

access contro]list, 67

ACID properties
atomicity, 188, 270

| consistency, 188, 270
| durability, 188, 270
| isolation, 188, 270
| in JavaSpaces, 270-271

activation, 43-45
activatable classes and objects, 43-44
in chat server, 48

definition of, 293

lazy activation and, 297
activation constructor, 44

activation descriptor, 293
activation group

creating, 45
definition of, 293
function of, 43-44

activation system, 43-45
activator, 293

| active object, 294
Addressclass, 247-248, 249
algorithms, distributed, 254-256
ALL_GROUPS constants, 115
ancestor transactions

definition of, 294

| execution of, 212
| ANY constant, 143

architecture specification, 61-82

It’s a d-mn poor mind that can only think of one way to spell a word!

atomicity, 188, 270
attribute classes, 243-250

attributes. See also lookupattribute

Index

—Andrew Jackson

components of, 68-71
environmental assumptions of, 63
goals of, 61-62
infrastructure componentof, 61, 68
key concepts of, 65-67
printing service example of, 77-80
programming model componentof, 62,

service architecture in, 72-76

services componentof, 62, 68

adding comments with, 246-247
getting service information with, 243-

245

getting status information with, 248-
249

modifying, 243
naming a service with, 246
physical location and, 247-248
serialized forms of, 249-250

schemaspecification
definition of, 294
FortuneStreamservice and, 31

human access to, 234-235, 237

interoperability with JavaBeans, 235
localization of, 235

lookup services and, 29, 101, 217-218
matching, 11
modifying, 103, 235, 239
overview of, 10-11
registering and querying based on, 233
service items and, 218-219

single views of, 237
specifying, 20, 73-74
static quality of, 234
using as service properties, 11

371

373

374

372

using namesas, 14

B

bridgingcalls, 105-106
buildTmp1 method, 24-25

C

CannotNestException class, 212

channel, 294
chat room service. See ChatStream

chat server, 43-50
activation and, 43-45, 48
classes and methodsof, 45-50

implementation of, 43
improvements to, 51-52
registration in, 48

ChatMessage, 327-329
ChatProxy, 330-331

ChatServer, 332-333
ChatServerAdmin, 45, 49, 334-337
ChatServerImp1, 43, 45, 338-343
ChatSpeaker, 344—345
ChatStore object, 49
ChatStream, 37-55

chat server and, 43-50, 51-52

clients for, 52-55
complete code for, 345-346
creating, 41-43
getSubject and, 40, 43
JastIndex field and, 43
nextInLine method and, 41-43, 50-51

nextMessage method and, 38, 41
overview of, 37-41

public service interface for, 39
toStringMethodand, 40

ChatSubject, 347
Chatter, 52-55, 348-349
ChatterThread, 350-351

Ciardi, John

quotation, 57
classes

Comment class, 246-247, 249
Constants class, 122-123
DiscoveryEvent class, 116
entry classes, 128-129, 239-241
EntryBeansclass, 242

ee

THE JAVA PROGRAMMING LANGUAGE

event interfaces and, 161-162, 163-168
EventRegistrationclass, 162, 168
IncomingMu1ticastAnnouncementclass,

122

IncomingMulticastRequest class, 120—
121

IncomingUnicastRequestclass, 123—124
IncomingUnicastResponse class, 124-125
JavaBeans and, 241-242
Location class, 247, 249
LookupDiscoveryclass, 113-115
LookupLocator class, 107-109
Name class, 246

packages and, 16-17
RemoteEventclass, 162, 164-165
ServerTransaction class, 209-212
Servicelnfoattribute class, 243
ServiceMatchesclass, 224

ServiceTypeclass, 245
Status class, 250
StatusBeanclass, 249
StatusType class, 249
TransactionFactory class, 187, 209

clients

ChatStream service and, 52-55

completing transactions and, 197-198
definition of, 234
locating services and, 73
service interfaces and, 74-75

specifying attributes for, 73-74
clients, writing, 19-28

buildTmp] method and, 24-25
creating search template for, 20
execute method and, 22

LookupDiscovery and, 22—23
main method and, 21

MessageStream interface and, 19-28
readStream method and, 26-27
searchDiscovered method and, 22-24

setting security manager for, 22
specifying attributes for, 20
users specifications for, 20-21

code

downloading, 7, 63
Java application environmentand, 62
notes on, 16

passing with RMI, 66
code, examples, 327-370

ChatMessage, 327-329
ChatProxy, 330-331

374

375

INDEX

ChatServer, 332-333
ChatServerAdmin, 334—337
ChatServerImp1, 338-343
ChatSpeaker, 344-345
ChatStream, 345-346

ChatSubject, 347
Chatter, 348-349

ChatterThread, 350-351
FortuneAdmin, 360-362

FortuneStreamImp1, 363-367
FortuneTheme, 368
MessageStream, 369
ParseUtil, 370
StreamReader, 352-359

collaboration

quotation, 385
Comment class, 246-247, 249
commit points, 204

Common Object Request Broker Architec-
ture (CORBA), 288-289, 308

com.sun. jini, 16-18

com. sun. jini. lookup. JoinManager, 30

concurrency problems, 316-318
connection, 294
consistency, ACID property, 188, 270
constants, 115

