
80

66

KEY CONCEPTS

as printers, displays, or disks; software such as applicationsor utilities; informa-
tion such as databasesandfiles; and users of the system.

Services in a Jini system communicate with each other by using a service pro-
tocol, whichis a set of interfaces written in the Java programming language. The
set of such protocols is open ended. The base Jini system defines a small number
of such protocols that definecritical service interactions.

AR.2.1.2. Lookup Service

Services are found and resolved by a lookup service. The lookup service is the
central bootstrapping mechanism for the system and provides the major point of
contact between the system and users of the system. In precise terms, a lookup
service maps interfaces indicating the functionality provided by a service to sets
of objects that implement the service. In addition, descriptive entries associated
with a service allow more fine-grained selection of services based on properties
understandable to people.

Objects in a lookup service may include other lookupservices; this provides
hierarchical lookup. Further, a lookup service may contain objects that encapsu-
late other naming or directory services, providing a way for bridges to be built
between a Jini Lookupservice and other forms of lookup service. Of course, ref-
erences to a Jini Lookup service may be placed in these other naming and direc-
tory services, providing a meansfor clients of those services to gain access to a
Jini system.

A service is added to a lookup service by a pair of protocols called discovery
andjoin—first the service locates an appropriate lookupservice (by using the dis-
covery protocol), and then it joins it (by using the join protocol).

AR.2.1.3 Java Remote Method Invocation (RMI)

Communication between services can be accomplished using Java Remote
Method Invocation (RMI). The infrastructure to support communication between
services is not itself a service that is discovered and used butis, rather, a part of
the Jini technology infrastructure. RMI provides mechanismsto find, activate, and
garbage collect object groups.

Fundamentally, RMI is a Java programming language-enabled extension to
traditional remote procedure call mechanisms. RMI allows not only data to be
passed from object to object around the network but full objects, including code.
Muchofthe simplicity of the Jini system is enabled by this ability to move code
around the network in a form that is encapsulated as an object.

80

81

THE JINI ARCHITECTURE SPECIFICATION

AR.2.1.4 Security

The design of the security model for Jini technologyis built on the twin notions of
a principal and an access control list. Jini services are accessed on behalf of some
entity—the principal— which generally traces back to a particular userof the sys-
tem. Services themselves may request access to other services based on the iden-
tity of the object that implements the service. Whether access to a service is
allowed depends on the contents of an access control list that is associated with
the object.

AR.2.1.5 Leasing

Access to many ofthe services in the Jini system environmentis lease based. A
lease is a grant of guaranteed access over a time period. Eachlease is negotiated
between the user of the service and the provider of the service as part of the ser-
vice protocol: A service is requested for some period; access is granted for some
period, presumably taking the request period into account. If a lease is not
renewed before it is freed—either because the resource is no longer needed, the
client or networkfails, or the lease is not permitted to be renewed—then both the
user and the provider of the resource may concludethat the resource can be freed.

Leases are either exclusive or non-exclusive. Exclusive leases ensure that no

one else may take a lease on the resource during the period of the lease; non-
exclusive leases allow multiple users to share a resource.

AR.2.1.6 Transactions

A series of operations, either within a single service or spanning multiple services,
can be wrappedin a transaction. The Jini Transaction interfaces supply a service
protocol needed to coordinate a two-phase commit. How transactions are imple-
mented—and indeed, the very semantics of the notion of a transaction—isleft up
to the service using those interfaces.

AR.2.1.7 Events

The Jini architecture supports distributed events. An object may allow other
objects to register interest in events in the object and receive a notification of the
occurrence of such an event. This enables distributed event-based programsto be
written with a variety of reliability and scalability guarantees.

81

67

ke

oer)

=a=
La]
Oa
=len@

82

68
COMPONENTOVERVIEW

AR.2.2 Component Overview

The components of the Jini system can be segmentedinto three categories: infra-
structure, programming model, and services. Theinfrastructure is the set of com-
ponents that enables building a federated Jini system, while the services are the
entities within the federation. The programming model is a set of interfaces that
enables the construction ofreliable services, including those that are part of the
infrastructure and thosethat join into the federation.

These three categories, though distinct and separable, are entangled to such an
extent that the distinction between them can seem blurred. Moreover,it is possible
to build systemsthat have someof the functionality of the Jini system with vari-
ants on the categories or withoutall three of them, But a Jini system gainsits full
powerbecause it is a system built with the particular infrastructure and program-
ming models described, based on the notion of a service. Decoupling the seg-
ments within the architecture allows legacy code to be changed minimally to take
part in a Jini system. Nevertheless, the full powerof a Jini system will be available
only to new servicesthat are constructed using the integrated model.

A Jini system can be seen as a network extension of the infrastructure, pro-
gramming model, and services that made Java technology successful in the single-
machine case. These categories along with the corresponding componentsin the
familiar Java application environmentare shown in Figure AR.2.1:

 | Services| Programming Model

Infrastructure

Java VM Java APIs JNDI

Base RMI JavaBeans Enterprise Beans
Java Java Security JTS

Java Discovery/Join Leasing Printing
+ Distributed Security Transactions Transaction Manager

Jini Lookup Events JavaSpaces Service
—t

FIGURE AR.2.1: Jini Architecture Segmentation

82

4

83

THE JINI ARCHITECTURE SPECIFICATION

AR.2.2.1 Infrastructure

The Jini technology infrastructure defines the minimal Jini technology core. The
infrastructure includes the following:

¢ A distributed security system, integrated into RMI,that extendsthe Java plat-
form’s security model to the world of distributed systems,

+ The discovery andjoin protocols, service protocols that allow services (both
hardware and software) to discover, become part of, and advertise supplied
services to the other members ofthe federation,

¢ The lookup service, which serves as a repository of services. Entries in the
lookup service are objects written in the Java programming language; these
objects can be downloaded as part of a lookup operation and act as local
proxiesto the service that placed the code into the lookupservice.

The discovery and join protocols define the way a service of any kind
becomespart of a Jini system; RMI defines the base language within which the
Jini services communicate; the distributed security model and its implementation
define howentities are identified and how they getthe rights to perform actions on
their own behalf and on the behalf of others; and the lookupservicereflects the
current members ofthe federation andacts as the central marketplace for offering
and finding services by membersofthe federati on.

AR.2.2.2 Programming Model

The infrastructure both enables the programming model and makes use ofit.
Entries in the lookup service are leased, allowing the lookup service to reflect
accurately the set of currently available services, Whenservices join or leave a
lookup service, events are signaled, and objects that have registered interest in
such events get notifications when new services becomeavailable or old services
cease to be active. The programming model rests on the ability to move code,
whichis supported by the base infrastructure,

Both the infrastructure andthe services that use that infrastructure are compu-
tational entities that exist in the physical environmentofthe Jini system. However,
services also constitute a set of interfaces which define communication protocols
that can be used bythe services and the infrastructure to communicate between
themselves.

These interfaces, taken together, make upthe distributed extension of the stan-
dard Java programming language model that constitutes the Jini programming

83

ag
mec
a
on-

[|
Lar}
fa)

84

a

70 COMPONENT OVERVIEW

model. Among the interfaces that make up the Jini programming model are the
following:

The leasing interface, which defines a way of allocating and freeing
resources using a renewable, duration-based model

@ The event and notification interfaces, which are an extension of the event

model used by JavaBeans components to the distributed environment,
enable event-based communication between Jini services

@ The transaction interfaces, which enable entities to cooperate in such a way
that either all of the changes made to the group occur atomically or none of
them occur

Thelease interface extends the Java programming language model by adding
time to the notion of holding a reference to a resource, enabling references to be
reclaimed safely in the face of network failures.

The event and notification interfaces extend the standard event models used

by JavaBeans components and the Java application environmentto thedistributed
case, enabling events to be handled by third-party objects while making various
delivery and timeliness guarantees. The model also recognizes that the delivery of
a distributed notification may be delayed.

The transaction interfaces introduce a lightweight, object-oriented protocol
enabling Jini applications to coordinate state changes. The transaction protocol
provides two steps to coordinate the actions of a group of distributed objects. The
first step is called the voting phase, in which each object “votes” whetherit has
completed its portion of the task and is ready to commit any changes it made. In
the secondstep, a coordinator issues a “commit” request to each object.

TheJini Transaction protocol differs from mosttransaction interfaces in thatit
does not assume that the transactions occur in a transaction processing system.
Such systems define mechanisms and programming requirements that guarantee
the correct implementation of a particular transaction semantics. The Jini Transac-
tion protocol takes a more traditional object-oriented view, leaving the correct
implementation of the desired transaction semantics up to the implementorof the
particular objects that are involved in the transaction. The goal of the transaction
protocol is to define the interactions that such objects must have to coordinate
such groups of operations.

The interfaces that define the Jini programming modelare used bythe infra-
structure components where appropriate and bytheinitial Jini services. For exam-
ple, the lookup service makes use of the leasing and event interfaces. Leasing
ensures that services registered continue to be available, and events help adminis-
trators discover problems and devices that need configuration. The JavaSpaces

84

85

THE JINI ARCHITECTURESPECIFICATION

service, one example ofa Jini service, utilizes leasing and events, and also sup-
ports the Jini Transaction protocol. The transaction managercan be used to coor-
dinate the voting phase of a transaction for those objects that support transaction

protocol. ; a 7 .
The implementation of a service is not required to use the Jini programming

model, but such services need to use that modelfor their interaction with the Jini
technology infrastructure. For example, every service interacts with the Jini
Lookup service by using the programming model; and whethera service offers
resources on a leased basis or not, the service’s registration with the lookup ser-
yice will be leased and will need to be periodically renewed.

The binding of the programming modelto the services and the infrastructure
is what makes such a federation a Jini system notjusta collection of services and
protocols. The combination of infrastructure, service, and programming model,
all designed to work together and constructed by using eachother, simplifies the
overall system and unifies it in a way that makesit easier to understand.

AR.2.2.3 Services

The Jini technology infrastructure and programming modelare built to enable ser-
vices to be offered and found in the network federation. These services make use
of the infrastructure to make calls to each other, to discover each other, and to
announcetheir presence to other services and users.

Services appear programmatically as objects written in the Java programming
language, perhaps made up ofother objects. A service has an interfacethat defines
the operations that can be requested of that service. Someofthese interfaces are
intended to be used by programs, while others are intended to be run by the
receiver so that the service can interact with a user. The type ofthe service deter-
mines the interfaces that make upthatservice and also define the set of methods
that can be used to access the service. A single service may be implemented by
using other services.

Example Jini services include the following:

¢ A printing service, which can print from Java applications and legacy appli-
cations

@ A JavaSpaces service, which can be used for simple communication and for
storage of related groups of objects written in the Java programming lan-
guage

A transaction manager, which enables groups ofobjects to participate in the
Jini Transaction protocol defined by the programming model

71

erA) ERTRESLRRATZ

85

86

THE JINI ARCHITECTURE SPECIFICATION 71

service, one example ofa Jini service, utilizes leasing and events, and also sup-
ports the Jini Transaction protocol. The transaction manager can be used to coor-
dinate the voting phase ofa transaction for those objects that support transaction
protocol.

The implementation of a service is not required to use the Jini programming
model, but such services needto use that model fortheir interaction with the Jini
technology infrastructure. For example, every service interacts with the Jini
Lookup service by using the programming model; and whether a service offers
resources on a leased basis or not, the service’s registration with the lookup ser-
vice will be leased and will need to be periodically renewed.

The binding of the programming modelto the services and the infrasiructure
is what makes such a federation a Jini system not just a collection of services and
protocols. The combination of infrastructure, service, and programming model,
all designed to work together and constructed by using eachother, simplifies the
overall system andunifies it in a way that makesit easier to understand.

=
iy

>is
fe
=
=e2
giz
==|
oO

AR.2.2.3 Services

TheJini technology infrastructure and programming modelare built to enable ser-
vices to be offered and found in the network federation. These services make use
of the infrastructure to make calls to each other, to discover each other, and to

announce their presence to other services and users.
Services appear programmatically as objects written in the Java programming

language, perhaps madeupofother objects. A service hasan interface that defines
the operations that can be requested of that service. Some of these interfaces are
intended to be used by programs, while others are intended to be run by the
receiver so that the service can interact with a user. The type of the service deter-
mines the interfaces that make up that service and also define the set of methods
that can be used to access the service. A single service may be implemented by
using other services.

