
316

A NOTE ON DISTRIBUTED COMPUTING

Ignoring the difference between the performance of local and remote invoca—
tions can lead to designs whose implementations are virtually assured of having

performance problems because the design requires a large amount of communica—
tion between components that are in different address spaces and on different

machines. Ignoring the difference in the time it takes to make a remote object
invocation and the time it takes to make a local object invocation is to ignore one

of the major design areas of an application. A properly designed application will
require determining, by understanding the application being designed, what
objects can be made remote and what objects must be clustered together.

The vision outlined earlier, however, has an answer to this objection. The

answer is two—pronged. The first prong is to rely on the steadily increasing speed
of the underlying hardware to make the difference in latency irrelevant. This, it is
often argued, is what has happened to efficiency concerns having to do with every-
thing from high level languages to virtual memory. Designing at the cutting edge
has always required that the hardware catch up before the deSign is efficient
enough for the real world. Arguments from efficiency seem to have gone out of
style in software engineering, since in the past such concerns have always been
answered by speed increases in the underlying hardware.

The second prong of the reply is to admit to the need for tools that will allow
one to see what the pattern of communication is between the objects that make up
an application. Once such tools are available, it will be a matter of tuning to bring
objects that are in constant contact to the same address space, while moving those
that are in relatively infrequent contact to wherever is most convenient. Since the
vision allows all objects to communicate using the same underlying mechanism,
such tuning will be possible by simply altering the implementation details (such
as object location) of the relevant objects. However, it is important to get the
application correct first, and after that one can worry about efficiency.

Whether or not it will ever become possible to mask the efficiency difference

between a local object invocation and a distributed object invocation is not
answerable a priori. Fully masking the distinction would require not only
advances in the technology underlying remote object invocation, but would also

require changes to the general programming model used by developers.
If the only difference between local and distributed object invocations was the

difference in the amount of time it took to make the call, one could strive for a

future in which the two kinds of calls would be conceptually indistinguishable.

Whether the technology of distributed computing has moved far enough along to
allow one to plan products based on such technology would be a matter of judge-
ment, and rational people could disagree as to the wisdom of such an approach.

However, the difference in latency between the two kinds of calls is only the
most obvious difference. Indeed, this difference is not really the fundamental dif-

ference between the two kinds of calls, and that even if it were possible to develop

316

317

314 A NOTE ON nrsrarsmsn compurrvo

the technology of distributed calls to an extent that the difference in latency
between the two sorts of calls was minimal, it would be unwise to construct a pro-
gramming paradigm that treated the two calls as essentially similar. In fact, the
difference in latency between local and remote calls, because it is so obvious, has
been the only difference most see between the two, and has tended to mask the
more irreconcilable differences.

A.4.2 Memory Access

A more fundamental (but still obvious) difference between lOCal and remote eom~

puting concerns the access to memory in the two cases—specifically in the use of
pointers. Simply put, pointers in a local address space are not valid in another
(remote) address space. The system can paper over this difference, but for such an
approach to be successful, the traHSparency must be complete. Two choices exist:
either all memory access must be controlled by the underlying system, or the pro—
grammer must be aware of the different types of access—local and remote. There
is no inbetween.

If the desire is to completely unify the programming model—t0 make remote
accesses behave as if they were in fact localfithe underlying mechanism must
totally control all memory access Providing distributed shared memory is one
way of completely relieving the programmer from Worrying about remote mem-
ory access (or the difference between local and remote). Using the object-oriented
paradigm to the fullest, and requiring the programmer to build an application with
“objects all the way dowu,” (that is, only object references or values are passed as
method arguments) is another way to eliminate the boundary between local and
remote computing. The layer underneath can exploit this approach by marshalling
and unmarshalling method arguments and return values for intra~address space
transmission.

But adding a layer that allows the replacement of all pointers to objects with
object references only permits the developer to adopt a unified model of object
interaction. Such a unified model cannot be enforced unless one also removes the

ability to gel: address-space-relative pointers from the language used by the devel-
OpeI'. Such an approach erects a barrier to programmers who want to start writing
distributed applications, in that it requires that those programmers learn a new
style of programming which does not use address-space-relative pointers. In
requiring that programmers learn such a language, moreover, one gives up the
complete tranSparency betWeen local and distributed computingw

Even if one were to provide a language that did not allow obtaining address-
space-relative pointers to objects (or returned an object reference whenever such a

pointer was requested), one would need to provide an equivalent way of making

317

318

A NOTE ON DISTRIBUTED COMPUTING

cross-address space reference to entities other than objects. Most programmers

use pointers as references for many different kinds of entities. These pointers must
either be replaced with something that can be used in cross-address space calls or
the programmer will need to be aware of the difference between such calls (which
will either not allow pointers to such entities, or do something special with those
pointers) and local calls. Again, while this could be done, it does violate the doc-
trine of complete unity between local and remote calls. Because of memory access
constraints, the two have to differ.

The danger lies in promoting the myth that “remote access and local access
are exactly the same” and not enforcing the myth. An underlying mechanism that
does not unify all memory accesses while still promoting this myth is both miss
leading and prone to error. Programmers buying into the myth may believe that
they do not have to change the way they think about programming. The program-
mer is therefore quite likely to make the mistake of using a pointer in the wrong
context, producing incorrect results. “Remote is just like local,” such program-
mers think, “so we have just one unified programming model.” Seemingly, pro-

grammers need not change their style of programming. In an incomplete
implementation of the underlying mechanism, or one that allows an implementa-
tion language that in turn allows direct access to local memory, the system does
not take care of all memory accesses, and errors are bound to occur. These errors

occur because the programmer is not aware of the difference between local and
remote access and what is actually happening “under the covers.”

The alternative is to explain the difference between local and remote access,

making the programmer aware that remote address space access is very different
from local access. Even if some of the pain is taken away by using an interface

definition language like that specified in [l] and having it generate an intelligent
language mapping for operation invocation on distributed objects, the program—
mer aware of the difference will not make the mistake of using pointers for cross-

address space access. The programmer will know it is incorrect. By not masking
the difference, the programmer is able to learn when to use one method of access
and when to use the other.

Just as with latency, it is logically possible that the difference between local
and remote memory access could be completely papered over and a single model
of both presented to the programmer. When we turn to the problems introduced to
distributed computing by partial failure and concurrency, however, it is not clear
that such a unification is even conceptually possible.

318

315
O
o

ato
e
S’-
5'

cm
paints-115m no3105;

319

——fi

316 A NOTE ON wsrarsurao COMPUTING

A.5 Partial Failure and Concurrency

While unlikely, it is at least logically possible that the differences in latency
and memory access between local computing and distributed computing could be
masked. It is not clear that such a masking could be done in such a way that the
local computing paradigm could be used to produce distributed applications, but it
might still be possible to allow some new programming technique to be used for
both activities. Such a masking does not even seem to be logically possible, how-
ever, in the case of partial failure and concurrency. These aspects appear to be dif-
ferent in kind in the case of distributed and local computing.2

Partial failure is a central reality of distributed computing. Both the local and
the distributed world contain components that are subject to periodic failure. In
the case of local computing, such failures are either total, affecting all of the enti-
ties that are working together in an application, or detectable by some central
resource allocator (such as the operating system on the local machine).

This is not the case in distributed computing, where one component (machine,
network link) can fail while the others continue. Not only is the failure of the dis
tributed components independent, but there is no common agent that is able to
determine what component has failed and inform the other components of that
failure, no global state that can be examined that allows determination of exactly
what error has occurred. In a distributed system, the failure of a network link is
indistinguishable from the failure of a processor on the other side of that link.

These sorts of failures are not the same as mere exception raising or the
inability to complete a task, which can occur in the case of local computing. This
type of failure is caused when a machine crashes during the execution of an object
invocation or a network link goes dowri, occurrences that cause the target object to
simply disappear rather than return control to the caller. A central problem in dis-
tributed computing is insuring that the state of the whole system is consistent after
such a failure; this is a problem that simply does not occur in local computing.

The reality of partial failure has a profound effect on how one designs inter-
faces and on the semantics of the operations in an interface. Partial failure requires
that programs deal with indeterminacy. When a local component fails, it is possi-
ble to know the state of the system that caused the failure and the state of the sys-
tem after the failure. No such determination can be made in the case of a
distributed system. Instead, the interfaces that are used for the communication
must be designed in such a way that it is possible for the objects to react in a con-
sistent way to possible partial failures.

2 In fact, authors such as Schroedcrmf and Hadzilacos and Touegm] take partial failure and
concurrency to be the defining problems of distributed computing. I

319

320

A NOTE ON DISTRIBUTED C0MPUTING

Being robust in the face of partial failure requires some expression at the

interface level. Merely improving the implementation of one component is not

sufficient. The interfaces that connect the components must be able to state when-

ever possible the cause of failure, and there must be interfaces that allow recon-
struction of a reasonable state when failure occurs and the cause cannot be

determined.

