
41

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 3 1

If the managed set of groups is empty, this method will return an empty array.

If there is no managed set of groups, then null (AL L_GROU P5) is returned, indicat-

ing that any lookup service within range—even those that have no group aflilia-
tion—are to be discovered.

If an empty array is returned, that array is guaranteed to be referentially equal

to the N0_GROU PS constant; that is, the array returned from that method and the

NO_GROU PS constant can be tested for equality using the == operator.

This method takes no arguments as input and, provided the managed set of

groups currently exists, will return a new array upon each invocation.

The addG roups method adds a set of group names to the managed set. The

array input to this method contains the group names to be added to the set.

This method throws IOExcepti on because an invocation of this method may

result in the re-initiation of the discovery process, which can throw IOExcepti on
when socket allocation occurs.

This method throws an UnsupportedOperationException if there is no

managed set of groups to augment, and it throws a NuHPoi nterException if

nu'l'l (AL L_GROU PS) is input. If an empty array (NO_GROU P5) is input, the managed

set of groups will not change.

The setG roups method replaces all of the group names in the managed set

with names from a new set. The array input to this method contains the group

names with which to replace the current names in the managed set.

Once a new group name has been placed in the managed set, no event will be

sent to the entity’s listener for the lookup services belonging to that group that

have already been discovered, although attempts to discover all (as yet) undiscov-

ered lookup services belonging to that group will continue to be made.

If nu'l'l (ALL_GROUPS) is input to setG roups, then attempts will be made to

discover all (as yet) undiscovered lookup services located within the multicast

radius (Section DU.3, “LookupDiscovery Utility”) of the implementation object,

regardless of group membership.

If an empty array (NO_GROUPS) is input to setG roups, then group discovery

will be halted until the managed set of groups is changed—through a subsequent

call to this method or to addG roups—to a set that is either a non-empty set of

group names or nu11 (ALL_GROUPS).

This method throws IOExcepti on. This is because an invocation of this

method may result in the re-initiation of the discovery process, a process that can

throw IOExcepti on when socket allocation occurs.

The removeGroups method deletes a set of group names from the managed

set of groups. The array input to this method contains the group names to be

removed from the managed set.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

41

42

32 THE DISC0VERY [MANAGEMENT INTERFA CES

This method throws an UnsupportedOperationException if there is no

managed set of groups from which to remove elements. If null (ALL_GROUPS) is

input to removeGroups, a Null Poi nterException will be thrown.

If any element of the set of groups to be removed is not contained in the man-

aged set, removeG roups takes no action with respect to that element. If an empty

array (N0_GROU P5) is input, the managed set of groups will not change.

Once a new group name is added to the managed set as a result of an invoca-

tion of either addG roups or setG roups, attempts will be made—using the multi-

cast request protocol—to discover all (as yet) undiscovered lookup services that

are members of that group. If there are no responses to the multicast requests, the

implementation object will stop sending multicast requests, and will simply listen

for multicast announcements containing the new groups of interest.

Any already discovered lookup service that is a member of one or more of the

groups removed from the managed set as a result of an invocation of either

setG roups or removeG roups will be discarded and will no longer be eligible for

discovery, but only if that lookup service satisfies both of the following condi-
tions:

9 the lookup service is not a member ofany group in the new managed set that

resulted from the invocation of setG roups or removeG roups, and

c the lookup service is not currently eligible for discovery through other

means (such as locator discovery).

DU.2.5 The Di scover'yLocator'Management Interface

The public methods specified by the Di scove ryLocato rManagement interface are
as follows:

package net .jini .di scovery;

public interface DiscoveryLocatorManagement {

public LookupLocatorE] getLocatorsO;

public void addLocators(LookupLocator[] locators);

public void setLocators(LookupLocator[] locators);

public void removeLocators(LookupLocator[] locators);

42

43

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 33

DU.2.5.1 The Semantics

The Di scove ryLocato rManagement interface defines methods related to the

management of the set of LookupLocator objects corresponding to the specific

lookup services that are to be discovered using the unicast discovery protocol; that

is, lookup services that are discovered by way of locator discovery. The methods

of this interface define how an entity retrieves or modifies the managed set of

locators to discover. Phrases such as “the locators to discover” and “discovering

the desired locators” refer to the discovery of the lookup services that are associ-
ated with those locators.

The methods that modify the managed set of locators each take a single input

parameter: an array of LookupLocator objects, none of whose elements may be

null. Each of these methods throws a Null Poi nterException when at least one

element of the input array is null.

Invoking any of these methods with an input array that contains duplicate

locators (as determined by LookupLocator' . equal 5) is equivalent to performing

the invocation with the duplicates removed from the array.

The getLocators method returns an array containing the set of

LookupLocator objects in the managed set of locators; that is, the locators of the

specific lookup services that the implementation object is currently interested in

discovering.

The returned set includes both the set of locators corresponding to lookup ser-

vices that have already been discovered and the set of those that have not yet been
discovered.

If the managed set is empty, this method returns an empty array. This method

takes no arguments as input, and returns a new array upon each invocation.

The addLocato rs method adds a set of locators to the managed set. The array

input to this method contains the set of LookupLocator' objects to add to the man-

aged set.

If null is input to addLocators, a Null Poi nterException will be thrown. If

an empty array is input, the managed set of locators will not change.

The setLocato rs method replaces all of the locators in the managed set with

LookupLocator objects from a new set. The array input to this method contains

the set of LookupLocator objects with which to replace the current locators in the

managed set.

If null is input to setLocators, a Null Poi nterException will be thrown.

If an empty array is input to setLocators, then locator discovery will be

halted until the managed set of locators is changed—through a subsequent call to

this method or to add Locators—to a set that is non-null and non-empty.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

43

44

34 THE DISC0VERY [MANAGEMENT INTERFA CES

The removeLocato rs method deletes a set of locators from the managed set.

The array input to this method contains the set of LookupLocator' objects to

remove from the managed set.

If nu'l'l is input to removeLocators, a Null Poi nterException will be
thrown.

If any element of the set of locators to remove is not contained in the managed

set, removeLocators takes no action with respect to that element. If an empty

array is input, the managed set of locators will not change.

Any already discovered lookup service, corresponding to a locator that is a

member of the set of locators removed from the managed set as a result of an invo-

cation of either setLocators or removeLocator's, will be discarded and will no

longer be eligible for discovery; but only if it is not currently eligible for discov-

ery through other means (such as group discovery).

DU.2.6 Supporting Interfaces and Classes

Discovery management depends on the interfaces Di scove ryLi stener and

Di scove ryChangeLi stener, and on the concrete class Di scove ryEvent.

DU.2.6.1 The Di scover'yLi stener‘ Interface

The public methods specified by the Di scoveryLi stener interface are as fol-
lows:

package net .jini .di scovery;

public interface DiscoveryListener extends EventListener {

pub'lic void discoveredCDiscoveryEvent e);

public void discardedCDiSCOVerEVent e);

When an entity employs an object that implements one or more of the discov-

ery management interfaces to perform and manage the entity’s discovery duties,

the entity often will want that object—generally referred to as a discovery utility—

to notify the entity when a desired lookup service is either discovered or dis-

carded. The Di scoveryLi stener interface defines a mechanism through which

an entity may receive such notifications from a discovery utility. When an entity

registers interest in these notifications, an implementation of this interface must be

provided to the discovery utility being employed. Through this registered listener,

44

45

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1

the entity may then receive instances of the Di scove ryEvent class, which encap-

sulate the required information associated with the desired notifications.

The Semantics

The events received by listeners implementing the Di scove ryLi stener interface

can be the result of either group discovery or locator discovery. These events con-

tain the discovered or discarded registrars, as well as the set of member groups

corresponding to each registrar (see the specification of the Di scoveryEvent

class).

The discovered method is called whenever a new lookup service is discov-

ered or a discarded lookup service is re-discovered.

The discarded method is called whenever a previously discovered lookup

service is discarded because the lookup service was determined to be either

unreachable or no longer interesting to the entity, and the discard process was ini-

tiated by either the entity itself (an active discard) or the discovery utility

employed by the entity (a passive discard).

This interface makes the following concurrency guarantee. For any given lis-

tener object that implements this interface or any sub-interface, no two methods

(either the same two methods or different methods) defined by the interface (or

sub-interface) can be invoked at the same time. For example, the discovered
method must not be invoked while the invocation of another listener’s discarded

method is in progress.