Example Jini services include the following:

¢ A printing service, which can print from Java applications and legacy appli-
cations

¢ A JavaSpaces service, which can be used for simple communication and for
storage of related groups of objects written in the Java programming lan-
guage

¢ A transaction manager, which enables groups ofobjects to participate in the
Jini Transaction protocoldefined by the programming model

86

87

72 SERVICE ARCHITECTURE

AR.2.3 Service Architecture

Services form the interactive basis for a Jini system, both at the programming and
user interface levels. The details of the service architecture are best understood

oncethe Jini Discovery and Jini Lookupprotocols are presented.

AR.2.3.1 Discovery and Lookup Protocols

The heart of the Jini system is a trio of protocols called discovery, join, and
lookup. A pair of these protocols—discovery and join—occur when a device is
plugged in. Discovery occurs whena service is looking for a lookup service with
which to register. Join occurs when a service has located a lookup service and
wishesto join it. Lookup occurs whena client or user needs to locate and invoke a
service describedbyits interface type (written in the Java programming language)
and possibly other attributes. Figure AR.2.2 outlines the discovery process.

A service provider seeks Lookup
a lookup service | Service

[. [Service :
| Client || | Provider |

 |

FIGURE AR.2.2: Discovery

Jini Discovery/Join is the process of adding a service to a Jini system. A ser-
vice provideris the originator of the service—a device or software, for example.
First, the service provider locates a lookup service by multicasting a request on the
local network for any lookup services to identify themselves (discovery, see Fig-
ure AR.2.2). Then, a service object for the service is loaded into the lookup ser-
vice (join, see Figure AR.2.3), This service object contains the Java programming
language interface for the service, including the methods that users and applica-
tions will invoke to execute the service along with any otherdescriptive attributes.

87

_

Tl

88

THE JINI ARCHITECTURE SPECIFICATION

A service provider registers a [7
service object (proxy) andits | Service

service attributes with

the lookup service |
te

ae=
O
=—ie
-_-
o
Oa
totato

Service || Client Provider

FIGURE AR.2.3: Join

Services must be able to find a lookup service; however, a service may dele-

gate the task of finding a lookup service to a third party. The service is now ready
to be looked up and used, as shownin the following diagram (Figure AR.2.4).

A client requests a service by
Java language type and,

perhaps,other service attributes.
A copyof the service object is

movedto the client and used by
the client to talk to the service

7

Lookup |Service

Client Service
Provider

Service Object
| |

j

ifFIGURE AR.2.4: Lookup |

A client locates an appropriate service by its type—that is, by its interface
written in the Java programming language—along with descriptive attributes that

88

89

74 SERVICE ARCHITECTURE

are used in a user interface for the lookup service. The service object is loaded
into the client.

The final stage is to invoke the service, as shown in the following diagram
(Figure AR.2.5).

Theclient interacts directly with Lookup |the service provider viathe | Service |
service object (proxy) |

Service

Provider |
FIGURE AR.2.5: Client Uses Service

Theservice object’s methods may implement a private protocol betweenitself
and the original service provider. Different implementations of the same service
interface can use completely different interaction protocols.

The ability to move objects and code from the service provider to the lookup
service and from there to the client ofthe service gives the service provider great
freedom in the communication patterns between the service andits clients. This
code movementalso ensures that the service object held by the client and the ser-
vice for which it is a proxy are always synchronized because the service objectis
supplied by the service itself. The client knows only that it is dealing with an
implementation of an interface written in the Java programming language, so the
code that implements the interface can do whatever is needed to provide the ser-
vice. Because this code cameoriginally from the service itself, the code can take
advantage of implementation details of the service that are known only to the
code.

The client interacts with a service via a set of interfaces written in the Java

programming language. These interfaces define the set of methods that can be
used to interact with the service. Programmatic interfaces are identified by the
type system of the Java programming language, and services can be found in a
lookup service by asking for those that support a particular interface. Finding a
service this wayensures that the program lookingfor the service will know how to

89

90

THE JIN] ARCHITECTURE SPECIFICATION

use that service, becausethat use is defined by the set of methodsthat are defined
by the type.

Programmatic interfaces may be implemented either as RMIreferencesto the
remote object that implementsthe service, as a local computation that providesall
of the service locally, or as some combination. Such combinations, called smart
proxies, implement someof the functions of a service locally and the remainder
through remote calls to a centralized implementation ofthe service.

A user interface can also be stored in the lookup service as an attribute of a
registered service. A user interface stored in the lookupservice by a Jini service is
an implementation that allows the service to be directly manipulated by a userof
the system.

In effect, a user interface for a service is a specialized form of the service
interface that enables a program, such as a browser, to step out of the way andlet
the humanuserinteractdirectly with a service.

In situations in which no lookup service can be found, a client could use a
technique called peer lookup instead. In such situations,the client can send outthe
sameidentification packetthat is used by a lookup service to request service pro-
viders to register. Service providers will then attempt to register with the client as
though it were a lookup service. The client can select the services it needs from
the registration requests it receives in response anddroporrefusetherest.

AR.2.3.2 Service Implementation

Objects that implement a service may be designed to run in a single address space
with other, helper, objects especially when there are certain location or security-
based requirements. Such objects make up an object group. An object group is
guaranteed to always reside in a single address space or virtual machine when
those objects are running. Objects that are not in the same object group are iso-
lated from eachother, typically by running them in a different virtual machineor
address space.

A service may be implementeddirectly or indirectly by specialized hardware.
Such devices can be contacted by the code associated with the interface for the
service.

From the service client’s point of view, there is no distinction between ser-
vices that are implemented by objects on a different machine, services that are
downloaded into the local address space, and services that are implemented in
hardware. All of these services will appear to be available on the network, will
appearto be objects written in the Java programming language,and, only as far as
correct functioning is concerned, one kind of implementation could be replaced

90

Ra=

Ao
aH
kodG

=|
=La}

91

SERVICE ARCHITECTURE
76

by another kind of implementation without change or knowledge by theclient.
(Note that security permissions must be properly granted.)

91

92

THE JIN] ARCHITECTURESPECIFICATION

AR.3 An Example

Ts example showshowa Jini printing service might be used by a digital cam-
era to print a high-resolution color image. It will start with the printer joining an
existing Jini system, continue with its being configured, and end with printing the
image.

AR.3.1 Registering the Printer Service

A printer that is either freshly connected to a Jini system or is poweredup onceit
has been connected to a Jini system grouping needs to discover the appropriate
lookupservice and register with it. This is the discovery andjoin phase.

AR.3.1.1 Discovering the Lookup Service

The basic operations of discovering the lookup service are implemented bya Jini
software class. An instance of this class acts as a mediator between devices and

services on one hand and the lookup service on the other. In this example the
printer first registers itself with a local instance of this class. This instance then
multicasts a request on the local network for any lookup services to identify them-
selves. The instancelistens for replies and, if there are any, passes to the printer an
array of objects that are proxies for the discovered lookupservices.

AR.3.1.2 Joining the Lookup Service

To register itself with the lookup service, the printer needsfirst to create a service
object of the correct type for printing services. This object provides the methods
that users and applications will invoke to print documents. Also neededis an array
of LookupEntryinstances to specify the attributes that describe the printer, such
as that it can print in color or black and white, what document formats it can print,
possible papersizes, and printing resolution.

92

a

—

Vd=
]
=|ortala
a
ie](aa

=oO

93

78 PRINTING

Theprinter then calls the register method ofthe lookup service objectthatit
received during the discovery phase, passing it the printer service object and the
array of attributes. The printing service is now registered with the lookup service.

AR.3.1.3 Optional Configuration

At this point the printing service can be used, but the local system administrator
might want to add additional information about the printer in the form of addi-
tional attributes, such as a local nameforthe service, information aboutits physi-
cal location, and a list of who may access the service. The system administrator
might also want to register with the device to receive notifications for any errors
that arise, such as whenthe printer is out of paper.

One way the system administrator could do this would beto use a specialutil-
ity program to pass this additional information to the service. In fact this program
might have received notification from the lookup service that a new service was
being added and then alerted the system administrator.

AR.3.1.4 Staying Alive

Whenthe printer registers with the Jini Lookup service it receives a lease. Period-
ically, the printer will need to renew this lease with the lookup service. If the
printer fails to renew the lease, then when the lease expires, the lookup service
will removethe entry for it, and the printer service will no longer be available.

AR.3.2 Printing

Someservices provide a user interface for interaction with them;others rely on an
application to mediate such interaction. This example assumesthat a person has a
digital camera that has taken a picture they want to print on a high-resolution
printer. The first thing that the camera needsto do after it is connectedto the net-
workis locate a Jini printing service. Once a printing service has been located and
selected, the camera can invoke methodsto print the image.

AR.3.2.1 Locate the Lookup Service

Before the camera can use a Jini service, it mustfirst locate the Jini Lookupser-
vice, just as the print service neededto do to register itself. The camera registers

93

THE JINI

itself

notify

AR.3.;

Findin

and fil

require
which

right t
type ¢
attribu

that st

are let

ofall

the ca

Jution

result

A

printe
longe:

AR.3

Befor

be do

this n

may |
the cc

AR.

To pr
it the

cessi

94

THE JINI ARCHITECTURE SPECIFICATION

itself with a local instance of the Jini software class LookupDiscovery, which will
notify the cameraofall discovered lookupservices.

AR.3.2.2 Search for Printing Services

Finding an appropriate service requires passing a template that is used to match
and filter the set of existing services. The template specifies both the type of the
required service, whichisthefirst filter on possible services, anda set ofattributes
whichis used to reduce the numberof matchingservices if there are several of the
right type. In this example, the camera supplies a template specifying the printer
type and an array of attribute objects. The type of each object specifies the
attribute type, andits fields specify values to be matched.Foreachattribute,fields
that should be matched,such ascolorprinting,are filled in; ones that don’t matter
are left null. The Jini Lookup service is passed this template and returns an array
of all of the printing services that matchit. If there are several matching services,
the camera may further filter them—in this case perhaps to ensure high print reso-
jution—andpresentthe user with the list of possible printers for choice. The final
result is a single service object for the printing service.

Atthis point the printing service has been selected, and the camera and the
printer service communicate directly with each other; the lookup service is no
longer involved.

AR.3.2.3 Configuring the Printer

Before printing the image, the user might wish to configure the printer. This might
be done directly by the camera invoking the service object’s configure method;
this method may display a dialog box on the camera’s display with which the user
may specify printer settings. When the imageis printed, the service object sends
the configuration information to the printer service.

AR.3.2.4 Requesting That the Image Be Printed

To print the image, the cameracalls the print methodof the service object, passing
it the image as an argument. The service object performs any necessary prepro-
cessing and sendsthe imageto the printer service to be printed.

94

79

—he

nailer

>=fe
7—eLona
i
oOa
==
fo

95

80 PRINTING

AR.3.2.5 Registering for Notification

If the user wishes to be notified when the image has been printed, the camera
needsto register itself with the printer service using the service object. The cam-
era might also wishtoregister to be notified if the printer encountersany errors.

AR.3.2.6 Receiving Notification

Whentheprinter has finished printing the image or encountersan error, it signals
an event to the camera. When the camerareceives the event, it may notify the user
that the image has been printed or that an error has occurred.

95

96

THE JINI ARCHITECTURE SPECIFICATION 81

AR.4 For More Information

Ae) ERRESTLASAvl
Tus documentdoes not provide a full specification of Jini technology. Each of
the Jini technology componentsis specified in a companion document. In particu-
lar, the readeris directed to the following documents:

@ The Java Remote Method Invocation Specification

@ The Java Object Serialization Specification

@ The Jini Discovery and Join Specification

@ The Jini Device Architecture Specification

@ The Jini Distributed Events Specification

@ The Jini Distributed Leasing Specification

@ The Jini Lookup Service Specification

@ The Jini Lookup Attribute Schema Specification

@ The Jini Entry Specification

@ The Jini Transaction Specification

96

97

THE JIN! DISCOVERY AND JOIN SPECIFICATION defines how a service should
behave whenitfirst starts up to find the local lookup services with which

it should register, and how lookups should advertise their
availability. The discovery protocollets a service find

aN “discoverable” lookup services. A service may also be
configured to register with specific lookup services or to

Sed register only with particular lookup services. Most
services will use discovery, since most will wantto be

available to local clients. Clients will use discovery to find
local services, but use explicit denotation to contact specific
lookups that are useful even if they arefar away.

I N I This discovery protocolis designedfor discovery on IP
networks. IP networks are widespread and so wasthefirst
discovery protocol designed. Other networkswill require
different discovery protocols that will be designedfor their
distinct characteristics.