If an object is (so—resident in an address space with its caller, partial failure is

not possible. A function may not complete normally, but it always completes.

There is no indeterminism about how much of the computation completed. Partial

completion can occur only as a result of circumstances that will cause the other

components to fail.

The addition of partial failure as a possibility in the case of distributed com-

puting does not mean that a single object model cannot be used for both distrib—

uted computing and local computing. The question is not “can you make remote
method invocation look like local method invocation?” but rather “what is the

price of making remote method invocation identical to local method invocation?”

One of two paths must be chosen if one is going to have a unified model.

The first path is to treat all objects as if they were local and design all inter-

faces as if the objects calling them, and being called by them, were local. The

result of choosing this path is that the resulting model, when used to produce dis-

tributed systems, is essentially indeterministic in the face of partial failure and

consequently fragile and non-robust. This path essentially requires ignoring the

extra failure modes of distributed computing. Since one can't get rid of those fail—

ures, the price of adopting the model is to require that such failures are unhandled

and catastrophic.

The other path is to design all interfaces as if they were remote. That is, the

semantics and operations are all designed to be deterministic in the face of failure,

both total and partial. However, this introduces unnecessary guarantees and

semantics for objects that are never intended to be used remotely. Like the

approach to memory access that attempts to require that all access is through sys-

tem-defined references instead of pointers, this approach must also either rely on

the discipline of the programmers using the system or change the implementation

language so that all of the forms of distributed indeterminacy are forced to be

dealt with on all object invocations.

This approach would also defeat the overall purpose of unifying the object

models. The real reason for attempting such a unification is to make distributed

computing more like local computing and thus make distributed computing easier.

This second approach to unifying the models makes local computing as complex

as distributed computing. Rather than encouraging the production of distributed

applications, such a model will discourage its own adoption by making all object

based computing more difficult.

317

at

320

321

—

318 a NOTE ON DISTRIBUTED COMPUTING

Similar arguments hold for concurrency. Distributed objects by their nature

must handle concurrent method invocations. The same dichotomy applies if one

insists on a unified programming model. Either all objects must bear the weight of
concurrency semantics, or all objects must ignore the problem and hepe for the
best when distributed. Again, this is an interface issue and not solely an imple—
mentation issue, since dealing with concurrency can take place only by passing
information from one object to another through the agency of the interface. So
either the overall programming model must ignore significant modes of failure,

resulting in a fragile system; or the overall programming model must assume a

worst-case complexity model for all objects within a program, making the produc—
tion of any program, distributed or not, more difficult.

One might argue that a multi-threaded application needs to deal with these

same issues. However, there is a subtle difference. In a multi-threaded application,

there is no real source of indeterminacy of invocations of operations. The applica
tion programmer has complete control over invocation order when desired. A dis—

tributed system by its nature introduces truly asynchronous operation invocations.

Further, a non—distributed system, even when multi-threaded, is layered on top of
a single operating system that can aid the communication between objects and can
be used to determine and aid in synchronization and in the recovery of failure. A

distributed system, on the other hand, has no single point of resource allocation,

synchronization, or failure recovery, and thus is conceptually very different.

A.6 The Myth of “Quality of Service”

One could take the position that the way an object deals with latency, memory
access, partial failure, and concurrency control is really an aspect of the imple—
mentation of that object, and is best described as part of the “quality of service”

provided by that implementation. Different implementations of an interface may
provide different levels of reliability, scalability, or performance. If one wants to

build a more reliable system, one merely needs to choose more reliable implemen—
tations of the interfaces making up the system.

On the surface, this seems quite reasonable. If I want a more robust system, I
go to my catalog of component vendors. I quiz them about their test methods. I see

if they have 1809000 certification, and I buy my components from the one I trust

the most. The components all comply with the defined interfaces, so I can plug
them right in; my system is robust and reliable, and I’m happy.

Let us imagine that I build an application that uses the (mythical) queue inter-
face to enqueue work for some component. My application dutifully enqueues
records that represent work to be done. Another application dutifully dequeues
them and performs the Work. After a while, I notice that my application crashes

321

322

A NOTE ON DISTRIBUTED COMPUITNG

due to time—outs. I find this extremely annoying, but realize that it‘s my fault. My

application just isn’t robust enough. It gives up too easily on a time—out. So I
change my application to retry the operation until it succeeds. Now I’m happy. 1
almost never see a time-out. Unfortunately, I now have another problem. Some of

the requests seem to get processed two, three, four, or more times. How can this
be? The component I bought which implements the queue has allegedly been rig-
orously tested. It shouldn’t be doing this. I’m angry. I call the vendor and yell at
him. After much fingerpointing and research, the culprit is found. The problem
turns but to be the way I’m using the queue. Because of my handling of partial
failures (which in my naivete, I had thought to be total), I have been enqueuing
work requests multiple times.

yveu,t yeh atthe vendorthatitis sfilltheh‘fauh.'Then queue should be
demcnngtheduptheenuyandrmnofingitIhnnotgomgtoconfinueufingthm
software unless this is fixed. But, since the entities being enqueued are just values,

there is no way to do duplicate elimination. The only way to fix this is to change
the protocol to add request IDs. But since this is a standardized interface, there is
no way to do this.

The moral of this tale is that robustness is not simply a function of the imple-

mentations of the interfaces that make up the system. While robustness of the

individual components has some effect on the robustness of the overall systems, it
is not the sole factor determining system robustness. Many aspects of robustness

can be reflected only at the protocol/interface level.
Similar situations can be found throughout the standard set of interfaces. Sup-

pose I want to reliably remove a name from a context. I would be tempted to write
codethatlookslike:

while (true) {

try {
context—>remove(name);

break;

}

catch (NotFoundInContext) {

break;

}

catch (NetworkServerFaliure) {

continue;

}

}

That is, '[keep trying the operation until it succeeds (or until 1 crash). The problem
is that my connection to the name server may have gone down, but another client’s
may have stayed up. I may have, in fact, successfully removed the name but not

3.19 EV

. .5;a‘

‘5‘»(D_
or...

322

323

"_—_"

320 A NO TE 0N orsrnrsurea comeurmo

discovered it because of a network disconnection. The other client then adds the

same name, which I then remove. Unless the naming interface includes an opera-
tion to lock a naming context, there is no way that I can make this Operation com—
pletely robust. Again, we see that robustness/reliability needs to be expressed at
the interface level. In the design of any operation, the question has to be asked:
What happens if the client chooses to repeat this operation with the exact same

parameters as previously? What mechanisms are needed to ensure that they get
the desired semantics? These are things that can be expressed only at the interface
level. These are issues that can’t be answered by supplying a “more robust imple—
mentation” because the lack of robustness is inherent in the interface and not

something that can be changed by altering the implementation.

Similar arguments can be made about performance. Suppose an interface
describes an object which maintains sets of other objects. A defining property of
sets is that there are no duplicates. Thus, the implementation of this object needs
to do duplicate elimination. If the interfaces in the system do not provide a way of
testing equality of reference, the objects in the set must be queried to determine
equality. Thus, duplicate elimination can be done only by interacting with the
objects in the set. It doesn’t matter how fast the objects in the set implement the
equality operation. The overall performance of eliminating duplicates is going to
be governed by the latency in communicating over the slowest communications
link involved. There is no change in the set implementations that can overcome

this. An interface design issue has put an upper bound 0n the performance of this
operation.

A.7 Lessons From NFS

We do not need to look far to see the consequences of ignoring the distinction
between local and distributed computing at the interface level. NFS®, Sun’s dis-

tributed computing file systemLM'lS] is an example of a non-distributed application
programer interface (API) (open, read, write, close, etc.) re-implemented in a dis-
tributed way.

Before NFS and other network file systems, an error status returned from one

of these calls indicated something rare: a full disk, or a catastrophe such as a disk
crash. Most failures simply crashed the application along with the file system.
Further, these errors generally reflected a situation that was either catastrophic for
the program receiving the error or one that the user running the program could do
something about.

NFS opened the door to partial failure within a file system. It has essentially
two modes for dealing with an inaccessible file server: soft mounting and hard
mounting. But since the designers of NFS were unwilling (for easily understand-

323

324

A NOTE ON DISTRIBUTED COMPUTING

able reasons) to change the interface to the file system to reflect the new, distrib~

uted nature of file access, neither option is particularly robust.