DU.2.6.2 The Di scoveryChangeListener Interface

The Di scove ryChangeLi stener interface specifies only one public method:

package net .ji ni .di scovery;

public interface DiscoveryChangeListener

extends DiscoveryListener

public void changedCDiscoveryEvent e);

In addition to being notified when a desired lookup service is discovered or

discarded, some entities may also wish to be notified when a lookup service expe-

riences changes in its group membership. The Di scove ryChangeLi stener inter-

face defines an extension to the Di scove ryLi stener interface, providing a

mechanism through which an entity may receive these additional notifications—

35

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

45

46

36 THE DISC0VERY [MANAGEMENT INTERFA CES

referred to as changed events. As with the Di scove ryLi stener interface, when

an entity wishes to receive changed events in addition to discovered and discarded

events, an implementation of this interface must be provided to the discovery util-

ity being employed. It is through that registered listener that the entity receives the

desired notifications encapsulated in instances of the Di scove ryEvent class.

The Semantics

When the entity receives a Di scoveryEvent object through an instance of the

Di scove ryChangeLi stener interface, the event contains the discovered, dis-

carded, or changed registrars, as well as the set of member groups corresponding

to each registrar. In the case of a changed event, each set of groups referenced in

the event contains the new groups in which the corresponding registrar is a mem-
ber.

The changed method is called whenever the discovery utility encounters

changes in the set of groups in which a previously discovered lookup service is a
member.

It is important to note that instances of this interface are eligible to receive

changed events for only those lookup services that the entity has requested be dis-

covered by (at least) group discovery. That is, if the entity requests that only loca-

tor discovery be used to discover a specific lookup service, the listener will

receive no changed events for that lookup service. This is because the semantics

of this interface assume that since the entity expressed no interest in discovering

the lookup service through its group membership, it must also have no interest in

any changes in that lookup service’s group membership. Thus, if an entity wishes

to receive changed events for one or more lookup services, the entity must request

that those lookup services be discovered by either group discovery alone, or by

both group and locator discovery.

DU.2.6.3 The Di scover'yEvent Class

The public methods provided by the Di scove ryEvent class are as follows:

package net . j i ni .di scovery;

public class DiscoveryEvent extends EventObject {

public Di scoveryEventCObject source, Map groups) {...}

public DiscoveryEventCObject source,

ServiceRegistrar[] regs) {...}

46

47

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 37

pubh'c Map getGroupsO {...}

public ServiceRegistrarE] getReg‘istrarsO {...}

The D1" scove ryEvent class provides an encapsulation of event information

that discovery utilities can use to notify an entity of the occurrence of an event

involving one or more Se rvi ceReg1' st rar objects (lookup services) in which the

entity has registered interest. Discovery utilities pass an instance of this class to

the entity’s discovery listener(s) when one of the following events occurs:

9 Each lookup service referenced in the event has been discovered for the first

time, or re-discovered after having been discarded.

9 Each lookup service referenced in the event has been either actively or pas-

sively discarded.

o For each lookup service referenced in the event, the set of groups in which

the lookup service is a member has changed.

The D1' scove ryEvent class is a subclass of EventObject, adding the follow-

ing additional items of abstract state: a set of Se rv1' ceRegi st rar instances (regis-

trars) referencing the affected lookup services, and a mapping from each of those

registrars to their current set of member groups. Methods are defined through

which this additional state may be retrieved upon receipt of an instance of this
class.

The Semantics

The equals method for this class returns true if and only if two instances of this

class refer to the same object. That is, x and y are equal instances of this class if

and only if x == y has the value true.

The constructor for this class has two forms, where both forms expect two

input parameters. Each form of the constructor takes, as its first input parameter, a

reference to the source of the event; that is, the discovery utility object that created

the event instance and sent it to the entity’s listener(s) through the invocation of

the discovered, d1' scarded, or changed method on each listener. Note that nei-

ther form of the constructor makes a copy of the second parameter. That is, the

reference input to the second parameter is shared with the invoking entity.

Depending on the constructor employed, the second parameter is one of the

following:

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

47

48

38 THE DISC0VERY [MANAGEMENT INTERFA CES

o A Map instance in which each element ofthe map’s key set is a Se rvi ceReg—

1'st rar instance that references one of the lookup services to be associated

with the event being constructed. Each element of the map’s value set is a

String array, containing the names of the groups in which the correspond-

ing lookup service is a member.

0 An array of Se rv1' ceRegi st rar instances in which each element references

one of the lookup services to be associated with the event being constructed.

It is important to note that when this form of the constructor is used to con-

struct a Di scove ryEvent, although the resulting event contains a non—nuTl

registrars array, the registrars-to-groups map is nul 1. Therefore, discovery

utilities should no longer use this constructor to instantiate the events they
send.

The getG roups method returns the mapping from each registrar referenced

by the event to the registrar’s current set of member groups. If the event was

instantiated using the constructor whose second parameter is an array of Se r—

v1' ceRegi strar instances, this method will return ml 1 .

The returned map’s key set is made up of Se rv1' ceRegi st rar instances corre-

sponding to the lookup services for which the event was constructed and sent.

Each element of the returned map’s value set is a String array, containing the

names of the member groups of the corresponding lookup service.

On each invocation of this method, the same Map object is returned; that is, a

copy is not made.

The getRegi strars method returns an array of Servi ceRegi st rar

instances, in which each element references one of the lookup services for which
the event was constructed and sent.

On each invocation of this method, the same array is returned; that is, a copy
is not made.

DU.2.7 Serialized Forms

Class ser‘ia] VersionUID Serialized Fields

DiscoveryEvent 5280303374696501479L ServiceRegistrarE] regs

Map groups

48

49

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 39

DU.3 LookupD'i scover'y Utility

IN a Jini application environment the multicast discovery protocols are often col-
lectively referred to as multicast discovery or group discovery. The entities that

participate in the multicast discovery protocol are a discovering entity (Jini client

or service) and a Jini lookup service, which acts as the entity that is to be discov-

ered. When the discovering entity starts, it uses the multicast request protocol to

announce its interest in finding lookup services within range. After a specified

amount of time, the entity stops sending multicast requests, and simply listens for

multicast announcements from any lookup services within range that may be

broadcasting their availability. Through either of these protocols, the discovering

entity can obtain references to lookup services belonging to member group in

which the entity is interested. For the details of the multicast discovery protocols,

refer to the The Jini Technology Core Platform Specification, “Discovery and
Join”.

The LookupDiscove ry helper utility in the package net.jini .di scovery

encapsulates the fiinctionality required of an entity that wishes to employ multi-

cast discovery to discover a lookup service located within the entity’s multicast

radius (roughly, the number of hops beyond which neither the multicast requests

from the entity, nor the multicast announcements from the lookup service, will

propagate). This utility provides an implementation that makes the process of

acquiring lookup service instances, based on no information other than group

membership, much simpler for both services and clients.

DU.3.1 Other Types

The types defined in the specification of the LookupDi scove ry utility class are in

the net.j1' n1' .di scove ry package. The following additional types may also be

referenced in this specification. Whenever referenced, these object types will be

referenced in unqualified form:

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

49

50

40 LookupDiscovery UTILITY

net.jini.core.discovery.LookupLocator

net.jini.discovery.DiscoveryManagement

net.jini.discovery.DiscoveryGroupManagement

net.jini.discovery.DiscoveryPermission

java.io.IOException

java.io.Serializable

java.security.Permission

DU.3.2 The Interface

The public methods provided by the LookupDi scove ry class are as follows:

package net . j i ni .di scovery;

public cl ass LookupDi scove ry

implements Di scove ryManagement,

Di scove ryG roupManagement

{

public static final String[] ALL_GROUPS

= DiscoveryGroupManagement.ALL_GROUPS;

public static final String[] NO_GROUPS

= DiscoveryGroupManagement.NO_GROUPS;

public LookupDiscoveryCString[] groups)

throws IOException {m}

}

DU.3.3 The Semantics

The only new public method of the LookupDi scove ry helper utility class is the

constructor. All other public methods implemented by this class are specified in

theDiscoveryManagementandtheDiscoveryGroupManagementinfixfiwes

Each instance of the LookupDiscove ry class must behave as if it operates

independently of all other instances.

Theequalsrnmhodforflnsckmsreuunstrueifand<nflyifpwoiHMancesof

this class refer to the same object. That is, x and y are equal instances of this class

if and only if x == y has the value true.

50

51

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 4 1

For convenience, this class defines the constants AL L_GROU PS and N0_GROU PS,

which represent no set and the empty set respectively. For more information on

these constants, refer to the specification of the Di scoveryGroupManagement
interface.

The constructor of the LookupDi scove ry class takes a single input parameter:

a String array, none of whose elements may be nu11. If at least one element of

the input array is null, a Nu'l 'I Poi nterExcepti on is thrown.