ABSOLUTE, 143
ALL_GROUPS,115

ANY constant, 143
DURATION constant, 143
FOREVER constant, 143
lease interface and, 143

NO_GROUPS, 115

protocol utilities and, 122-123
CORBA (Common Object Request Broker

Architecture), 288-289
core packages, 16-17
crash recovery, 204-205

commit points and, 204
roll decisions and, 205

createGroup, 47

D

data

Java application environment and, 62
passing with RMI, 66

databases, 257

delegation event model, 179

373

designing lookup services, 234-235. See also
lookup services

automated matching and, 234
changingattributes and, 235
human understanding and, 234—235
JavaBeans and, 235

static nature of attributes and, 234
de Saint-Exupery, Antoine

quotation, xix
device architecture specification, 277-289

combining hardware and software
applications and, 277-278

devices connected via IIOP streams, 288-289

devices using specialized virtual machines,
283-284

devices with resident JVMs, 281-283
devices with shared virtual machines

(network option), 286-289
devices with shared virtual machines

(physical option0, 284-286
introduction to, 277-279

Java programming language and, 278
participating in discovery protocol and, 278
registering with lookup services and, 278
requirements of, 278-279

devices connected via IIOP streams, 288-289
advantages and disadvantages of, 289
directly interpreting IIOP streams and, 289
requirements of, 289
using CORBA ORBsand, 288

devices using specialized virtual machines
advantages and disadvantages of, 283-284
simplifying JVM structure for, 284

devices with resident Java Virtual Machines,
281-283

costs of, 283
design illustration of, 282
functionality of, 282
Java programming language and, 283
utilizing RMI and, 283

devices with shared virtual machines (net-

work option), 286-289
advantages and disadvantagesof, 288
building gateways between devices with, 288
complexity of individual devices in, 288
design illustration of, 287
network. proxy for, 286
protocols needed for, 287
requirements for, 287

375

376

374

devices with shared virtual machines (physi-

_ eal option)
co-location of JVM and, 284

costs and savings with, 286
design illustration of, 285
“device bay” functionality of, 284-285

directory service, 13-14

discovering entity, 83, 294

discovery and join specification, 228-229. See
also discovery protocols; join protocols

discovery protocols, 85-100
definition of, 5

device architecture specification and, 278
finding lookup services with, 9-10, 66, 72-75
in Jini infrastructure, 69

multicast announcementprotocol, 85, 87, 95—
97

multicast request protocol, 85, 86-87, 89-95
network issues of, 105-109

registering printing services and, 77
unicast discovery protocol, 85, 88

discovery request service, 294

discovery response service, 295

discoveryutilities specification. See multicast
discovery utilities; protocol utilities;
utilities specification

DiscoveryEvent class

LookupDiscovery and, 113
methodsof, 116

serialized forms of, 118

DiscoveryListener interface, 22, 114, 116-
117

DiscoveryPermission, 117-118

distributed algorithms

design of, 253
JavaSpaces and, 254-256

distributed computing. See also distributed
vs. local computing

compared with centralized networks, 62
dealing with out of date information in, 138-

139

dealing with partial failure problems in, 138
definition of, 308

difficulties of, 253, 307-325

Java application environment and, 62
Jini system and, 61

eS

THE JAVA PROGRAMMING LANGUAGE

distributed event adapters, 171-177
notification composition and, 176-177
notification filters and, 173-175
notification mailboxes and, 175-176

store-and-forward agents and, 171-173
distributed event model, 179, 180

distributed event specification, 155-182. See
also events

distributed event adapters for, 171-177
goals and requirements for, 156-157
integrating with JavaBeans, 179-182
interfaces for, 159-170

overview of, 155-156

registration methods in, 267
distributed leasing specification, 137-153. See

also leasing
distributed systems and, 137-139
goals and requirements of, 140
interfaces for, 141-148

supporting classes for, 149-152
distributed notification

compared with local notification, 179
third-party objects for, 179

distributed persistence, 254
distributed systems. See distributed comput-

ing
distributed vs. local computing, 307-326

historical view of, 311-312
introduction to, 307-308

latency problemsin, 312-314
lessons from NFS, 320-322

memory access problemsin, 314-315
middle groundsituations, 324-325
partial failure and concurrency problemsin,

316-318

quality of service myth and, 318-320
taking the differences into account, 322—324
unified objects vision for, 308-310

djinns
definition of, 295

handling responses from multiple djinns, 95
host requirements for, 84
Jini system and, 83

