
171

JINI LOOKUP DISCOVERY SERVICE, version 1.1 161

After acquiring references to the targeted lookup services, the lookup discovery

service would pass those references to the entity, providing the entity with access

to the services registered with each lookup service. In this way, the entity partici-

pates in the multicast discovery protocols through a proxy relationship with the

lookup discovery service, gaining access not only to lookup services outside of its

own range, but also to all of the services registered with those lookup services.

Note that the scenario just described does not come without restrictions. For

the lookup discovery service to be able to “link” an entity with lookup services in

the way just described, the lookup discovery service must be registered with a

lookup service having a location that either is known to the entity or is within the

multicast radius of the entity. Furthermore, the lookup discovery service must be

running on a host that is located within the multicast radius of the lookup services

with which the entity wishes to be linked. That is, the entity must be able to find

the lookup discovery service, and the lookup discovery service must be able to

find the other desired lookup services.

To address these scenarios, the lookup discovery service participates in both

the multicast discovery protocols and the unicast discovery protocol on behalf of a

registered discovering entity or client. This service will listen for and process mul-

ticast announcement packets from Jini lookup services and will, until successful,

repeatedly attempt to discover specific lookup services that the client is interested

in finding.

Upon discovery of a previously undiscovered lookup service of interest, the

lookup discovery service notifies all entities that have requested the discovery of

that lookup service that such an event has occurred. The event mechanism

employed by the lookup discovery service satisfies the requirements defined in

The Jini Technology Core Platform Specification, “Distributed Events ”. Note that

the entity that receives such an event notification does not have to be the client of

the lookup discovery service; it may be a third-party event-handling service such

as an event mailbox service. Once a client is notified of the discovery of a lookup

service, it is left to the client to define the semantics of how it interacts with that

lookup service. For example, the client may wish to join the lookup service, sim-

ply query it for other useful services, or both.

The lookup discovery service must be implemented as a well-behaved Jini

service and must comply with all of the policies embodied in the Jini technology

programming model. Thus, the resources granted by this service are leased, and

implementations of this service must adhere to the distributed leasing model for

Jini technology as defined in The Jini Technology Core Platform Specification,

“Distributed Leasing”. That is, the lookup discovery service will grant its ser-

vices for only a limited period of time without an active expression of continuing

interest on the part of the client.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

171

172

162

LD.1.1 Goals and Requirements

UWRODUCHON

The requirements of the interfaces and classes specified in this document are:

0 To define a service that not only employs the Jini discovery protocols to dis-

cover, by way of either group association or LookupLocator association,

lookup services in which clients have registered interest, but that also noti-

fies its clients of the discovery of those lookup services

0 To provide this service in such a way that it can be used by entities that deac-
tivate

0 To comply with the policies of the Jini technology programming model

The goals of this document are as follows:

9 To describe the lookup discovery service

9 To provide guidance in the use and deployment of services that implement

the Lookuij scove ryServ1' ce interface and related classes and interfaces

LD.1.2 Other Types

The types defined in the specification of the Lookuij scove rySe rv1' ce interface

are in the net. j 1' m' .dj scove ry package. The following object types may be ref-

erenced in this chapter. Whenever referenced, these object types will be refer-

enced in unqualified form:

net.

net.

net.

net.

net.

net.

net.

net.

net.

java

java

java

java

java

jjnj.
.core.

.core.

core.

.core.

.lookup.ServjceRegjstrar

.djscovery.DjscoveryEvent

.discovery.DjscoveryGroupManagement

.djscovery.Djscoverijstener

jjnj

jjnj

jjnj.

jjnj

jjnj.

jjnj

jjni

jjnj

COPE

COPE

.discovery.LookupLocator

event . EventReg‘i stratj on

event. RemoteEventLi stener

lease. Lease

lookup . Se rv1' ceID

.jo.IOExceptjon

.rmi.Marsha11ed0bject

.rmj.NoSuchObjectExceptjon

.rmi.RemoteExceptjon

.utj1.Map

172

173

JINI LOOKUP DISCOVERY SERVICE, version 1.1 163

LD.2 The Interface

THE LookupDi scove ryServi ce interface defines the service—referred to as the
lookup discovery service—previously introduced in this specification. Through

this interface, other Jini services and clients may request that discovery processing

be performed on their behalf. This interface belongs to the net. ji ni .di scove ry

package, and any service implementing this interface must comply with the defi-

nition of a Jini service. This interface is not a remote interface; each implementa-

tion of this service exports a front-end proxy object that implements this interface

local to the client, using an implementation-specific protocol to communicate with

the actual remote server (the back end). All of the proxy methods must obey nor-

mal Java Remote Method Invocation (RMI) remote interface semantics except

where explicitly noted. Two proxy objects are equal (using the equals method) if

they are proxies for the same lookup discovery service.

The one method defined in this interface throws a RemoteExcepti on , and

requires only the default serialization semantics so that this interface can be

implemented directly using Java RMI.

package net .ji ni .di scovery;

public interface LookupDiscoveryService {

public LookupDiscoveryRegistration registerC

String[] groups,

LookupLocatorE] locators,

RemoteEventListener listener,

MarshalledObject handback,

long leaseDuration)

throws RemoteException;

}

When requesting a registration with the lookup discovery service, the client

indicates the lookup services it is interested in discovering by submitting two sets

of objects. Each set may contain zero or more elements. One set consists of the

names of the groups whose members are lookup services the client wishes to be

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

173

174

164 THE INTERFACE

discovered. The other set consists of LookupLocator objects, each corresponding

to a specific lookup service the client wishes to be discovered.

For each successful registration the lookup discovery service will manage

both the set of group names and the set of locators submitted. These sets will be

referred to as the managed set ofgroups and the managed set oflocators, respec-

tively. The managed set of groups associated with a particular registration con-

tains the names of the groups whose members consist of lookup services that the

client wishes to be discovered through multicast discovery. Similarly, the man-

aged set of locators contains instances of LookupLocator', each corresponding to

a specific lookup service that the client wishes to be discovered through unicast

discovery. The references to the lookup services that have been discovered will be

maintained in a set referred to as the managed set oflookup services (or managed

set of registrars).

Note that when the general term managed set is used, it should be clear from

the context whether groups, locators, or registrars are being discussed. Further-

more, when the term group discovery or locator discovery is used, it should be

taken to mean, respectively, the employment of either the multicast discovery pro-

tocols or the unicast discovery protocol to discover lookup services that corre-

spond to members of the appropriate managed set.

174

175

JINI LOOKUP DISCOVERY SERVICE, version 1.1 165

LD.3 The Semantics

TO employ the lookup discovery service to perform discovery on its behalf, a
client must first register with the lookup discovery service by invoking the

register method defined in the LookupDiscove ryServi ce interface. The

register method is the only method specified by this interface.

LD.3.1 Registration Semantics

An invocation of the regi ste r method produces an object—referred to as a regis—

tration object (or simply a registration)—that is mutable. That is, the registration

object contains methods through which it may be changed. Because registrations

are mutable, each invocation of the register method produces a new registration

object. Thus, the register method is not idempotent.

The register method may throw a RemoteExcepti on. Typically, this excep-
tion occurs when there is a communication failure between the client and the

lookup discovery service. When this exception does occur, the registration may or

may not have been successful.

Each registration with the lookup discovery service is persistent across

restarts (or crashes) of the lookup discovery service until the lease on the registra-

tion expires or is cancelled.