Constructing this class using an input array that contains duplicate group

names is equivalent to constructing the class using an array with the duplicates
removed.

If nuH (AL L_GROU PS) is input to the constructor, then attempts will be made

to discover all lookup services located within the current multicast radius, regard-

less of group membership.

Although discovery events will not be sent by this class until a listener is

added through an invocation of the addLi stener method, discovery processing

usually starts as soon as an instance of this class is constructed. However, if an

empty array (N0_GROUPS) is passed to the constructor, discovery will not be

started until the addG roups or setGroups method is called to change the initial

empty set of groups to either a non-empty set, or null (ALL_GROUPS).

The constructor can throw an IOExcepti on because the creation of a

LookupDi scove ry object causes the initiation of the discovery process, a process

that can throw IOExcepti on when socket allocation occurs.

DU.3.4 Supporting Interfaces and Classes

The LookupDiscove ry helper utility class depends on the interfaces

Di scoveryManagement and Di scoveryGroupManagement, and on the concrete

class Di scove ryPermi ssi on.

DU.3.4.1 The Di scoveryManagement Interfaces

The LookupDi scove ry class implements both the Di scoveryManagement and the

Di scove ryGroupManagement interfaces, which together define methods related

to the coordination and management of all group discovery processing. See

Section DU.2, “The Discovery Management Interfaces” for more information on
those interfaces.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

51

52

42 LookupD'iscovery UTILITY

DU.3.4.2 Security and Multicast Discovery: The Di scoveryPermi ssion
Class

When an instance of the LookupDi scove ry class is constructed, the entity that

creates the instance must be granted appropriate discovery permission. For exam-

ple, if the instance of LookupDi scove ry is currently configured to discover a non-

empty, non-nul l set of groups, then the entity that created the instance must have

permission to attempt discovery of each of the groups in that set. If the set of

groups to discover is null (AL L_GROU PS), then the entity must have permission to

attempt discovery of all possible groups. If appropriate permissions are not

granted, the constructor of LookupDi scove ry, as well as the methods addG roups

and setGroups, will throw a java . l ang . Secu ri tyExcepti on.

Discovery permissions are controlled in security policy files using the per-

mission class Di scoveryPe rmi ssion. The public methods provided by the

Di scove ryPermi ssi on class are as follows:

package net .jini .di scovery;

public final class DiscoveryPermission extends Permission

implements Serializable

{

public DiscoveryPermissionCString group) {...}

public DiscoveryPermissionCString group,

String actions) {...}

}

The Di scove ryPermi ssi on class is a subclass of Permission, adding no
additional items of abstract state.

The Semantics

The equals method for this class returns true if and only if two instances of this

class have the same group name.

The constructor for this class has two forms: one form expecting one input

parameter, the other form expecting two input parameters. Each form of the con-

structor takes, as its first input parameter, a String representing one or more

group names for which to allow discovery.

The second parameter of the second form of the constructor is a String value

that is currently ignored because there are no actions associated with a discovery

permission.

52

53

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 43

D'i scaveryPer‘m'i ssion Examples

A number of examples that illustrate the use of this permission are presented.

Note that each example represents a line in a policy file.

permission net . j1'n1' .d1' scovery . D1' scoveryPermi 551' on "*";

Grant the entity permission to attempt discovery of all possible groups

permission net . j'in'i .d'i 5covery . D'i 5cover'yPer'm1' 55‘i on ;

Grant the entity permission to attempt discovery of only the “public” group

permission net . j'in'i .d'i 5covery . D'i 5cover'yPer'm1' 55‘i on "foo";

Grant the entity permission to attempt discovery of the group named “foo”

permission net . j'in'i .d'i 5covery . D'i 5cover'yPer'm1' 55‘i on * . sun . com";

Grant the entity permission to attempt discovery of all groups whose names

end with the substring “.sun.com”

Each of the above declarations grants permission to attempt discovery of one

name. A name does not necessarily correspond to a single group. That is, the fol-

lowing should be noted:

“ J. Hn

o The name grants permission to attempt discovery ofall possible groups.

9 A name beginning wit “* . ” grants permission to attempt discovery of all

groups that match the remainder of that name; for example, the name

"*.examp'|e.org" would match a group named "foon1y.examp1e.org"

and also a group named "51‘. ca. example .org".

9 The empty name " " denotes the public group.

9 All other names are treated as individual groups and must match exactly.

Finally, it is important to note that a restriction of the Java platform security

model requires that appropriate D1' 5coveryPerm1'551'on be granted to the Jini

technology infrastructure software codebase itself, in addition to any codebases

that may use Jini technology infrastructure software classes.

DU.3.5 Serialized Forms

Class ser‘ia] VersionUID Serialized Fields

D1' scove ryPe mi 551' on —3036978025008149170L none

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

53

54

44

54

LookupD'iscovery UTILITY

55

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 45

DU.4 The LookupLocator'D'i scover'y Utility

DU.4.1 Overview

THE The Jini Technology Core Platform Specification, “Discovery and Join”,
states that the “unicast discovery protocol is a simple request-response protocol.”

In a Jini application environment, the entities that participate in this protocol are a

discovering entity (Jini client or service) and a Jini lookup service that acts as the

entity to be discovered. The discovering entity sends unicast discovery requests to

the lookup service, and the lookup service reacts to those requests by sending uni-

cast discovery responses to the interested discovering entity.

The LookupLocato rD1' scove ry helper utility (belonging to the package

net.j1' n1' .d1' scove ry) encapsulates the functionality required of an entity that

wishes to employ the unicast discovery protocol to discover a lookup service. This

utility provides an implementation that makes the process of finding specific

instances of a lookup service much simpler for both services and clients.

Because the LookupLocator'Di scovery helper utility class will participate in

only the unicast discovery protocol, and because the unicast discovery protocol

imposes no restriction on the physical location of a service or client relative to a

lookup service, this utility can be used to discover lookup services running on

hosts that are located far from, or near to, the hosts on which the service is run-

ning. This lack of a restriction on location brings with it a requirement that the

discovering entity supply specific information about the desired lookup services to

the LookupLocator'Di scovery utility; namely, the location of the device(s) host-

ing each lookup service. This information is supplied through an instance of the

LookupLocator utility, defined in The Jini Technology Core Platform Specifica—

tion, “Discovery and Join”.

It may be of value to note the difference between LookupLocato rD1' scove ry

and the LookupDiscove ry helper utility for group discovery (defined earlier).

Although both are non-remote utility classes that entities can use to discover at

least one lookup service, the LookupLocator'Di scovery utility is designed to pro-

vide discovery capabilities that satisfy different needs than those satisfied by the

LookupDi scove ry utility. These two utilities differ in the following ways:

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

55

56

46

0

THE LookupLocatorDiscovery UTILITY

Whereas the LookupLocatorDi scove ry utility is used to discover lookup

services by their locators, employing the unicast discovery protocol, the

LookupDi scove ry utility uses the multicast discovery protocols to discover

lookup services by the groups to which the lookup services belong.

Whereas the LookupLocatorDi scove ry utility requires that the discovering

entity supply the specific location—or address—of the desired lookup ser-

vice(s) in the form ofa LookupLocator object, the LookupDi scove ry util-

ity imposes no such restriction on the discovering entity.

Whereas the LookupLocatorDi scove ry utility can be used by a discovering

entity to discover lookup services that are both “near” and “far,” the

LookupDi scove ry utility can be used to discover only those lookup services

that are located within the same multicast radius as that of the discovering

entity.

DU.4.2 Other Types

The types defined in the specification of the LookupLocatorDi scovery utility

class are in the net. jini .discove ry package. The following additional types

may also be referenced in this specification. Whenever referenced, these object

types will be referenced in unqualified form:

net . j i ni . core . di scovery. LookupLocator

net . j i ni .di scove r'y . Di scove ryManagement

net . j i ni .di scove r'y . Di scove ryLocatorManagement

DU.4.3 The Interface

The public methods provided by the LookupLocatorDi scove ry class are as fol-
lows:

package net .jini .di scovery;

pub'l i c (:1 ass LookupLocatorDi scove ry

imp'l ements Di scove ryManagement

Di scove ryLocato rManagement

public LookupLocatorDiscovery

(LookupLocatorEJ locators) {...}

56

57

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 47

public LookupLocator‘E] getDiscoveredLocatorsO {...}

public LookupLocatorE] getUndiscoveredLocatorsO {...}

DU.4.4 The Semantics

Including the constructor, the LookupLocatorDi scove ry helper utility class

defines three new public methods. All other public methods are inherited from the

Di scove ryManagement and Di scove ryLocatorManagement interfaces.