DNSnames, 108

durability, ACID property, 188, 270
DURATION constant, 143

dynamicclass loading, 295
dynamic stub loading, 295

376

377

INDEX

E

encapsulation
object-oriented programming and, 6
proxy objects and, 8
RMIand, 66

endpoint, 295
entities

definition of, 84
in event interfaces, 159-161

entries. See also attributes

aggregating attributes with, 233
definition of, 296
FortuneTheme and, 31
JavaSpaces services and, 261
overview of, 128-129
semantics of, 11

entry classes, 128-129, 239-241
entry specification, 127-131

constructors for, 128

entries defined, 127
fields and, 128

Jini utility for, 132
operations of, 127
serialized forms of, 131
serializing entry objects, 128-129
templates and matching in, 127, 131
types and, 128
UnusableEntryException and, 129-130

entry utilities specification, 133-135
EntryBeansclass, 242

environmental prerequisites, Jini systems
Java programming language compliance, 63
memory and processing capacity, 63
reasonable network latency, 63

equals

AbstractEntryclass, 133-134
LookupLocator class, 107

event generators, 160, 296
event interfaces, 159-170

entities involved in, 159-161
functions of, 159
interfaces and classes of, 161-168
leasing and, 169-170
sequence numbers and, 169-170
serialized forms of, 170
transactions and, 169-170

eventlistener, 296

event models, 179-180

event registration, 169

375

EventGeneratorinterface, 166-167
EventRegistration class, 162, 168
events. See also distributed event specification

definition of, 159, 296

event generator and, 160
local events, 298

registration of, 159, 160
remote events, 160
support for distributed events and, 67
types of, 159

exception types, 145-147
exclusive leases, 67
execute method, 22

exporting, 296
exportObject, 47

extended packages, 16-17

F

faulting remote reference, 296-297
federated groups, 65
fetch operations, 127, 129
“flow of objects” approach, JavaSpaces, 254—

256

FOREVERconstant, 143
fortune cookie service. See FortuneStream

service

FortuneAdmin, 33, 360-362

FortuneStream service, 30-36
administration program for, 33
attributes of, 31

creating, 32-33
entry and, 31
implementation design for, 32
overview of, 30-31
running, 34-36
security options for, 34

FortuneStreamImp, 32-33, 363-367
FortuneTheme, 31, 35, 368

Fuller, R. Buckminster
quotation, 29

G

gateways, devices, 288
getHost method, 107
getPort method, 107
getRegistrar method, 108

377

378

376

getSubject, 43

getSubject method,40
getTheme method,30

glossary, 293-307
goals, Jini system

easy and portable network access, 62
erasing hardware/software distinctions, 4
plug-and-work functionality, 4
service-based architecture, 4
sharing resources, 62
simple network administration, 62
simplicity and reusable code, 4—5
spontaneous networking, 4

groups

chat server and, 47

discovery process and, 85-86
djinns and, 84
join protocols and, 29, 102, 103
limiting scope with, 13
lookup services and, 12-13
modifying, 115-116
object groups and, 75
public groups and, 101

H

hard mounts, 321
hardware

device architecture specification and, 277—
278

implementing within Jini architecture, 281
hashCode, 133-134

“here I am” messages, 29
host requirements, 84
hosts, 83, 296-297

I

idempotent methods, 38, 297
IDL (Interface Definition Language), 322
IIOP (Internet Inter-Operability Protocol),

288-289

IncomingMult icastAnnouncement class, 122
IncomingMul ticastRequestclass, 120-121
IncomingUnicastRequest class, 123-124
IncomingUnicastResponseclass, 124-125
indeterminacy, 316
inferior transactions, 297

SQL.LSS

THE JAVA PROGRAMMING LANGUAGE

infrastructure

discovery and join protocols in, 69
distributed security system in, 69
Jini architecture and, 61, 68
lookup service in, 69

interface definition languages, 322
interfaces, 228

client/server interactions with, 74-75
for core, standard, and extended packages,

16-17

designing for distributed systems, 317-318
eventinterfaces, 161-162, 163-168
for event specification, 159-170
finder-style visual interfaces, 95
Java programming language and, 69-70
for JavaBeans, 241-242
service protocols as, 66
for services, 71
for store-and-forward agents, 173

Internal SpaceException, 263-264, 268
Internet Inter-Operability Protocol (IIOP),

288-289

interposition, 281
IP addresses

assigning to hosts, 84
URL syntax and, 108

IP broadcast protocols, 106
IP multicast protocols, 106
IP networks, 84
isolation, ACID property, 188, 270
item matching, 223-224

J

Jackson, Andrew

quotation, 371
Java application environment, 62
Java Development Kit (JDK), 118
Java Foundation Classes (JFC), 179
Java objects, 5
Java programming language

device architecture specification and, 278,
283

Jini system and, 63, 69-70
security options of, 34
service types and, 73
using for matching, 10

Java Remote Method Invocation (RMI). See
Remote Method Invocation (RMI)

378

379

INDEX

Java Virtual Machines (JVMs)
devices with full versions of, 281-283
devices with specialized versions of, 283-284
hosts and, 83

in Jini systems, 63
properties of, 7
RMIsystem and, 279
sharing between devices, 284-288

JavaBeans component event model, 179-182
characteristics of, 180
distributed event model and, 180-182

JavaBeans components
displaying and modifying attributes with, 239
supporting interfaces and classes with, 241—

242

using with entry classes, 239-241
JavaBeansspecification, 237
JavaSpaceinterface, 262-263

JavaSpaces application model, 253-256
compared with Linda systems, 258-259
design issues of, 258-259
distributed algorithmsas flow objects in,

