
10/30/2018 HTTP/1.1: Method Definitions

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html 1/5

part of Hypertext Transfer Protocol -- HTTP/1.1
RFC 2616 Fielding, et al.

9 Method Definitions

The set of common methods for HTTP/1.1 is defined below. Although this set can be expanded, additional
methods cannot be assumed to share the same semantics for separately extended clients and servers.

The Host request-header field (section 14.23) MUST accompany all HTTP/1.1 requests.

9.1 Safe and Idempotent Methods

9.1.1 Safe Methods

Implementors should be aware that the software represents the user in their interactions over the Internet, and
should be careful to allow the user to be aware of any actions they might take which may have an unexpected
significance to themselves or others.

In particular, the convention has been established that the GET and HEAD methods SHOULD NOT have the
significance of taking an action other than retrieval. These methods ought to be considered "safe". This allows
user agents to represent other methods, such as POST, PUT and DELETE, in a special way, so that the user is
made aware of the fact that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not generate side-effects as a result of performing a
GET request; in fact, some dynamic resources consider that a feature. The important distinction here is that the
user did not request the side-effects, so therefore cannot be held accountable for them.

9.1.2 Idempotent Methods

Methods can also have the property of "idempotence" in that (aside from error or expiration issues) the side-
effects of N > 0 identical requests is the same as for a single request. The methods GET, HEAD, PUT and
DELETE share this property. Also, the methods OPTIONS and TRACE SHOULD NOT have side effects, and
so are inherently idempotent.

However, it is possible that a sequence of several requests is non- idempotent, even if all of the methods
executed in that sequence are idempotent. (A sequence is idempotent if a single execution of the entire sequence
always yields a result that is not changed by a reexecution of all, or part, of that sequence.) For example, a
sequence is non-idempotent if its result depends on a value that is later modified in the same sequence.

A sequence that never has side effects is idempotent, by definition (provided that no concurrent operations are
being executed on the same set of resources).

9.2 OPTIONS

The OPTIONS method represents a request for information about the communication options available on the
request/response chain identified by the Request-URI. This method allows the client to determine the options
and/or requirements associated with a resource, or the capabilities of a server, without implying a resource action
or initiating a resource retrieval.

Responses to this method are not cacheable.

Canon Exhibit 1030f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.23
https://www.docketalarm.com/

10/30/2018 HTTP/1.1: Method Definitions

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html 2/5

If the OPTIONS request includes an entity-body (as indicated by the presence of Content-Length or Transfer-
Encoding), then the media type MUST be indicated by a Content-Type field. Although this specification does
not define any use for such a body, future extensions to HTTP might use the OPTIONS body to make more
detailed queries on the server. A server that does not support such an extension MAY discard the request body.

If the Request-URI is an asterisk ("*"), the OPTIONS request is intended to apply to the server in general rather
than to a specific resource. Since a server's communication options typically depend on the resource, the "*"
request is only useful as a "ping" or "no-op" type of method; it does nothing beyond allowing the client to test
the capabilities of the server. For example, this can be used to test a proxy for HTTP/1.1 compliance (or lack
thereof).

If the Request-URI is not an asterisk, the OPTIONS request applies only to the options that are available when
communicating with that resource.

A 200 response SHOULD include any header fields that indicate optional features implemented by the server
and applicable to that resource (e.g., Allow), possibly including extensions not defined by this specification. The
response body, if any, SHOULD also include information about the communication options. The format for such
a

body is not defined by this specification, but might be defined by future extensions to HTTP. Content negotiation
MAY be used to select the appropriate response format. If no response body is included, the response MUST
include a Content-Length field with a field-value of "0".

The Max-Forwards request-header field MAY be used to target a specific proxy in the request chain. When a
proxy receives an OPTIONS request on an absoluteURI for which request forwarding is permitted, the proxy
MUST check for a Max-Forwards field. If the Max-Forwards field-value is zero ("0"), the proxy MUST NOT
forward the message; instead, the proxy SHOULD respond with its own communication options. If the Max-
Forwards field-value is an integer greater than zero, the proxy MUST decrement the field-value when it
forwards the request. If no Max-Forwards field is present in the request, then the forwarded request MUST NOT
include a Max-Forwards field.