Soft mounts expose network or server failure to the client program. Read and

write operations return a failure status much more often than in the single-system
case, and programs written with no allowance for these failures can easily corrupt

the files used by the program. In the early days of NFS, system administrators tried

to tune various parameters (time—out length, number of retries) to avoid these

problems. These efforts failed. Today, soft mounts are seldom used, and when
they are used, their use is generally restricted to read-only file systems or special

applications.

Hard mounts mean that the application hangs until the server comes back up.

This generally prevents a client program from seeing partial failure, but it leads to

a malady familiar to users of workstation networks: one server crashes, and many
workstations—even those apparently having nothing to do with that server—

freeze. Figuring out the chain of causality is very difficult, and even when the
cause of the failure can be determined, the individual user can rarely do anything

about it but wait. This kind of brittleness can be reduced only with strong policies

and network administration aimed at reducing interdependencies. Nonetheless,
hard mounts are now almost universal.

Note that because the NFS protocol is stateless, it assumes clients contain no

state of interest with respect to the protocol; in other words, the server doesn‘t

care what happens to the client. NFS is also a “pure” client-server protocol, which
means that failure can be limited to three parties: the client, the server, or the net-

work. This combination of features means that failure modes are simpler than in

the more general case of peer-to-peer distributed object-oriented applications
where no such limitation on shared state can be made and where servers are them-

selves clients of other servers. Such peer-to-peer distributed applications can and

will fail in far more intricate ways than are currently possible with NFS.

The limitations on the reliability and robustness of NFS have nothing to do

with the implementation of the pans of that system. There is no “quality of ser-
vice" that can be improved to eliminate the need for hard mounting NFS volumes.

The problem can be traced to the interface upon which NFS is built, an interface
that was designed for non-distributed computing where partial failure was not

possible. The reliability of NFS cannot be changed without a change to that inter-
face, a change that will reflect the distributed nature of the application.

This is not to say that NFS has not been successful. In fact, NFS is arguably the

most successful distributed application that has been produced. But the limitations

on the robustness have set a limitation on the scalability of NFS. Because of the

intrinsic unreliability of the NFS protocol, use of NFS is limited to fairly small

numbers of machines, geographically corlocated and centrally administered. The

way NFS has dealt with partial failure has been to informally require a centralized

321

-'P91fi‘I!J'JS!(i tro'ame_'j-s
_"U

1.5,
E.M

324

325

"'———"—'—_V

322 A NOTE ON DISIRl'B urge COMPUTING

resource manager (a system administrator) who can detect system failure, initiate

resource reclamation and insure system consistency. But by introducing this cen-
tral resource manager, one could argue that NFS is no longer a genuinely distrib-
uted application.

A.8 Taking the Difference Seriously

Differences in latency, memory access, partial failure, and concurrency make
merging of the computational models of local and distributed computing both
unwise to attempt and unable to succeed. Merging the models by making local
computing follow the model of distributed computing WOuld require major
changes in implementation languages (or in how those languages are used) and
make local computing far more complex than is otherwise necessary. Merging the
models by attempting to make distributed computing follow the model of local

computing requires ignoring the different failure modes and basic indeterminacy
inherent in distributed computing, leading to systems that are unreliable and inca-

pable of scaling beyond small groups of machines that are geographically co-
located and centrally administered.

A better approach is to accept that there are irreconcilable differences

between local and distributed computing, and to be conscious of those differences

at all stages of the design and implementation of distributed applications. Rather
than trying to merge local and remote objects, engineers need to be constantly
reminded of the differences between the two, and know when it is appropriate to
use each kind of object.

Accepting the fundamental difference between local and remote objects does
not mean that either sort of object will require its interface to be defined differ-

ently. An interface definition language such as IDLlB] can still be used to specify
the set of interfaces that define objects. However, an additional part of the defini-
tion of a class of objects will be the specification of whether those objects are
meant to be used locally or remotely. This decision will need to consider what the

anticipated message frequency is for the object, and whether clients of the object
can accept the indeterminacy implied by remote access. The decision will be

reflected in the interface to the object indirectly, in that the interface for objects
that are meant to be accessed remotely will contain operations that allow reliabil-
ity in the face of partial failure.

It is entirely possible that a given object will often need to be accessed by
some objects in ways that cannot allow indeterminacy, and by other objects rela-
tively rarely and in a way that does allow indeterminacy. Such cases should be
split into two objects (which might share an implementation) with one having an

325

326

A NOTE ON DISTRIBUTED COMPUTING

interface that is best for local access and the other having an interface that is best
for remote access.

A compiler for the interface definition language used to specify classes of

objects will need to alter its output based on whether the class definition being

compiled is for a class to be used locally or a class being used remotely. For inter

faces meant for distributed objects, the code produced might be very much like

that generated by RPC stub compilers today. Code for a local interface, however,

could be much simpler, probably requiring little more than a class definition in the

target language.

While writing code, engineers will have to know whether they are sending

messages to local or remote objects, and access those objects differently. While

this might seem to add to the programming difficulty, it will in fact aid the pro-

grammer by providing a framework under which he or she can learn what to

expect from the different kinds of calls. To program completely in the local envi-

ronment, according to this model, will not require any changes from the program-

mer‘s point of view. The discipline of defining classes of objects using an

interface definition language will insure the desired separation of interface from

implementation, but the actual process of implementing an interface will be no

different than what is done today in an obj ect-oriented language.

Programming a distributed application will require the use of different tech-

niques than those used for non—distributed applications. Programming 21 distrib—

uted application will require thinking about the problem in a different way than

before it was thought about when the solution was a non-distributed application.

But that is only to be expected. Distributed objects are different from local

objects, and keeping that difference visible will keep the programmer from forget-

ting the difference and making mistakes. Knowing that an object is outside of the

local address space, and perhaps on a different machine, will remind the program-

mer that he or she needs to program in a way that reflects the kinds of failures,

indeterminacy, and concurrency constraints inherent in the use of such objects.

Making the difference visible will aid in making the difference part of the design

of the system.

Accepting that local and distributed computing are different in an irreconcil-

able way will also allow an organization to allocate its research and engineering

resources more wisely. Rather than using those resources in attempts to paper over

the differences between the two kinds of computing, resources can be directed at

improving the performance and reliability of each.

One consequence of the view espoused here is that it is a mistake to attempt to

construct a system that is “objects all the way down” if one understands the goal

as a distributed system constructed of the same kind of objects all the way down.

There will be a line where the object model changes; on one side of the line will

be distributed objects, and on the other side of the line there will (perhaps) be

326

327

—

324 A NOTE ON DISTRIBUTED COMPUTING

local objects. On either side of the line, entities on the other side of the line will be

opaque; thus one distributed object will not know (or care) if the implementation

of another distributed object with which it communicates is made up of objects or

is implemented in some other way. Objects on different sides of the line will differ

in kind and not just in degree; in particular, the objects will differ in the kinds of .

failure modes with which they must deal.

A3 A Middle Ground

As noted in Section A2, the distinction between local and distributed objects as

we are using the terms is not exhaustive. In particular, there is a third category of

objects made up of those that are in different address spaces but are guaranteed to

be on the same machine. These are the sorts of objects, for example, that appear to

be the basis of systems such as Springlm] or Cloudsm. These objects have some of

the characteristics of distributed objects, such as increased latency in comparison

to local objects and the need for a different model of memory access. However,

these objects also share characteristics of local objects, including sharing underly-

ing resource management and failure modes that are more nearly deterministic.

it is possible to make the programming model for such “local-remote” objects

more similar to the programming model for local objects than can be done for the

general case of distributed objects. Even though the objects are in different

address spaces, they are managed by a single resource manager. Because of this,

partial failure and the indeterminacy that it brings can be avoided. The programe

ming model for such objects will still differ from that used for objects in the same

address space with respect to latency, but the added latency can be reduced to gen-

erally acceptable levels. The programming models will still necessarily differ on

methods of memory access and concurrency, but these do not have as great an
effect on the construction of interfaces as additional failure modes.

The other reason for treating this class of objects separately from either local

objects or generally distributed objects is that a compiler for an interface defini-

tion language can be significantly optimized for such cases. Parameter and result

passing can be done via shared memory if it is known that the objects communi- .

eating are on the same machine. At the very least, marshalling of parameters and

the unmarshalling of results can be avoided.

The class of locally distributed objects also forms a group that can lead to sig

nificant gains in software modularity. Applications made up of collections of such

objects would have the advantage of forced and guaranteed separation between

the interface to an object and the implementation of that object, and would allow

the replacement of one implementation with another without affecting other parts

of the system. Because of this, it might be advantageous to investigate the uses of

327

328

 A NOTE ON DISTRIBUTED COMPUTING

such a system. However, this activity should not be confused with the unification

of local objects with the kinds of distributed objects we have been discussing.

