Design of Analog CMOS Integrated Circuits

Find authenticated court documents without watermarks at docketalarm.com.

McGraw-Hill Higher Education 👷

A Division of The McGraw Hill Companies

DESIGN OF ANALOG CMOS INTEGRATED CIRCUITS

Published by McGraw-Hill, an imprint of The McGraw-Hill companies, Inc. 1221 Avenue of the Americas, New York, NY, 10020. Copyright © 2001, by The McGraw-Hill Companies, Inc. All rights reserved. no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning. Some Ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1234567890 FGR/FGR 909876543210

ISBN 0-07-539035-5

Vice president/Editor-in-chief: Kevin T. Kane Publisher: Thomas Casson Sponsoring editor: Catherine Fields Developmental editor: Michelle L. Flomenhoft Senior marketing manager: John T. Wannemacher Project manager: Jim Labeots Production supervisor: Gina Hangos Senior designer: Kierd Cunningham New media: Phillip Meek Compositor: Interactive Composition Corporation Typeface: 10/12 Times Roman Printer: Quebecor Printing Book Company/Fairfield

Library of Congress Cataloging-in-Publication Data

Razavi, Behzad.

Design of analog CMOS integrated circuits / Behzad Razavi. p. cm. ISBN 0-07-238032-2 (alk. paper) 1. Linear integrated circuits-Design and construction. 2. Metal oxide semiconductors,

Complementary. I. Title.

TK7874.654. R39 2001 621.39'732-dc21

00-044789

Find authenticated court documents without watermarks at docketalarm.com.

tage Amplifiers

Sec. 3.5 Cascode Stage

The output impedance is simply equal to

$$R_{out} = \{ [1 + (g_m + g_{mb})r_O]R_P + r_O \} \| R_D.$$
(3.116)

3.5 Cascode Stage

As mentioned in Example 3.10 the input signal of a common-gate stage may be a current. We also know that a transistor in a common-source arrangement converts a voltage signal to a current signal. The cascade of a CS stage and a CG stage is called a "cascode"¹ topology, providing many useful properties. Fig. 3.50 shows the basic configuration: M_1 generates a small-signal drain current proportional to V_{in} and M_2 simply routes the current to R_D .

Figure 3.50 Cascode stage.

We call M_1 the input device and M_2 the cascode device. Note that in this example, M_1 and M_2 carry equal currents. As we describe the attributes of the circuit in this section, many advantages of the cascode topology over a simple common-source stage become evident.

First, let us study the bias conditions of the cascode. For M_1 to operate in saturation, $V_X \ge V_{in} - V_{TH1}$. If M_1 and M_2 are both in saturation, then V_X is determined primarily by

(3.114)

t re-

rent rather than a tput impedance of

4) to write

(3.115)

ΟCKE

¹The term *cascode* is believed to be the acronym for "cascaded triodes," possibly invented in vacuum tube days.

 $V_b: V_X = V_b - V_{GS2}$. Thus, $V_b - V_{GS2} \ge V_{in} - V_{TH1}$ and hence $V_b > V_{in} + V_{GS2} - V_{TH1}$ (Fig. 3.51). For M_2 to be saturated, $V_{out} \ge V_b - V_{TH2}$, that is, $V_{out} \ge V_{in} - V_{TH1} + V_{GS2} - V_{TH2}$

 V_{TH2} if V_b is chosen to place M_1 at the edge of saturation. Consequently, the minimum output level for which both transistors operate in saturation is equal to the overdrive voltage of M_1 plus that of M_2 . In other words, addition of M_2 to the circuit reduces the output voltage swing by at least the overdrive voltage of M_2 . We also say M_2 is "stacked" on top of M_1 .

We now analyze the large-signal behavior of the cascode stage shown in Fig. 3.50 as V_{in} goes from zero to V_{DD} . For $V_{in} \leq V_{TH1}$, M_1 and M_2 are off, $V_{out} = V_{DD}$, and $V_X \approx V_b - V_{TH2}$ (if subthreshold conduction is neglected) (Fig. 3.52). As V_{in} exceeds V_{TH1} , M_1 begins to draw current, and V_{out} drops. Since I_{D2} increases, V_{GS2} must increase

Figure 3.52 Input-output characteristic of a cascode stage.

as well, causing V_X to fall. As V_{in} assumes sufficiently large values, two effects occur: (1) V_X drops below V_{in} by V_{TH1} , forcing M_1 into the triode region; (2) V_{out} drops below V_b by V_{TH2} , driving M_2 into the triode region. Depending on the device dimensions and the values of R_D and V_b , one effect may occur before the other. For example, if V_b is relatively low, M_1 may enter the triode region first. Note that if M_2 goes into deep triode region, V_X and V_{out} become nearly equal.

Let us now consider the small-signal characteristics of a cascode stage, assuming both transistors operate in saturation. If $\lambda = 0$, the voltage gain is equal to that of a common-source stage because the drain current produced by the input device must flow through the cascode device. Illustrated in the equivalent circuit of Fig. 3.53, this result is independent of the transconductance and body effect of M_2 .

e Amplifiers

 $V_{GS2} - V_{TH1}$ $_{H1} + V_{GS2} - V_{TH1}$

the minimum rdrive voltage es the output acked" on top

Fig. 3.50 as $= V_{DD}$, and s V_{in} exceeds must increase

cteris-

ects occur: (1) rops below V_b nsions and the V_b is relatively ode region, V_X

assuming both of a commonow through the is independent

OCKE

Example 3.14

Calculate the voltage gain of the circuit shown in Fig. 3.54 if $\lambda = 0$.

Solution

The small-signal drain current of M_1 , $g_{m1}V_{in}$, is divided between R_P and the impedance seen looking into the source of M_2 , $1/(g_{m2} + g_{mb2})$. Thus, the current flowing through M_2 is

$$I_{D2} = g_{m1} V_{in} \frac{(g_{m2} + g_{mb2}) R_P}{1 + (g_{m2} + g_{mb2}) R_P}.$$
(3.117)

The voltage gain is therefore given by

$$A_{\nu} = -\frac{g_{m1}(g_{m2} + g_{mb2})R_P R_D}{1 + (g_{m2} + g_{mb2})R_P}.$$
(3.118)

An important property of the cascode structure is its high output impedance. As illustrated in Fig. 3.55, for calculation of R_{out} , the circuit can be viewed as a common-source stage with a degeneration resistor equal to r_{01} . Thus, from (3.60),

$$R_{out} = [1 + (g_{m2} + g_{mb2})r_{O2}]r_{O1} + r_{O2}, \qquad (3.119)$$

Find authenticated court documents without watermarks at docketalarm.com.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