The register method takes the following as arguments:

o A St ri ng array, none ofwhose elements may be null, consisting of zero or

more elements in which each element is the name of a group whose mem-

bers are lookup services that the client requesting the registration wishes to

be discovered Via group discovery

9 An array of LookupLocator objects, none of whose elements may be null,

consisting of zero or more elements in which each element corresponds to a

specific lookup service that the client requesting the registration wishes to

be discovered Via locator discovery

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

175

176

166 THE SEMANTICS

9 A non-null RemoteEventLi stener object which specifies the entity that

will receive events notifying the registration when a lookup service of inter-
est is discovered or discarded

0 Either null or an instance of Marshal l edObj ect specifying an object that

will be included in the notification event that the lookup discovery service

sends to the registered listener

o A long value representing the amount of time (in milliseconds) for which

the resources of the lookup discovery service are being requested

The register method returns an object that implements the

LookupDi scove ryReg1' st ration interface. It is through this returned object that

the client interacts with the lookup discovery service. This interaction includes

activities such as group and locator management, state retrieval, and discarding

discovered but unavailable lookup services so that they are eligible for rediscovery

(see Section LD.4.l, “The LookupDiscoveryRegistration Interface” for definition

of the semantics of the methods of the LookupDiscoveryRegi stration inter-

face).

The groups argument takes a String array, none of whose elements may be

null. Although it is acceptable to specify null (which is equivalent to

D1' scove ryG roupManagement .ALL_GROU PS) for the groups argument itself, if the

argument contains one or more null elements, a Null Po1' nter‘Exception is

thrown. If the value is null, the lookup discovery service will attempt to discover

all lookup services located within the multicast radius of the host on which the

lookup discovery service is running. If an empty array (equivalent to

D1" scove ryGroupManagement . N0_GROUPS) is passed in, then no group discovery

will be performed for the associated registration until the client, through the regis-

tration’s setG roups or addG roups method, changes the contents of the managed

set of groups to either a non-empty set of group names or null.

The locators argument takes an array of LookupLocator' objects, none of

whose elements may be null. If either the empty array or null is passed in as the

locators argument, then no locator discovery will be performed for the associ-

ated registration until the client, through the registration’s addLocators or

setLocators method, changes the managed set of locators to a non-empty set of

locators. Although it is acceptable to input null for the locators argument itself,

if the argument contains one or more null elements, a Null Poi nterExcepti on is
thrown.

If the register method is invoked with a set of group names and a set of

locators in which either or both sets contain duplicate elements (where duplicate

locators are determined by LookupLocator . equal 5), the invocation is equivalent

to constructing this class with no duplicates in either set.

176

177

JINI LOOKUP DISCOVERY SERVICE, version 1.1 167

Upon discovery of a lookup service, through either group discovery or locator

discovery, the lookup discovery service will send an event, referred to as a discov—

ered event, to the listener associated with the registration produced by the call to

regi ste r.

After initial discovery of a lookup service, the lookup discovery service will

continue to monitor the group membership state reflected in the multicast

announcements from that lookup service. Depending on the lookup service’s cur-

rent group membership, the lookup discovery service may send either a discov-
ered event or an event referred to as a discarded event. The conditions under

which either a discovered event or a discarded event will be sent are as follows:

9 If the multicast announcements from an already discovered lookup service

indicate that the lookup service is a member of a new group, a discovered

event will be sent to the listener of each registration that has yet to receive a

discovered event for that lookup service, but that has previously registered

interest in the new group.

9 If the multicast announcements from an already discovered lookup service

indicate that the lookup service has changed its group membership in such a

way that the lookup service is no longer of interest to one or more ofthe reg-

istrations that previously registered interest in the groups of that lookup ser-

vice, a discarded event will be sent to the listener of each such registration.

This type of discarded event is sometimes referred to as apassive no—interest

discarded event (“passive” because the lookup discovery service, rather than

the client, initiated the discard process).

9 If the multicast announcements from an already discovered lookup service

are no longer being received, a discarded event will be sent to the listener of

each registration that previously registered interest in one or more of that

lookup service’s member groups. This type of discarded event is sometimes

referred to as a passive communication discarded event.

It is important to note that when the lookup discovery service (passively) dis-

cards a lookup service, due to group membership changes (lost interest) or

unavailability (communication failure), the discarded event will be sent to only

the listeners of those registrations that have previously requested that the affected

lookup service be discovered through at least group discovery. That is, the listener

of any registration that is interested in the affected lookup service through only

locator discovery will not be sent either type of passive discarded event. This is

because the semantics of the lookup discovery service assume that since the cli-

ent, through the registration request, expressed no interest in discovering the

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

177

178

168 THE SEMANTICS

lookup service through its group membership, the client must also have no interest

in any group-related changes in that lookup service’s state.

A more detailed discussion of the event semantics of the lookup discovery

service is presented in Section LD.3.2, “Event Semantics”.

A valid parameter must be passed as the 11' stener argument of the regi ster

method. Ifa null value is input to this argument, then a Null Poi nterException

will be thrown and the registration fails.

Note that if an indefinite exception occurs while attempting to send a discov-

ered or discarded event to a registration’s listener, the lookup discovery service

will continue to attempt to send the event until either the event is successfiilly

delivered or the client’s lease on that registration expires. If an

Unknown EventExcepti on, a bad object exception, or a bad invocation exception

occurs while attempting to send a discovered or discarded event to a registration’s

listener, the lookup discovery service assumes that the client is in an unknown,

possibly corrupt state, and will cancel the lease on the registration and clear the

registration from its managed set.

The state information maintained by the lookup discovery service includes the

set of group names, locators, and listeners submitted by each client through each

invocation of the register method, with duplicates eliminated. This state infor-

mation contains no knowledge of the clients that register with the lookup discov-

ery service. Thus, there is no requirement that a client identify itself during the

registration process.

LD.3.2 Event Semantics

For each registration created by the lookup discovery service, an event identifier

will be generated that uniquely maps the registration to the listener as well as to

the registration’s managed set of groups and managed set of locators. This event

identifier is returned as a part of the returned registration object and is unique

across all other active registrations with the lookup discovery service.

Whenever the lookup discovery service finds a lookup service matching the

discovery criteria of one or more of its registrations, it sends an instance of

RemoteDi scove ryEvent (a subclass of RemoteEvent) to the listener correspond-

ing to each such registration. The event sent to each listener will contain the

appropriate event identifier.

Once an event signaling the discovery (by group or locator) of a desired

lookup service has been sent, no other discovered events for that lookup service

will be sent to a registration’s listener until the lookup service is discarded (either

actively, by the client through the registration, or passively by the lookup discov-

ery service) and then rediscovered. Note that more information about what it

178

179

JINI LOOKUP DISCOVERY SERVICE, version 1.1 169

means for a lookup service to be discarded is presented in Section LD.3.1, “Regis-

tration Semantics” and the section of this specification titled “Discarding Lookup
Services”.

If, between the time a lookup service is discarded and the time it is rediscov-

ered, a new registration is requested having parameters indicating interest in that

lookup service, upon rediscovery of the lookup service an event will also be sent

to that new registration’s listener.

The sequence numbers for a given event identifier are strictly increasing (as

defined in The Jini Technology Core Platform Specification, “Distributed

Events ”), which means that when any two such successive events have sequence

numbers that differ by only a value of 1, then no events have been missed. On the

other hand, when the set of received events is viewed in order, if the difference

between the sequence numbers of two successive events is greater than 1, then one

or more events may or may not have been missed. For example, a difference

greater than 1 could occur if the lookup discovery service crashes, even if no
events are lost because of the crash. When two such successive events have

sequence numbers whose difference is greater than 1, there is said to be a gap
between the events.