A.10 References

[1] The Object Management Group. “Common Object Request Broker: Archi—

tecture and Specification.” OMG Document Number 91.12.] (1991).

[2] Parrington, Graham D. “Reliable Distributed Programming in C++: The

Arjuna Approach.” USENIX 1990 C++ Conference Proceedings (1991).

[3] Black, A., N. Hutchinson, E. Jul, H. Levy, and L. Carter. “Distribution and

Abstract Types in Emerald.” IEEE Transactions on Software Engineering
SE—13, no. 1, (January 1987).

[4] Dasgupta, P., R. J. Leblanc, and E. Spafford. “The Clouds Project: Design-

ing and Implementing a Fault Tolerant Distributed Operating System.”

Georgia Institute of Technoiogy Technical Report (EPICS-8529. (1985).

[5] Microsoft Corporation. Object Linking and Embedding Programmers Refer"
ence. version 1. Microsoft Press, 1992.

[6] Linton, Mark. “A Taste of Fresco.” Tutorial given at the 8th Annnair X Tech-

nicai Conference (January 1994).

[7] Jaayeri, M., C. Ghezzi, D. Hoffman, D. Middleton, and M. Smotherman.

“(ESP/80: A Language for Communicating Sequential Processes.” Proceed-

ings: Distributed Computing CompCon (Fall 1980).

[8] Cook, Robert. “MOD— A Language for Distributed Processing.” Proceed-

ings of the Ist Internationai Cofierence on Distributed Computing Systems
(October 1979).

[9] Birrell, A. D. and B. J. Nelson. “Implementing Remote Procedure Calls.”

ACM Transactions on Computer Systems 2 (1978).

[10] Hutchinson, N. C., L. L. Peterson, M. B. Abott, and S. O’Malley. “RPC in

the x-Kernel: Evaluating New Design Techniques.” Proceedings of the

Tweiftn Symposium on Operating Systems Principles 23, no. 5 (E989).

[l I] Zahn, L., T. Dineen, P. Leach, E. Martin, N. Mishkin, J. Fate, and G. Wyant.
Network Computing Architecture. Prentice Hall, 1990.

[12] Schroeder, Michael D. “A State-of—the-Art Distributed System: Computing
with BOB.” In Distributed Systems, 2nd ed., S. Mullender, ed., ACM Press,
1993.

328

329

F“?-

326 A NOTE ON DISTRIBUTED COMPUTING

[13] Hadzilacos, Vassos and Sam Toueg. “Fault-Tolerant Broadcasts and Related
Problems.” In Distributed Systems, 2nd ed., S. Mullendar, ed., ACM Press,
1993.

[14] Walsh, D., B. Lyon, G. Sager, J. M. Chang, D. Goldberg, S. Kleiman, T.
Lyon, R. Sandberg, and P. Weiss. “Overview of the SUN Network File Sys-
tem.” Proceedings of the Winter Usenix Conference (1985).

[15] Sandberg, R., D. Goldberg, S. Kleirnan, D. Walsh, and B. Lyon. “Design
and Implementation of the SUN Network File System.” Proceedings of the
Summer Usenix Conference {1985).

[16] Khalidi, Yousef A. and Michael N, Nelson. “An Implementation of UNIX on
an Object—Oriented Operating System." Proceedings of the Winter Usenix
Conference (1993). Also Sun Microsystems Laboratories, Inc. Technical
Report SMLI "FR-923 (December 1992).

A.11 Observations for this Reprinting

[A] When this note was written, the major system programming languages (C,
C++, Modula3, etc.) all allowed direct access, to a greater or lesser degree,
to pointers to internal memory. This paragraph points out that adding
indirect references to such languages would allow two kinds of reference,
one of which was distribution transparent while the other was not. Java, of

course, does not have direct access to pointers. Because of the Java use of
references within the language, it does provide a platform in which address—

space-relative pointers are missing. Thus Java not only permits aunified
addressing scheme, it enforces that scheme.

[B] There are actually a number of interface definition languages that are
referred to by the initials IDL. When this note was originally written,
we were referring to the CORBA interface definition language. However, the
other languages that use this name share the characteristics discussed here,
so the argument presented would apply equally to them.

329

330

ry-HLM'----_——.,fi_-=.==r_-=r_——--—;=w:w;w.—,cwm; __

The Example Code

APPENDIX B

Theflrst rule cgfmctgt'c is Simple:
Don’t waste your time waving your hands and hoping

when a rock or a club WEI! do.
—McClocmik the Lucid

THE following pages contain the complete code for the examples used in the
introductory chapters of this book. The sources are listed in alphabetical order by

the full name, including the package name. For your convenience, here is a map—

pmgfiomdmsmmECM%nmncmimfiflh¢mdfikdcbwnwnm

ChatMessage chat.ChatMessage....-................ 328

ChatProxy chat.ChatProxy330
ChatServer chat,ChatServer332

ChatServerAdmin Chat.ChatServerAdmin333

ChatServerImpl chat.ChatServerImp1337

ChatSpeaker Chat.ChatSpeaker344
ChatStream chat.ChatStream 345

ChatSubject chat.ChatSubject 347
Chatter chatter.Chatter 348

ChatterThread chatter.ChatterThread 350

FortuneAdmin Fortune.FortuneAdmin 360

FortuneStream fortune.FortuneStream362

FortuneStreamImpl fortune.FortuneStreamImpl363
FortuneTheme fortune.FortuneTheme368

MessageStream message.MessageStream 369
ParseUtil util.ParseUti1 370

StreamReader client.StreamReader352

Youcanzflmjfindthecodeathttp://java.sun.com/docs/books/jini/

330

327

331

II

328
chat.ChatMessage

package chat;

import java.io.5eria1izab1e;

/'E‘.‘k
* A 5ing1e message in the <CODE>ChatStream</CODE>. This is the

* type of <CODE>iject</CODE> returned by <CDDE>ChatStream.nextMessage</CODE>.il-

* @see ChatStreaw

52/

public ciass ChatNessage impiements Seriaiizab1e {
/1’(i\'

* The speaker of the message.
* @seriaT

w/

private String speaker;

)J'I‘HY

* The contents of the message.
* @seriai

*/

private String[] Content;

/e-.'z

* The seria1 version UID. Stating it exp1icit7y is good.1’:

* @see Fortune.FortuneTheme#seria1VersionUID
'i‘a/

static finai long seria1VersionUID =

-135235195718910?5?1L:

/'k~fr

* Create a new <CODE>ChatMessage</CODE> with the given
* <CODE>speaker</CODE> and <CODE>Content</CODE>.
*/

pubiic ChatMessage(String speaker, Stringi] content) {
this.speaker = Speaker;
this‘content = content;

fink

* Return the speaker of the message.
321/

pubiic String getSpeakerC) { return speaker; }

fat-i:

* Return the content of the message. Each string in the array
* represents a singie 1ine of content.

331

332

329

Chat.ChatMessage

*/

pub11c String[] getContentC) { return content; }

// inherit doc comment from supercWass

pubWic String toString(} {
StringBuffer buf = new StringBufferCspeaker);
buf.append(": ”);
for (int i = 6; i < content.1ength; €++)

buf.append(content[i]).append(’\n’);
buf.5etLength(buf.1engthC) - 1); // strip newTine
return buF.toString();

332

333

—

330
chat.ChatProxy

package chat;

import java.io.EOFException;
import java.io.5eria1izab1e;
import java.rmi.RemoteException;

/§I':
* The c1ient-side proxy for a <CODE>ChatServer</CODE>-based
* <CODE>ChatStream</CODE> service. This forwards most requests to the
* server. remembering the 1ast successfuiy retrieved message index.
*/

c1ass ChatProxy impiements ChatStream, Seria1izab1e {
fit-fl

* Reference to the remote server.
* @seria1

*/

private fina] ChatServer server;

/~a‘(~a‘t
* The index of the 1ast entry successfu11y received.
* @5eria1

*/

private int lastIndex = 71;

/1HE
* Cache of the subject of the chat.il-

1/
private transient String subject:

/1‘l*

* Create a new proxy that wi11 ta1k to the given server object.
*/

ChatProxyCChatServer server) {
this.server = server;

// inherit doc comment from ChatStream

pubiic synchronized Object nextMessageC)
throws RemoteException, EOFException

{
ChatMessage msg = server.nextInLine(1astIndex):
1astIndex++;
return msg;

}

// inherit doc comment from ChatStream

pub1ic void add(String speaker. StringE] msg)
throws RemoteException

333

334

.1}

server.add(5peaker, msg):

// inherit doc comment from ChatStream

pub1ic synchronized String getSubjectC)
throws RemoteException

{

if (subject == nu11)
subject = server.getSubject();

return subject;
}

// inherit doc comment from ChatStream

pubiic String[] getSpeakers() throws RemoteException {
return server.getSpeaker5C):