97

98

|

Laplaceceailhileahetimmig
inanaanaallapec

a = senate. SSeS eee SST oie ne ESREEESTYaE : * . = 5 = a 2 = “

The Jini Discovery and Join
Specification

DJ.1 Introduction

Ewnres that wish to start participating in a distributed Jini system, known as a
djinn, mustfirst obtain references to one or more Jini Lookup services. The proto-
cols that govern the acquisition of these references are known as the discovery
protocols. Once these references have been obtained, a number of steps must be
taken for entities to start communicating usefully with services in a djinn; these
steps are described by the join protocol.

DJ.1.1 Terminology

A host is a single hardware device that may be connected to one or more net-
works. An individual host may house one or more Java virtual machines (JVM).

Throughout this document we makereference to a discovering entity, a join-
ing entity, or simply an entity.

@ A discovering entity is simply one or more cooperating objects in the Java
programming language on the same host that are aboutto start, or are in the

process of, obtaining references to Jini lookupservices.

@ Ajoining entity comprises one or more cooperating objects in the Java tech-
nology programming language on the samehostthat havejust receivedaref-
erence to the lookup service and are in the process of obtaining services
from, and possibly exporting them to, a djinn.

98

83

=
= WARCyn|

MECH

99

84

HOST REQUIREMENTS

@ An entity may be a discovering entity, a joining entity, or an entity that is
already a memberof a djinn; the intended meaning should be clear from the
context.

@ A group is a logical name by which a group ofdjinnsis identified.

Since all participants in a djinn are collections of one or more objects in the
Java programming language, this document will not make a distinction between
an entity that is a dedicated device using Jini technology or something running in
a JVM thatis hosted on a legacy system. Such distinctions will be made only when
necessary.

DJ.1.2 Host Requirements

Hosts that wish to participate in a djinn must have the following properties:

@ A functioning JVM, with accessto all packages needed to run Jini software

@ A properly configured network protocol stack

The properties required of the network protocol stack will vary depending on
the network protocol(s) being used. Throughout this document we will assume
that IP is being used, and highlight areas that might apply differently to other net-
working protocols.

DJ.1.2.1 Protocol Stack Requirements for IP Networks

Hosts that make use of IP for networking must have the following properties:

@ An IP address. IP addresses maybestatically assigned to somehosts, but we
expect that many hosts will have addresses assigned to them dynamically.
DynamicIP addresses are obtained by hosts through use of DHCP.

Support for unicast TCP and multicast UDP. The former is used by sub-
systems using Jini technology such as Java Remote Method Invocation
(RMI); both are used during discovery.

Provision of some mechanism (for example, a simple HTTP server) that
facilitates the downloading of Java RMI stubs and other necessary code by
remote parties. This mechanism does not have to be provided by the host
itself, but the code must be made available by some cooperating party.

99

100

THE JINI DISCOVERY AND JOIN SPECIFICATION

pJ.1.3 Protocol Overview

There are three related discovery protocols, each designed with different pur-
poses:

@ The multicast request protocolis employed byentities that wish to discover
nearby lookup services. This is the protocolused byservicesthatare starting
up and need to locate whatever djinns happen to beclose.It can also be used
to support browsing oflocal lookup services.

@ The multicast announcementprotocolis provided to allow lookupservices
to advertise their existence. This protocolis useful in two situations. When
anew lookup service is started, it might need to announceits availability to
potential clients. Also, if a network failure occurs andclients lose track of a
lookupservice, this protocol can be used to make them aware ofits availabil-
ity after network service has been restored.

¢ The unicast discovery protocol makes it possible for an entity to communi-
cate with a specific lookup service. This is useful for dealing with non-local
djinns and for using services in specific djinns over a long periodoftime.

The discovery protocols require support for multicast or restricted-scope
broadcast, along with support for reliable unicast delivery, in the transport layer.
The discovery protocols make use of the Java platform’s object serialization to
exchange information in a platform-independent manner.

DJ.1.4 Discovery in Brief

This section providesa brief overview of the operation ofthe discovery protocols.
For a detailed description suitable for use by implementors, see Section DJ.2.

DJ.1.4.1 Groups

A groupis an arbitrary string that acts as a name. Each lookupservice hasa set of
zero Or More groups associated with it. Entities using the multicast request proto-
col specify a set of groups they want to communicate with, and lookup services
advertise the groups they are associated with using the multicast announcement
protocol. This allows for flexibility in configuring entities: instead of maintaining
a set of URLs for specific lookup services to contact, and that need to be changed
if any of these services moves, an entity can maintain a set of group names.

100

—}—_e
wn
oO

~$
orsas)

ia
i=)—e
=

101

86

DISCOVERYIN BRIEF

Although group namesare arbitrary strings, it is recommended that DNS-style
names(for example, “eng.sun.com”) be used to avoid name conflicts. One group
name, represented by the empty string, is predefined as the public group. Unless
otherwise configured, lookup services should default to being members of the
public group, and discovering entities should attempt to find lookup services in
the public group.

DJ.1.4.2 The Multicast Request Protocol

The multicast request protocol, shown in Figure DJ.1.1, proceeds as follows:

1. The entity that wishes to discover a djinn establishes a TCP-based server
that accepts referencesto the lookup service. This server is an instance of
the multicast response service.

Lookupservices listen for multicast requests for references to lookup ser-
vices for the groups they manage. Theselistening entities are instances of
the multicast requestservice. This is not an RMI-basedservice; the protocol
is described in Section DJ.2.

The discovering entity performs a multicast that requests references to
lookup services; it provides a set of groups in which it is interested, and
enough information to allow listeners to connect to its multicast response
server,

Each multicast request server that receives the multicast will, if it is a
memberof a group for which it receives a request, connect to the multicast
response server described in the request, and use the unicast discovery
protocol to pass an instance of the lookup service’s implementation of
net.jini.core. lookup.ServiceRegistrar.

101

7

102

THE JINI DISCOVERY AND JOIN SPECIFICATION

services.

pote Discovering Entity:
1. The discovering [— —
entity sets up a
TCPserver; this
is an instance of
the multicast

responseservice.
3. The discovering entity —~

Atthis point, the discovering entity has one or more remote references to lookup

LookupServer:

2. Lookup servers run
instances of the multicast
request service, which

listen for multicast requests
from discoveringentities.

performs a multicast that oo &
requests referencesto
lookupservices.

4. The lookup server | NSS {|
connects to the dis- i
covering entity’s

, multicast responseserver, and uses dis- |
' covery to provide a referenceto itself.

FIGURE DJ.1.1: The Multicast Request Protocol

DJ.1.4.3 The Multicast Announcement Protocol

The multicast announcement protocol followsthese steps:

1. Interested entities on the networklisten for multicast announcements of the
existence of lookupservices. If an announcement ofinterestarrives at such
an entity, it uses the unicast discovery protocol to contact the given lookup
service.

- Lookupservices prepare to take part in the unicast discovery protocol (see
below) and send multicast announcements of their existence at regular
intervals.

102

87

103

88 DEPENDENCIES

DJ.1.4.4 The Unicast Discovery Protocol

The unicast discovery protocol worksas follows:

1. The lookup service listens for incoming connections and, when a
connection is made by a client, decodes the request and, if the request
is correct, responds with a marshalled object that implements the
net.jini.core. lookup.ServiceRegistrar interface.

2. An entity that wishesto contact a particular lookup service uses known host
and port information to establish a connectionto that service. It sends a dis-
covery request and listens for a marshalled object as above in response.

DJ.1.5 Dependencies

This documentrelies on the following other specifications:

@ Java Remote Method Invocation Specification

@ Jini Lookup Service Specification

103

104

THE JINI DIS:COVERY AND JOINSPECIFICATION

DJ.2 The Discovery Protocols

Ture are three closely related discovery protocols: one is used to discover one
or more lookup services on a local area network (LAN), another is used to
announce the presenceofa lookup service on a local network, andthe last is used
to establish communications with a specific lookup service over a wide-area net-
work (WAN).

stiticsaeramenirinainna
Key) e

=}—H
wn
oC
i)
P|o
=
al
=al

iDJ.2.1 Protocol Roles

The multicast discovery protocols work together over time. Whenan entity is ini-
tially started, it uses the multicast request protocol to actively seek out nearby
lookup services. After a limited period of time performingactive discovery in this
way, it ceases using the multicast request protocol and switchesoverto listening
for multicast lookup announcements via the multicast announcementprotocol.

DJ.2.2 The Multicast Request Protocol

The multicast request protocol allows an entity that has just beenstarted, or that
needs to provide browsing capabilities to a user, to actively discover nearby
lookup services.

DJ.2.2.1 Protocol Participants

Several componentstake part in the multicast request protocol. Of these, two run lH
on an entity that is performing multicast requests, and two run on the entity that |
listens for such requests and responds.

On the requesting side live the following components: | |i

@ A multicast request client performs multicasts to discover nearby lookup
services.

104

105

90 THE MULTICAST REQUEST PROTOCOL

¢ A multicast responseserverlistens for responses from those lookupservices,

These components are paired; they do not occur separately. Any number of
pairs of such components may coexist in a single JVM at any given time.

The lookup service houses the other two participants:

A multicast request server listens for incoming multicast requests.

¢ A multicast response client respondsto callers, passing each a proxy that
allows it to communicate with its lookup service.

Although these componentsare paired, as on the client side, only a single pair
will typically be associated with each lookupservice.

Theselocalpairingsapart, the remote client/serverpairings should be clear from
the above description and the diagram of protocolparticipants in Figure DJ.2.1.

I multicast response|server

a (| Tookup
multicast request service

client Lo _

multicast response|
client

“multicast response multicast request
server server

L_ __ —

multicast request
client

JVM of discovering JVM of lookup
entity service

FIGURE DJ.2.1: Multicast Request Protocol Participants |

DJ.2.2.2 The Multicast Request Service

The multicast request service is not based on Java RMI; instead, it makes use of
the multicast datagram facility of the networking transport layer to request that

105

106

THE JINI DISCOVERY ANDJOIN SPECIFICATION

lookup services advertise their availability to a requesting host. In a TCP/IP envi-
ronment the network protocol used is multicast UDP. Request datagrams are
encoded as a sequenceofbytes, using the data and object serialization facilities of
the Java programming languageto provide platform independence.

DJ.2.2.3 Request Packet Format

A multicast discovery request packet body must:

@ Be 512 bytes in size or less, in order to fit into a single UDP datagram
 Encapsulate its parameters in a platform-independent manner

« Be straightforward to encode and decode

Accordingly, we define the packet format to be a contiguousseries of bytes as
would be produced by a java.io.DataOutputStream object writing into a
java. io.ByteArrayOutputStream object. The contents of the packet, in order of
appearance,are illustrated bythe following fragment of pseudocode which gener-
ates the appropriate byte array:

int protoVersion; // protocol version
int port; // port to contact
java.lang.String[] groups; // groups of interest
net.jini.core. lookup.ServiceID[] heard; // known lookups

java.io.ByteArrayOutputStream byteStr =
new java.io.ByteArrayOutputStream();

java.io,DataOutputStream objStr =
new java.io.DataOutputStream(byteStr);

objStr.writeInt(protoVersion) ;
objStr.writeInt(port) ;

objStr.writeInt (heard. length);
for Cint i = @; i < heard.length; i++) f

heard[i] .writeBytes(objStr) ;

3

objStr.writeInt (groups. length) ;
for Cint i = 0; i < groups.length; i++) {

objStr.writeUTF(groups[i]);

106

91

ced BsyRReNn(|
iC)

107

>

92 THE MULTICAST REQUEST PROTOCOL Ti

}

tl

byte[] packetBody = byteStr.toByteArray(); // the final result é
To elaborate on the roles of the variables above: 5

I

@ The protoVersion variable contains an integer that indicates the version of
the discovery protocol. This will permit interoperability between different |
protocol versions. For the current version of the discovery protocol,
protoVersion must have the value 1.

@ The port variable contains the TCP port respondents must connect to in
order to continue the discovery process.

@ The groups variable containsa set ofstrings (organized as an array) naming
the groups the entity wishes to discover. This set may be empty, which indi-
cates that all lookup services are being lookedfor.

@ The heard variable contains a set of net. jini.core. lookup.ServiceID

objects (organized asan array) that identify lookup services from which this
entity has already heard andthat do not need to respondto this request.

@ The packetBody variable contains the marshalled discovery request in a
form that is suitable for putting into a datagram packet or writing to an out-
put stream.

The table belowillustrates the contents of a multicast request packet body.

Count Serialized Type Description

1 int protocol version

1 int port to connect to

1 int count of lookups heard

variable net.jini.core. lookup. ServiceID lookups heard

1 int count of groups

variable java.lang.String groups

If the size of the packet body should exceed 512 bytes, the set of lookups from
which an entity has heard must be left incomplete in the packet body, such that the
size of the packet body will come to 512 bytes or less. How this is done is not
specified. It is not permissible for implementations to simply truncate packets at
512 bytes.