Each instance of the LookupLocatorDiscovery class must behave as if it

operates independently of all other instances.

The equals method for this class returns true if and only if two instances of

this class refer to the same object. That is, x and y are equal instances of this class

if and only if x == y has the value true.

The constructor of the LookupLocator'Di scovery class takes a single input

parameter: a set of locators represented as an array of LookupLocator objects,

none of whose elements may be null. Each element in the input set corresponds

to a specific lookup service the discovering entity wishes to be discovered.

Although it is acceptable to input null, if a non-nul l array containing at least one

null element is input, a Nul l Poi nterExcepti on will be thrown.

Invoking the constructor with an input array that contains duplicate locators

(as determined by LookupLocator' . equal 5) is equivalent to performing the invo-

cation with the duplicates removed from the array.

Although discovery events will not be sent by this class until a listener is

added through an invocation of the addLi stener method, discovery processing

usually starts as soon as an instance of this class is constructed. However, if null

or an empty array is passed to the constructor, discovery will not be started until

the addLocators or setLocators method is called to change the managed set of

locators to a set of locators that is non-null and non-empty.

The getDi scove redLocato rs method returns the set of LookupLocator

objects representing the desired lookup services that are currently discovered. If

the set is empty, this method will return an empty array. This method takes no

arguments as input, and will return a new array upon each invocation.

The getUndi scoveredLocators method returns the set of LookupLocator'

objects representing the desired lookup services that have not yet been discovered.

If the set is empty, this method will return an empty array. This method takes no

arguments as input, and will return a new array upon each invocation.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

57

58

48 THE LookupLocatorDiscovery UTILITY

DU.4.5 Supporting Interfaces

The LookupLocatorDiscovery helper utility class depends on the following

interfaces: Di scove ryManagement and D1" scove ryLocato rManagement.

DU.4.5.1 The D'i scover'yManagement Interfaces

The LookupLocato rD1' scove ry class implements the Di scoveryManagement and

D1" scove ryLocato rManagement interfaces, which together define methods

related to the coordination and management of all locator discovery processing.

See Section DU.2, “The Discovery Management Interfaces” for more information
on those interfaces.

58

59

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 49

DU.5 The LookupDiscover'yManager' Utility

DU.5.1 Overview

ALTHOUGH the goals of any well-behaved Jini client or service are application-
specific, the goals of such entities with respect to their interaction with Jini lockup

services generally begin with employing the Jini discovery protocols (defined in

The Jim' Technology Core Platform Specification, “Discovery and Join”) to obtain

a reference to at least one lockup service. Because the discovery duties performed

by such entities may require the management of significant amounts of state infor-

mation, those duties can become quite tedious.

The LookupDi scove ryManager is a helper utility class (belonging to the

package net. ji ni .di scove ry) that organizes and manages all discovery-related

activities on behalf of a Jini client or service. Rather than providing its own facil-

ity for coordinating and maintaining all of the necessary state information related

to group names, LookupLocator objects, and Di scove ryL1' stener objects, such

an entity can employ this class to provide those facilities on its behalf.

DU.5.2 Other Types

The types defined in the specification of the LookupDiscove ryManager utility

class are in the net. jini .discove ry package. The following additional types

may also be referenced in this specification. Whenever referenced, these object

types will be referenced in unqualified form:

net.jini.core.discovery.LookupLocator

net.jini.discovery.DiscoveryEvent

net.jini.discovery.DiscoveryListener

net.jini.discovery.DiscoveryManagement

net.jini.discovery.DiscoveryGroupManagement

net.jini.discovery.DiscoveryLocatorManagement

java.io.IOException

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

59

60

50 THE LookupDiscoveryManager' UTILITY

DU.5.3 The Interface

The only new public method of the LookupD1' scove ryMan age r helper utility class

is the constructor. All other public methods implemented by this class are speci-

fied in the discovery management interfaces.

package net .j1'n1' .d‘i scovery;

public class LookupDi scove ryManager

implements D1' scove ryManagement,

D1' scove ryG roupManagement,

D1' scove ryLocatorManagement

{

public LookupD'iscoveryManagerCStringU groups,

LookupLocatorE] locators,

DiscoveryL‘istener listener)

throws IOException {...}

}

DU.5.4 The Semantics

The equals method for this class returns true if and only if two instances of this

class refer to the same object. That is, x and y are equal instances of this class if

and only if x == y has the value true.

The constructor for the LookupDi scove ryManager takes the following argu-

ments as input:

9 A String array, none of whose elements may be null, in which each ele-

ment is the name of a group whose members are lookup services the entity

wishes to be discovered through group discovery

0 An array of LookupLocator objects, none of whose elements may be null,

in which each element corresponds to a specific lookup service the entity

wishes to be discovered through locator discovery

9 A reference to an instance of D1" scove ryL1' stene r that will be notified when

a targeted lookup service is discovered, is discarded, or—under certain con-

ditions—has experienced a change in its group membership

The LookupDi scove ryManager will, on behalf of any entity that constructs

an instance of this utility, employ the Jini discovery protocols defined in The Jim'

Technology Core Platform Specification, “Discovery and Join” to attempt to find

60

61

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 5 1

all lookup services that satisfy the criteria set forth by the contents of the first two

arguments, and it will maintain and manage any lookup services that it does dis-
cover.

If the constructor is invoked with a set of group names and a set of locators in

which either or both sets contain duplicate elements (where duplicate locators are

determined by LookupLocator . equal 5), the invocation is equivalent to con-

structing this class with no duplicates in either set.

If null (Di scoveryGroupManagement.ALL_GROUPS) is input to the groups

argument, then attempts will be made through group discovery to discover all

lookup services located within the multicast radius of the entity, regardless of

group membership.

Typically, group discovery is initiated as soon as an instance of this class is

created. However, if an empty array (Di scove ryG roupManagement.N0_GROU P5) is

passed to the groups argument of the constructor, no lookup service will be dis-

covered through group discovery until the addGroups or setGroups method is

called to change the managed set of groups to either a non-empty set, or null

(Di scove ryG roupManagement.ALL_GROUPS).

If at least one element of the groups argument is null, a

Nul l Poi nterExcepti on is thrown.

Typically, locator discovery processing is initiated as soon as an instance of

this class is constructed. However, if an empty or null array is input to the

locato rs argument, no attempt will be made to discover specific lookup services

through locator discovery until the addLocato rs or setLocators method is

called to change the managed set of locators to a set of locators that is non-null

and non-empty.

If at least one element of the locato rs argument is null, a

Nul l Poi nterExcepti on is thrown.

The last argument to the constructor is a reference to a listener object that will

be registered to receive discovery event notifications. If a null reference is input

to this argument, then the entity will receive no discovery events until addDi s—

cove ryLi stener is invoked with a non-null instance of Di scove ryLi stene r.

Once a listener is registered with the LookupDi scove ryManage r, it will be

notified of all lookup services discovered through either group or locator discov-

ery, and will be notified whenever those lookup services are discarded. Thus, if an

entity wishes to receive discovered and discarded events from the

LookupDiscove ryManager, it is the responsibility of the entity to provide an

implementation of the Di scove ryLi stener (or the Di scove ryChangeLi stene r)

interface; an implementation that defines the actions to take upon the receipt of

those types of events.

If a listener registered with the LookupDi scove ryManager is also an instance

of Di scove ryChangeLi stener, then in addition to receiving events related to dis-

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

61

62

52 THE LookupDiscoveryManager' UTILITY

covered and discarded lookup services, that listener will also be notified of group

membership changes that occur in any of the lookup services targeted for at least

group discovery. That is, although such listeners are eligible to receive changed

events, they will receive no changed events for lookup services for which the

entity has requested only locator discovery.

Note that if an entity wishes to receive changed events in addition to the dis-

covered and discarded events it receives from the LookupDi' scove ryMan age r, the

entity must provide an implementation of D1" scove ryChangeLi stener that

defines the actions to take upon the receipt of any of the three possible discovery

event types. That is, if the entity provides only an implementation of

D1' scove ryL1' stener, the entity will receive no changed events for any of the dis-

covered lookup services, regardless of the discovery mechanism employed for

those lookup services.

The constructor throws IOException. This is because construction of a

LookupDiscoveryManager may initiate the multicast discovery process, which

can throw IOExcepti on.

Once a lookup service is discovered, there is no longer any need to perform

discovery processing with respect to that lookup service. This means that if a

lookup service becomes unreachable after it has been discovered, the

LookupDiscoveryManager will not know when the lookup service becomes

reachable again until that lookup service is discarded.