334

331
Chat . Cha tProxy

a .

g-

1C
-'CL

335

333
chat.Chat5erverAdmin

package chat:

import uti1.Par5eUti1;

import java.io.BufferedInputStream:

import java.io.BufferedOutputStream;
import java.io.Fi1e;
import java.io.Fi1eInputStream:
import java.io.Fi1e0utputStream;
import java.io.IOException;
import java.io.0bjectInputStream;
import java.io.0bject0utput5tream;
import java.rmi.activation.Activatabie:
import java.rmi.activation.ActivationDesc;
import java.rmi.activation.ActivationException;
import java.rmi.activation.ActivationGroup;

import java.rmi.activation.AttivationGroupDesc.CommandEnvironment:
import java.rmi.activation.ActivationGroupDesc;
import java.rmi.activation.ActivatiunGroupID;
import java_rmi.activation.ActivationSystem;
import java.rmi.MarshaiiecObject;
import java.rmi.Remote;

import java.rmi.RemoteException;
import java.uti1.Properties;

/i\‘\ki‘l
1'
It-

:i-w3%#-fi''5E3}
:5
1.5

The administrative program that creates a new <CODE>ChatSeruerImp1</CODE>
that stream Service. It's invocation is:
<pre>

java [<i>java—options</i>] chat.ChatServerAdmin <i>dir subject</i>
[<i>groupsliookupURL ciasspath codebase po1icy-Fi1e</i>]

</pre>
Where the options are:
<d1>

<dt><i><CODE§java—opti0ns</CODE></i>
<dd>0ptions to the Java VM that wi11 run the admin program. Typicaiiy
this inc1udes a security ppiicy property.
<p>

<dt><i><CODE>dir</CODE)</i>

<dd>The directory in which a11 the chats in the same group will 1ive.
<p>

<dt><i><CODE>subject</CDDE></i>
<dd>The subject of the chat. This must be unique within the group.
<p>

<dt><i><CODE>groups</CODE></i>l<i><CODE>1ookupURL</CODE></i>
<dd>Either a comma-separated 1ist of groups in which a11 the services
in the group wi11 be regsitered or a URL to a specific iookup service.
4p)

335

336

—

334
Chat.Chat5€rverAdmin

* <dt><i><CODE>c1asspath</CODE></i>

<dd>The c1asspath for the activated service (<CODE>ChatServerImpi</CODE>
wii] be 1oaded from this).
<p>

<dt><i><CODE>codebase</CODE></i>

<dd>The codebase for users of the service (<CODE>ChatProxy</CODE> wii?
* be ioaded from this).

* <p>
* <dt><i><CODE>p01icy-fi1e</CODE></i>
* <dd>The po1icy fiie for the activated service’s virtua1 machine.
* </d1>

* <p>The 1ast four parameters imp1y creation of a new group. If any
* are specified they must aii be specified. If none are specified the
* new chat stream wi11 be in the same activation group as the others
* who use the same storage directory, and so wi11 use the same va1ues
* for the last four parameters.
*/

pub1ic c1355 ChatServerAdmin {
f :‘r air

* The main program for <CODE>Chat5erverAdmin</CODE>.
*/

pubiic static void maintString[] args) throws Exception
{

3%H-=$3.‘
x-

if Cargs.1ength != 2 && args.1ength != 6) {
U5399()i // print usage message
Svstem.exit(l);

Fi1e dir = new Fi1e(args[@]);
String subject = args[1];

ActivationGroupID group 2 nu11;
if (args.7ength == 2)

group = getGroup(dir);
e1se {

String[] groups : ParseUti1.parseGroupsCargs[2]);
String iookupURL =

(args[2].index0f(':’) > 8 ? args[2} : nuii);
String c1asspath = args[3];
String codebase = args[4];
String po1icy = argsES];
group = createGroupfidir, groups, 1oukupURL,

ciasspath. codebase, po1icy);

Fi1e data = new Fi1e(dirI subject);
Marsha11ed0bject state 2 new Marsha11ed0bjecthata);
ActivationDesc desc =

336

337

new ActivationDe5c(group, ”chat.ChatServerImp1”,
Hui], state, true):

Remote newObj = Activatab1e.registeeresc);
ChatServer server : (ChatServeranWObj;
String 5 = server.get5ubject(); // force server up
System.out.print1n("5erver created For " + s);

}

/‘A‘fi‘
* Print a usage message for the user.
*/

private static void usageC) {
System.out.print1n("usage: java [java-options] ” +

ChatServerAdmin.ciass + " dir subject ” +
" [groupsiiookupURL ciasspath codehase poiicy-fi]e]\n");

/$‘n‘<
* Create a new group with the given parameters.
*/

private static ActivationGroupID
createGroup(Fiie dir, String[] groups. String 1ookupURL.

String c1asspath, String codebase,
String po1icy)

throws IDExceptiun. ActivationException

if (!dir.isDirect0ry())
dir.mkdirs();

Properties props = new Properties();
props.put(”java.rmi.5erver.codeba5e". codebase);
props.put(”java.security.po1icy“, po1icy);
String[] argv = new String[] { "-cp", ciasspath };
CommandEnvironment cmd :

new CommandEnvironmentC"java”, argv);
ActivationSystem actSys : ActivationGroup.getSystem();
Activationcroupnesc groupDesc =

new ActivationGroupDesc£prop5, cmd);
ActivationcroupID id = actSys.registerGroungroupDesc);

FiieoutputStream fout =

new Fi1e0utput5tream(groupFiiefidir));
ObjectGutputStream out : new ObjectOUtputStreamC

new BuFteredDutputStream(Fout));
out.write0bject(id):
out.write0bject(groups);
out.writeObjectC1ookupURL);
out.f1ush(); // force hits out of buffer

337

335
chat.Chat5erverAdmin

338

336
chat.ChatServerAdmin

fout.getFD().sync0: // force hits to the disk
out.close();

return id;

/k'k
* Return a <CO0E>Fi1e</CODE> object contains the group description.
* This assumes that nobody wi11 create a group with the subject

* <CODE>"grpdesc"</CODE>. This is probab1y a bad assumption -- a
* fu11y robust imp1ementation shou1d either check this and Forbid it
* or Figure out a way to store this someplace that does not conf1ict
* with subject names.
*/

static Fi1e groupFi1e(Fiie dir) {
return new Fi1e(dir, "grpdesc");

/‘kw

* Get the ActivationGroupID For the existing group in the given
* directory.
*/

private static ActivationGroupID getGroupCFi1e dir)
throws IOException, ClassNotFoundException

ObjectInputStream in = nu11;
try {

in = new 0bject1nputStream(new BufferedInputStreamC
new Fi1e1nput5tream(groupFi1e(dir))));

return (ActivationcroupID)in.read0bject();
} fina11y {

if (in J: nu11)
in.c1ose();

338

339

package chat;

import
import
import

import
import
import

import
import

import
import
import
import

import
import
import
import

import
import
import
import

import
import

/W*

* The imp1ementation of <CODE>ChatServer</CODE>.
* activation group defined by the persistent state from the activation
* serv

*/

net
net .
net

com.
com
com.
com.

COT“

java
java
java
java

java
java
java
java

java
java
java
java

java
java

ice.

.jini.core.discovery.LoakupLocator:
jini.core.entry.Entry;

.jini.core.1ookup.5erviceID;

Sun.jini.1ease.LeaseRenewa1Manager;
.sun.jini.1ookup.JoinManager:
sun.jini.iaukup.5erviceIDListener:
sun.jini.reiiab1eLog.LogHand1er;

.5un.jini.reiiab1eLog.Re1iab1eLog;

.io.Fi1e:

.io.Fi1eInputStream;

.io.InputStream;

.io.IDException;

.iD.0bjectInputStream;

.io.0bject0utput5tream;

.io.0utput3tream:

.rmi.activation.Activatab1e;

.rmi.activation.ACtivationID;

.rmi.Marsnai1edObject;

.uti1.ArrayList:

.uti1.HashSet;

.uti1.Li5t:

.uti1.Set;

This runs inside an

pubTic c1a55 ChatServerImpT imp1ements ChatServer {
ffi'}:

* The join manager we’re using.
*/

private JninManager joinMgr;

/f:fr

* Our subject of discussion.
*/

private String subject;

/**

* The set of known speakers.
*/

private Set speakers new HashSet();

339

337
chat.Chat$erverImpi

-paw
.____&:_,.qu

340

—

338
chat.Chat59rverImp?

fink

* The 1ist of messages.
*/

private List messages = new ArrayList();

/inir
* The 1ist of service attributes.
*
/

private List attrs:

/i\-*
* The service ID (or <CGDE>nu11</CODE>).
-.\r/

private ServiceID serviceID;

/:\n‘:

* Our persistent storage.
*/

private ChatStore store:

[Kirk

* Groups to register with (or an empty array).
11/

private String[] groups = new StringEG];

/'k*
* URL to specific join manager (or <CDDE>nu11</CODE>).
*/

private String iookupURL;

/!\"fi

* The 1ease renewai manager for all servers in our group.
* We share it because this gives it more 1eases it might be

* abie to compress into singie renewai messages.
*/

private static LeaseRenewaiManager renewer;

/¥r'fi

* The storage for a <CGDE>ChatServerImpi</CODE>.
*/

class ChatStore extends LogHandier
impiements ServiceIDListener

/~k*

* The reiiabie 109 in which we store our state.
“/

private ReliabieLog log;

340

341

/\R-1i-

* Create a new <CDDE>ChatStore</CODE> object for the given
* directory. The directory is the full path For the specific
* storage for this chat on the subject. The parent directory
* is the one for the group.
*/

ChatStore£Fi1e dir) throws IOException {
// If the directory exists. recover from it. Otherwise

// create it as a a new subject.
if (dir.exists()) {

109 = new ReiiabieLog£dir.toStrin9(), this);
iog.recover();

} eise {

subject = dir.getName();

log : new Re1iah1eLongir.toString(). this):
attrs new ArrayListC);

attrs.add(new ChatSubject(subject)):
iog.snapshot();

// Read in the iookup groups and iookupURL for our service
ObjectInputStream in = nuii;
try {

in = new 0bjectInputStream(
new FiieInputStreamC

ChatServerAdmin.groupFi1e(dir.getParentFi1e())));
in.read0hject{); // skip over the group ID
groups 2 (String[])in.readObjectC);
iookupURL = (String)in.read0bject():

} catch (CiassNotFoundException e) {
unexpectedExceptionCe);

} catch CIDException e) {
unexpectedException(e);

} finaiiy {
if (in != nu11)

in.close():
}

}

f-k'k

* Stores the current information in storage. In our case oniy
* the start state is snapshoted ~s everything eise is added
* incrementally anyway and so the log of changes is the
* state. Part oF <CODE>Re1iabieLogHandier</CODE>.
IV

puh1ic void snapshot(0utput5tream out) throws Exception {
DbjectOutputStream oo = new ObjectOutputStream(out);
oo.write0bject(5ubject);

341

339
Chat. (ha tServerImpI

apt-2:)”ama-I?

i
J

342

fi—fi

34!]

chat. ChatServerImp?

oo.write0hject(attrs);

/'k*

* Recovers the information from storage. Part of
* <CDDE>Re1iab1eLogHand1er</CODE>.a!

* @see #snapshot
*/

pubTic void recover(InputStream in) throws Exception {
ObjectInputStream oi = new 0bjectInputStream(in);
subject = (String)oi.read0bject();
attrs = (List)oi.read0bject();

/fi1}

* Appiy an update from the 109 during recovery. The types
* of data we add happen to a11 be distinct so we know exactiy
* what something is based on its type aione (1ucky us). Part
* of <CODE>Re1iabTeLogHand1er</CODE>.
*/

pub1ic void app1yUpdateC0bject update) thrOWS Exception {
it (update instanceof ChatMessage) {

messages.add(update);

addSpeaker(((ChatMessaQEDUpdate).getSpeaker());
} e1se if (update instanceof Entry) {

attrs.add(update);

} e1se if (update instanceof ServiceID) {
serviceID = (ServiceIDjupdate;

} eise {

throw new I11ega1ArgumentException(
"Interna1 error: update type ” +

update.getC1ass().getNameC) + ". ” + update);

‘f-kz‘r

* Invoked when the serviceID is first assigned to the service.
* Part of <CODE>ServiceIDListener</CODE>.
*/

pub1ic void serviceIDNotify£ServiceID serviceID) {
try {

1og.update(serviceIDJ;
} catch (IOException e) {

unexpectedException(e);
}

ChatServerImp].this.5erviceID = serviceID;

342

343

ffik

* Add a new speaker to the persistent storage log.
*/

synchronized void addCChatMessage msg) {
try {

iog.update(msg. true);
} catch CIGException e) {

unexpectedExceptionCe);
}

}
}

/*fi
* The activation constructor for <CODE>ChatServerImp1</CODE>. The

* <CODE>state</CODE> object contains the directory which is our
* re1iab1e iog directory.
*/

public ChatServerImp1(ActivationID actID,
Marsha1ied0bject state)

throws IOException, CiassNotFoundException

Fiie dir = (Fiie) state.get();
store = new ChatStore(dir);

ChatProxy proxy = new ChatProxthhis);

LookupLocatorE] 1ocator5 = nu11;
if (1ookupURL l: nu11) {

LookupLocator 10c = new LookupLocator£1ookupURL3;
iocators = new LookupLocator[] { 10c };

}

joinMgr = new JoinNanager£proxy, getAttrsC). groups,
1ocators, store. renewer);

Activatabie.export0bject(this, actID. 0);

/')r*
* Return the attributes as an array For use in JoinManager.
*/

private Entry[] getAttrs() {
return (Entry[])attrs.toArray(new EntryEattrs.sizeC)]);

}

// inherit doc comment from ChatServer

pub1ic String getSubjectfl) {
return subject;

1343

341
chat.ChatServerImpi

i

i
1

344

—

342
chat. ChatServe rImpT

// inherit doc comment from ChatServer

pub1ic StringE] getSpeaker5() {

return (String[])5peaker5.toArray(new String[5peakers.size()]);
}

// inherit doc comment from ChatServer

public synchronized void add(String speaker. String[1 1ines)
{

ChatMessage msg = new ChatMessage(speaker, lines);
store.adc(msg);
addSpeaker€speaker);
messages.add(msg);
notifyA11();

}

/fl'1¥

* Add a speaker to the known 1ist. If the speaker is aiready
* known, this does nothing.
*/

private synchronized void addSpeakertString speaker) {
if (speakers.containsCspeakerj)

return;

speakers.add(speaker):
Entry speakerAttr = new ChatSpeaker£speaker);
attrs.add(5peakerAttr);

joinMgr.addAttribute5(new EntryE] { speakerAttr });

// inherit doc comment from ChatServer

pubiic synchronized ChatMessage nextInLine(int index) {
try {

int nextIndex = index + 1;

whi1e (nextIndex >= messages.size())
wait();

return (ChatMessage)messages.getCnextIndex);
} catch (InterruptedException e) {

unexpectedException(e):

return nu11; // keeps the compiier happy

f‘k‘k

* Turn any unexpected exception into a runtime exception reFTected
* back to the c1ient. These are both unexpected and unrecoverab1e
* exception (such as "Fiie system fu11"J.
*/

private static void unexpectedExceptionCThrowabie e) {

344

345

 343
chat.ChatServerImpI

throw new RuntimeException("unexpected eXCEption: " + e);

345

346

344

chat.Chat5peaker

package chat:

import net.jini.ent"y.AbstractEntry:

import net.jini.Tookup.entry.5erviceControi1ed;

/1'{‘#

* An attribute for the <CODE>ChatStream</CDDE> service that marks a
* speaker as being present in a particuiar stream.a

i @see ChatStream
*/

pub1ic c1ass ChatSpeaker extends AbstractEntry
implements ServiceControl1ed

{

fat-$9:

* The seria1 version UID. Stating it expiicitly is good.5?

* @see fortune.FortuneTheme#seria1VersionUID
*/

static final 1on9 seria1VersionUID =

6?48592884Bl4857?88L;

/1'c#

* The speaker‘s name.
* @seria1

*/

pubiic String speaker;

/**

* PubTic no-arg constructor. Required for a1] <CODE>Entry</CODE>* objects.
*/

pub1ic ChatSpeaker() { }

/-JH‘.-

* Create a new <CODE>ChatSpeaker</CODE> with the given speaker.“/

pub1ic ChatSpeaker£String speaker) {
this.speaker = speaker;

}
}

346

347

package chat;

import message.MessageStream;

import java.rmi.RemoteException;

/:‘rfi

* A type of <CODE>MessageStream</CODE> whose contents are a chat

* session. The <CODE>nextMessage</CODE> method blocks if there is
* as yet no next message in the stream. The messages in the stream
* are ordered, so <CODE>nextMessage</CDDE> must be idempotent —— should
* the client receive a <CflDE>RemoteException</CODE>. the next invocation

* must return the next message that the client has not yet seen.
* (p)

* Each message returned by <CODE>nextMessage</CODE> is a
* <CODEsChatMessage</CODE> object that has a speaker and what they
* said.
:9!