9.3 GET

The GET method means retrieve whatever information (in the form of an entity) is identified by the Request-
URI. If the Request-URI refers to a data-producing process, it is the produced data which shall be returned as the
entity in the response and not the source text of the process, unless that text happens to be the output of the
process.

The semantics of the GET method change to a "conditional GET" if the request message includes an If-
Modified-Since, If-Unmodified-Since, If-Match, If-None-Match, or If-Range header field. A conditional GET
method requests that the entity be transferred only under the circumstances described by the conditional header
field(s). The conditional GET method is intended to reduce unnecessary network usage by allowing cached
entities to be refreshed without requiring multiple requests or transferring data already held by the client.

The semantics of the GET method change to a "partial GET" if the request message includes a Range header
field. A partial GET requests that only part of the entity be transferred, as described in section 14.35. The partial
GET method is intended to reduce unnecessary network usage by allowing partially-retrieved entities to be
completed without transferring data already held by the client.

The response to a GET request is cacheable if and only if it meets the requirements for HTTP caching described
in section 13.

See section 15.1.3 for security considerations when used for forms.

Canon Exhibit 1030f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.docketalarm.com/

10/30/2018 HTTP/1.1: Method Definitions

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html 3/5

9.4 HEAD

The HEAD method is identical to GET except that the server MUST NOT return a message-body in the
response. The metainformation contained in the HTTP headers in response to a HEAD request SHOULD be
identical to the information sent in response to a GET request. This method can be used for obtaining
metainformation about the entity implied by the request without transferring the entity-body itself. This method
is often used for testing hypertext links for validity, accessibility, and recent modification.

The response to a HEAD request MAY be cacheable in the sense that the information contained in the response
MAY be used to update a previously cached entity from that resource. If the new field values indicate that the
cached entity differs from the current entity (as would be indicated by a change in Content-Length, Content-
MD5, ETag or Last-Modified), then the cache MUST treat the cache entry as stale.

9.5 POST

The POST method is used to request that the origin server accept the entity enclosed in the request as a new
subordinate of the resource identified by the Request-URI in the Request-Line. POST is designed to allow a
uniform method to cover the following functions:

 - Annotation of existing resources;

 - Posting a message to a bulletin board, newsgroup, mailing list,
 or similar group of articles;

 - Providing a block of data, such as the result of submitting a
 form, to a data-handling process;

 - Extending a database through an append operation.

The actual function performed by the POST method is determined by the server and is usually dependent on the
Request-URI. The posted entity is subordinate to that URI in the same way that a file is subordinate to a
directory containing it, a news article is subordinate to a newsgroup to which it is posted, or a record is
subordinate to a database.

The action performed by the POST method might not result in a resource that can be identified by a URI. In this
case, either 200 (OK) or 204 (No Content) is the appropriate response status, depending on whether or not the
response includes an entity that describes the result.

If a resource has been created on the origin server, the response SHOULD be 201 (Created) and contain an entity
which describes the status of the request and refers to the new resource, and a Location header (see section
14.30).

Responses to this method are not cacheable, unless the response includes appropriate Cache-Control or Expires
header fields. However, the 303 (See Other) response can be used to direct the user agent to retrieve a cacheable
resource.

POST requests MUST obey the message transmission requirements set out in section 8.2.

See section 15.1.3 for security considerations.