Although the LookupDi scove ryManager will monitor the multicast

announcements for indications of unavailability, it will discard only those

unreachable lookup services for which the entity requested discovery through at

least group discovery. That is, if the LookupDi' scove ryManager determines that a

previously discovered lookup service has become unreachable, but the entity

requested that it be discovered by locator discovery alone, then the

LookupDi scove ryManager will not discard the lookup service.

Thus, whenever the entity itself determines that a previously discovered

lookup service has become unreachable, it should not rely on the

LookupDiscoveryManager to discard the lookup service. Instead, the entity

should inform the LookupDiscoveryManager—through the invocation of the

discard method—that the previously discovered lookup service is no longer

available, and that attempts should be made to re-discover that lookup service.

Typically, an entity determines that a lookup service is unavailable when the entity

attempts to use the lookup service but receives an exception or error

(RemoteExcepti on, for example) as a result of the attempt.

62

63

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1

DU.5.5 Supporting Interfaces and Classes

The LookupDi scove ryMan age r helper utility class depends on the interfaces

Di scove ryManagement, Di scove ryGroupManagement, and

Di scoveryLocatorManagement, and on the concrete class

Di scove ryPe rmi ssi on.

DU.5.5.1 The Di scover'yManagement Interfaces

The LookupDi scove ryManager class implements the Di scove ryManagement, the

Di scove ryGroupManagement, and the Di scove ryLocatorManagement inter-

faces, which together define methods related to the coordination and management

of all group and locator discovery processing. See Section DU.2, “The Discovery

Management Interfaces” for more information on those interfaces.

DU.5.5.2 Security and Multicast Discovery: The Di scover'yPermi ssion
Class

As is the case for the LookupDi scove ry class, when an instance of the

LookupDi scove ryManager class is constructed, the entity that creates the

instance must be granted appropriate discovery permission to perform the group

discovery duties that instance attempts to perform on behalf of the entity. If appro-

priate permissions are not granted, the constructor of LookupDi scove ryManage r,

as well as the methods addG roups and setGroups, will throw a

java. 'lang . Secu ri tyExcepti on.

Discovery permissions are controlled in security policy files using the per-

mission class Di scoveryPe rmi ssion. The specification of that class, as well as

useful examples related to that class, are presented in the specification of the

LookupDi scove ry utility (see Section DU.2, “The Discovery Management Inter-

faces”).

53

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

63

64

54

64

THE LookupDiscoveryManager' UTILITY

65

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 55

DU.6 Low-Level Discovery Protocol Utilities

THE utilities presented in this section of the specification are useful when imple-
menting higher-level utilities or other entities or components that will be involved

in the Jini discovery process. These utilities encapsulate functionality that allow

one to exercise more control when interacting with the Jini discovery protocols.

Anyone wishing to provide their own implementation of the Jini lookup service or

their own implementation of the discovery utilities presented previously in this

specification, may find the utilities presented in this section useful when creating

those alternate implementations.

DU.6.1 The Constants Class

DU.6.1.1 Overview

The Constants class provides easy access to defined constants that may be useful

when participating in the discovery process.

DU.6.1.2 Other Types

The types defined in the specification of the Constants class are in the

net. j 1' n1' .d1' scove ry package. The following additional types may also be refer-

enced in this specification. Whenever referenced, these object types will be refer-

enced in unqualified form:

java. net. InetAddress

java. net . UnknownHostExcepti on

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

65

66

56 LOW-LEVEL DISCOVERYPROTOCOL UTILITIES

DU.6.1.3 The Class Definition

The public constants defined by the Constants class are as follows:

package net .jini .di scovery;

public class Constants {

public static final short discoveryPort = 4160;

public static final InetAddress getRequestAddressC)

throws UnknownHostException {m}

public static final InetAddress getAnnouncementAddressC)

throws UnknownHostException {m}

DU.6.1.4 The Semantics

The Constants class cannot be instantiated. This class has one public variable

and two public accessor methods; each is static and final. The constant value asso-

ciated with the variable, as well as the values returned by the methods, may be

useful in the discovery process.

The value of the di scove ryPo rt constant serves two purposes:

0 The UDP port number over which the multicast request and announcement

protocols operate

9 The TCP port number over which the unicast discovery protocol operates by
default

The getRequestAdd ress method returns an instance of InetAddress that

contains the address of the multicast group over which the multicast request proto-

col takes place.

The getAnnouncementAddress method returns an instance of InetAdd ress

that contains the address of the multicast group over which the multicast

announcement protocol takes place.

Note that either getRequestAddress or getAnnouncementAddress may

throw an UnknownHostExcepti on if called in a circumstance under which multi-

cast address resolution is not permitted.

66

67

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1

DU.6.2 The Outgoi ngMul ti castRequest Utility

DU.6.2.1 Overview

The Outgoi ngMul ti castRequest class provides facilities for marshalling multi-

cast discovery requests into a form suitable for transmission over a network for

the purposes of announcing one’s interest in discovering a lookup service. This

class is useful when building components that participate in the multicast request

protocol as part of a group discovery mechanism. This utility should be viewed

from the perspective of an entity that wishes to transmit multicast requests in

order to discover a lookup service belonging to a set of groups in which the entity
is interested.

DU.6.2.2 Other Types

The types defined in the specification of the Outgoi ngMul ti castRequest utility

class are in the net. jini .discove ry package. The following additional types

may also be referenced in this specification. Whenever referenced, these object

types will be referenced in unqualified form:

net. ji ni . core .di scovery. Servi ceID

java . i o . IOExcepti on

java. net. Datag ramPacket

java. net. InetAddress

DU.6.2.3 The Interface

The public methods provided by the Outgoi ngMulti castRequest class are as
follows:

package net .ji ni .di scovery;

public class OutgoingMulticastRequest {

public static DatagramPacketE] marshal (int port,

String[] groups,

ServiceID[] heard)

throws IOException {...}

57

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

67

68

58 LOW-LEVEL DISCOVERYPROTOCOL UTILITIES

DU.6.2.4 The Semantics

The Outgoi ngMulti castRequest class cannot be instantiated. This class has

only one public method, which is static.

The marshal method takes as input the following arguments, none of which

may be nul l :

o The port to which respondents should connect in order to start unicast dis-

covery

o A String array, none of whose elements may be null, in which each ele-

ment is the name of a group the requesting entity is interested in discovering

9 An array of Se rv1' ceID objects, none of whose elements may be null, in

which each element corresponds to a lookup service the requesting entity

has already heard from

Since implementations are not required to check for duplicated elements, the

arguments represented as arrays must not contain such elements.

The marshal method returns an array whose elements are instances of

DatagramPacket. The array returned will always contain at least one element,

and will contain more if the request is not small enough to fit in a single packet.

The array returned by this method is fully initialized; it contains a multicast

request as payload and is ready to send over the network.

In the event of error, the marshal method may throw an IOExcepti on if mar-

shalling fails. In some instances the exception thrown may be a more specific sub-

class of that exception.

DU.6.3 The Incom'ingMul t'icastRequest Utility

DU.6.3.1 Overview

The Incom1' ngMul t1' castRequest class provides facilities that are useful when a

requesting entity’s announced interest in discovering a lookup service is received.

The facilities provided by this class encapsulate the details of the process of

unmarshalling such received multicast discovery requests into a form in which the

individual parameters of the request may be easily accessed. This class is useful

when building components that participate in the multicast request protocol as

part of a group discovery mechanism, where an entity that uses such a component

wishes to receive multicast requests in order to be discovered through its group

membership; for example, an entity such as a lookup service.

68

69

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 59

DU.6.3.2 Other Types

The types defined in the specification of the Incomi ngMul ti castRequest utility

class are in the net. jini .discove ry package. The following additional types

may also be referenced in this specification. Whenever referenced, these object

types will be referenced in unqualified form:

net. ji ni . core .di scovery. Servi ceID

java . i o . IOExcepti on

java. net. Datag ramPacket

java. net. InetAddress

DU.6.3.3 The Interface

The public methods provided by the Incomi ngMulti castRequest class are as
follows:

package net .ji ni .di scovery;

public class IncomingMulticastRequest {

public IncomingMulticastRequest(DatagramPacket dgram)

throws IOException {m}

public InetAddress getAddressC) {m}

public int getPortC) {m}

public String[] getGroupsC) {m}

public ServiceIDE] getServiceIDsC) {m}

DU.6.3.4 The Semantics

Including the constructor, the Incomi ngMul ti castRequest class defines five new

public methods.