254-256

distributed persistence in, 254
goals and requirements of, 259-260

JavaSpaces specification, 253-274
benefits of, 256-257
compared with databases, 257
dependency on other specifications, 260
distributed object persistence in, 257
entries and, 261
further reading on, 273-274
handling concurrent access with, 256
introduction to, 253-260
methods of, 263-268

notify operation of, 261
order of operations in, 268
read operation of, 261
reliable distributed storage in, 256
replication of, 259
services of, 71
take operation of, 261
transactions and, 269-271

write operation of, 261
Jini system, introduction, 3-18

architectural features of, 5-7
flexibility of, 15
goals of, 4-5
lookup service in, 9-14
overview of, 3-4

377

package structure in, 16-18
properties of, 7
robust nature of, 14-15

value of a proxy in, 7-8
Johnson,S.C,

quotation, 19
join configuration, 29
join protocols, 101-109

attribute modification and, 103
definition of, 297

initial discovery and registration with, 102
in Jini infrastructure, 69

joining or leaving groups with, 102, 103
joining with lookup services, 66, 72-75
lease renewal and handling communication

with, 102
making changes and performing updates with,

103

order of discovery and, 102
registering and unregistering with lookup

services, 103

registering printing service with, 77—78
joining entities, 83, 297
JoinManager

FortuneStream service example and, 35-36
managing lookup membership with, 30

L

lastIndex field, 43

latency problems, 312-314
efficiency disparities due to, 312-313
masking with increased speed, 313

lazy activation, 297
lease grantors, 298
lease holders, 298

Leaseinterfaces, 141-148
constants used with, 143
exceptions and, 145-147
methods of, 143-145

operations of, 142-147
overview of, 137
serialized formsof, 148

time grants for, 147-148
LeaseDeniedException, 145, 148
LeaseException, 146, 148
LeaseMapException, 148

LeaseRenewclass, 149-151
LeaseRenewService interface, 151-152

379

380

378

leases. See also distributed leasing specifica-
tion

accessing services and, 67
benefits of, 12
characteristics of, 141-142
definition of, 297-298

eventregistration transactions and, 169
exclusive or non-exclusive, 67

JavaSpaces and, 254
lookup citizenship and, 29
for printing services, 78
registering services and, 11
renewing, 102, 149-152
store-and-forward agents and, 173

Linda systems, 258-259

live references, 298
local area networks (LANs), 89, 93

local computing, 308. See also distributed vs.
local computing

local event model, 179

local events, 298
local notification, 179
local object invocation. See local computing
local objects

with remote characteristics, 324
in unified object system, 308

Locationclass, 247, 249

lookup attribute schema specification, 233-
250. See also attributes

attribute standards in, 219

dependency on other specifications, 235
generic attribute classes and, 243-250
humanaccessto attributes and, 237-238
introduction to, 233-235

JavaBeans components and, 239-242
lookupcitizenship, 29-30
lookup discovery protocol, 298
lookup protocols

invoking services with, 72-75
in Jini infrastructure, 69

lookup service model, 217-218
administrative uses of, 218

imposing hierarchical views on, 218
service items in, 217

lookup service specification, 217-230
dependency on other specifications, 219
introduction to, 212-219
ServiceRegistrar and, 225-229
ServiceRegistration and, 229-230

THE JAVA PROGRAMMING LANGUAGE

types defined in, 221-224
lookupservices, vil, 371. See alse services

attributes of, 10-11, 217-218, 218-219
available serviceslist in, 9

comparedto directory services, 13-14
definition of, 5, 299

design issues of, 234
device architecture specification and, 278
discovery process and, 9-10
functions of, 217

good standing of, 29-30
groups and, 12-13
Java languages rules for, 10
matching services with, 66, 218, 223-224
membership managementin, 11-12
multicast request protocol and, 89
RMIinterface and, 279

LookupDiscoveryclass, 113-115
methods of, 114-115

registering with, 79
use of, 113

writing a client and, 22-23
LookupLocator class, 107-109

as interface for unicast discovery, 107
methods of, 107-108

specifying lookup services by URL with, 20

M

main method

writing a client and, 21
writing a service and, 34—35

managers

commit point and, 204
completing a transaction, 202-204
roll decision of, 205

marshall streams, 299

marshalled objects, 299
Marshal ledObject, 47

match operations
of entries, 127, 131

item matching and, 223-224
Java programming language and, 10
of lookup services, 66, 218, 223-224

membership management
with JoinManager utility, 30
leases and, 11-12

in lookup services, 11-12

380

381

INDEX

memory access problems, 314-315
illusion of unified programming model and,

315

transparency and, 314
MessageStream, 37-55

complete code for, 369
FortuneStream example of, 30-36
writing a client and, 19-20

method-invocation-style design, 255
methods

of DiscoveryEventclass, 116
execute method, 22

getHost method, 107
getPort method, 107
getRegistrar method, 108
getSubject method, 40
getTheme method, 30
of JavaSpaces specification, 263-268
of Lease interfaces, 143-145

of LookupDiscovery class, 114-115
of LookupLocator class, 107-108
nextInLine method, 41-43