When a gap occurs between events, the local state (on the client) related to the

discovered lookup services may or may not fall out of sync with the correspond-

ing remote state maintained by the lookup discovery service. For example, if the

gap corresponds to a missed event representing the (initial) discovery of a targeted

lookup service, the remote state will reflect this discovery, whereas the client’s

local state will not. To allow clients to identify and correct such a situation, each

registration object provides a method that returns a set consisting of the proxies to

the lookup services that have been discovered for that registration. With this infor-

mation the client can update its local state.

When requesting a registration with the lookup discovery service, a client

may also supply (as a parameter to the register method) a reference to an object,

wrapped in a MarshalledObject, referred to as a handback. When the lookup

discovery service sends an event to a registration’s listener, the event will also

contain a reference to this handback object. The lookup discovery service will not

change the handback object. That is, the handback object contained in the event

sent by the lookup discovery service will be identical to the handback object regis-

tered by the client with the event mechanism.

The semantics of the object input to the handback argument are left to each

client to define, although null may be input to this argument. The role of the

handback object in the remote event mechanism is detailed in The Jini Technol-

ogy Core Platform Specification, “Distributed Events

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

179

180

170 THE SEMANTICS

LD.3.3 Leasing Semantics

When a client registers with the lookup discovery service, it is effectively request-

ing a lease on the resources provided by that service. The initial duration of the

lease granted to a client by the lookup discovery service will be less than or equal

to the requested duration reflected in the value input to the 1easeDu ration argu-

ment. That value must be positive, Lease. FOREVER, or Lease.ANY. If any other

value is input to this argument, an IllegalArgumentException will be thrown.

The client may obtain a reference to the Lease object granted by the lookup dis-

covery service through the associated registration returned by the service (see

Section LD.4.1, “The LookupDiscoveryRegistration Interface”).

180

181

JINI LOOKUP DISCOVERY SERVICE, version 1.1 1 71

LD.4 Supporting Interfaces and Classes

THE lookup discovery service depends on the LookupDi scove ryRegi strati on
interface, as well as on the concrete classes RemoteDi scove ryEvent and

LookupUnmarshalException.

LD.4.1 The LookupDi scove ryRegi stration Interface

When a client requests a registration with the lookup discovery service, an object

thatinqflenunusthe LookupDiscoveryRegistration uneflhceisreuuned.H:fi

through this interface that the client manages the state of its registration with the

lookup discovery service.

package net .ji ni .di scovery;

public interface LookupDiscoveryRegistration {

public EventRegistration getEventRegistrationC);

public Lease getLeaseC);

public ServiceRegistrarE] getRegistrarsC)

throws LookupUnmarshalException,

RemoteException;

public String[] getGroupsC) throws RemoteException;

public LookupLocatorE] getLocatorsC)

throws RemoteException;

public void addGroupsCStringE] groups)

throws RemoteException;

public void setGroupsCStringE] groups)

throws RemoteException;

public void removeGroupsCStringE] groups)

throws RemoteException;

public void addLocators(LookupLocator[] locators)

throws RemoteException;

public void setLocators(LookupLocator[] locators)

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

181

182

172 SUPPORTING INTERFA CES AND CLASSES

throws RemoteException;

public void removeLocators(LookupLocator[] locators)

throws RemoteException;

public void discardCServiceRegistrar registrar)

throws RemoteException;

}

As with the LookupDi scove ryServ1' ce interface, the

LookupDi scove ryReg1' st rati on interface is not a remote interface. Each imple-

mentation of the lookup discovery service exports proxy objects that implement

this interface local to the client, using an implementation-specific protocol to

communicate with the actual remote server. All of the proxy methods must obey

normal Java RMI remote interface semantics except where explicitly noted. Two

proxy objects are equal (using the equals method) if they are proxies for the same

registration created by the same lookup discovery service.

The discovery facility of the lookup discovery service, together with its event

mechanism, make up the set of resources clients register to use. Because the

resources of the lookup discovery service are leased, access is granted for only a

limited period of time unless there is an active expression of continuing interest on

the part of the client.

When a client uses the registration process to request that a lookup discovery

service perform discovery of a set of desired lookup services, the client is also

registered with the service’s event mechanism. Because of this implicit registra-

tion with the event mechanism, the lookup discovery service “bundles” both

resources under a single lease. When that lease expires, both discovery processing

and event notifications will cease with respect to the registration that resulted from

the client’s request.

To facilitate lease management and event handling, the

LookupDi scove ryReg1' st ration interface defines methods that allow the client

to retrieve its event registration information. Additional methods defined by this

interface allow the client to retrieve references to the registration’s currently dis-

covered lookup services, as well as to modify the managed sets of groups and
locators.

If the client’s registration with the lookup discovery service has expired or

been cancelled, then any invocation of a remote method defined in this interface

will result in a NoSuchObj ectExcepti on. That is, any method that communicates

with the back end server of the lookup discovery service will throw a

NoSuchObjectExcepti on if the registration on which the method is invoked no

longer exists. Note that if a client receives a NoSuchObj ectExcepti on as a result

of an invocation of such a method, although the client can assume that the regis-

182

183

JINI LOOKUP DISCO VERY SERVICE, version 1.1

tration no longer exists, the client cannot assume that the lookup discovery service

itself no longer exists.

Each remote method of this interface may throw a RemoteExcepti on. Typi-

cally, this exception occurs when there is a communication failure between the

client and the lookup discovery service. Whenever this exception occurs as a

result of the invocation of one of these methods, the method may or may not have

completed its processing successfully.

LD.4.1.1 The Semantics

The methods defined by this interface are organized into a set of accessor meth-

ods, a set of group mutator methods, a set of locator mutator methods, and the

discard method. Through the accessor methods, various elements of a registra-

tion’s state can be retrieved. The mutator methods provide a mechanism for

changing the set of groups and locators to be discovered for the registration.

Through the discard method, a particular lookup service may be made eligible

for rediscovery.

The Accessor Methods

The getEventRegi stration method returns an EventRegi stration object that

encapsulates the information the client needs to identify a notification sent by the

lookup discovery service to the registration’s listener. This method is not remote

and takes no arguments.

The getLease method returns the Lease object that controls a client’s regis-

tration with the lookup discovery service. It is through the Lease object returned

by this method that the client requests the renewal or cancellation of the registra-

tion with the lookup discovery service. This method is not remote and takes no

arguments.

Note that the object returned by the getEventRegistration method also

provides a getLease method. That method and the getLease method defined by

the LookupDi scove ryRegi strati on interface both return the same Lease object.

The getLease method defined here is provided as a convenience to avoid the indi-

rection associated with the getLease method on the EventRegi st rati on object,

as well as to avoid the overhead of making two method calls.

The getRegi st rars method returns a set of instances of the

Se rvi ceRegist rar interface. Each element in the set is a proxy to one of the

lookup services that have already been discovered for the registration. Addition-

ally, each element in the set will be unique with respect to all other elements in the

set, as determined by the equals method provided by each element. The contents

173

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

183

184

174 SUPPORTING INTERFA CES AND CLASSES

of the set make up the current remote state of the set of lookup services discovered

for the registration. This method returns a new array on each invocation.