The equals method for this class returns true if and only if two instances of

this class have the same address, port, groups, and service ID values.

The constructor of the Incomi ngMul ti castRequest class takes a single input

parameter: an instance of DatagramPacket. The payload of this parameter is

assumed to contain nothing but a marshalled discovery request.

If the marshalled request contained in the input parameter is corrupt, an

IOExcepti on or a Cl assNotFoundException will be thrown. In some such

instances, a more specific subclass of either exception may be thrown that will

give more detailed information.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

69

70

60 LOW-LEVEL DISCOVERYPROTOCOL UTILITIES

The getAdd ress method returns an instance of InetAddress that represents

the address of the host to contact in order to start unicast discovery.

The getPort method returns an int value that is the port number to connect

to on the remote host in order to start unicast discovery.

The getG roups method returns an array consisting of the names of the groups

in which the requesting entity (the originator of this request) is interested. The

array returned by this method may be of zero length, none of its elements will be

null, and elements in the returned array may or may not be duplicated. Further-

more, the set reflected in the returned array may not be complete, but other incom-

ing packets should contain the rest of the set.

The getServi ceIDs method returns an array of Se rv1' ceID instances in

which each element of the array corresponds to a lookup service from which the

requesting entity has already heard. The array returned by this method may be of

zero length, none of its elements will be null, and elements in the returned array

may or may not be duplicated. Furthermore, the set returned by this method may

not be complete. That is, there may be more lookup services from which the

requesting entity has already heard, but the set returned by this method will not

exceed the capacity of a packet.

DU.6.4 The Outgoi ngMu'l t'i castAnnouncement Utility

DU.6.4.1 Overview

The Outgoi ngMul ti castAnnouncement class encapsulates the details of the pro-

cess of marshalling multicast discovery announcements into a form suitable for

transmission over a network for the purposes of announcing the availability of a

lookup service to interested parties. This class is useful when building compo-

nents that participate in the multicast announcement protocol as part of a group

discovery mechanism. This utility should be viewed from the perspective of an

entity that wishes to transmit multicast announcements in order to be discovered

as a lookup service belonging to a set of groups in which other discovering entities

may be interested.

DU.6.4.2 Other Types

The types defined in the specification of the Outgoi ngMu'I t1" castAnnouncement

utility class are in the net.j1' n1' .di scove ry package. The following additional

70

71

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 61

types may also be referenced in this specification. Whenever referenced, these

object types will be referenced in unqualified form:

net. ji ni . core .di scovery. LookupLocator

net. ji ni . core .di scovery. Servi ceID

java.io.IOException

java. net. Datag ramPacket

DU.6.4.3 The Interface

The public methods provided by the Outgoi ngMul ti castAnnouncement class are
as follows:

package net .ji ni .di scovery;

public class OutgoingMulticastAnnouncement {

public static DatagramPacketE] marshal (ServiceID id,

LookupLocator loc,

String[]groups)

throws IOException {...}

DU.6.4.4 The Semantics

The Outgoi ngMulti castAnnouncement class cannot be instantiated. This class

has only one public method, which is static.

The marshal method takes as input the following arguments, none of which

may be nul l :

9 The instance of Se rvi ceID that corresponds to the lookup service being
advertised

9 The instance of LookupLocator through which the lookup service being

advertised may be discovered through unicast discovery

9 A non-null String array, none of whose elements may be null, in which

each element is the name ofa group in which the lookup service being adver-
tised is a member

The marshal method returns an array whose elements are instances of

Datag ramPacket, the contents of which represents a marshalled multicast

announcement. The packets created by this method, as represented by the ele-

ments of the returned array, are guaranteed to contain all of the groups in which

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

71

72

62 LOW-LEVEL DISCOVERYPROTOCOL UTILITIES

the lookup service being advertised is a member. Note that the set of groups

reflected in the returned collection of datagram packets may be distributed among

those packets.

Each element of the array returned by this method is initialized such that it is

ready for transmission to the appropriate multicast address and UDP port.

In the event of error, the marshal method may throw an IOExcepti on if mar-

shalling fails. In some instances, the exception thrown may be a more specific

subclass of that exception.

DU.6.5 The Incom'ingMu'l t'icastAnnouncement Utility

DU.6.5.1 Overview

The Incomi ngMul t1' castAnnouncement class encapsulates the details of the pro-

cess of unmarshalling multicast discovery announcements into a form in which

the individual parameters of the announcement may be easily accessed. This class

is useful when building components that participate in the multicast announce-

ment protocol as part of a group discovery mechanism. This utility should be

viewed from the perspective of an entity that wishes to receive multicast

announcements in order to discover a lookup service belonging to a set of groups

in which the entity is interested.

DU.6.5.2 Other Types

The types defined in the specification of the Incomi ngMu'I t1" castAnnouncement

utility class are in the net.j1' n1' .di scove ry package. The following additional

types may also be referenced in this specification. Whenever referenced, these

object types will be referenced in unqualified form:

net . j 1' n1' .cor‘e . d1' scovery. LookupLocator

net . j 1' n1' . core . d1' scovery. Servi ceID

java . 'i o . IOExcepti on

java. net . DatagramPacket

72

73

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1

DU.6.5.3 The Interface

The public methods provided by the Incomi ngMul ti castAnnouncement class are
as follows:

package net .ji ni .di scovery;

public class IncomingMulticastAnnouncement {

public IncomingMulticastAnnouncement(DatagramPacket p)

throws IOException {m}

public ServiceID getServiceIDC) {m}

public LookupLocator getLocatorC) {m}

public String[] getGroupsC) {m}

DU.6.5.4 The Semantics

Including the constructor, the Incomi ngMulticastAnnouncement class defines

four new public methods.

The equals method for this class returns true if and only if two instances of
this class have the same service ID values.

The constructor of the Incomi ngMulti castAnnouncement class takes a sin-

gle input parameter: an instance of Datag ramPacket. The constructor attempts to

unmarshal the input parameter, storing the results in the various fields of this
class.

If the contents of the datagram packet cannot be successfully unmarshalled,

either an IOException or a Cl assNotFoundException is thrown. In some such

instances, a more specific subclass of either exception may be thrown that will

give more detailed information.

The getServi ceID method returns the Se rvi ceID instance corresponding to

the lookup service that sent the announcement.

The getLocator method returns the LookupLocator instance corresponding

to the lookup service that sent the announcement. It is through the object returned

by this method that the lookup service may be discovered via unicast discovery.

The getG roups method returns an array consisting of the names of the groups

in which the lookup service that sent the announcement is a member. The array

returned by this method is never null, will contain no null elements, or may be

empty. Additionally, elements in the returned array may or may not be duplicated.

63

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

73

74

64 LOW-LEVEL DISCOVERYPROTOCOL UTILITIES

DU.6.6 The OutgoingUn'icastRequest Utility

DU.6.6.1 Overview

The Outgoi ngUnicastRequest class encapsulates the details of the process of

marshalling unicast discovery requests into a form suitable for transmission over a

network to attempt discovery of a specific lookup service. This class is useful

when building components that participate in the unicast request protocol as part

of either a group or a locator discovery mechanism. This utility should be viewed

from the perspective of an entity that wishes to transmit unicast requests in order

to discover a specific lookup service in which the entity is interested.

DU.6.6.2 Other Types

The types defined in the specification of the Outgoi ngUnicastRequest utility

class are in the net. j1'n1' .discove ry package. The following additional types

may also be referenced in this specification. Whenever referenced, these object

types will be referenced in unqualified form:

java . 'i o . IOExcepti on

java . 1' o . OutputSt ream

DU.6.6.3 The Interface

The public methods provided by the 0utgo1'ngUn1' castRequest class are as fol-
lows:

package net.j1'n1' .d‘i scovery;

public class OutgoingUnicastRequest {

public static void marshal (OutputStream str)

throws IOException {...}

DU.6.6.4 The Semantics

The Outgoi ngUni castRequest class cannot be instantiated. This class has only

one public method, which is static.

The marshal method takes only one parameter as input: an instance of

OutputSt ream, which is the stream to which the unicast request is written. After

the unicast request is written to the stream, the stream is flushed.

74

75

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 65

In the event of error, the marshal method may throw an IOExcepti on if writ-

ing to the stream fails. In some instances, the exception thrown may be a more

specific subclass of that exception.

DU.6.7 The Incom'ingUn'icastRequest Utility

DU.6.7.1 Overview

The Incomi ngUnicastRequest class encapsulates the details of the process of

unmarshalling unicast discovery requests into a form in which the individual

parameters of the request may be easily accessed. This class is useful when build-

ing components that participate in the unicast request protocol as part of either a

group or a locator discovery mechanism. This utility should be viewed from the

perspective of an entity—such as a lookup service—that wishes to receive unicast

requests in order to be discovered through direct, unicast communication.