107

108

2 AND JOIN SPECIFICATIONsoe JIN] DISCOVERYqHEJIN.

similarly,if the number of groups requested causes the size of a packet body
aead 512 bytes, implementations must perform several separate multicasts,
‘ . a disjoint subsetof the full set of groups to be requested, until the entire
: each een requested. Each request must contain the largest set of responses
inet will keep the size of the request below 512 bytes.

pJ.2.2.4 The Multicast Response Service
Unlike the multicast request service, the multicast response service is a normal
| +cP-based service. In this service the multicast response client contacts the multi-
| cast response server specified in a multicast request, after which unicast discovery
lis performed. The multicast response server to contact can be determined by using
the source address of the request that has been received, along with the port num-

‘ber encapsulated in that request.
The only difference between the unicast discovery performedin this instance
‘and the normalcaseis that the entity being connectedto initiates unicast discov-
‘ery, not the connecting entity. An alternative way oflookingat this is that in both
‘cases, once the connection has been established, the party that is looking for a
lookup service proxy initiates unicast discovery.

'DJ.2.3 Discovery Using the Multicast Request Protocol

Now we describe the discovery sequence for local area network (LAN)-based
‘environments that use the multicast request protocol to discover one or more
djinns.

DJ.2.3.1_ Steps Taken by the Discovering Entity

The entity that wishes to discover a djinn takes the following steps:

1. It establishes a multicast request client, which will send packetsto the well-
known multicast network endpoint on which the multicast request service
operates.

2. It establishes a TCP server socket that listens for incoming connections,
over which the unicast discovery protocol is used. This server socketis the
multicast response server socket.

108

TTYBARONS(6|

109

94 DISCOVERY USING THE MULTICAST REQUEST PROTOCOL

THE JL

3. It creates a set of net. jini.core. lookup.ServiceID objects. This set
contains service IDs for lookup services from which it has alreadyheard,
and is initially empty.

4. It sends multicast requests at periodic intervals. Each request contains con- DjJ.2
nection information for its multicast response server, along with the most ™

recent set of service IDs for lookupservicesit has heard from. What
5. For each response it receives via the multicast responseservice, it adds the disco

service ID for that lookup serviceto the set it maintains. djinn:
6. The entity continues multicasting requests for some period of time. Once inclu

this point has been reached, it unexports its multicast response server and Ui
stops making multicast requests. choo:

. ; - . sectic7. If the entity has received sufficient references to lookup services at this se
point, it is now finished. Otherwise, it must start using the multicast ‘
announcementprotocol.

4

Theinterval at which requests are performed is not specified, though an inter- a
val of five seconds is recommended for most purposes. Similarly, the number of

requests to perform is not mandated, but we recommend seven. Since requests ‘
may be broken down into a numberof separate multicasts, these recommenda-

tions do not pertain to the numberof packetsto be sent. Ontt
the jc

DJ.2.3.2 Steps Taken by the Multicast Request Server

The system that hosts an instance of the multicast request service takes the follow- DJ.
ing steps:

The

1. It binds a datagram socket to the well-known multicast endpoint on which anno
the multicast requestservice lives so that it can receive incoming multicast pants
requests. same. : ‘ : one 1

2. When a multicast request is received, the discovery request server may use n
the service ID set from the entity that is sending requests to determine abou. . oe ‘ * . . e

whether it should respond to that entity. If its own service ID is not in the look
set, and any of the groups requested exactly matches any of the groupsit is
a memberofor the set of groups requested is empty, it must respond. Oth-
erwise, it must not respond. DJ.2

3, If the entity must be respondedto, the request server connects to the other The
party’s multicast response server using the information provided in the from

unde

109

110

THE JINI DISCOVERY AND JOIN SPECIFICATION

request, and provides a lookupservice registrar using the unicast discovery
protocol.

DJ.2.3.3 Handling Responses from Multiple Djinns

What happens when there are several djinns on a network, andcalls to an entity’s
discovery response service are madeby principals from more than one of those
djinns, will depend on the nature of the discovering entity. Possible approaches
include the following:

If the entity provides a finder-style visual interface that allows a user to
choose one or more djinns for their system to join, it should loop at step DJ 4 in
section DJ.2.3.1, and provide the ability to:

¢ Display the namesand descriptions of the djinns it has found out about
¢ Allowthe userto select zero or more djinnsto join

¢ Continue to dynamically update its display, until the user has finished their
selection

¢ Attemptto join all of those djinnsthe user selected

Onthe other hand,if the behaviorof the entity is fully automated, it should follow
the join protocol described in Section DJ.3.

DJ.2.4 The Multicast Announcement Protocol

The multicast announcement protocol is used by Jini Lookup services to
announcetheir availability to interested parties within multicast radius. Partici-
pants in this protocol are the multicast announcementclient, which resides on the
same system as a lookup service, and the multicast announcementserver, at least
one instance of which exists on every entity that listens for such announcements.

The multicast announcement client is a long-lived process; it must start at
about the sametime as the lookupserviceitself and remain runningas long as the
lookupserviceis alive.

DJ.2.4.1 The Multicast AnnouncementService

The multicast announcement service uses multicast datagrams to communicate
from a single client to an arbitrary numberof servers. In a TCP/AP environmentthe
underlying protocol used is multicast UDP.

95

=}
fo

~UOf/ALIAOISIG]

110

111

96 THE MULTICAST ANNOUNCEMENT PROTOCOL

Multicast announcement packets are constrained by the same requirementsas
multicast request packets. Thefields in a multicast announcement packet body are

as follows:

Count Serialized Type Description

1 int protocol version

J java.lang.String host for unicast discovery

1 int port to connect to

1 net. jini.core. lookup.ServiceID service ID of originator

i 1 int count of groups
fi variable java.lang.String groups represented by originator

The fields have the following purposes:

@ Theprotocolversionfield providesfor possible future extensionsto the pro-
tocol. For the current version of the multicast announcementprotocol this
field must contain the value 1. This field is written as if using the method
java.io.DataOutput.writeInt,

@ The hostfield contains the nameofa host to be used by recipients to which
they may perform unicast discovery. This field is written as if using the
method java.io.DataOutput.writeUTF.

¢ The port field contains the TCP port of the above host at which to perform
unicast discovery. This field is written as if using the method
java. io.DataOutput.writeint.

@ The service ID field allows recipients to keep track of the services from
which they have received announcements so that they will not need to
unnecessarily perform unicast discovery. Thisfield is written as if using the
method net. jini.core. lookup. ServiceID.writeBytes.

¢ The countfield indicates the number of groups of which the given lookup
service is a member. This field is written as if using the method
java.io.DataOutput.writelnt.

This is followed by a sequenceof strings equal in numberto the countfield,
each of whichis a group that the given lookupservice is a memberof. Each
instance of this field is written as if using the method
java.io.DataQutput .writeUTF.

111

112

THE JINI DISCOVERYAND JOIN SPECIFICATION 97

If the size of the set of groups represented by a lookupservice causesthe size
of a multicast announcement packet body to exceed 512 bytes, several separate
packets must be multicast, each with a disjoint subset of the full set of groups,
such that the full set of groups is represented by all packets.

DJ.2.4.2 The Protocol

The details of the multicast announcement protocol are simple. The entity that
runs the lookup service takes the following steps:

1. It constructs a datagram socket object, set up to send to the well-known
multicast endpoint on which the multicast announcementservice operates.

2. It establishes the server side of the unicast discovery service.
Ken)3. It multicasts announcementpackets at intervals. The length ofthe interval

is not mandated, but 120 seconds is recommended.

=A72]
lr]
i]
1
oC
=

a]~~
Sw
=)=e

~

An entity that wishes to listen for multicast announcements performsthe fol-
lowingset of steps:

1. It establishes a set of service IDs of lookup services from which it has
already heard, using the set discovered by using the multicast request pro-
tocol as the initial contentsofthis set.

2. It binds a datagram socket to the well-known multicast endpoint on which
the multicast announcementservice operates and listens for incoming mul-
ticast announcements.

3. For each announcementreceived, it determines whether the service ID in

that announcementis in the set from which it has already heard. Ifso, or if
the announcementis for a group that is not of interest, it ignores the
announcement. Otherwise, it performs unicast discovery using the host and
port in the announcementto obtain a reference to the announced lookupser-
vice, and then adds this service ID to the set from which it has already
heard.

DJ.2.5 Unicast Discovery

While workgroup-level devices need to be able only to discover local djinns, a
user might need to be able to access services in djinns that may be dispersed more
widely (for example in offices in other cities or on other continents). To this end,

112

113

98

UNICAST DISCOVERY

the software at the user’s fingertips must be able to obtain a reference to the
lookup service of a remote djinn. This is done using the unicast discovery proto-
col.

The Jini Discovery unicast protocol uses the underlying reliable unicast trans-
port protocol provided by the network instead of the unreliable multicast trans-
port. In the case of IP-based networks this means that the unicast discovery
protocol uses unicast TCP instead of multicast UDP.

DJ.2.5.1 The Protocol

The unicast discovery protocol is a simple request-response protocol.
If an entity wishes to obtain a reference to a given djinn, the entity has a

lookup locator object for that djinn and makes a TCP connection to the host and
port specified by that lookup locator. It sends a unicast discovery request (see
below), to which the remote host responds.

[If a lookup service is responding to a multicast request, the request to whichit
is responding contains the address and port to respond to, and it makes a TCP con-
nection to that address and port. The respondee sends a unicast discovery request,
and the lookup service responds with a proxy.

The protocol diagram in Figure DJ.2.2 illustrates the flow when unicast dis-
covery is initiated by a discovering entity.

TCPconnectionSabie
unicast request sent~~

| unicast responsesent

discovering lookup
entity service

FIGURE DJ.2.2: Unicast Discovery Initiated by a Discovering Entity

113

114

THE JINI DISCOVERY AND JOIN SPECIFICATION 99

The protocol diagram in Figure DJ.2.3 indicates the flow when a lookup ser-
vice initiates unicast discovery in responseto a multicast request. |

i

TCP connection established

unicast request sent

|

unicast response sent
=)loll

4discovering lookup ~—
entity service S 33

=a

cA=FiGuRE DJ.2.3: Unicast Discovery Initiated by a Lookup Service

DJ.2.5.2, Request Format

A discovery request consists ofa stream of data as would be obtained by writing
code similar to the following:

int protoVersion; // protocol version |

java.io.ByteArrayOutputStream byteStr =
new java.io.ByteArrayOutputStream();

java.io.DataQutputStream objStr =
new java.io.DataOutputStream(byteStr);

objStr.writeInt(protoVersion); |

byte[] requestBody = byteStr.toByteArray(); // final result

The protoVersion variable above must have a value of 1 for the current version
of the unicast discovery protocol. The requestBody variable contains the discov-
ery request as wouldbe sent to the unicast discovery request service.

114

115

100 UNICAST DISCOVERY

DJ.2.5.3 Response Format

The response to the above request consists of a stream of data as would be
obtained by writing code similar to the following:

net.jini.core.lookup.ServiceRegistrar reg;

String[] groups; // groups registrar will respond with

java.rmi.MarshalledObject obj =

new java.rmi.Marshal ledObject(reg);
java.io.ByteArrayOutputStream byteStr =

new java.io.ByteArrayOutputStream() ;

java.io.ObjectOutputStream objStr = new
java.io.O0bjectOutputStream(byteStr) ;

objStr.writeObject (obj);

objStr.writeInt(groups. length);

for Cint i = 0; 71 < groups.length; i++) {

objStr.writeUTF(groups[i]);

byte[] responseBody = byteStr.toByteArrayQ; // final result

When the discovering entity receives this data stream, it can deserialize the
MarshalledObject it has been sent and use the get method of that object to
obtain a lookup service registrar for that djinn.

115

116

THE JINI DISCOVERY AND JOIN SPECIFICATION 101

DJ.3 The Join Protocol

Hac covered the discovery protocols, we continue on to describe the join
protocol. This protocol makesuseof the discovery protocols to provide a standard
sequence of steps that services should perform whentheyare starting up and reg-
istering themselves with a lookupservice.

DJ.3.1 Persistent State

“4wn
or]
=)
=<is)
a)

‘<
PielSe=
—
5

A service must maintain certain items of state across restarts and crashes. These

items are as follows:

@ Its service ID. A new service will not have been assigned a service ID, so
this will be not be set when a service is started for the first time. After a ser- |
vice has been assigned a service ID, it must continue to use it acrossall
lookup services.