This method can be used to maintain synchronization between the set of dis-

covered lookup services making up a registration’s local state on the client and the

registration’s corresponding remote state maintained by the lookup discovery ser-

vice. The local state can become unsynchronized with the remote state when a gap

occurs in the events received by the registration’s listener.

According to the event semantics of the lookup discovery service, if there is

no gap between two sequence numbers, no events have been missed and the states

remain synchronized with each other; if there is a gap, events may or may not

have been missed. Therefore, upon finding gaps in the sequence of events, the cli-

ent can invoke this method and use the returned information to synchronize the
local state with the remote state.

To construct its return set, the getRegi st rars method retrieves from the

lookup discovery service the set of lookup service proxies making up the registra-

tion’s current remote state. When the lookup discovery service sends the

requested set of proxies, the set is sent as a set of marshalled instances of the

Se rv1' ceRegi st rar interface. The lookup discovery service individually marshals

each proxy in the set that it sends because if it were not to do so, any deserializa-

tion failure on the set would result in an IOExcepti on, and failure would be

declared for the whole deserialization process, not just an individual element. This

would mean that all elements of the set sent by the lookup discovery service—

even those that were successfully deserialized—would be unavailable to the cli-

ent. Individually marshalling each element in the set minimizes the “all or noth-

ing” aspect of the deserialization process, allowing the client to recover those

proxies that can be successfully unmarshalled and to proceed with processing that

might not be possible otherwise.

When constructing the return set, this method attempts to unmarshal each ele-

ment of the set of marshalled proxy objects sent by the lookup discovery service.

When failure occurs while attempting to unmarshal any of those elements, this

method throws an exception of type LookupUnmarsha'l Exception (described

later). It is through the contents of that exception that the client can recover any

available proxies and perform error handling related to the unavailable proxies.

The contents of the LookupUnmarshal Exception provide the client with the fol-

lowing useful information:

o The knowledge that a problem has occurred while unmarshalling at least one

of the elements making up the remote state of the registration’s discovered

lookup services

184

185

JINI LOOKUP DISCOVERY SERVICE, version 1.1 1 75

9 The set of proxy objects that were successfully unmarshalled by the

getReg‘i strars method

9 The set of marshalled proxy objects that could not be unmarshalled by the

getReg‘i strars method

9 The set of exceptions corresponding to each failed attempt at unmarshalling

The type of exception that occurs when attempting to unmarshal an element

of the set sent by the lookup discovery service is typically an IOExcepti on or a

C1 assNotFoundException (usually the more common of the two). A

C1 assNotFoundExcepti on occurs whenever a remote object on which the mar-

shalled proxy depends cannot be retrieved and loaded, usually because the code-

base of one of the object’s classes or interfaces is currently “down.” To address

this situation, the client may wish to proceed with its processing using the suc-

cessfully unmarshalled proxies, and attempt to unmarshal the unavailable proxies

(or re-invoke this method) at some later time.

If the getRegi st ra rs method returns successfully without throwing a

LookupUnmarshal Exception, the client is guaranteed that all marshalled proxies

belonging to the set sent by the lookup discovery service have each been success-

fully unmarshalled; the client then has a snapshot—relative to the point in time

when this method is invoked—of the remote state of the lookup services discov-

ered for the associated registration.

The getG roups method returns an array consisting of the group names from

the registration’s managed set; that is, the names of the groups the lookup discov-

ery service is currently configured to discover for the associated registration. If the

managed set of groups is empty, this method returns the empty array. If there is no

managed set of groups associated with the registration (that is, the lookup discov-

ery service is configured to discover Di scoveryGroupManagement.ALL_GROUPS

for the registration), then nu11 is returned.

The getLocators method returns an array consisting of the LookupLocator'

objects from the registration’s managed set; that is, the locators of the specific

lookup services the lookup discovery service is currently configured to discover

for the associated registration. If the managed set of locators is empty, this method

returns the empty array.

The Group Mutator Methods

With respect to a particular registration, the groups to be discovered may be mod-

ified using the methods described in this section. In each case, a set of groups is

represented as a String array, none of whose elements may be nu11. If any set of

groups input to one of these methods contains one or more null elements, a

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

185

186

176 SUPPORTING INTERFA CES AND CLASSES

Nu11Po1'nter‘Except1'on is thrown. The empty set is denoted by the empty array

(Di scoveryGroupManagement . NO_GROUPS), and “no set” is indicated by nu11

(Di scove ryGroupManagement . ALL_GROUPS). No set indicates that all lookup ser-

vices within the multicast radius should be discovered, regardless of group mem-

bership. Invoking any of these methods with an input set of groups that contains

duplicate names is equivalent to performing the invocation with the duplicate

group names removed from the input set.

The addG roups method adds a set of group names to the registration’s man-

aged set. This method takes one argument: a String array consisting of the set of

group names with which to augment the registration’s managed set.

If the registration has no current managed set of groups to augment, this

method throws an UnsupportedOperationException. If the parameter value is

nu11, this method throws a Nu1 1 Poi nterExcepti on. If the parameter value is the

empty array, then the registration’s managed set of groups will not change.

The setG roups method replaces all of the group names in the registration’s

managed set with names from a new set. This method takes one argument: a

String array consisting of the set of group names with which to replace the cur-

rent names in the registration’s managed set.

If nu11 is passed to setGroups, the lookup discovery service will attempt to

discover any undiscovered lookup services located within range of the lookup dis-

covery service, regardless of group membership.

If the empty set is passed to setG roups, then group discovery will be halted

until the registration’s managed set of groups is changed—through a subsequent

call to this method or to addGroups—to a set that is either a non-empty set of

group names or nu11.

The removeGroups method deletes a set of group names from the registra-

tion’s managed set. This method takes one argument: a String array containing

the set of group names to remove from the registration’s managed set.

If the registration has no current managed set of groups from which to remove

elements, this method throws an UnsupportedOperationException. If nu11 is

input, this method throws a Nu11 Poi nterExcepti on. If the registration does have

a managed set of groups from which to remove elements, but either the input set is

empty or none of the elements in the input set match any element in the managed

set, then the registration’s managed set of groups will not change.

Once a new group name has been placed in the registration’s managed set as a

result of an invocation of either addG roups or setG roups, if there are lookup ser-

vices belonging to that group that have already been discovered for that registra-

tion, no event will be sent to the registration’s listener for those particular lookup

services. However, attempts to discover any undiscovered lookup services belong-

ing to that group will continue to be made on behalf of the registration.

186

187

JINI LOOKUP DISCOVERY SERVICE, version 1.1 1 77

Any already discovered lookup service that is a member of one or more of the

groups removed from the registration’s managed set as a result of an invocation of

either setG roups or removeG roups will be discarded and will no longer be eligi-

ble for discovery (for that registration), but only if that lookup service satisfies

both of the following conditions:

9 The lookup service is not a member of any group in the registration’s new

managed set resulting from the invocation of setG roups or removeG roups

9 With respect to the registration, the lookup service is not currently eligible

for discovery through locator discovery; that is, the lookup service does not

correspond to any element in the registration’s managed set of locators.

The Locator Mutator Methods

With respect to a particular registration, the set of locators to discover may be

modified using the methods described in this section. In each case, a set of loca-

tors is represented as an array of LookupLocator objects, none of whose elements

may be null. If any set of locators input to one of these methods contains one of

more null elements, a Null Poi nterException is thrown. Invoking any of these

methods with a set of locators that contains duplicate locators (as determined by

LookupLocator . equal 5) is equivalent to performing the invocation with the

duplicates removed from the input set.