* @see ChatMessage
* @see ChatSpeaker
* @see ChatSubject
*/

public interface ChatStrean extends MessageStream {
/*k

* Add a new message to the stream. If the speaker is previously
unknown in the stream. a <CODE>ChatSpeaker</CODE> attribute
will be added to the service.

K'-=€-:i-I?
@see ChatSpeaker

*/
public void addCString speaker. String[] message)

throws RemoteException;

/3¥f£
* Return the subject of the chat. This does not change during the

* lifetime of the service. This subject will also exist as a
* <CODE>ChatSubject</CODE> attribute on the service.f:

* @see ChatSubject
14/

public String getSubject() throws RemoteException;

/3‘n‘c
* Return the list of speakers currently known in the stream.
* The order is not significant.3’:

* @see ChatSpeaker

347

345

chat.€hat$tream

348

346
char.Chat5tream

*/

pub1ic StringE] getSpeakerst) throws RemoteException;

348

349

347

chat.ChatSubject

package chat;

import net.jini.entry.AbstractEntry:
import net.jini.1ookup.entry.ServiceControiled;

f'kfi'
* An attribute for the <CODE>ChatStream</CUDE> service that marks the

* subject of discussion.it

* @see ChatStream

*/
pubiic ciass ChatSubject extends AbstractEntry

imp1ements ServiceContro11ed

 '£1903aid-maxi
{

/**

* The seriai version UID. Stating it explicitly is good.

* @see fortune.FortuneTheme#seria1VersionUID ;

{c/ 1static fina1 1on9 seriaiVersionUID =
—433E337828321897774L;

/*1'r
* The subject of the discussion.

* @seria1 ‘fr/ |
pub1ic String subject:

/-.':-.& i
’ Pub1ic no-arg constructor. Required for a11 <CODE>Entry</CODE>
* objects.
*/

puh1ic ChatSubjectC) { }

/1'(ir

* Create a new <CODE>EhatSubject</CODE> with the given subject.
*/

pub1ic ChatSubjeCt(String subject) {
this.subject = subject;

}
}

349

350

IIlIIIlII-IIIIIIIIIIIIIIIIIII'

348
chatter.Chatter

package chatter;

import chat.ChatStream;

import chat.ChatMessage;
import c1ient.StreamReader;

import message.MessageStream;

import java.rmi.RemoteException;

/5¥\1‘5!-

A ciient that taiks to a <CODE>ChatStream</CODE>, aiiowing the user
* to add messages as well as read them. The user’s iogin name is used
* as their name in the chat. The usage is:
* <pre>

* java [java—options] chatter.Chatter args...
* </pre>

* The arguments are the same as those For <CUDE>c1ient.5treamReader</CODE>
* except that you cannot specify the <CODE>—c</CODE> option. The stream
* used wi11 be at 1east a <CODE>chat.ChatStream</CODE> service.

* @see c1ient.StreamReader
* @see ChatterThread
‘/

public ciass Chatter extends StreamReader {
/i‘:%

* Start up the service.
*/

pubTic static void main(String[] args) throws Exception
{

StringE] Fu11args = new StringEargs.1ength + 3]:
fui1args[@] : "-c";

fui1argsE1] = String.va]ueOf(Integer.MAX_VALUE);
System.arraycopy(args, G, fuilargs, 2, args.iength):
fu]1args[fu11args.1ength — l] = “chat.ChatStream":
Chatter chatter = new ChatterCFuilargs):
Chatter.execute();

/R\L'

* Create a new <CODE>Chatter</CDDE>. The <CODE>args</CODE> are
* passed to the superciass.
it]

private Chatter(5tring[] args) {
super(args);

}

[Hm

* Overrides <CODE>read5tream</CODE> to start up a

350

351

349
chatter.Chatter

* <CODE>ChatterThread</CODE> when the stream is found. The

* <CODE>ChatterThread</CODE> lets the user type messages, whiie this
* thread continuaiiy reads them.
*/

pubiic void readStreamCMessageStream msgStream)
throws RemoteException

{

ChatStream Stream = (ChatStream)msgStream;
new ChatterThreadfistream).startC);
super.readStreamCstream);

[use

* Print out a message, marking the speaker for easy reading.
*/

pubiic void printMessagecint msgNum. Object msg) {
if (!(msg instanceof ChatMessage))

super.printMessageCmsgNum. msg);
else {

ChatMessage cmsg = (ChatMessage)msg;
System.out.printinCcmsg.getSpeaker() + ":”);
String[] 1ine5 cmsg.getContent();
for (int i = B: i < 1ines.1ength; i++) {

System.out.print(” "J:
System.out.print1nC1ines[i]);

351

352

III'IIII

350
chatter. ChatterThread

package chatter;

import chat.ChatStream;

import java.io.BufTeredReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.rmi.RehoteException;
import java.uti1.ArrayList;
import java.uti1.List;

/5¥A’

* The thread that <CODE>Chatter</CODE> uses to 1et the user type
* new messages.
*/

ciass ChatterThread extends Thread {
/a’:1’-‘

* The stream to which we're adding.
*/

private ChatSt "eam st ream;

/§h\'

* Create a new <CODE>ChatterThread</CODE> to write to the given stream.
*/

ChatterThreadCChatStream stream) {
this.stream = stream;

fate

* The thread’s workhorse. Read what the user types and put it into
* the stream as messages from the user. The user’s name is read from

* the <CODE>user.name</CDDE> property. A message consists of a series
* of Wines ending in backsiash untii one that doesn't.
*/

pubiic void run() {

BufferedReader in = new BufferedReaderC
new InputStreamReaderCSystem.in));

String user a System.getProperty(”user.name");
List msg = new ArrayList();
StringE] msgArray 2 new StringEB];
For (i?) {

try {
String 1ine = in.readLine();
if (1ine == nu11)

System.exit(@);

boo1ean more = 1ine.endswith(“\\");

if (more) { // strip traiiing backslash

352

353

int st"ipped = line.1ength() — 1;
1ine : 1ine.substring(0, stripped):

}

msg.add(1ine):
1f (lmore) {

msgArray = {String[1)
msg.toArray(new String£msg.size()]);

stream.add(user, msgArray);
msg.c1ear();

}
} catch (RemoteException e) {

System.out.print}n("RemoteException:retry");
For (;;) {

tr'y {
Thread.51eep(1@@@);

stream.add(user, msgArray);
msg.c1ear();
break;

} catcw (RemoteException re) {
continue: // try again

} catc1 EInterruptedException ie) {
System.exit(l);

}
}

} catch (IDException e) {
5y5tem.exit(1):

353

351
chatter.ChatterThread

..

354

—_————_fi

352
c?1enr.$treamReader

package c1ient;

import net.jini.core.discovery.LookupLocator;
import net.j1ni.core.entry.Entry;
import net.jin1.core.iookup.ServiceRegistrar;
import net.j1n1.cure.1cokup.$erv1ceTempiate;
import net.j1n1.d1scovery.DiscoveryEvent;
import net.jin1.d1scovery.DiscoveryListener;
import net.jini.discovery.LookupDiscovery;

import message.MessageStream:

import java.io.Buf¥eredReader:
import java.1a.EOFException:
import java.io.InputStreamReader;
import java.io.Reader:

import java.1ang.ref1ect.Constructor;

import java.1ang.reF1ect.Invocat1onTargetException;
import java.rmi.RemoteException;
import java.rm1.RMISecurityManager:
1mport java.ut11.HashSet;

import java.ut11.L1nkedList:
import java.ut11.List;
import java.ut11.52t;

import java.ut11.StringTokenizer;

/**

* This class provides a c1ient that reads messages from a
* <code>MessageStream</code> service. It’s use 15:
’1 <pre>

* java [<i>java-options<l1>] c1ient StreamReader [— c <1>count</1>]
* <i>group5|100kupURL</i>

* [<1>serv1ceetype</i>|<i>attribute</1> ...]
* </pre>

Where the options are:
<d1>

<dt><1><CODE>java--options</CODE></1>

<dd>0ptions to the Java VM that W111 run the admin program. Typica11y
this inciudes a security poiicy property.([3)

<dt><i><CODE>—c <1>count</1></CODE></1>
* <dd>The number of messages to print.
* <p>

* <dt><1><CODE>groups</CODE></1>I<1><CODE>IookupURL</CDDE></1>
* <dd>E1ther a comma-separated list of groups in which a11 the services
* in the group w111 be regsitered or a URL to a specific 1oakup service.* <p>

* <dt><i><CODE>service-type</CODE></1>|<1><CODE>attribute</CODE></1>

32'3+’1'3%#1fi-
3(-

354

355

3F3%3C:
:-

c?ient.5treamReader

<dd>A combination (in any order) of service types and attribute definitions.
Service types are specfied as types that the service must be an instance of.
Attribute definitions are either <CODE>Entry</CODE> type names,
which deciare that the service must have an attribute of that type,

or <CGDE>Entry</CODE> type names with a singie <CODE>String</CODE>
parameter for the constructor, as in
<CODE><i>AttributeType</i>:<i>stringArg</i></CODE>.
</d1>

<p>The iookups are searched for a <CODE>Message5tream</EODE> that
supports any additionai service types specfied and that matches a11
specified attributes. If one is found, then <CODE><i>count</i></CODE>
messages are printed from it. If a <CODE>RemoteException</CODE>
occurs the <CODE>nextMessage</CODE> invocation is retried up to
a maximum number of times.
<P>

This ciass is designed to be subciassed. As an exampie. see
<CODE>chatter.Chatter</CODE>.