A set of attributes that describe the service’s lookup service entry.

A set of groups in whichthe service wishesto participate. For most services i
this set will initially contain a single entry: the empty string (which denotes
the public group).

A set of specific lookup services to register with. This set will usually be
empty for new services.

Note that by “new service” here, we mean one that has never before been 4
started, not one that is being started again or one that has been moved from one
network to another. |

DJ.3.2. The Join Protocol

Whena serviceinitially starts up, it should pause a random amountoftime (up to
15 seconds is a reasonable range). This will reduce the likelihood of a packet rmieroeigwnibintnereeroncaet

116

117

102

THE JOIN PROTOCOL

storm occurring if power is restored to a network segmentthat houses a large
numberofservices.

DJ.3.2.1 Initial Discovery and Registration

For each memberoftheset of specific lookup services to register with, the service
attempts to perform unicast discovery of each one andto register with each one. If
any fails to respond, the implementor may choose to either retry or give up, but
the non-responding lookup service should not be automatically removed from the
set if an implementation decides to give up.

Joining Groups

If the set of groupsto join is not empty, the service performs multicast discovery
and registers with each of the lookup services that either respond to requests or
announce themselves as members ofone or more ofthe groups the service should

join.

Order of Discovery

The unicast and multicast discovery steps detailed above do not need to proceed in
any strict sequence. The registering service must register the same sets of
attributes with each lookup service, and must use a single service ID across all
registrations.

DJ.3.2.2 Lease Renewal and Handling of Communication Problems

Once a service has registered with a lookup service, it periodically renews the
lease onits registration. A lease with a particular lookupservice is cancelled only
if the registering service is instructed to unregisteritself.

If a service cannot communicate with a particular lookup service, the action it
takes dependsonits relation to that lookup service. If the lookupserviceis in the
persistent set of specific lookup services to join, the service must attemptto rereg-
ister with that lookup service. If the lookup service was discovered using multi-
cast discovery, it is safe for the registering service to forget about it and await a
subsequent multicast announcement.

117

118

THE JINI DISCOVERY AND JOIN SPECIFICATION

pJ.3.2.3 Making Changes and Performing Updates

Attribute Modification

If a service is asked to changethesetofattributes with whichit registersitself, it
saves the changedsetin a persistent store, then performsthe requested change at
each lookup service with whichitis registered.

Registering and Unregistering with Lookup Services

If a service is asked to register with a specific lookup service, it adds that lookup
service to the persistent set of lookup services it should join, and then registers
itself with that lookup service as detailed above.

If a service is asked to unregister from a specific lookup service and that ser-
vice is in the persistent set of lookup services to join, it should be removed from
that set. Whetheror not this step needs to be taken, the service cancels the leases
for all entries it maintains at that lookup service.

DJ.3.2.4 Joining or Leaving a Group

If a service is asked to join a group, it adds the nameofthat groupto the persistent
set of groups to join and either starts or continues to perform multicast discovery
using this augmented group.

If the service is requested to leave a group, the stepsare alittle more complex:

1. It removes that group from the persistent set of groups to join.

2. It removes all lookup services that match only that group in the set of
groupsit is interested in from the set it has discovered using multicastdis-
covery, and unregisters from those lookupservices.

3. It either continues to perform multicast discovery with the reduced set of
groupsor, if the set has been reduced to empty, ceases multicast discovery.

118

103

d.

ABEL|at

jeaa

fis
uIo

119

THE JINI DISCOVERY AND JOIN SPECIFICATION

pj.4 Network Issues

Now we will discuss various issues that pertain to the multicast network proto-
col used by the multicast discovery service. Much ofthe discussion centers on the
Internet protocols, as the lookup discovery protocolis expected to be most heavily
used on IP-basedinternets andintranets.

DJ.4.1 Properties of the Underlying Transport

The network protocol that is used to communicate between a discovering entity
and an instance ofthe discovery request service is assumed to be unreliable and
connectionless, and to provide unordered delivery of packets.

This maps naturally onto both IP multicast and local-area IP broadcast, but
should work equally well with connection-orientedreliable multicast protocols.

DJ.4.1.1 Limitations on Packet Sizes

Since we assumethat the underlying transport does not necessarily deliver packets
in order, we must address this fact. Although we could mandate that request pack-
ets contain sequence numbers, such that they could be reassembled in order by
instances of the discovery request service, this seems excessive. Instead, we
require that discovery requests not exceed 512 bytesin size, including headers for
lower-level protocols. This squeaks in below the lowest required MTU sizethat is
required to be supported by IP implementations.

DJ.4.2 Bridging Calls to the Discovery Request Service

Whether or not calls to the discovery request service will need to be bridged
across LAN or wide area network (WAN) segments will depend on the network
protocol being used and the topology of the local network.

105

==
es

—
ir
os

pa
=a
|

119

120

106

LIMITING THE SCOPE OF MULTICASTs

In an environment in which every LAN segmenthappensto host a Jini Lookup
service, bridging might not be necessary. This does not seem likely to be a typical
scenario.

Where the underlying transport is multicast IP, intelligent bridges and routers
must be able to forward packets appropriately. This simply requires that they sup-
port one of the multicast IP routing protocols; most router vendorsalready do so,

If the underlying transport were permitted to be local-area IP broadcast, some
kind ofintelligent broadcast relay would be required, similar to that described in
the DHCP and BOOTPspecifications. Since this would increasethe complexity of
the infrastructure needed to support the Jini Discovery protocol, we mandate use
of multicast IP instead of broadcastIP.

DJ.4.3. Limiting the Scope of Multicasts

In an environmentthat makes use of IP multicast or a similar protocol, the joining
entity should restrict the scope of the multicasts it makes by setting the time-to-
live (TTL)field of outgoing packets appropriately. The value of the TTL field 1s
not mandated, but we recommendthatit be set to 15.

DJ.4.4 Using Multicast IP as the Underlying Transport

If multicast IP is being used as the underlying transport, request packets are
encapsulated using UDP (checksums must be enabled). A combination of a well-
known multicast IP address and a well-known UDPport is used by instances of the
discovery request service andjoining entities.

DJ.4.5 Address and Port Mappings for TcP and Multicast UDP

The port numberfor Jini Lookup discovery requests is 4160. This applies to both
the multicast and unicast discovery protocols. For multicast discovery the IP
address of the multicast group over which discovery requests should travel is
224.0.1.85. Multicast announcements should use the address 224.@.1.84.

120

THE

di

121

DISCOVERY AND JOIN SPECIFICATION 107THE JINI

DJ.5 LookupLocator Class

Tx LookupLocator class provides a simple interface for performing unicast
discovery:

package net.jini.core.discovery;

import java.io. IOException;
import java.io.Serializable;
import java.net.MalformedURLException;
import net.jini.core. lookup.ServiceRegistrar;

public class LookupLocator implements Se rializable {

public LookupLocator(String host, int port) {..} |
public LookupLocator(String url)

throws MalformedURLException {...} :
public String getHost() {..} |
public int getPort() {...} |
public ServiceRegistrar getRegistrar(

throws IOException, ClassNotFoundException {..}
public ServiceRegistrar getRegistrar(int timeout)

throws IOException, ClassNotFoundException {...}
| }

Each constructor takes parameters that allow the object to determine what IP
address and TCP port numberit should connect to. The first form takes a host
name and port number. The second form takes what should be a j7ni-scheme
URL.If the URLis invalid, it throws a java.net.MalformedURLException. Nei-
ther constructor performs the unicast discovery protocol, nor does either resolve
the host name passed as argument.

The getHost method returns the name of the host with which this object
; attempts to perform unicast discovery, and the getPort method returns the TCP
: port at that host to which this object connects. The equals methodreturns true if

| both instances have the same host and port.
|‘

121

122

108 JINI TECHNOLOGY URL SYNTAX

There are two forms of getRegistrar method. Each performsunicast discov-
ery andreturns an instance ofthe proxy for the specified lookupservice, or throws
either a java.io. IOException or a java. lang.ClassNotFoundExceptionif a
problem occurs during the discovery protocol. Each method performsunicast dis-
covery every timeit is called.

The form of this method that takes a timeout parameter will throw a
java.io. InterruptedIOExceptionifit blocks for more than timeout millisec-
onds while waiting for a response. A similar timeout is implied for the no-arg
form of this method, but the value of the timeoutin milliseconds may be specified
globally using the net.jini.discovery.timeout system property, with a
default equal to 60 seconds.

DJ.5.1 Jini Technology URL Syntax

While the Uniform Resource Locator (URL) specification merely demandsthat a
URL be of the form protocol:data, standard URL syntaxes tend to take one of
two forms:

@ protocol: //host/data

@ protocol://host:port/data

The protocol componentof a Jini technology URL is, not surprisingly, jini.
The host name component of the URL is an ordinary DNS nameor IP address. If
the DNS nameresolves to multiple IP addresses, it is assumed that a lookup ser-
vice for the same djinn lives at each address. If no port numberis specified, the
default is 4160."

The URL has no data component, since the lookup service is generally not
searchable by name. As a result, a Jini technology URL ends up lookinglike

jini://example.org

with the port defaulting to 4160 since it is not provided explicitly, or, to indicate a
non-default port,

jini://example.com:4162

1 Ifyou speak hexadecimal, you will notice that 4160 is the decimal representation of (CAFE — BAB E).

122

123

—_—— | oe ~

THE JINI DISCOVERY AND JOIN SPECIFICATION 109

DJ.5.2 Serialized Form

Class serialVersionUID Serialized Fields

LookupLocator 1448769379829432795L String host
int port

Kee) =

=wa
°
°
-i)
=

=ijle
=|

123

124

—

THE JINI DISCOVERY UTILITIES SPECIFICATION describes a set of utility classes
andinterfaces that will help users discover lookup services. They

implement mechanismsthatdrive the discovery protocols
and that invoke your code at relevant moments, turning

a“ the network protocolinto useful Java language
abstractions.

7

INL

124

125

‘The Jini Discovery Utilities

Specification

DU.1 Introduction

Eacs individual party in a Java Virtual Machine (JVM) on a given hostis inde-
pendently responsible for obtaining references to lookupservices. In this specifi-
cation we first coves utility classes that such parties can use to simplify multicast
discovery tasks. We then present lower-level utility classes that are useful in build-
ing these kindsofutilities.

AABAOISIC
DU.1.1 Dependencies

This specification relies on the following other specifications:

@ Java Object Serialization Specification

¢ Jini Lookup Service Specification

@ Jini Discovery and Join Specification
111

125

126

THE JINI DISCOVERY UTILITIES SPECIFICATION 113

DU.2 Multicast Discovery Utility

Parres can obtain references to lookup services via the multicast discovery
protocols by making use of the LookupDiscoveryclass.

package net.jini.discovery;

import net.jini.core.lookup.ServiceRegistrar;
import java.io. IOException;

public final class LookupDiscovery {
public static final String[] ALL_GROUPS = null;
public static final String[] NO_GROUPS = new String[@];

(ad Setteepublic LookupDiscovery(String[] groups)

throws IOException {...}

public void addDiscoveryListener(DiscoveryListener 1) {..}
public void removeDiscoveryListener(DiscoveryListener 1)

{...}

public void discard(ServiceRegistrar reg) {..}
public String[] getGroups() {..}
public void setGroups(String[] groups) |

throws IOException {..}

public void addGroups(String[] groups)
| throws IOException {...}

public void removeGroups(String[] groups) {..}
public void terminate() {..}

i

=)A
77)
cr}
o
=ai)
4
I

}

The LookupDi scoveryclass relies upon the DiscoveryEventclass:

package net.jini.discovery;

import net.jini.core. lookup.ServiceRegistrar;
import java.util.EventListener;

126

127

114 THE LookupDiscovery CLASS

import java.util.EventObject;

public class DiscoveryEvent extends EventObject {
public DiscoveryEvent(Object source,

ServiceRegistrar[] regs) {..}
public ServiceRegistrar[] getRegistrars() {..}

}

The LookupDiscoveryclass also relies upon the DiscoveryListener interface:

public interface DiscoveryListener extends EventListener {
public void discovered(DiscoveryEvent e);
public void discarded(DiscoveryEvent e);

}

Theseclasses andinterfaces hide the details of the underlying protocol implemen-

tation, but provide enough information to the programmerto be flexible and
useful.