The addLocators method adds a set of LookupLocator' objects to the regis-

tration’s managed set. This method takes one argument: an array consisting of the

set of locators with which to augment the registration’s managed set.

If null is passed to addLocators, a Null Poi nterException will be thrown.

If the parameter value is the empty array, the registration’s managed set of loca-

tors will not change.

The setLocators method replaces all of the locators in the registration’s

managed set with LookupLocator objects from a new set. This method takes one

argument: an array consisting of the set of locators with which to replace the cur-

rent locators in the registration’s managed set.

If null is passed to setLocators, a Null Poi nterException will be thrown.

If the empty set is passed to setLocators, then locator discovery will be

halted until the registration’s managed set of locators is changed—through a sub-

sequent call to this method or to add Locato rs—to a set that is non-nul l and non-

empty.

The removeLocators method deletes a set of LookupLocator objects from

the registration’s managed set. This method takes one argument: an array contain-

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

187

188

178 SUPPORTING INTERFA CES AND CLASSES

ing the set of LookupLocator objects to remove from the registration’s managed
set.

If null is passed to removeLocators, a Nu'l 'I Poi nter‘Exception will be

thrown. If any element of the set of locators to remove is not contained in the reg-

istration’s managed set, remove Locato rs takes no action with respect to that ele-

ment. If the parameter value is the empty array, the managed set of locators will

not change.

Whenever a new locator is placed in the managed set as a result of an invoca-

tion of one of the locator mutator methods and that new locator equals none of the

previously discovered locators (across all registrations), the lookup discovery ser-

vice will attempt unicast discovery of the lookup service associated with the new
locator.

If locator discovery is attempted for a registration, such discovery attempts

will be repeated until one of the following events occurs:

0 The lookup service is discovered

o The client’s lease on the registration expires

o The client explicitly removes the locator from the registration’s managed set

Upon discovery of the lookup service corresponding to the new locator, or upon

finding a match between the new locator and a previously discovered lookup ser-

vice, a discovered event will be sent to the registration’s listener, unless that

lookup service was previously discovered for that registration through group dis-

covery.

Any already discovered lookup service corresponding to a locator that is

removed from the registration’s managed set as a result of an invocation of either

setLocators or removeLocator's will be discarded and will no longer be eligible

for discovery, but only if it is not currently eligible for discovery through group

discovery—that is, only if the lookup service is not also a member of one or more

of the groups in the registration’s managed set of groups.

Discarding Lookup Services

When the lookup discovery service removes an already discovered lookup service

from a registration’s managed set of lookup services, the lookup service is said to
be discarded.

There are a number of situations in which the lookup discovery service will

discard a lookup service:

188

189

JINI LOOKUP DISCOVERY SERVICE, version 1.1 1 79

9 In response to a discard request resulting from an invocation of a registra-
tion’s discard method

9 In response to a declaration—via an invocation of one of the mutator meth-

ods on a registration—that there is no longer any interest in one or more of

the registration’s already discovered lookup services

9 In response to the determination that the multicast announcements from an

already discovered lookup service indicate that the lookup service has

changed its group membership in such a way that the lookup service is no

longer of interest to one or more of the registrations that previously regis-

tered interest in the groups of that lookup service

9 In response to the determination that the multicast announcements from an

already discovered lookup service are no longer being received

For each of these cases, whenever the lookup discovery service discards a

lookup service, it will send an event to the registration’s listener to notify it that

the lookup service has been discarded.

The discard method provides a mechanism for registered clients to inform

the lookup discovery service of the existence of an unavailable—or unreach-

able—lookup service, and to request that the lookup discovery service discard

that lookup service and make it eligible for rediscovery.

The discard method takes a single argument: the proxy to the lookup service

to discard. This method takes no action if the parameter to this method equals

none of the proxies reflected in the managed set (using proxy equality as defined

in The Jini Technology Core Platform Specification, “Lookup Service”. If nu'l'l is

passed to discard, a Nu'l 'I Poi nterExcepti on is thrown.

Although the lookup discovery service monitors the multicast announcements

from all discovered lookup services for indications of unavailability, it should be

noted that there are conditions under which the lookup discovery service will not

discard such a lookup service, even when the lookup service is found to be

unreachable. Whether or not the lookup discovery service discards such an

unreachable lookup service is dependent on how each registration is configured

for discovery with respect to that lookup service. If every registration that is con-

figured to discover the unreachable lookup service is configured to discover it

through locator discovery only, the lookup discovery service will not discard the

lookup service. In other words, in order for the lookup discovery service to dis-

card a lookup service it has determined is unreachable, at least one registration

must be configured for discovery of at least one group in which that lookup ser-
vice is a member.

Thus, whenever a client determines that a previously discovered lookup ser-

vice has become unreachable, it should not rely on the lookup discovery service to

discard the lookup service. Instead, the client should inform the lookup discovery

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

189

190

180 SUPPORTING INTERFA CES AND CLASSES

service—through the invocation of the registration’s discard method—that the

previously discovered lookup service is no longer available and that attempts

should be made to rediscover that lookup service for the registration. Typically, a

client determines that a lookup service is unavailable when the client attempts to

use the lookup service but receives an indefinite exception, a bad object exception,

or a bad invocation exception as a result of the attempt.

Note that the lookup discovery service may be acting on behalf of numerous

clients that have access to the same lookup service. If that lookup service becomes

unavailable, many of those clients may invoke discard between the time the

lookup service becomes unavailable and the time it is rediscovered. Upon the first

invocation of discard, the lookup discovery service will re-initiate discovery of

the relevant lookup service for the registration of the client that made the invoca-

tion. For all other invocations made prior to rediscovery, the registrations through

which the invocation is made are sent a discarded event, and added to the list of

registrations that will be notified when rediscovery of the lookup service does

occur. That is, upon rediscovery of the lookup service, only those registrations

through which the discard method was invoked will be notified.

Upon successful completion of the discard method, the proxy requested to

be discarded is guaranteed to have been removed from the managed set of the reg-

istration through which the invocation was made. No such guarantee is made with

respect to when the discarded event is sent to each such registration’s listener.

That is, the event notifying the listeners that the lookup service has been discarded

may or may not be sent asynchronously.

LD.4.2 The RemoteDi scover'yEvent Class

When the lookup discovery service discovers or discards a lookup service match-

ing the criteria established through one of its registrations, the lookup discovery

service sends an instance of the RemoteDi scove ryEvent class to the

RemoteEventLi stener implemented by the client and registered with the lookup

discovery service.

package net .jini .di scovery;

public class RemoteDiscoveryEvent extends RemoteEvent {

public RemoteDiscoveryEventCObject source,

long eventID,

long seqNum,

MarshalledObject handback,

boolean discarded,

190

191

JINI LOOKUP DISCOVERY SERVICE, version 1.1 181

Map groups)

throws IOException {m}

public boolean isD‘iscardedO {...}

pubh'c ServiceRegistrarE] getRegistrar‘sO

throws LookupUnmarsha'l Exception {...}

public Map getGroupsO {...}

The RemoteD1' scove ryEvent class provides an encapsulation of event infor-

mation that the lookup discovery service uses to notify a registration of the occur-

rence of an event involving one or more Se rv1' ceRegi st rar objects (lookup

services) in which the registration has registered interest. The lookup discovery

service passes an instance of this class to the registration’s discovery listener when

one of the following events occurs:

9 Each lookup service referenced in the event has been discovered for the first

time or rediscovered after having been discarded.