nextMessage method, 36
Register method, 78
searchDiscovered method, 22-24

of ServiceRegistrar interface, 225-227
of ServiceRegistration, 229-230
toStringMethod, 40

multicast announcement protocol
announcingservice availability with, 95
definition of, 85

discovery process in, 87
steps in process of, 97

multicast announcementservice, 95-97

address for, 106
fields of, 96
multicast UDP and, 95

packet requirements of, 96
size of, 97

multicast discovery utilities, 113-118
DiscoveryEvent class, 116
DiscoveryListener interface, 116-117
LookupDiscoveryclass, 113-115
modifying groups with, 115-116
security methodsof, 117-118
serialized form of, 118

useful constants of, 115
multicast network protocols. See network

protocols
multicast request client, 89-90

379

multicast request packet format
contents of, 91-92
size of, 92-93
specificationsof, 91
variables in, 92

multicast request protocol, 89-95
definition of, 85
discovering lookup services with, 89
discovery process in, 86-87
handling responses from multiple djinns, 95
multicast request service and, 90-91
multicast response service and, 93
net.jini.core. lookup. ServiceRigistr

ar and, 86

protocol participants in, 89-90
request packet format for, 91-93
steps taken by the discovering entity, 93-94
steps taken by the multicast request server,

94-95

multicast request server, 90, 94-95
multicast response client, 90
multicast response server, 90
multicast response service, 93
multicast UDP, 84, 95

N

Name class, 246, 249
naming service, 13-14
NestableServerTransactionclass, 209-212
NestableTransactionManager

starting a nested transaction and, 193-194
two-phase commit and, 191

net.core.entry.Entry interface, 239
net. jini, 16-17
net. jini.core, 16-17
net. jini .core.entry, 219
net. jini.core.entry.Entry, 253
net. jini.core.entry.UnusableEntryEx-

ception, 129-130
net. jini.core.event, 161
net. jini.core. lease, 142
net.jini.core. lookup, 221
net. jini.discovery.LookupDiscovery. See

LookupDiscoveryclass
net. jini.core. lookup.ServiceRegistrar

multicast request protocol and, 86
unicast discovery protocol and, 88

381

382

380

net. jini.core. transaction, 269
net.jini.discovery.DiscoveryEvent, 116
net. jini.discovery.DiscoveryListener,

116-117

net.jini.entry.AbsrtactEntry, 133
net.jini.spaace. JavaSpace, 262-264
networkaccess, 62
network administration, 62

network protocols, 105-107
address and port mappings for TCP and UDP,

106

bridging calls with, 105-106
limiting the scope of multicasts in, 106
multicast IP and, 106

packetsize limitations of, 105
transport properties of, 105

networking
centralized, 62

distributed computing and, 62
IP networksand, 84

in Jini systems, 4
nextInLine method, 41-43, 50-51
nextMessage method, 36, 38, 41

NES,320-322

limitation on scalability in, 321-322
stateless protocol of, 321
use of soft and hard mountsin, 321

NO_GROUPSconstant, 115

non-exclusive leases, 67

notification composition, 176-177
notification filters, 173-175

definition of, 299

functions of, 173-174

notification multiplexing with, 174-175
notification, local and distributed, 179
notification mailboxes, 175-176

definition of, 299-230

delivery to, 175
purpose of, 175
use of, 175-176

notification multiplexing, 174
notify, 261, 266-267

in transactions, 270

O

object groups, 75
Object Linking and Embedding (OLE), 309

Te

THE JAVA PROGRAMMING LANGUAGE

object-oriented programming,6. See also dis-
tributed computing

Object Request Broker (ORB), 288-289
object serialization, 300
orphans, 213
OutgoingMul ticastAnnouncementclass, 121
OutgoingMul ticastRequest class, 119-120
OutgoingUnicastRequestclass, 123
QutgoingUnicastResponseclass, 124

P

packagestructure
core, standard, and extended categories of,

16-17

in Jini systems, 16-18
lookup packages of, 16-17

packets
in multicast announcementservice, 96

in multicast request protocol, 91-92
size limitations on, 105

ParseUtil, 370
partial failure problems, 138, 316-318
participants

commit point and, 204
completing a transaction and, 199-201
roll decision of, 205

passive objects, 300
peer lookup, 75
permissions, 117
persistence of information, 139
plug-and-work,4
port mapping, 106
preparedvotes, 187
principal, security, 67

printing service, 71
example using, 77-80
printing with, 78—80
registering, 77-78

programming model, 69-71
ability to move codein, 69
combining with infrastructure and services,

71

for distributed services, 62
interfaces in, 69-70

as segmentof Jini architecture, 62, 68
properties, Jini architecture, 7
protocol stack requirements, 84

382

383

INDEX

protocolutilities
Constants class, 122-123
IncomingMul ti castAnnouncementclass,

122

IncomingMulticastRequestclass, 120-
121

IncomingUnicastRequestclass, 123-124
IncomingUnicastResponseclass, 124-125
OutgoingMulticastAnnouncement class,