DU.6.7.2 Other Types

The types defined in the specification of the Incomi ngUnicastRequest utility

class are in the net. jini .discove ry package. The following additional types

may also be referenced in this specification. Whenever referenced, these object

types will be referenced in unqualified form:

java . 1' o . InputStream

java . 'i o . IOExcept'i on

DU.6.7.3 The Interface

The public methods provided by the Incomi ngUni castRequest class are as fol-
lows:

package net .ji ni .d1' scovery;

public class IncomingUnicastRequest {

public IncomingUnicastRequestCInputStream str‘)

throws IOException {...}

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

75

76

66 LOW-LEVEL DISCOVERYPROTOCOL UTILITIES

DU.6.7.4 The Semantics

The only new public method defined by the Incom1' ngUn1' castRequest class is
the constructor.

The constructor of the Incom1' ngUn1' castRequest class takes a single input

parameter: an instance of InputSt ream, which is the stream from which the uni-

cast request is read.

In the event of error, an IOExcepti on may be thrown if reading from the

stream fails. In some instances, the exception thrown may be a more specific sub-

class of that exception.

DU.6.8 The OutgoingUn'icastResponse Utility

DU.6.8.1 Overview

The 0utgo1' ngUn1' castResponse class encapsulates the details of the process of

marshalling a unicast discovery response into a form suitable for transmission

over a network to respond to a unicast discovery request. This class is usefial when

building components that participate in the unicast request protocol as part of

either a group or a locator discovery mechanism. This utility should be viewed

from the perspective of a entity—such as a lookup service—that wishes to trans-

mit responses to unicast requests in order to be discovered through direct, unicast
communication.

DU.6.8.2 Other Types

The types defined in the specification of the 0utgo1' ngUn1' castResponse utility

class are in the net. j1'n1' .discove ry package. The following additional types

may also be referenced in this specification. Whenever referenced, these object

types will be referenced in unqualified form:

net . j 1' n1' . core . 1 ookup . Servi ceReg‘i strar

java . 1' o . IOExcepti on

java . 1' o . OutputSt ream

76

77

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 67

DU.6.8.3 The Interface

The public methods provided by the Outgoi ngUni castResponse class are as fol-
lows:

package net .j'i n'i .d1' scovery;

public class OutgoingUnicastResponse {

public static void marshal (OutputStream s,

ServiceRegistrar reg

String[] groups)

throws IOException {...}

DU.6.8.4 The Semantics

The Outgoi ngUni castResponse class cannot be instantiated. This class has only

one public method, which is static.

The marshal method takes as input the following arguments, none of which

may be null:

9 An instance of OutputStream, which is the stream to which the unicast

response is written.

9 An instance of Se rv1' ceRegi st rar that references the proxy to the lookup
service that will be marshalled and written to the stream.

9 A non-null String array, none of whose elements may be null, in which

each element is the name of a group in which the lookup service referenced

by the reg parameter is a member. Note that duplicate elements are allowed

in this parameter.

The marshal method marshals the reg parameter and writes the result to the

stream. It then writes each element of the groups parameter to the stream. After

the complete unicast response is written to the stream, the stream is flushed.

This method may throw an IOExcepti on if a failure occurs while marshalling

or writing to the stream. In some instances, the exception thrown may be a more

specific subclass of that exception.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

77

78

68 LOW-LEVEL DISCOVERYPROTOCOL UTILITIES

DU.6.9 The Incom‘ingUn‘icastResponse Utility

DU.6.9.1 Overview

The Incom1' ngUn1' castResponse class encapsulates the details of the process of

unmarshalling a unicast discovery response into a form in which the individual

parameters of the request may be easily accessed. This class is usefiil when build-

ing components that participate in the unicast request protocol as part of either a

group or a locator discovery mechanism. This utility should be viewed from the

perspective of an entity that wishes to receive unicast responses in order to dis-

cover lookup services through direct, unicast communication.

DU.6.9.2 Other Types

The types defined in the specification of the Incom1' ngUn1' castResponse utility

class are in the net. j1'n1' .discove ry package. The following additional types

may also be referenced in this specification. Whenever referenced, these object

types will be referenced in unqualified form:

net .j1'n1' .core .1ookup . Servi ceReg'i strar

java.1'o . InputStream

java. 10 . IOExcept'ion

DU.6.9.3 The Interface

The public methods provided by the Incom1' ngUn1' castResponse class are as fol-
lows:

package net.j1'n1' .d‘iscovery;

public class IncomingUn‘icastResponse {

pub'lic Incom1'ngUn1'castResponseCInputStream s)

throws IOException, ClassNotFoundExcept‘ion {...}

pub'lic ServiceRegistrar getRegistrarO {...}

public String[] getGroupsO {...}

DU.6.9.4 The Semantics

Including the constructor, the Incom1' ngUn1' castResponse class defines three new
methods.

78

79

JINI DISCO VERY UTILITIES SPECIFICA TION, version 1.1 69

The equa1s method for this class returns true if and only if two instances of

this class reference the same lookup service proxy (registrar).

The constructor of the Incom1' ngUn1' castResponse class takes a single input

parameter: an instance of InputSt ream, which is the stream from which the con-

tents of the unicast response is read.

An IOExcepti on may be thrown if reading from the stream fails. A

C1 as sNotFound Except'i on may be thrown if failure occurs while unmarshalling

the proxy to the lookup service contained in the unicast response. In some such

instances, a more specific subclass of either exception may be thrown that will

give more detailed information.

The getRegistrar method returns an instance of Servi ceRegistrar that

references the proxy to the lookup service sent in the unicast response.

The getG roups method returns an array consisting of the names of the groups

in which the lookup service referenced in the response is a member. The array

returned by this method is never nu11, will contain no nu'l'l elements, or may be

empty. Additionally, elements in the returned array may or may not be duplicated.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

79

80

70

80

LOW-LEVEL DISCOVERYPROTOCOL UTILITIES

81

EU

Jini Entry Utilities

Specification

EU.1 Entry Utilities

ENTRIES are designed to be used in distributed algorithms for which exact-
match lookup semantics are useful. An entry is a typed set of objects, each of

which may be tested for exact match with a template. The details of entries and

their semantics are discussed in The Jim’ Technology Core Platform Specification,

“Emmy”.

When designing entries, certain tasks are commonly done in similar ways.

This specification defines a utility class for such common tasks.

EU.1.1 AbstractEntr'y

The class net . j i ni .entry.AbstractEntry is a specific implementation of

Entry that provides useful implementations of equal 5, hashCode, and toStri ng:

package net .ji ni .entry;

public abstract class AbstractEntry implements Entry {

public boolean equalsCObject o) {m}

public int hashCodeC) {m}

public String toString() {m}

public static boolean equalsCEntry e1, Entry e2) {m}

public static int hashCodeCEntry entry) {m}

public static String toStringCEntry entry) {m}

81

71

82

72 ENTRY UTILITIES

The static method AbstractEntry.equals returns true if and only if the two

entries are of the same class and for each field F, the two objects’ values for F are

either both null or the invocation of equals on one object’s value for F with the

other object’s value for F as its parameter returns true. The static method
hashCode returns zero XOR the hashCode invoked on each non-nu'l'l field of the

entry. The static method toSt r1' ng returns a string that contains each field’s name

and'wflue.The non:fiafi01nefluxh equals,hashCode,and toStringIeunn a

result equivalent to invoking the corresponding static method with this as the

first argument.

EU.1.2 Serialized Form

Class ser'ia'l VersionUID Serialized Fields

AbstractEntry 5071868345060424804L none

82

83

LM

Jini Lease Utilities

Specification

LM.1 Introduction

THIS specification defines helper utility classes, along with supporting inter-
faces and classes, that encapsulate functionality which provides for the coordina-

tion, systematic renewal, and overall management of a set of leases associated

with some object on behalf of another object. Currently, this specification defines

only one helper utility class:

Q The LeaseRenewa'l Manager helper utility

83

73

84

74

84

INTRODUCTION

85

JINI LEASE UTILITIES SPECIFICATION, version 1.1 75

LM.2 The LeaseRenewal Manager-

THE LeaseRenewal Manager class (belonging to the package net. ji ni . lease)
encapsulates functionality that provides for the systematic renewal and overall

management of a set of leases associated with one or more remote entities on

behalf of a local entity.