9 Each lookup service referenced in the event has been either actively or pas-

sively discarded.

RemoteD1' scove ryEvent is a subclass of RemoteEvent, adding the following
additional items of abstract state:

9 A bool ean indicating whether the lookup services referenced by the event
have been discovered or discarded

o A set ofmarshalled instances ofthe Se rv1' ceRegi st rar interface having the

characteristic that when each element is unmarshalled, the result is a proxy

to one ofthe discovered or discarded lookup services referenced by the event

9 A Map instance in which the elements of the map’s key set are the instances

of Se rvi ceID that correspond to each lookup service reference returned in

the event, and the map’s value set contains the corresponding member

groups of each lookup service reference

Methods are defined through which this additional state may be retrieved

upon receipt of an instance of this class.

Clients need to know not only when a targeted lookup service has been dis-

covered, but also when it has been discarded. The lookup discovery service uses

an instance of RemoteDiscove ryEvent to notify a registration when either of

these events occurs, as indicated by the value of the bool ean state variable. When

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

191

192

182 SUPPORTING INTERFA CES AND CLASSES

the value of that variable is true, the event is referred to as a discarded event;

when fa] se, it is referred to as a discovered event.

LD.4.2.1 The Semantics

The constructor of the RemoteDi scove ryEvent class takes the following parame-

ters as input:

0 A reference to the lookup discovery service that generated the event

9 The event identifier that maps a particular registration to both its listener and

its targeted groups and locators

o The sequence number of the event being constructed

0 The client-defined handback (which may be ml 1)

o A flag indicating whether the event being constructed is a discovered event
or a discarded event

0 A Map whose key set contains the proxies to newly discovered or discarded

lookup service(s) the event is to reference, and whose value set contains the

corresponding member groups of each lookup service

If the g roups parameter is empty, the constructor will throw an

11legalArgumentException. If null is input to the groups parameter, the con-

structor will throw a Nu'l 'I Poi nte rExcepti on. If none of the proxies referenced in

the groups parameter can be successfully serialized, the constructor will throw an

IOExcepti on.

The 1'sD1' scarded method returns a bool ean that indicates whether the event

is a discovered event or a discarded event. If the event is a discovered event, then

this method returns fal se. If the event is a discarded event, true is retuned.

The getRegi' st rars method returns an array consisting of instances of the

Se rv1' ceRegi st rar interface. Each element in the returned set is a proxy to one

of the newly discovered or discarded lookup services that caused a

RemoteDi scove ryEvent to be sent. Additionally, each element in the returned set

will be unique with respect to all other elements in the set, as determined by the

equals method provided by each element. This method does not make a remote

call. With respect to multiple invocations of this method, each invocation will

return a new array.

When the lookup discovery service sends an instance of

RemoteDi scove ryEvent to the listener of a client’s registration, the set of lookup

service proxies contained in the event consists of marshalled instances of the

Se rv1' ceRegi st rar interface. The lookup discovery service individually marshals

192

193

JINI LOOKUP DISCOVERY SERVICE, version 1.1 183

each proxy associated with the event because if it were not to do so, any deserial-

ization failure on the set would result in an IOExcepti on, and failure would be

declared for the whole deserialization process, not just an individual element. This
would mean that all elements of the set sent in the event—even those that can be

successfully deserialized—would be unavailable to the client through this method.

Just as with the getRegi st ra rs method defined by the

LookupDi scove ryReg'i strati on interface, individually marshalling each ele-

ment in the set minimizes the “all or nothing” aspect of the deserialization pro-

cess, allowing the client to recover those proxies that can be successfully

unmarshalled and to proceed with processing that might not be possible other-
wise.

When constructing the return set, this method attempts to unmarshal each ele-

ment of the set of marshalled proxy objects contained in the event. When failure

occurs while attempting to unmarshal any of the elements of that set, this method

throws an exception of type LookupUnmarshal Exception. It is through the con-

tents of this exception that the client can recover any available proxies and per-

form error handling with respect to the unavailable proxies.

If the getRegi st rars method returns successfully without throwing a

LookupUnmarshal Exception, the client is guaranteed that all marshalled proxies

sent in the event have each been successfully unmarshalled during that particular

invocation. Furthermore, after the first such successful invocation, no more

unmarshalling attempts will be made (because such attempts are no longer neces-

sary), and all future invocations of this method are guaranteed to return an array

with contents identical to the contents of the array returned by the first successful
invocation.

Note that an array, rather than a single proxy, is returned by the

getRegi strars method so that implementations of the lookup discovery service

can choose to “batch” the information sent to a registration. With respect to dis-

coveries, batching the information may be particularly usefill when a client first

registers with the lookup discovery service.

Upon initial registration, multiple lookup services are typically found over a

short period of time, providing the lookup discovery service with the opportunity

to send all of the initially discovered lookup services in only one event. After-

ward, as so-called “late joiner” lookup services are found sporadically, the lookup

discovery service may send events referencing only one lookup service.

Note that the event sequence numbers, as defined earlier in Section LD.3.2,

“Event Semantics”, are strictly increasing, even when the information is batched.

The getG roups method returns a Map in which the elements of the map’s key

set are the instances of Se rvi ceID that correspond to each lookup service for

which the event was constructed and sent. Each element of the returned map’s

value set is a String array containing the names of the member groups of the

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

193

194

184 SUPPORTING INTERFA CES AND CLASSES

associated lookup service whose Se rv1' ceID equals to the corresponding key. This

method does not make a remote call. On each invocation of this method, the same

Map object is returned; that is, a copy is not made.

The Map returned by the getGroups method is keyed by the Servi ceID of

each lookup service in the event, rather than by the proxy of each lookup service

to avoid the deserialization issues addressed by the getRegi st ra rs method.

Thus, client’s wishing to retrieve the set of member groups corresponding to any

element of the array returned by the getRegi st ra rs method, must use the

Se rv1' ceID of the desired element from that array as the key to the get method of

the Map returned by this method and then cast to St r1' ng[].

LD.4.2.2 Serialized Forms

Class serial Vers-ionUID Serialized Fields

RemoteD'i scove ryEvent -9171289945014585248L bool ean discarded

ArrayList marshalledRegs

ServiceRegistrar[] regs

Map groups

LD.4.3 The LookupUnmarsha'l Except‘ion Class

Recall that when unmarshalling an instance of Marshal l edObj ect, one of the fol-

lowing checked exceptions is possible:

9 An IOExcepti on, which can occur while deserializing the object from its

internal representation

9 A Cl assNotFoundException, which can occur if, while deserializing the

object from its internal representation, either the class file of the object can-

not be found, or the class file of an interface or class referenced by the object

being deserialized cannot be found. Typically, a Cl assNot Found Excepti on
occurs when the codebase from which to retrieve the needed class file is not

currently available

The LookupUnmarshal Exception class provides a mechanism that clients of

the lookup discovery service may use for efificient handling of the exceptions that

may occur when unmarshalling elements of a set of marshalled instances of the

Se rv1' ceRegi st rar interface. When elements in such a set are unmarshalled, the

194

195

JINI LOOKUP DISCOVERY SERVICE, version 1.1 185

LookupUnmarshal Exception class may be used to collect and report pertinent

information generated when failure occurs during the unmarshalling process.