121

OutgoingMulticastRequestclass, 119-
120

QutgoingUnicastRequestclass, 123
OutgoingUnicastResponseclass, 124

protocols
discovery protocols, See discovery protocols
IP broadcast protocols, 106
IP multicast protocols, 106
join protocols. See join protocols
lookup discovery protocols, 298
lookup protocols, 69, 72-75
multicast announcement protocols, 95
roulticast request protocols, 89-95
network protocols, 105—107
for proxies, 6
roles of, 89

service protocols, 66
two-phase commit protocol, 191-206
unicast discovery protocol, 85

proxy objects
clustered devices and, 286

defining service type with, 7-8
for devices, 281
encapsulation and, 6, 8
functioning as downloadable drivers, 7
as Java object, 5
protocol definition and, 6
representing devices to Jini system with, 63
smart proxies and, 75
value of, 7-8

writing, 8
public groups

lookup services in, 86
services and, 101

pure transactions, 300

Q

Quotations
Ciardi, John, 57

collaboration, 385

de Saint-Exupery, Antoine, xix
Fuller, R. Buckminster, 29
Jackson, Andrew, 371
Twain, Mark, 3

R

read, 261, 264-265
in transactions, 269-270

readIfExists, 264-265
readStream method, 26-27
referencelists, 300
Register method, 78
registration

chat server and, 48
of events, 159, 160, 169

join protocols and, 102
notify and, 266-267
registering and unregistering with lookup

services, 103
of services, 29, 77-78, 226

registry, 300
remote event generators, 301
remote event listeners, 160, 301. See also

events

remote events, 160, 300-301. See also events
remote interfaces, 301
Remote Method Invocation (RMD

communicating betweenservices with, 66
definition of, 301
downloading, 84
encapsulation and, 66
lookup services and, 279
using with devices, 278, 283

remote object invocation. See distributed
computing

remote objects
definition of, 301

unified objects vision and, 308
remote procedure calls (RPC), 308
remote reference layers (RRL), 301
RemoteEventclass, 162, 164-165
RemoteEventListener

enabling features for third-party entities, 176-
177

event interface, 161-162
implementation of, 163-164

request format, 99

383

384

382

resource allocation, 140

response format, 100
rmic, 301-302

rmid, 302

rmiregistry, 302
RMISecurityManger, 22

roll back transaction, 187

roll decisions, 205
roll forward transaction, 187

S

safety and security, 7
search templates, 20
searchDiscovered method, 22-24

security
access controllist and, 67
distributed security system and, 69
in Java application environment, 62
JDK modelfor, 118
principal and, 67
safety and, 7

security manager, 22

security methods, 117-118
security policy file

for multicast discovery, 117
settings for, 20

semantic transactions, 302

sequence numbers, 169, 228
servers, 41
ServerTransaction class, 209-212
service architecture, 72-76

discovery protocol and, 72—75
join protocol and, 72—75
lookup protocol and, 72-75
service implementation, 75-76

service ID, 30

service implementation, 75-76
service items

attributes of, 218-219
definition of, 303

in lookup service model, 217
service protocols, 66
service registrars, 303
service types, 73

defined by proxy objects, 7-8
serialized form of, 230

ServiceEventclass, 224, 230

[

THE JAVA PROGRAMMING LANGUAGE

ServicelID, 221-222, 228, 230
ServicelInfo attribute class, 243

Serviceltem, 230

Serviceltem and, 222-223

ServiceMatches, 230
ServiceMatchesclass, 224

ServiceRegistrar, 225-229
function of, 225
methods of, 225-227

objects and, 23
sequence numbers and, 228

ServiceRegistration

manipulating service items with, 229
methods of, 229-230

services. See also lookup services
availability of, 62
communicating between, 66
communication problems and, 102
compared with servers, 41
definition of, 65, 234, 302
examples of, 71
interfaces of, 71

in Jini system, 62, 68
maintaining, 101
multicast announcement protocol and, 95
object nature of, 71
registering, 226
ServicelD and, 228
sharing access to, 65

services, writing, 29-55
ChatStream service example, 37-55
FortuneStream service example, 30-36
JoinManager utility and, 30
lookup citizenship and, 29-30

ServiceTemplate, 223—224, 230
ServiceTypeclass, 245
setupFortunes,35

sharing resources, 62
skeletons, 303
smart proxies, 75
snapshot, 265-266

soft mounts, 321
software, 277-278

standard packages, 16-17
Statusclass, 248-249, 250
StatusBeanclass, 249, 250

StatusTypeclass, 249, 250
store-and-forward agents, 171-173

definition of, 303

384

385

INDEX

implementation of, 173
interface for, 173

issuing leases with, 173
notifications and, 171-173
reliability of, 171

store operations, 127
StreamReader, 352-359

stubs, 303

T

take, 261, 265
in transactions, 270

takeIfExists, 265

TCP,84, 98

templates
definition of, 304

item matching with, 223-224
search templates, 20
ServiceTemplate, 223-224, 230
using for exact matches with entries, 127, 131