DU.2.1. The LookupDiscovery Class

The net. jini.discovery.LookupDiscoveryclass encapsulates the operation of
the multicast discovery protocols, including the automatic switch from use of the
multicast request protocol to the multicast announcementprotocol. Each instance
of the LookupDiscovery class must behave as if it operated independently ofall
other instances. The semantics of the methods onthisclass are:

@ The constructor takes a set of groups in which the caller is interested as
parameter. This set is represented as an array, none of whose elements may
be nul. The empty set is represented by an emptyarray, and no set (indi-
cating that all lookup services should be discovered) is indicated by a nu11
reference. The constructor may throw a java.io. IOExceptionif a problem
occurs in starting discovery.

@ The addDiscoveryListener method addsa listenerto the set of objects lis-
tening for discovery events. Oncea listener is registered, it is notified ofall
lookup servicesthat have been discoveredto date, andis then notified as new
lookup services are discovered or existing lookup services are discarded.

@ The removeDiscoveryListener method removesalistener from the set of
objects that are listening for discovery events.

127

Ti

128

THE JINI DISCOVERY UTILITIES SPECIFICATION

@ The discard method removes a particular lookup service from the set that
is considered to already have been discovered. This allows the lookup ser-
vice to be discovered again; it is intended as a mechanism for programmers
to removestale entries from thesetsothat they do not have to keep trying to
contact lookup services that no longerexist.

@ The getGroups methodreturns the set of groupsthat this LookupDiscovery
object is attempting to discover. If the setis empty, this method returns the
empty array, andif there is noset, it returns the nu11 reference.

¢ The terminate method ends discovery. After this method has been called,
no new lookupservices will be discovered.

Discovery usually starts as soon as an instanceofthis class is created and ends
i either when the instanceis finalized prior to garbage collection, or when the
i terminate methodis called. However, if the emptysetis passed to the construc-

tor, discovery will notbe started until the setG roups methodis called with either
no set or a non-empty set.

DU.2.2 Useful Constants

to the setGroups method toindicate that all lookup services within range should
be discovered. The NO_GROUPSconstantindicatesthat no groups should be discov-
ered (implying that discovery should be postponed until another call to
setGroups).

If the getGroups method returns the empty array, that array is guaranteed to
be referentially equal to the NO_GROUPSconstant (thatis, it can be tested for equal-
ity using the == operator).

7
:

| The ALL_GROUPSconstant can be passed to the LookupDiscove ry constructor and
DU.2.3_ Changing the Setof Groups to Discover

Programmers may modify the set of groups to be discovered on the fiy, using the
methods described below. In each case, a set of groups is represented as an array
of strings, none of whose elements may be nu11. The emptyset is denoted by the
empty array, and noset (indicating thatall lookup services should be discovered)
is indicated by nu11. Duplicated group namesare ignored.

¢ The setGroups method changesthe set of groups to be discovered to the
given set (or to noset, if indicated).

128

115

(Ad peedLee|
Sfz]
°
°
=)
<7)
Lae|
<A

129

+

116 THE DiscoveryEvent CLASS

@ The addGroups method augments the set of groups to be discovered. This
method throws a java. lang. UnsupportedOperati onException if there is
no set to be augmented.

@ The removeGroups method removes members from the set of groups to be
discovered. No exception is thrown if an attempt is made to remove a group
that is not currently in the set to be discovered. This method throws a
java. 1lang.UnsupportedOperation Exceptionif there is no set to remove
members from.

Whengroups are removed from the set to be discovered, any already discov-
ered lookupservices that are no longer members of any of the groups to be discov-
ered are removed from the set maintained by the particular LookupDiscovery
object in use, andalllisteners are notified that they have been discarded.

If groups are addedto the set to be discovered, the multicast request protocol
is used to discover lookupservices for those groups. If there are no responses to
multicast requests, the LookupDiscovery object switches over to listening for
multicast announcementsfor those groups.

Since calling either the setGroups or addGroups method may result in the
multicast request protocol being started afresh, either method may throw a
java.io. IOExceptionif a problem occursin starting the protocol.

If any of the setGroups, addGroups, or removeGroups methods is called
after the terminate method has been called, the invocation will throw a
java. lang.111legalStateException.

DU.2.4 The DiscoveryEvent Class

The net. jini.discovery.DiscoveryEvent class encapsulates the information
madeavailable by the multicast discovery protocols. The sole new method of the
DiscoveryEvent class is getRegistrars, whichreturns an array of lookup ser-
vice registrars. The getSource method returns the LookupDiscovery object that
originated the given event.

DU.2.5 The DiscoveryListener Interface

Objects that wish to register for notifications of multicast discovery events must
implement the net.jini .discovery.DiscoveryListener interface. Its
discovered method is called whenever new lookupservicesare discovered, with
an event containing a set of discovered lookup services represented as an array.

129

130

THE JIN] DISCOVERY UTILITIES SPECIFICATION

The discarded methodis called whenever previously discovered lookup services
have been discarded by the originating LookupDiscovery object; the event con-
tains a set of discarded lookup services represented as an array. An event is deliv-
ered to listeners whenever the discard methodis called on a LookupDiscovery
object, and also if a call to either its removeGroups or setGroups method results
in lookup services being discarded.

DU.2.6 Security and Multicast Discovery

When a LookupDiscovery object is created, the creator must have permission
either to attempt discovery of each group specified in the set to discover, or to
attempt discovery of all groups if the set is nu11. This is also true for the
addGroups and setGroups methods on the LookupDiscoveryclass. If appropri-
ate permissions have not been granted, the constructor and these methods will
throw a java. lang.SecurityException.

Discovery permissions are controlled in security policy files using the
net. jini.discovery.DiscoveryPermission permission.

package net.jini.discovery;

import java.security.Permission;
import java.io.Serializable;

public final class DiscoveryPermission extends Permission
implements Serializable

{

public DiscoveryPermission(String group) {...}
public DiscoveryPermission(String group, String actions)

{...}

}

The actions parameter is ignored. The following examples illustrate the use of this
permission:

permission net.jini.discovery.DiscoveryPermission "*";
All groups mu

permission net.jini.discovery.DiscoveryPermission ;

Only the “public” group

permission net.jini.discovery.DiscoveryPermission "foo";
The group “foo”

117

i;
Ss

4
=: 4a)
aeie)
G5a}

130

131

 ss

118 SERIALIZED FORMS

permission net.jini.discovery.Di scoveryPermission "*.sun.com";
Groups ending in “.sun.com”

Each declaration grants permission to attempt discovery of one name. A name
does not necessarily correspond to a single group:

@ The name * grants permission to attempt discovery ofall groups.
¢ A name beginning with *. grants permission to attempt discovery of all

groups that match the remainder of that name; for example, the name
"* example.org” would match a group named “foonly.example.org”
and also a group named "sf.ca.example.org".

The empty name "" denotes the public group.
@ All other namesare treated as individual groups and must match exactly.

A restriction of the Java Development Kit (JDK) 1.2 security model requires
that appropriate net .jini.discovery.DiscoveryPe rmission be granted to the
Jini software codebaseitself, in addition to any codebases that may use Jini soft-
wareclasses.

DU.2.7 Serialized Forms

Class serialVersionUID Serialized Fields

DiscoveryEvent 5280303374696501479L ServiceRegistrar[] regs

DiscoveryPermission|—3036978025008149170L none

elitist

131

132

119

DU.3 Protocol Utilities

Te utilities we will now present are intended for use by implementors of mul-
ticast discovery utilities, and for others who might need to exercise more control
over their usage of the Jini Discovery protocols.

DU.3.1 Marshalling Multicast Requests

The OutgoingMulticastRequestclass provides facilities for marshalling multi-
cast discovery requests into a form suitable for transmission over a network. This
class is useful for programmers who are implementing the componentof one of
the discovery protocols thatsits on a device that wishes to join a djinn.

package net.jini.discovery;

S
S

7
—=——
=is
oO
iF] ABCAa«

import net.jini.core. lookup. ServicelID;

import java.io.IOException;
import java.net.DatagramPacket;

public class OutgoingMulticastRequest {

public static DatagramPacket[]

marshal(int port, String[] groups, ServiceID[] heard)
throws I0Exception {..}

}

This class cannot be instantiated, and its sole method, marshal, is static. This
methodtakes as parameterthe port of the multicast response service to advertise,
along with a set of groups to look for and a set of service IDs from whichthis sys-
tem has already heard. The latter two arguments are represented as arrays. No
parameter may be nu11, and the arrays must have no membersthat are nu11, and
none should be duplicated (implementations are not required to check for dupli-
cated members).

This method returns an array of DatagramPacket objects; this array contains
at least one member, and will contain more if the request is not small enough tofit

132

133

120 UNMARSHALLING MULTICAST REQUESTS

in a single packet. Each such object has beenfully initialized; it contains a multi-
cast request as payload andis ready to send over the network.

In the event of error, this method may throw a java.io. IOException if mar-
shalling fails. In some instances the exception thrown may be a more specific sub-
class ofthis exception.

DU.3.2. Unmarshalling Multicast Requests

The IncomingMulticastRequest class provides facilities for unmarshalling mul-
ticast discovery requests into a form in which the individual parameters of the
request may be easily accessed. This class is useful for programmers who are
implementing the componentof one of the discovery protocols that works with a
lookup service implementation within a djinn.

package net.jini.discovery;

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.InetAddress;

import net.jini.core. lookup.ServicelID;

public class IncomingMulticastRequest {

public IncomingMulticastRequest(DatagramPacket dgram)
throws IOException {...}

public InetAddress getAddress() {...}

public int getPort() {..}

public String[] getGroupsQ {...}
public ServiceID[] getServiceIDs() {..}

}

This class may be instantiated using a java.net .DatagramPacket. The payload
of the DatagramPacketis assumedto contain nothing but the marshalled discov-
ery request. If the marshalled request is corrupt, a java.io.IOException or a
java. lang.ClassNotFoundException will be thrown. In somesuch instances a

more specific subclass of either exception may be thrown that will give more
detailed information.

The methods of this class are mostly self-explanatory.

@ The getAddress method returns the IP address of the host to which the

caller should respond.

133

134

THE JIN] DISCOVERY UTILITIES SPECIFICATION 121

@ The getPort method returns the TCP port numberon that host to which the
caller should connect.

@ The getGroups method returns the groups in which the originatorofthis
request is interested. The array returned by this method may beof zero
length; noneofits fields will be nu11; and items may or may not be dupli-
cated.

@ The getServiceIDs method returns the set of service IDs of lookupser-
vices from whichthe originator has already heard. The array returned by this
method may have length equal to zero, but none of its fields will be nu11,
and items may or may not be duplicated.

@ The equals method returns true if both instances have the same address,

port, groups, and service IDs.

DU.3.3. Marshalling Multicast Announcements

The OutgoingMulticastAnnouncementclass encapsulates details of announcing
a lookupservice.

package net.jini.discovery; —
S
S

import java.io. IOException;

import java.net.DatagramPacket;
import net.jini.core. lookup.ServiceID;

import net.jini.core.discovery.LookupLocator;

sono) PRCICINSCG
public class OutgoingMulticastAnnouncement {

public static DatagramPacket[]

marshal(ServiceID id, LookupLocator loc,

lenuteroeeaynemensiantreteeeay
String[] groups) i

throws IOException {..}

| }

The sole methodof this class, marshal, is static. It takes as parameters the service i
ID of the lookup service being advertised, the locator via which unicast discovery
of that lookup service may be performed, and the names of the groups of which
that service is a member. If a problem occurs with marshalling the request, a
java.net. IOException will be thrown.

This method returns an array of DatagramPacket objects, each of which has
been initialized such that it is ready to be multicast.

134

135

122 UNMARSHALLING MULTICAST ANNOUNCEMENTS

DU.3.4 Unmarshalling Multicast Announcements

The IncomingMulticastAnnouncement class permits access to the fields of a
multicast anncuncement datagram that has been received.

package net.jini-.discovery;

import java.io. IOException;
import java.net .DatagramPacket;
import net.jini .core. lookup.ServicelD;
import net.jini .core.discovery.LookupLocator,;

public class IncomingMulticastAnnouncement {
public IncomingMulti castAnnouncement (DatagramPacket p)

throws I0Exception {..}

public ServiceID getServi ceID(Q) {..}
public LookupLocator getLocator() {..}

i public String[] getGroups() {..}
}

i) The constructor takes a datagram packet as argument. Ifit cannot decode the con-
tents of the datagram packet, it throws a java. 1 ang.ClassNotFoundException
or a java.io. 10Exception. The getServiceID method returns the service ID of
the originator. The getLocator methodreturns the locator via which unicast dis-
covery of the originator may be performed. The getGroups method returns the
groups represented by the originator, the array returned by this method may be
nu71, will not be empty, and will contain no nu11 elements. Elements may or may
not be duplicated. The equals methodreturns true if both instances have the same
service ID.