package net .ji ni .di scovery;

public class LookupUnmarshalException extends Exception {

public LookupUnmarshalException

(ServiceRegistrar[] registrars,

MarshalledObject[] marshalledRegistrars,

Throwable[] exceptions) {m}

public LookupUnmarshalException

(ServiceRegistrar[] registrars,

MarshalledObject[] marshalledRegistrars,

Throwable[] exceptions,

String message) {m}

public ServiceRegistrarE] getRegistrarsC) {m}

public MarshalledObject[] getMarshalledRegistrarsC) {m}

public Throwable[] getExceptionsC) {m}

}

The LookupUnmarshal Exception class is a subclass of Exception, adding

the following additional items of abstract state:

9 A set of Se rvi ceRegi st rar instances in which each element is the result of

a successful unmarshalling attempt

9 A set of marshalled instances of Se rvi ceRegi st rar in which each element

is the result of an unsuccessful unmarshalling attempt

9 A set of exceptions (IOExcepti on, Cl assNotFoundException, or some

unchecked exception) in which each element corresponds to one of the

unsuccessful unmarshalling attempts

When exceptional conditions occur while unmarshalling a set of marshalled

instances of Servi ceRegist rar, the LookupUnmarshal Exception class can be

used not only to indicate that an exceptional condition has occurred, but also to

provide information that can be used to perform error handling activities such as:

9 Determining if it is feasible to continue with processing

9 Reporting errors

9 Attempting recovery

9 Performing debug activities

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

195

196

186 SUPPORTING INTERFA CES AND CLASSES

LD.4.3.1 The Semantics

The constructor of the LookupUnmarshal Exception class has two forms. The

first form of the constructor takes the following parameters as input:

9 An array containing the set of instances of Se rv1' ceReg1' st rar that were

successfully unmarshalled

0 An array containing the set ofmarshalled Se rv1' ceRegi' st ra r instances that
could not be unmarshalled

0 An array containing the set of exceptions that occurred during the unmar-

shalling process

The second form of the constructor takes the same arguments as the first and

one additional argument: a String describing the nature of the exception.

Each element in the exceptions parameter should be an instance of

IOExcepti on, Cl assNotFoundException, or some unchecked exception. Fur-

thermore, there is a one-to-one correspondence between each element in the

exceptions parameter and each element in the marshal l edRegi st rars parame-

ter. That is, the element of the exceptions parameter corresponding to index i

should be an instance of the exception that occurred while attempting to unmar-

shal the element at index i of the marshal l edRegi st rars parameter.

If the number of elements in the exceptions parameter does not equal the

number of elements in the marshalledRegi strars parameter, the constructor

will throw an 11 l egalArgumentExcepti on.

The getRegi st ra rs method is an accessor method that returns an array con-

sisting of instances of Se rv1' ceReg1' st ra r, where each element of the array corre-

sponds to a successfully unmarshalled object. Note that the same array is returned

on each invocation of this method; that is, a copy is not made.

The getMarshal l edRegi' strars method is an accessor method that returns

an array consisting of instances of Marshal l edObj ect, where each element of the

array is a marshalled instance of the Serv1' ceRegi strar interface and corre-

sponds to an object that could not be successfully unmarshalled. Note that the

same array is returned on each invocation of this method; that is, a copy is not
made.

The getExcepti ons method is an accessor method that returns an array con-

sisting of instances of Th rowabl e, where each element of the array corresponds to

one of the exceptions that occurred during the unmarshalling process. Each ele-

ment in the return set is an instance of IOExcepti on, Cl assNotFoundExcepti on,

or some unchecked exception. Additionally, there should be a one-to-one corre-

spondence between each element in the array returned by this method and the

196

197

JINI LOOKUP DISCOVERY SERVICE, version 1.1 187

array returned by the getMar‘shaHedRegi strars method. Note that the same

array is returned on each invocation of this method; that is, a copy is not made.

LD.4.3.2 Serialized Forms

Class serial VersionUID Serialized Fields

LookupUnmarshalException 2956893184719950537L ServiceRegistrar[]

registars

MarshalledObject[]

marshalledRegistrars

Throwab1e[] exceptions

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

197

198

188 SUPPORTING INTERFACES AND CLASSES

198

199

LR

Jini Lease Renewal Service

Specification

LR.1 Introduction

LEASING is a key concept in the Jini architecture; in general, Jini technology-
enabled services (Jini services) grant access to a resource only for as long as the

clients of those Jini services actively express interest in the resource being main-

tained. This pattern is in contrast to many other systems, in which access to a

resource is granted until the client explicitly releases the resource. Using a leasing

model generally makes a distributed system more robust by allowing stale infor-

mation and services to be cleaned up, but it also places additional requirements on
clients and services.

A client of a leased service may run into difficulties if that client deactivates.

Unless the client ensures that some other process renews the client’s leases while

it is inactive, or that the client is activated before its leases begin to expire, the cli-

ent will lose access to the resources it has acquired. This loss can be particularly

dramatic in the case of lookup service registrations. A service’s registration with a

lookup service is leased—if the service deactivates (maybe to conserve computa-

tional resources on its host) and it does not take appropriate steps, its registrations

with lookup services will expire, and before long it will be inaccessible. If that

service becomes active only when clients invoke its methods, it may never

become active again, because at this point new clients may not be able to find it.

The need to renew leases creates a constant load on clients, servers, and the

network. Although batching lease renewals can help (see The Jini Technology

Core Platform Specification, “Distributed Leasing”), a given client is unlikely to

have very many leases granted by any one service at any given time, thus reducing

the opportunities for meaningful batching.

199

189

200

190 INTRODUCTION

This additional load may be an especially great burden on clients that always

have the ability to access the network but cannot be continuously connected. A

cell phone always has the ability to connect; however, being connected all the time

will drain its batteries and accumulate airtime charges. One or two leases may not

pose a problem, but a large number of leases could force the phone to be on the
network all the time.

A lease renewal service can help mitigate these problems. Clients that wish to

become inactive can pass the responsibility for renewing the leases they have been

granted to a renewal service. Those clients can then deactivate without risk of los-

ing access to the resources that they have acquired. Clients that have continuous

access to the network but cannot be continuously connected, such as the cell

phone described previously, can also register with a renewal service that can be

continuously connected. The renewal service will renew the client’s leases, allow-

ing the client to remain disconnected most of the time. Lastly, if multiple clients

pass their leases to a given renewal service, more opportunities for batching
renewals will be created.

Like other Jini services, the lease renewal service will grant its services for

only a limited period of time without an active expression of continuing interest.

To break the recursive cycle that would otherwise result, the renewal service pro-

vides an optional event that is triggered before the leases that it grants expire. This

event gives activatable processes that have deactivated the opportunity to wake up

and renew their lease with the renewal service. Although it may seem odd for the

lease renewal service to lease its resources, it is very important that it does so. If it

did not, then the lease renewal service could be used to subvert the leasing model.

Lease renewal services are likely to grant longer leases than other Jini ser-

vices. In some cases the lease may be so long that the client will not need to worry

about renewing the lease at all. In other cases the lease may be long enough that a

client that deactivates will rarely need to reactivate for the sole purpose of renew-

ing its lease with the renewal service. In any case, the leases that the renewal ser-

vice grants are likely to be sufliciently long such that the actual renewal calls do

not place a significant additional load on the client, the renewal service, or the net-
work.