time grants, 147-148
time-to-live (TTL)field, 106

to String, 133-134
toStringMethod, 40
transaction clients, 304

transaction managers, 71, 304
transaction participants, 304, See also partici-

pants
transaction specification, 185-214, 269

default transaction semantics and, 207-214

dependency on other specifications, 190
introduction to, 185-190
two-phase commitprotocol and, 191-206

transaction states, 196
Transact ionConstants interface, 196

TransactionFactoryclass, 187, 209
TransactionManagerinterface, 186

starting a transaction and, 192-193
two-phase commit and, 191

TransactionParticipant interface
joining a transaction and, 195-196
two-phase commit and, 191

transactions

ACID properties of, 188-189
ancestors in, 212

committing or aborting in, 187-188
completing, 185-186, 197-204

383

crash recovery and, 204-205
definition of, 304

event registration and, 169
inferior transactions, 297

joining, 195-196
managers for, 186
minimizing protocols for, 185
nested transaction and, 193-194

participants in, 187
pure transactions and, 300
requirements of, 189-190
semantics of, 187, 302

starting, 192-193
two-phase commit in, 67, 186
uses of, 185

transactions, JavaSpaces, 269-271
ACIDproperties and, 270-271
noti fy operation in, 270
read operation in, 269-270
take operation in, 270
write operation in, 269

transaction semantics, 207-214
CannotNestException class, 212
NestableServerTransaction class, 209-

212

NestableTransactionManager interface,
207-209

orphans and, 213
sequential execution and, 212
serialized formsof transaction classes, 214
ServerTransactionclass, 209-212
Transaction interface, 207—209
TransactionFactoryclass, 209
two-phase locking in, 212-213
visibility and, 213
VOTING stage and, 213

translators, note to, 385

transport, 305
transport layer, 305
two-phase commit protocol, 191-206

completing a transaction, client's view, 197—
198

completing a transaction, manager's view,
202-204

completing a transaction, participant's view,
199-201

crash recovery and, 204-205
defining with primary types, 191
durability of, 205
importing types for, 191

385

386

NN——————————

384

Jini transaction interfaces and, 67

joining a transaction, 195-196
starting a nested transaction, 193-194
starting a transaction, 192-193
transaction states and, 196

Twain, Mark

quotation,3
two-phase locking, 212-213

U

UDP,84
unicast discovery, 97-100

referencing remote djinns with, 98
request formatof, 99
as request-response protocol, 98-99
response format of, 100
unicast TCP and, 98

unicast discovery protocol
definition of, 85

discovery process in, 85
net.jini.core. lookup. ServiceRigistr

ar and, 88

unified objects, 308-310
UnknownEventException, 165-166

THE JAVA PROGRAMMING LANGUAGE

UnknownLeaseException

serialized formsof, 148
use of, 145

UnusableEntryException

entry specification and, 129-130
JavaSpacesservices and, 261

URL syntax, 108
user interfaces, 75

user specifications, 20-21
utilities specification, 111-125

multicast discoveryutility and, 113-1 18
protocolutilities and, 119-125

Vv

variables, 92
visibility, transactions, 213
VOTING stage, 187, 213

Ww

weak references, 305
wide area networks (WANS), 89

workgroups, 65
write, 261, 264

in transactions, 269

386

387

Collaboration,n.:

A literary partnership based onthe false assumption that the other people canspell.

Tiss book is set in 11 point Times Roman, with variationsofsize, angle, and
weight for headers, chapter quotes, and diagram labels. All codeis set in Lucida
Sans Typewriter at 83% of the surrounding text size. A few decorations are in
Zapf Dingbats.

Thetext was written using FrameMaker on several Sun workstations and two
Macintosh laptop computers.

Code examples in the introductory material andits associated appendix were
written and compiled on the Solaris systems and then broken into fragments bya
Perl script looking for specially formatted comments. Source fragments and gen-
erated output wereinserted in the book by another Perl script.

NOTE TO TRANSLATORS

Thefonts in this book have been chosencarefully. The font for code, when mixed
with body text, has the same “x”height and roughly the same weight and “color.”
Code in text looks even—if you read quickly it can seem like body text, but it is
nonetheless easy to tell that code text is different. Please use the fonts that we
have used (we would be happy to help you locate any that you do not have) or
choose other code and body fonts that are balanced in the same way.

387

385

388

Seater
Se

ORS

as

OU AB

KEN ARNOLD,of Sun Microsystems, Inc., is one of the original architects of
the Jini technology andis the lead engineer of Sun’s JavaSpaces technology. He
is the co-author, with James Gosling, of The Java Programming Language andis
a leading expert in object-oriented design, C, C++ and distributed computing.

BRYAN O’SULLIVAN,while at Sun Microsystems, Inc., developed the Jini
Discovery and Join Protocol. He supports his rock climbing habit by designing
and building distributed systems.

ROBERT W. SCHEIFLERis a SeniorStaff Engineer and oneof the original
architects of Jini technology with Sun Microsystems, where he has been respon-
sible for the design and implementation of the lookup service andthe associated
discovery protocol and attribute schema. Before joining Sun, he spent nineyears
as Director and then President of the X Consortium, a non-profit organization
devoted to the development and evolution of the X Window System. He was
chief architect of the X Window System protocol, and created the Consortium
originally while a principal research scientist at the MIT Laboratory for
Computer Science.