DU.3.5 Easy Access to Constants

The Constants class provides easy access to some constants used during the
lookup discovery process.

package net.jini.discovery;

import java.net. InetAddress;
import java.net. UnknownHostException;

public class Constants {

135

136

THE JINI DISCOVERY UTILITIES SPECIFICATION 133

public static final short discoveryPort = 4160;
public static final InetAddress getRequestAddress()

throws UnknownHostException {...}

public static final InetAddress getAnnouncementAddress ()
throws UnknownHostException {...}

}

The value of the discoveryPort variable is the UDP port number over which the
multicast request and announcement protocols operate, and also the TCP port
number over which the unicast discovery protocol operates by default.

The getRequestAddress and getAnnouncementAddress methodsreturn the
addresses of the multicast groups over which multicast request and multicast
announcement take place, respectively. These methods may throw a
java.net .UnknownHostException if called in a circumstance under which mul-
ticast address resolution is not permitted.

DU.3.6 Marshalling Unicast Discovery Requests

The OutgoingUnicastRequest class provides facilities for marshalling unicast
discovery requests into a form suitable for transmission over a network. iS)

is

-_-
=o—e
conal
©
vlpackage net.jini.discovery; AJIAOISIGYhd

import java.io.IOException;
import java.io.OutputStream;

public class OutgoingUnicastRequest f

public static void marshal (QutputStream str)
throws IOException {..}

}

This class cannot be instantiated, and its only public methodisstatic.

DU.3.7 Unmarshalling Unicast Discovery Requests

The IncomingUnicastRequest class providesfacilities for unmarshalling unicast |
discovery requests. | |

|
package net. jini.discovery;

import java.io.InputStream;

136

137

>

124 MARSHALLING UNICAST DISCOVERY RESPONSES T

import java.io. IOException;

public class IncomingUnicastRequest {
public IncomingUnicastRequest(InputStream str)

throws IOException {..}
3

Since, underthe currentversion of the unicast discovery protocol, no usefulinfor-
mationis transmitted in a request, this class has nopublic methods.

DU.3.8 Marshalling Unicast Discovery Responses

The OutgoingUnicastResponseclass provides marshalling facilities for unicast
discovery responses.

package net.jini.discovery;

import java.ia.IOException;
import java.ia.OutputStream;

import net.jini.core. lookup.ServiceRegistrar;

public class QutgoingUnicastResponse {

public static void marshal (OutputStream s,
ServiceRegistrar reg
String[] groups)

throws IOException {..}
}

This class may not be instantiated. The sole static method, marshal, writes the
given registrar proxy to the given outputstream, and indicates thatit is a member
of the given set of groups (which is represented as an array which should have no
nul] members, but may contain duplicates). If a problem occurs during marshal-
ling or writing, it throws a java.io. IOException.

DU.3.9 Unmarshalling Unicast Discovery Responses

The IncomingUnicastResponseclass allows a caller to unmarshal a unicast dis-
covery response.

137

138

package net.jini.discovery;
jmport java.io. IOException;
import java.io.InputStream:;

import net.jini.core. lookup.ServiceRegistrar;

public class IncomingUnicastResponse {
rE public Incomi ngUnicastResponse(InputStream s)

i throws IOException, ClassNotFoundException {..}
; public ServiceRegistrar getRegistrar() {..}

| public String[] getGroups() {..}f

}

The constructor unmarshals a response from an input stream, and throws an
exception if the reading or the unmarshalling fails. The getRegistrar method
returns the unmarshalledregistrar proxy. The getGroups methodreturns the set of
groups of which the given lookup service is a member. This set is represented as

| an array of strings, with no nul] members (duplicate members may appear, how-
ever). The equals method returnstrue if both instances have the same registrar.

138

125

i—)
eis

om,os=.—
i-o—i
i")
wn PRCININS(G|

139

THE JINI ENTRY SPECIFICATION defines the notion ofan entry, whichis a typed
collection of objects that can be stored and matched against with simple,

exact-match rules. As you will see, the lookup service
uses entries as attributes, so the matching rulesfor

an entries are the rulesfor matching a single lookup
attribute.

Su

INT

139

140

The Jini Specification

EN.1 Entries and Templates

Ewrees are designed to be used in distributed algorithms for which exact-
match lookup semantics are useful. An entry is a typed set of objects, each of
which maybe tested for exact match with a template.

EN.1.1 Operations

A service that uses entries will support methodsthat let you use entry objects. In
this document we will use the term “operation” for such methods. There are three
types of operations:

@ Store operations—operations that store one or more entries, usually for
future matches.

¢@ Match operations—operations that search for entries that match one or more
templates.

@ Fetch operations—operations that return one or more entries.

It is possible for a single method to provide more than one of the operation
types. For example, consider a method that returns an entry that matches a given
template. Such a method can belogically split into two operation types (match
and fetch), so any statements madein this specification abouteither operation type
would apply to the appropriate part of the method’s behavior.

140

127

seTRESSLIETE

|
i

141

128 Entry

EN.1.2 Entry

An entry is a typed group of object references represented by a class that imple-
ments the marker interface net. jini.core.entry.Entry. Two different entries
have the sametypeif andonly if they are of the sameclass.

package net.jini.core.entry;

public interface Entry extends java.io.Serializable { }

Forthe purposeofthis specification, the term “field” when applied to an entry
will mean fields that are public, non-static, non-transient, and non-final. Other
fields of an entry are not affected by entry operations. In particular, when an entry
object is created andfilled in by a fetch operation, only the public non-static, non-
transient, and non-final fields of the entry are set. Otherfields are not affected,
except as set by the class’s no-arg constructor.

Each Entry class must provide a public no-arg constructor. Entries may not
havefields of primitive type (int, boolean,etc.), although the objects they refer
to may have primitive fields and non-public fields. For any type of operation, an
attempt to use a malformedentry type that has primitive fields or does not have a
no-arg constructor throws 111egalArgumentException.

EN.1.3 Serializing Entry Objects

Entry objects are typically not stored directly by an entry-using service (one that
supports one or more entry operations). The client of the service will typically
turn an Entry into an implementation-specific representation that includesaseri-
alized form of the entry’s class and eachofthe entry’s fields. (This transformation
is typically not explicit but is done by a client-side proxy object for the remote ser-
vice.) It is these implementation-specific forms that are typically stored and
retrieved from the service. These forms are notdirectly visible to the client, but
their existence has important effects on the operational contract. The semantics of
this section apply to all operation types, whether the above assumptionsare true or
not for a particular service.

Each entry hasits fields serialized separately. In other words, if twofields of
the entry refer to the sameobject(directly or indirectly), the serialized form thatis
compared for each field will have a separate copy of that object. This is true only
of different fields of an entry; if an object graph ofa particular field refers to the
same object twice, the graph will be serialized and reconstituted with a single
copy ofthat object.

141

142

THE JINI ENTRY SPECIFICATION

A fetch operation returns an entry that has been created by using the entry
e’s no-arg constructor, and whosefields have beenfilled in from suchaserial-

ized form. Thus,if two fields, directly or indirectly, refer to the same underlying
object, the fetched entry will have independent copies of the original underlying
object.

This behavior, although not obvious, is both logically correct and practically
advantageous. Logically, the fields can refer to object graphs, but the entry is not
itself a graph of objects and so should not be reconstructed as one. An entry (rela-
tive to the service) is a set of separate fields, not a unit of its own. Fromapractical
standpoint, viewing an entry as a single graph of objects requires a matching ser-
yice to parse and understandthe serialized form, because the ordering of objects
in the written entry will be different from that in a template that can match it.

Theserialized form for each field is a java. rmi.MarshalledObject object
instance, which provides an equals method that conformsto the above matching
semantics for a field. MarshalledObject also attaches a codebase to class
descriptions in the serialized form, so classes written as part of an entry can be
downloaded by a client when they are retrieved from the service. In a store opera-
tion, the class of the entry type itself is also written with a MarshalledObject,
ensuring that it, too, may be downloaded from a codebase.

EN.1.4 UnusableEntryException

A net.jini.core.entry.UnusableEntryException will be thrown if the seri-

alized fields of an entry being fetched cannot be deserialized for any reason:

package net.jini.core.entry;

public class UnusableEntryException extends Exception {
public Entry partialEntry;

public String[] unusableFields;
public Throwable[] nestedExceptions;

public UnusableEntryException(Entry partial,

String[] badFields, Throwable[] exceptions) {...}

public UnusableEntryException(Throwable e) {..}
}

The partialEntry field will refer to an entry of the type that would have been
fetched, with all the usable fields filled in. Fields whose deserialization caused an

exception will be nu11 and have their nameslisted in the unusableFieldsstring
array. For each element in unusableFields the corresponding element of

129

142

143

130 UnusableEntryException

nestedExceptions will refer to the exception that caused thefield to fail deseri-
alization.

If the retrieved entry is corrupt in such a wayas to prevent even an attempt at
field deserialization (such as being unable to load the exact class for the entry),
partialEntry and unusableFields will both be nul, and nestedExceptions
will be a single elementarray with the offending exception.

The kinds of exceptions that can show up in nestedExceptionsare:

@ ClassNotFoundException: The class of an object that was serialized can-
not be found.

@ InstantiationException: An object could not becreated for a given type.

@ I1legalAccessException: Thefield in the entry waseither inaccessible or
final.

@ java.io.ObjectStreamException: The field could not be deserialized
because of object stream problems.

@ java.rmi.RemoteException: When a RemoteException is the nested
exception of an UnusableEntryException, it means that a remote refer-
encein the entry’s state is no longer valid (more below). Remote errors asso-
ciated with a method that is a fetch operation (such as being unable to
contact a remote server) are not reflected by UnusableEntryException but
in some other way defined by the method (typically by the method throwing
RemoteException itself).

Generally speaking, storing a remote reference to a non-persistent remote
object in an entry is risky. Because entries are stored in serialized form, entries
stored in an entry-basedservice will typically not participate in the garbage col-
lection that keeps such references valid. However,if the referenceis notpersistent
because the referenced server does not export persistent references, that garbage
collection is the only wayto ensure the ongoing validity of a remote reference. Ifa
field contains a reference to a non-persistent remote object, either directly or indi-
rectly, it is possible that the reference will no longer be valid whenit is deserial-
ized. In such a casethe client code must decide whether to removethe entry from
the entry-fetching service, to store the entry back into the service, or to leave the
service asit is.

In the 1.2 Java DevelopmentKit (JDK) software, activatable object references
fit this need for persistent references. If you donot use a persistent type, you will
have to handle the above problems with remote references. You may choose
instead to have yourentries store information sufficient to look up the current ref-
erencerather than putting actual references into the entry.

143

144

THE JINI ENTRY SPECIFICATION

EN.1.5 Templates and Matching

Match operations use entry objects of a given type, whosefields can either have
values (referencesto objects) or wildcards (nu11 references). When considering a
template T as a potential match againstan entry E, fields with values in T must be
matched exactly by the value in the samefield of E. Wildcards in T match any
value in the samefieldof E.

The type of £ mustbethat of T or be a subtype ofthe type of T, in which case
all fields added by the subtype are considered to be wildcards. This enables a tem-
plate to match entries of any of its subtypes. Ifthe matching is coupled with a
fetch operation, the fetched entry must havethe type of E.

The values of two fields match if MarshalledObject.equals returns true
for their Marshal ledObject instances. This will happenif the bytes generated by
their serialized form match, ignoring differences of serialization stream imple-
mentation (such as blocking factors for buffering). Class version differences that
change the bytes generated byserialization will cause objects not to match. Nei-
ther entries nor their fields are matched using the Object. equals method or any
other form of type-specific value matching.

You can store an entry that has a nul1-valued field, but you cannot match
explicitly on a nul value in that field, because nu11 signals a wildcard field. If
you havea field in an entry that may be variously nu11 ornot, you can setthe field
to nu11 in your entry. If you need to write templates that distinguish betweenset
and unset values for that field, you can (for example) add a Booleanfield that
indicates whetherthe field is set and use a Boolean value for that field in tem-
plates.

Anentry that has no wildcardsis a valid template.

EN.1.6 Serialized Form

Class serjalVersionUID Serialized Fields

UnusableEntryException —2199083666668626172L all public fields

144

ioe

145

THE JINI ENTRY UTILITIES SPECIFICATION defines exactly oneutility: the
AbstractEntryclass, which is a useful—but not required—superclass

for Entry classes. This class uses the standard
propertiesfor Entry classes to provide default
implementations ofcommon methods, such as equals
and hashCode.