9.6 PUT

The PUT method requests that the enclosed entity be stored under the supplied Request-URI. If the Request-URI
refers to an already existing resource, the enclosed entity SHOULD be considered as a modified version of the
one residing on the origin server. If the Request-URI does not point to an existing resource, and that URI is
capable of being defined as a new resource by the requesting user agent, the origin server can create the resource

Canon Exhibit 1030f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.docketalarm.com/

10/30/2018 HTTP/1.1: Method Definitions

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html 4/5

with that URI. If a new resource is created, the origin server MUST inform the user agent via the 201 (Created)
response. If an existing resource is modified, either the 200 (OK) or 204 (No Content) response codes SHOULD
be sent to indicate successful completion of the request. If the resource could not be created or modified with the
Request-URI, an appropriate error response SHOULD be given that reflects the nature of the problem. The
recipient of the entity MUST NOT ignore any Content-* (e.g. Content-Range) headers that it does not
understand or implement and MUST return a 501 (Not Implemented) response in such cases.

If the request passes through a cache and the Request-URI identifies one or more currently cached entities, those
entries SHOULD be treated as stale. Responses to this method are not cacheable.

The fundamental difference between the POST and PUT requests is reflected in the different meaning of the
Request-URI. The URI in a POST request identifies the resource that will handle the enclosed entity. That
resource might be a data-accepting process, a gateway to some other protocol, or a separate entity that accepts
annotations. In contrast, the URI in a PUT request identifies the entity enclosed with the request -- the user agent
knows what URI is intended and the server MUST NOT attempt to apply the request to some other resource. If
the server desires that the request be applied to a different URI,

it MUST send a 301 (Moved Permanently) response; the user agent MAY then make its own decision regarding
whether or not to redirect the request.

A single resource MAY be identified by many different URIs. For example, an article might have a URI for
identifying "the current version" which is separate from the URI identifying each particular version. In this case,
a PUT request on a general URI might result in several other URIs being defined by the origin server.

HTTP/1.1 does not define how a PUT method affects the state of an origin server.

PUT requests MUST obey the message transmission requirements set out in section 8.2.

Unless otherwise specified for a particular entity-header, the entity-headers in the PUT request SHOULD be
applied to the resource created or modified by the PUT.

9.7 DELETE

The DELETE method requests that the origin server delete the resource identified by the Request-URI. This
method MAY be overridden by human intervention (or other means) on the origin server. The client cannot be
guaranteed that the operation has been carried out, even if the status code returned from the origin server
indicates that the action has been completed successfully. However, the server SHOULD NOT indicate success
unless, at the time the response is given, it intends to delete the resource or move it to an inaccessible location.

A successful response SHOULD be 200 (OK) if the response includes an entity describing the status, 202
(Accepted) if the action has not yet been enacted, or 204 (No Content) if the action has been enacted but the
response does not include an entity.

If the request passes through a cache and the Request-URI identifies one or more currently cached entities, those
entries SHOULD be treated as stale. Responses to this method are not cacheable.

9.8 TRACE

The TRACE method is used to invoke a remote, application-layer loop- back of the request message. The final
recipient of the request SHOULD reflect the message received back to the client as the entity-body of a 200
(OK) response. The final recipient is either the

origin server or the first proxy or gateway to receive a Max-Forwards value of zero (0) in the request (see
section 14.31). A TRACE request MUST NOT include an entity.

Canon Exhibit 1030f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

10/30/2018 HTTP/1.1: Method Definitions

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html 5/5

TRACE allows the client to see what is being received at the other end of the request chain and use that data for
testing or diagnostic information. The value of the Via header field (section 14.45) is of particular interest, since
it acts as a trace of the request chain. Use of the Max-Forwards header field allows the client to limit the length
of the request chain, which is useful for testing a chain of proxies forwarding messages in an infinite loop.

If the request is valid, the response SHOULD contain the entire request message in the entity-body, with a
Content-Type of "message/http". Responses to this method MUST NOT be cached.

9.9 CONNECT

This specification reserves the method name CONNECT for use with a proxy that can dynamically switch to
being a tunnel (e.g. SSL tunneling [44]).

Canon Exhibit 1030f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.45
https://www.w3.org/Protocols/rfc2616/rfc2616-sec17.html#bib44
https://www.docketalarm.com/