JIM WALDOis a Distinguished Engineer with Sun Microsystems, where he
has beenthelead architect for the Jini project since its inception. Prior to the
Jini project, Jim worked in Sun’s Java Software group and in Sun Microsystems
Laboratories, doing research in the areas of object-oriented programming and
systems,distributed computing, and user environments. Jim is also on the
faculty of Harvard University, where he teaches distributed computingin the
department of computerscience.

ANN WOLLRATHis a Senior Staff Engineer with Sun Microsystems where she
is the architect of the Java Remote Method Invocation (RMI) system and one of
the original architects of the Jini technology. Previously, during her tenureat
Sun Microsystems Laboratories and at the MITRE Corporation, she researched
reliable, large-scale distributed systems and parallel computation.

388

389

Bppeee se> “Ever sinceJ first saw David Gelernter’s Linda programming lan-

—— guage almost twenty years ago, | felt that the basic ideas of Lindaaces’ Principles, | could be used to make an important advancein the easeofdistrib-
eniterns and Practice | uted and parallel programming.Aspartofthe fruits of Sun’sJini
| P et | project, we now have the JavaSpaces technology, a wonderfully

| simple platform for developing distributed applications that takes
advantage of the power ofthe Java programming lanquage.This
important book and its many examples will help you learn about
distributed and parallel programming. | highly recommendit to
students, programmers, and thetechnically curious.”
—Bill Joy, Chief Scientist and co-founder, Sun Microsystems, Inc.

aecxvound by Dorvid Geter,Foren n
Fro fessorof Ceompatis Sciences Yas Univers

:

\ t
| @sun *L

JavaSpaces”technology, a powerful Jini” service from Sun Microsystems,facilitates building
distributed applications for the Internet and Intranets. The JavaSpaces model involves persis-
tent object exchange “areas” in which remote Java” processes can coordinate their actions and
exchangedata. It provides a necessary ubiquitous, cross-platform frameworkfor distributed
computing, emerging as a key technology in this expandingfield.

This book introduces the JavaSpaces architecture, provides a definitive and comprehensive
description of the model, and demonstrates howto useit to develop distributed computing
applications. The book presents an overview of the JavaSpaces design and walks you through
the basics, demonstrating key features through examples. Every aspect of JavaSpaces
programmingis examined in depth:entries, distributed data structures, synchronization,
communication, application patterns, leases, distributed events, and transactions. You will
find information on the official JavaSpaces specification from Sun Microsystems. JavaSpaces
Principles, Patterns, and Practice also includes twofull-scale applications—onecollaborative
and the other parallel—that demonstrate how to put the JavaSpaces model to work.

TheJini’ TechnologySeries
From the creators of the Jini” technology at Sun Microsystems
comesthe official Series for reference material and program-
ming guides. Written by those who design, implement, and
documentthe technology, these books show you how to use,KS
deploy, and create applications using the Jini architecture. The

JI N l Series is a vital resource of unique insights for anyoneutilizingthe power of the Java" programming language and the sim-
plicity of Jini technology.

.. from the Source™

http:/java.sun.com/docs/books/jini vy Addison-Wesley

389

390

Addison-Wesley Computer and Engineering Publishing Group

. Howto —
Interact. sieurnessne

e http://www.awl.com/cseng
When youthink you've read enough, there's always more contentfor you atWith U$ Addison-Wesley’s web site. Our web site contains a directory of complete
product information including:

+ Chapters
+ Exclusive author interviews

* Links to authors’ pages
+ Tables of contents

+ Source code

You can also discover whattradeshows and conferences Addison-Wesley will

be attending, read what others are saying aboutourtitles, and find out where
and when you can meetour authors and have them sign your book.

2. Subscribe to OurEmailMailing Lists 3. Contact Us via Email
Subscribe to our electronic mailing lists and be thefirst to know cepubprof@awl.com
when new booksare publishing, Here's how it works: Sign up for our Ask general questions about our books.
electronic mailing at http://www.awl.com/cseng/mailinglists.html. Sign up for ourelectronic mailing lists.
Just select the subject areas that interest you and you will receive ‘ Submit corrections for our web site.

+e ation via emai we publishabook inotification via email whenwepublish a book in that area bexpress@awl.com
Request an Addison-Wesley catalog.
Get answers to questions regarding

your orderor our products,

innovations@awl.com

Request a current Innovations Newsletter,

webmaster@awl.com

Send comments about our website.

mikeh@awl.com

Submit a book proposal.

Senderrata for an Addison-Wesley book.

Weencourageyou to patronize the many fine retailers
whostock Addison-Wesleytitles.Visit our online directory
to find stores near you or visit our online store:

http://store.awl.com/orcall 800-824-7799.

cepubpublicity@awl.com

Request a review copy for a member of the media
interested in reviewing new Addison-Wesleytitles.

Addison Wesley Longman
Computer and Engineering Publishing Group
One Jacob Way, Reading, Massachusetts 01867 USA
TEL 781-944-3700 ° FAX 781-942-3076

390