LR.1.1 Goals and Requirements

The requirements of the set of classes and interfaces in this specification are:

0 To provide a service for renewing leases

200

201

JINI LEASE RENEWAL SER VICE SPECIFICA TION, version 1. 1 1 9 1

9 To provide this service in such a way that it can be used by activatable pro-
cesses that deactivate

9 To provide this service in a way that does not overly weaken the leasing
model

The goals of this specification are:

9 To

9 To

describe the lease renewal service

provide guidance in the use, deployment, and implementation ofthe lease
renewal service

LR.1.2 Other Types

The types defined in the specification of the LeaseRenewa1 Se rv1' ce interface are

in the net. j 1' n1' . lease package. The following object types may be referenced in

this chapter. Whenever referenced, these object types will be referenced in

unqualified form:

java

java.

java.

java.

.io.IOException

rmj.Marsha11edObject

rmi.RemoteException

rmi.NoSuchObjectException

net . j1' ni . core . 'I ease . Lease

net . j1' ni . core . 'I ease . UnknownLeaseExcepti on

net . j1' nj .core . event . RemoteEvent

net . j1' ni . core . event . RemoteEventLi stener

net . j1' nj . core . event . EventRegi strati on

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

201

202

192 INTRODUCTION

202

203

JINI LEASE RENEWAL SER VICE SPECIFICA TION, version 1. 1 1 93

LR.2 The Interface

THE LeaseRenewal Servi ce (in the net.jini .lease package) defines the
interface to the renewal service. The interface is not a remote interface; each

implementation of the renewal service exports proxy objects that implement the

LeaseRenewal Se rvi ce interface local to the client, using an implementation-spe-

cific protocol to communicate with the actual remote server. All of the proxy

methods obey normal RMI remote interface semantics. Two proxy objects are

equal (using the equals method) if they are proxies for the same renewal service.

All the methods of LeaseRenewal Se rvi ce throw RemoteExcepti on and require

only the default serialization semantics. Therefore, LeaseRenewal Se rvi ce can be

implemented directly using RMI.

package net .ji ni .lease;

public interface LeaseRenewalService {

public LeaseRenewalSet createLeaseRenewalSetC

long leaseDuration)

throws RemoteExcepti on;

}

Clients of the renewal service organize the leases they wish to have renewed

into lease renewal sets (or sets, for short). A method is provided by the

LeaseRenewal Se rvi ce interface to create these sets. These sets are then popu-

lated by methods on the sets themselves. Two leases in the same set need not be

granted by the same service or have the same expiration time; in addition, they can

be added or removed from the set independently.

Every method invocation on a renewal service (whether the invocation is

directly on the service or indirectly on a set the service has created) is atomic

with respect other invocations.

The term client lease is used to refer to a lease that has been placed into a
renewal set. Client leases are distinct from the leases that the renewal service

grants on renewal sets it has created.

In general, there will be times when an implementation of the renewal service

needs to pass one client lease as an argument to a method call on a second client

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

203

204

194 THE INTERFACE

lease. There is a security risk in doing so, because such actions can let the second

client lease “capture” the first. Implementations may want to verify that their cli-

ents can be trusted not to place leases in the set that would take such actions.

Another alterative is to pass one Lease object to another only if they trust each

other. Depending on the environment, conservative tests for such trust could

include: ensuring the codebases of both leases are constructed from the same set

of URLs, or that all of the URLs come from a common set of hosts or host/port

pairs.

Each client lease has two expiration related times associated with it: the

desired expiration time for the lease and the actual expiration time granted when

the lease is created or last renewed. The desired expiration represents when the

client would like the lease to expire. The actual expiration represents when the

lease is going to expire if it is not renewed. Both time values are absolute times,

not relative time durations. When a client lease’s desired expiration arrives, the
lease will be removed from the set without further client intervention.

Each client lease also has two other associated attributes: a renewal duration

and a remaining desired duration. The remaining desired duration is always the

desired expiration less the current time. The renewal duration is usually a positive

number and represents the duration that will be requested when the renewal ser-

vice renews the client lease, unless the renewal duration is greater than the

remaining desired duration. If the renewal duration is greater than the remaining

desired duration, then the remaining desired duration will be requested when

renewing the client lease. One exception is that when the desired expiration is

Lease. FOREVER, the renewal duration may be Lease .ANY, in which case

Lease .ANY will be requested when renewing the client lease, regardless of the

value of the remaining desired duration.

For example, if the renewal duration associated with a given client lease is

360,000 milliseconds, then when the renewal service renews the client lease, it

will ask for a new duration of 360,000 milliseconds—unless the client lease is

going to reach its desired expiration in less than 360,000 milliseconds. If the client

lease’s desired expiration is within 360,000 milliseconds, the renewal service will

ask for the difference between the current time and the desired expiration. If the

renewal duration had been Lease . ANY, the renewal service would have asked for a

new duration of Lease . ANY.

If a lease’s actual expiration is later than the lease’s desired expiration, the

renewal service will not renew the lease; the lease will remain in the set until its

desired expiration is reached, the set is destroyed, or it is removed by the client.

Each set is leased from the renewal service. If the lease on a set expires or is

cancelled, the renewal service will destroy the set and take no further action with

regard to the client leases in the set. Each lease renewal set has associated with it

an expiration warning event that occurs at a client-specified time before the lease

204

205

JINI LEASE RENEWAL SER VICE SPECIFICA TION, version 1. 1 1 95

on the set expires. Clients can register for warning events using methods provided

by the set. A registration for warning events does not have its own lease, but

instead is covered by the same lease under which the set was granted.

The term definite exception is used to refer to an exception that could be

thrown by an operation on a client lease (such as a remote method call) that would

be indicative of a permanent failure of the client lease. In this specification, all bad

object exceptions, bad invocation exceptions, and LeaseExceptions are consid-

ered to be definite exceptions (see Introduction to Helper Utilities and Services,

Section US.2.6, “What Exceptions Imply about Future Behavior”).
Each lease renewal set has associated with it a renewal failure event that will

occur in either of two cases: if any client lease in the set reaches its actual expira-

tion before its desired expiration is reached, or if the renewal service attempts to

renew a client lease and gets a definite exception. Clients can register for failure

events using methods provided by the set. A registration for failure events does

not have its own lease but instead is covered by the same lease under which the set

was granted.

Once placed in a set, a client lease will stay there until one or more of the fol-

lowing occurs:

9 The lease on the set itself expires or is cancelled, causing destruction of the
set.

9 The client lease is removed by the client.

9 The client lease’s desired expiration is reached.

9 The client lease’s actual expiration is reached; this will generate a renewal
failure event.

9 A renewal attempt on the client lease results in a definite exception; this will

generate a renewal failure event.

Each client lease in a set will be renewed as long as it is in the set. If a renewal

call throws an indefinite exception (see Introduction to Helper Utilities and Ser-

vices, Section US.2.6, “What Exceptions Imply about Future Behavior”), the

renewal service should retry the lease renewal until the lease would otherwise be

removed from the set. The preferred method of cancelling a client lease is for the
client to first remove the lease from the set and then call cancel on it. It is also

permissible for the client to cancel the lease without first removing the lease from

the set, although this is likely to result in additional network traffic.

The client creates a set by calling the createLeaseRenewal Set method of a

LeaseRenewal Servi ce. The leaseDurati on argument specifies how long (in

milliseconds) the client wants the set's initial lease duration to be. The duration

initially granted for the set's lease will be equal to or shorter than this request; it

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

205