The concept of leased resources is fundamental to the Jini technology pro-

gramming model. Providing a leasing mechanism helps to prevent the accumula-

tion of outdated and unwanted resources in time-based distributed systems, such

as the Jini technology infrastructure. The leasing model for Jini network technol-

ogy (Jini technology), defined in The Jini Technology Core Platform Specifica-

tion, “Leasing and Distributed Systems”, requires renewed proof of interest to

continue the existence of a leased resource. Thus, any Jini technology-enabled cli-

ent (Jini client) or Jini technology-enabled service (Jini service) that requests the

use of the leased resources provided by another Jini service may be granted access

to those resources for a negotiated period of time, and must continue to request

renewal of the lease on each resource for as long as the client or service wishes to
have access to the resource.

For example, the Jini lookup service leases two resources: residency in its

database and registration with its event notification mechanism. Thus, if a service

that is registered with a Jini lookup service wishes to continue its residency

beyond the length of the current lease, the service must request a lease renewal

from that lookup service. This renewal process must be repeated for as long as the

service wishes to maintain its residency in the lookup service. Similarly, if a client

has requested that a lookup service notify it of events of interest, then prior to the

expiration of the lease on the event registration, the client must request that the

lookup service continue to send such events. As with residency in the lookup ser-

vice, these renewal requests must be repeated for as long as the client wishes to
receive event notifications.

Another example of a Jini service providing leased resources would be a ser-

vice that implements The Jini Technology Core Platform Specification, “Transac-

tion” to manage transactions on behalf of registered participants. That

specification requires that a transaction must be a leased resource. Therefore, any

entity that creates such a transaction object is required to negotiate (with an entity

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

85

86

76 THE LeaseRenewa lManager'

referred to as a transaction manager) a lease on that object, repeatedly requesting

lease renewals prior to the lease’s expiration, for as long as the transaction is to
remain in effect.

The LeaseRenewal Manager class is designed to be a simple mechanism that

provides for the systematic renewal and overall management of leases granted on

resources that are provided by Jini services and for which a Jini client or service

has registered interest. The LeaseRenewal Manager is a utility class, not a remote

service. In order to use this utility, an entity must create, in its own address space,

an instance of the LeaseRenewal Manager to manage the entity’s leases locally.

LM.2.1 Other Types

The types defined in the specification of the LeaseRenewalManager utility class

are in the net. ji ni .lease package. The following types may be referenced in

this specification. Whenever referenced, these types will be referenced in unquali-
fied form:

net.jini.core.lease.Lease

net.jini.core.lease.UnknownLeaseException

net.jini.core.lease.LeaseDeniedException

java.rmi.RemoteException

java.rmi.NoSuchObjectException

java.util.EventObject

java.util.EventListener

86

87

JINI LEASE UTILITIES SPECIFICATION, version 1.1 77

LM.3 The Interface

THE public methods provided by the LeaseRenewa1 Manager class are:

package net.jini.1ease;

pub1ic c1ass LeaseRenewa1Manager

{

pub1ic LeaseRenewa1ManagerC) {m}

pub1ic LeaseRenewa1ManagerCLease 1ease,

1ong desiredExpiration,

LeaseListener 1istener) {m}

pub1ic void renewUnti1(Lease 1ease,

1ong desiredExpiration,

1on9 renewDuration,

LeaseListener 1istener) {m}

pub1ic void renewUnti1(Lease 1ease,

1ong desiredExpiration,

LeaseListener 1istener) {m}

pub1ic void renewForCLease 1ease,

1ong desiredDuration,

1ong renewDuration,

LeaseListener 1istener) {m}

pub1ic void renewForCLease 1ease,

1ong desiredDuration,

LeaseListener 1istener) {m}

pub1ic 1on9 getExpirationCLease 1ease)

throws UnknownLeaseException {m}

pub1ic void setExpirationCLease 1ease,

1ong desiredExpiration)

throws UnknownLeaseException {m}

pub1ic void removeCLease 1ease)

throws UnknownLeaseException {m}

pub1ic void cance1(Lease 1ease)

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

87

88

78 THE INTERFACE

throws UnknownLeaseException, RemoteException {...}

pub'l1'c vo1'd c'learO {...}

88

89

JINI LEASE UTILITIES SPECIFICATION, version 1.1 79

LM.4 The Semantics

THE term client is used in this specification to refer to the local entity that is
using the LeaseRenewal Manager to manage a collection of leases on its behalf.

This collection is referred to as the managed set.

The LeaseRenewal Manager distinguishes between two time values associated

with lease expiration: the desired expiration time for the lease and the actual expi—

ration time granted when the lease is created or last renewed. The desired expira-

tion represents when the client would like the lease to expire. The actual

expiration represents when the lease is going to expire if it is not renewed. Both

time values are absolute times, not relative time durations. The desired expiration

time can be retrieved using the renewal manager’s getExpi ration method, which

is described below. The actual expiration time of a lease object can be retrieved by

invoking the getExpi ration method directly on the lease (see the Lease inter-

face defined in The Jini Technology Core Platform Specification, “Distributed

Leasing”).

Each lease in the managed set also has two other associated attributes: a

renewal duration and a remaining desired duration. The remaining desired dura-

tion is always the desired expiration less the current time. The renewal duration is

usually a positive number and is the new duration that will be requested when the

renewal manager renews the lease, unless the renewal duration is greater than the

remaining desired duration. If the renewal duration is greater than the remaining

desired duration, then the remaining desired duration will be requested when

renewing the lease. One exception is that when the desired expiration is

Lease. FOREVER, the renewal duration may be Lease .ANY, in which case

Lease.ANY will be requested when renewing the client lease, regardless of the

value of the remaining desired duration.

For example, if the renewal duration associated with a given lease is 360,000

milliseconds, then when the renewal manager renews the lease, it will ask for a

new duration of 360,000 milliseconds—unless the lease is going to reach its

desired expiration in less than 360,000 milliseconds. If the lease’s desired expira-

tion is within 360,000 milliseconds, the renewal manager will ask for the differ-

ence between the current time and the desired expiration. If the renewal duration

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

89

90

80 THE SEMANTICS

had been Lease .ANY, the renewal manager would have asked for a new duration of
Lease .ANY.

The term definite exception is used to refer to exceptions that result from oper-

ations on a lease (such as a renewal attempt) that are indicative of a permanent

failure of the lease. For the purposes of this document, all bad object exceptions,

bad invocation exceptions, and LeaseExceptions are considered to be definite

exceptions (see Introduction to Helper Utilities and Services, Section US.2.6,

“What Exceptions Imply about Future Behavior”).

The LeaseRenewal Manager generates two kinds of local events. The first

kind is a renewalfailure event that is generated when the renewal manager finds

that it can’t renew a lease. The second kind is a desired expiration reached event,

which is generated when a lease’s desired expiration is reached. Each event sig-

nals that the renewal manager has removed a lease from the managed set without

an explicit request by the client. When placing a lease in the managed set, the cli-

ent can provide either a LeaseLi stener object that will receive any renewal fail-

ure events associated with the lease, or a Desi red Expi rati on Li stener (a

subinterface of LeaseLi stene r) object that will receive both renewal failure and

desired expiration reached events associated with the lease. Both kinds of event

are represented by LeaseRenewal Event objects.

The LeaseRenewal Manager makes a concurrency guarantee. When the

LeaseRenewalManager makes a remote call (for example, when requesting the

renewal of a lease), any invocations made on the methods of the

LeaseRenewalManager will not be blocked. Because of these concurrency guar-

antees, it is not possible for the various methods that remove leases from the man-

aged set (for example, remove, cancel, and clear) to guarantee that the renewal

manager will not attempt to renew leases that have just been removed. Similarly, it

is not possible for the methods that change the desired expiration or renewal dura-

tion associated with a lease (for example, renewUnti 1, renewFo r, and

setExpi ration) to guarantee that the next renewal of the lease will request a

duration that is consistent with the new desired expiration and/or renewal duration

(it will be consistent with either the old pair or the new pair). However, implemen-

tations should keep the window where such renewals could occur as small as pos-
sible.

The LeaseRenewal Manager makes a similar reentrancy guarantee with

respect to LeaseLi stener and Desi redExpi rationLi stener objects registered

with the LeaseRenewal Manager. Should the LeaseRenewal Manager invoke a

method on a registered listener (a local call), calls from that method to any method

of the LeaseRenewa'l Manager are guaranteed not to result in a deadlock condi-

tion. One implication of this guarantee is that the delivery of events is asynchro-

nous with respect to any call (or sequence of calls) made on the renewal manager

after the event occurs; this allows events to be delivered after they have been made

90