INT

:

3

1
i4

EU.1

Earen:
match loo

which ma

their semz

When

This speci

EU.1.1

The clas:

Entry the

packi

publ

145

146

The Jini Entry Utilities

Specification

| EU.1 Entry Utilities

Ewrees are designed to be used in distributed algorithms for which exact-
match lookup semantics are useful. An entry is a typed set of objects, each of

| which may be tested for exact match with a template. The details of entries and
their semantics are discussed in the Jini Entry Specification.

When designing entries, certain tasks are commonly done in similar ways.
This specification defines a utility class for such commontasks.

EU.1.1 AbstractEntry-

The class net.jini.entry.AbstractEntry is a specific implementation of
Entrythat provides useful implementations of equals, hashCode, and toString:

package net.jini.entry;

public abstract class AbstractEntry implements Entry {
public boolean equals(Object o) {..}
public int hashCode() {..}

public String toString() {..}
public static boolean equals(Entry el, Entry e2) {..}
public static int hashCode(Entry entry) {..}
public static String toString(Entry entry) {..}

1

133 |

146

147

134 SERIALIZED FORM

The static method AbstractEntry.equals returns true if and only if the two
entries are of the sameclass and for eachfield F, the two objects’ values for F are
either both nu11 or the invocation of equals on one object’s value for F with the
other object’s value for F as its parameter returns true. The static method
hashCode returns zero XOR the hashCode invoked on each non-nu11 field of the

entry. The static method toStringreturnsa string that contains each field’s name
and value. The non-static methods equals, hashCode, and toString return a

result equivalent to invoking the corresponding static method with this as the
first argument.

EU.1.2 Serialized Form

Class serial VersionUID Serialized Fields

AbstractEntry 5071868345060424804L none

147

148

148

149

THE JINI DISTRIBUTED LEASING SPECIFICATIONdefines the leasing programming
model used throughoutthe Jini architecture to prevent the leakage of

resources. Creating a lease is a one-bid negotiation in
which the grantor of the lease decides the final answer.

aN Leases allow a grantor ofa resource to give an upper
bound on howlongit is willing to hold onto resources

ant? that may have no interested users. As you will see, the
lookup service uses leases to ensure the timeliness of

each registered service.

INT

TI

LE.1

Te pu
and unify
tions. Thi

tem and u

use to the

when acci

a lease, at

in everyd:
both the g
a detailing
approprial

There

the only t
grammer’
intervals,
meant to

available |

LE.1.1

Distribute

there are :

149

150

ee SS Se me

The Jini Distributed Leasing
Specification

oes:

LE.1 Introduction

Tuc purpose of the leasing interfaces defined in this document is to simplify
and unify a particular style of programming for distributed systems and applica-
tions. This style, in which a resource is offered by one objectin a distributed sys-
tem and usedbya secondobjectin that system,is based on a notion of granting a
use to the resource fora certain period of timethatis negotiated by the twoobjects
whenaccessto the resourceisfirst requested andgiven. Such a grant is known as
a lease, and is meantto be similar to the notion of a lease used in everydaylife. As
in everydaylife, the negotiation of a lease entails responsibilities and duties for
both the grantorofthe lease and the holder of the lease. Part ofthis specification is
a detailing of these responsibilities and duties, as well as a discussion of whenitis
appropriate to use a lease in offering a distributed service,

There is no requirementthat the leasing notions defined in this document be
the only time-based mechanism used in software. Leases are a part of the pro-
grammer’s arsenal, and other time-based techniques such as time-to-live, ping
intervals, and keep-alives can be useful in particular situations. Leasing is not
meant to replace these other techniques, but rather to enhance the set of tools
available to the programmerofdistributed systems.

LE.1.1 Leasing and Distributed Systems

Distributed systems differ fundamentally from non-distributed systems in that
there are situations in which different parts of a cooperating group are unable to

150

151

138 LEASING AND DISTRIBUTED SYSTEMS

communicate, either because one of the members of the group has crashed or
because the connection between the members in the group hasfailed. This partial
failure can happen at any time and can be intermittent or long-lasting.

The possibility of partial failure greatly complicates the construction of dis-
tributed systems in which components ofthe system that are not co-located pro-
vide resources or other services to each other. The programming model thatis
used most often in non-distributed computing, in which resources and services are
granted until explicitly freed or given up, is opento failures caused by the inability
to successfully make the explicit calls that cancel the use of the resource or sys-
tem. Failure of this sort of system can result in resources never being freed, in ser-
vices being delivered long after the recipient of the service has forgotten that the
service was requested, and in resource consumption that can grow without
bounds.

To avoid these problems, we introduce the notion of a lease. Rather than
granting services or resourcesuntil that grant has been explicitly cancelled by the
party to whom the grant was made, a leased resource or service grant is time
based. Whenthe time for the lease has expired, the service ends or the resourceis
freed. The time period for the lease is determined whentheleaseis first granted,
using a request/response form of negotiation between the party wanting the lease
and the lease grantor. Leases may be renewedor cancelled before they expire by
the holder of the lease, but in the case of no action (or in the case of a network or

participant failure), the lease simply expires. When a lease expires, both the
holder of the lease and the grantor of the lease know that the service or resource
has been reclaimed.

Althoughthe notion ofa lease wasoriginally broughtinto the system as a way
of dealing with partial failure, the technique is also useful for dealing with another
problem faced by distributed systems. Distributed systems tend to be long-lived.
In addition, since distributed systems are often providing resources that are shared
by numerousclients in an uncoordinated fashion, such systems are much more
difficult to shut down for maintenance purposes than systemsthat reside on a sin-
gle machine.

As a consequenceofthis, distributed systems, especially those with persistent
state, are prone to accumulations of outdated and unwanted information. The
accumulation of such information, which can include objects stored for future use
and subsequently forgotten, may be slow, but the trend is always upward. Over the
(comparatively) long life of a distributed system, such unwanted information can
grow without upper bound, taking up resources and compromising the perfor-
manceof the overall system.

A standard way of dealing with these problemsis to consider the cleanup of
unused resources to be a system administration task. When such resources begin
to get scarce, a human administrator is given the task of finding resources thatare

151

152

THE JINI DISTRIBUTED LEASING SPECIFICATION

no longer needed and deleting them. This solution, however, is error prone (since
the administrator is often required to judge the use of a resource with no actual
evidence about whether or not the resource is being used) and tends to happen
only when resource consumption has gotten out of hand.

When such resources are leased, however, this accumulation of out-of-date

information does not occur, and resorting to manual cleanup methods is not
needed. Information or resources that are leased remain in the system only as long
as the lease for that information or resource is renewed. Thus information thatis

forgotten (through either program error, inadvertence, or system crash) will be
deleted after some finite time. Note that this is not the same as garbage collection
(although it is related in that it has to do with freeing up resources), since the
information that is leased is not of the sort that would generally have any active
reference to it. Rather, this is informationthat is stored for (possible) later retrieval
but is no longer of anyinterest to the party that originally stored the information.

This model of persistence is one that requires renewed proof of interest to
maintain the persistence. Information is kept (and resources used) only as long as
someoneclaimsthat the information is of interest (a claim that is shown by the act
of renewing the lease). The interval for which the resource may be consumed
withouta proofof interest can vary, and is subject to negotiation by the party stor-
ing the information (which has expectations for how long it will be interested in
the information) and the party in which the information is stored (which has
requirements on howlongit is willing to store something without proof that some
party is interested).

The notion of persistence of information is not one of storing the information
on stable storage (although it encompassesthat notion). Persistent information, in
this case, includes any information that hasalifetime longer than thelifetime of
the process in which the request for storage originates.

Leasing also allows a form of programming in which the entity that reserves
the information or resource is not the same as the entity that makes use of the
information or resource. In such a model, a resource can be reserved (leased) by
an entity on the expectation that some other entity will use the resource over some
period of time. Rather than having to check backto see if the resource is used (or
freed), a leased version of such a reservation allowsthe entity granted the lease to
forget about the resource. Whether used or not, the resource will be freed when
the lease has expired.

Leasing such information storage introduces a programming paradigm that is
an extension of the model used by most programmers today. The current modelis
essentially one ofinfinite leasing, with information being removed from persistent
stores only by the active deletion of such information. Databases and filesystems
are perhaps the best known exemplars of such stores—both hold any information
placed in them until the information is explicitly deleted by someuser or program:

152

139

e
ei

ridtitics)

YCRRR

153

140 GOALS AND REQUIREMENTS

LE.1.2 Goals and Requirements

The requirements ofthis set of interfaces are:

¢ To provide a simple way of indicating time-based resource allocation or
reservation

¢ To provide a uniform way of renewing and cancelling leases

¢ To show commonpatternsofuse for interfaces using this set of interfaces

The goals of this documentare:

@ To describe the notion of a lease, and show someofthe applications ofthat
notion in distributed computing

¢ To show the wayin whichthis notion is used in a distributed system

+ Toindicate appropriate uses of the notion in applications built to run in a dis-
tributed environment

LE.1.3. Dependencies

This documentrelies on the following specifications:

@ Java Remote Method Invocation Specification

153

154

—- a

THE JINI DISTRIBUTED LEASING SPECIFICATION

LE.2 Basic Leasing Interfaces

Tx basic concept of leasing is that access to a resource or the request for some
action is not open ended with respect to time, but granted only for someparticular
interval. In general (although not always), this interval is determined by some
negotiation between the object asking for the leased resource (which wewill call
the lease holder) and the object granting access for some period (which wewill
call the lease grantor).

In its most general form, a lease is used to associate a mutually agreed upon
time interval with an agreement reached by two objects. The kinds of agreements
that can be leased are varied and can include such things as agreements on access
to an object (references), agreements for taking future action (event notifications),
agreements to supplying persistent storage (file systems, JavaSpaces systems), or
agreements to advertise availability (naming or directory services).

While it is possible that a lease can be given that provides exclusive access to
some resource, this is not required with the notion of leasing being offered here.
Agreements that provide access to resources that are intrinsically sharable can
have multiple concurrent lease holders. Other resources might decide to grant
only exclusive leases, combining the notion of leasing with a concurrency control
mechanism.

LE.2.1 Characteristics of a Lease

There are a numberof characteristics that are important for understanding what a
lease is and whenit is appropriate to use one. Among these characteristics are:

@ A lease is a time period during which the grantor of the lease ensures (to the
best of the grantor’s abilities) that the holder of the lease will have access to
some resource. The time period of the lease can be determined solely by the
lease grantor, or can be a period of time that is negotiated between the holder
ofthe lease and the grantor of the lease. Duration negotiation need not be
multi-round; it often suffices for the requestor to indicate the time desired
and the grantor to return the actual time of grant. >

ae
ise o—

i=]

154

155

a————————————————__

BASIC OPERATIONS THE JINI DI!

42

@ During the period of a lease, a lease can be cancelled by the entity holding 1
the lease. Such a cancellation allows the grantor of the lease to clean up any \
resources associated with the lease and obliges the grantor ofthe lease to not
take any action involving the lease holderthat was part of the agreementthat .
was the subject ofthe lease.

@ A lease holder can request that a lease be renewed. The renewal period can
be for a differenttime than theoriginallease, andis also subject to negotia-
tion with the grantor of the lease. The grantor may renew the lease for the
requested period or a shorter period or may refuse to renew the leaseatall.
A renewedleaseis just like any otherlease, andis itself subjectto renewal.

@ A lease can expire. If a lease period has elapsed with no renewals, the lease
and any resources associated with the lease may be freed by thentor and the holder are obliged to act as though lease and

}

expires, Parti
jease grantor. Both the grathe leased agreementis no longer in force. The expiration of a lease is sim- that allocJar to the cancellation of a lease, except that no communicationis necessary ing the
between the lease holder and the lease grantor. i the lease,The:

Leasing is part of a programming model for building reliable distributed Thefirst,applications. In particular, leasing is a way of ensuring that a uniform response to such a lefailure, forgetting, or disinterest is guaranteed, allowing agreements to be made freed whthat can then be forgotten without the possibility of unbounded resource con- to indicasumption, and providing a flexible mechanism for duration-based agreement. should s1If th:

i a lease 0

LE.2.2 Basic Operations : period o‘ A s¢

The Lease interfacedefinesa type of object that is returnedto the lease holder and : ized fortissued by the lease grantor. Thebasic interface may be extended in waysthat offer : resent ttmore functionality, but the basic interfaceis: ; value DUoo { durationpackage net.jini.core . lease; | Shen tr:an RMI

import java. rmi.RemoteException; synchro
, ration Wpublic interface Lease { . the begi
Jong FOREVER = Long .MAX_VALUE; 4 The
Jong ANY = -1; 4 indicateq ing the

int DURATION = 1; 4 sented
23int ABSOLUTE

155