@see message.MessageStream
@see chatter.Chatter

*/

pubiic ciass StreamReader imp1ements Discoverytistener £
/fii\'

* The number of messages to print.
*/

private int count;

/z‘rk

“ The Tookup groups (or an empty array).3%
/

private String[] groups = new StringEfi];

/1h¥

* The iookup URL (or <code>nu11</code>).
*/

private String iookupURL;

/1'l€(
* The stream and attribute types.
*/

private String[] typeArgs:

/*:n‘:

* The 1ist of unexamined registrars.
*/

private List registrars = new LinkedListC);

/1tfi

355

353

whoWitness.

356

354

cTient. Streamfleader‘

* How 1on9 to wait for matches before giving up.
*/

private fina1 static int MAX_WAIT = 5069; // five seconds

/-{:1‘:
* Maximum number of retries of <code>nextMessage</code>.
*/

private finai static int MAX_RETRIES = 5;

/'£:'I:
* Run the pragram.fir

* @param args The command—iine argumentsfl'

* @see #StreamReader

*/

pub1ic static void main(String[] args) throws Exception
{

StreamReader reader = new StreamReader(args);
reader.execute();

/\9n¥

* Create a new <code>StreamReader<lcode> object from the
* given command line arguments.
“/

pub1ic StreamReaderiStringE] args) {

// parse command into the fie1d5 count, groups,
// IookupURL, and typesArgs...
if (args.1ength == 9) {

usageC);

throw new 111ega1ArgumentException();
}

int start;

if (largS[@]- qua1s("-C")) {
count = 1;
start = 0:

} e15e {
count = Integer.parseIntCargsEljj;
start = 2;

}

if (args[start].indexOfC':’) < 0)
groups = uti]‘ParseUtii.parseGroups(args[start]);

e1se

1ookupURL = args[start];
typeArgs = new String[args.1ength — start — l};

356

357

355

cTient.StreamReader

System.arraycopy(args. start + 1, typeArgs, 0, typeArgs.1ength);

}

/'A‘~k I m
* Print out a usage message. -E a
“f _5

private void usage() { '51
System.err.print1n("usage: java [java—options] “ + StreamReader.c]ass + H f5-

" [mc count] groupsl1ookupURL [service-typelattribute ...]"); 'g?
} g

* Execute the program by consuming messages.
“/

pub1ic void executeC) throws Exception {
if (System.get5ecuFityManager() == nu11)

System.setSECU"ityManager(new RMISecurityManager());

// Create iookup discovery object and have it notify us
LookupDiscovery 1d = new LookupDiscovery(groups);
1d.addDiscoveryListenerCthis);

searchDiscovered(); // search discovered 1ookup services

[first I

* Search through an discovered 1ookup services. |
a\-/ .

private synchronized void searchDiscovered() Ithrows Exception

ServiceTempiate serviceTmp1 = bui1dTmp1(typeArgs);

// Loop searching in discovered iookup services
iong end = 5ystem.currentTimeMi11isC) + MAX_WAIT;
for (;:){

// wait untii a iookup is discovered or time expires
Tong timeLeft = end — System.currentTimeMi11is();
whi1e (timeLeFt > a && registrars.isEmpty()) {

waitCtimeLeft);

timeLeft = end — System.currentTimeMi11isc);
}
if (timeLeft <2 0)

break;

// Check out the next iookup service
ServiceRegistrar reg =

(ServiceRegistrarJregistrars.remove(@);

357

358

___m__--------IIIIIIIIIIIIIIIII-I-I-I-I-I-I-IIIIIII

356
c]ient.$treamfleader

try {
MessageStream stream =

(MessageStream)reg.1ookup(serviceTmp1):
if (stream 1: nuli) {

readStreamCstream);
return:

}

} catch (RemeteException e) {

continue; // skip on to next
}

}

System.err.print1n("No service Found");

System.exit(1); // nothing happened in time
}

/:‘1‘<

* Buiid up a <code>5erviceTemp1ate</code> object for
* matching based on the types listed on the command 1ine.
*/

private ServiceTempJate buiidTmp1(String[] typeNames)

throws C1assNotFoundException. I11ega1AccessException.
InstantiationException, NoSuchMethodException.
InvocationTargetException

Set typeSet = new HashSetC): // service types
Set attrSet = new HashSet(); // attribute objects

// MessageStream cTass is aTways required
typeSet.addCMessageStream.c1ass):

For (int i = 6; i < typeName5.1ength; i++) {

// break the type name up into name and argument
StringTokenizer tokens = // breaks up string

new StringTokenizer(typeNames[i], ":");
String typeName = tokens.nextTuken();

String arg = nu11: // string argument
it Ctokens.hasMoreTokens())

arg = tukens.nextToken();

C1ass c1 = C1ass.ForName(typeName):

// test if it is a type of Entry (an attribute)
if (Entry.class.isAssignabieFrom(c1))

attrSet.add(attribute(c1, arg));
e153

typeSet.add(c1):

// create the arrays from the sets

358

359

Entry[] attrs = (Entry[])

attrSet.toArrandew EntryEattrSet.size(JJ);
C1ass[] types = (Class[])

typeSet.toArray(new C1ass[type$et.size£)]):

return new ServiceTempiateCnui], types, attrs);

fee

* Create an attribute from the class name and optionai argument.
*/

private Object attributeCClass c1. String erg)
throws IilegaiAccessException, InstantiationException,

NoSuchMethodException, InvocationTargetException
{

if (erg == nu11)

return c1.newInstance():
eTse {

CiassE] argTypes = new C1ass[] { String.c1ass };
Constructor ctor = c1.getConstructorCargTypes);
0bject[] args = new Object[] { arg };
return ctor.newInstance(args):

}
}

/a‘.--J\—

* Notified by <code>LookupDiscovery</code> code when it finds one
* or more registries. This imp1ementation adds it to the list of
* known registries and notifies any waiting thread.
*/

pubiic synchronized void discovered£DiscoveryEvent ev) {
ServiceRegistrarE] regs = ev.getRegistrars():
for (int i = 0; i < regs.Tength; i++)

registrars.add(regs[i]);

notifyA11(); // notify waiters that the 1ist has changed

lit-fi-

* Notified by <code>LookupDiscovery</code> code when one or more
* found registries vanishes. This imp1ementation removes it from

* the list of known registries. No notification is necessary
* since the on1y waiting threads are waiting for additions. not“J“

_ subtractions.

*/

pub1ic synchronized void discardedCDiscoveryEvent ev) {
ServiceRegistrarE] regs : ev.getRegistrars();
for (int i = G: i < regs.1ength: i++)

359

357
c?ient.5treamReader

--:'.~p9;_)afdl'tléxg'f-_
i

F
ii.5;-

360

m——%

358
ciient.StreamReader

registrars.remove(regs[i]);

notifyA11C): // notify waiters that the list has changed

/1!'1l-

* Read the required number of messages from the given stream.
*/

pubiic void readStream(MessageStream stream)
throws RemoteException

{

int errorCant z 6; // # of errors seen this message
int msgNum = a; // # of messages
whi1e (msgNum < count) {

try {

Object msg = stream.nextMessage();
printMessage(msgNum, msg);
msgNum++; // successfu1 read

errorCount = 9; // cTear error count
} catch (EOFException e) {

System.out.print1nC"---EOF~——");
break;

} catch {RemoteException e) {
e.printStackTrace():

if (++errorCount > MAX_RETRIES) {

if (msgNum z: e) // got no messages
throw e;

else {

System.err.print1n(”too many errors”);
System.exit(l);

}
try {

Thread.s1eep(1890); ff wait 1 second. retry
} catch (InterruptedException ie) {

System.err.print1n("—-7Interrupted———");
System.exit(1):

/\¥Av

* Print out the message in a reasonab1e format.
*/

public void printMessage(int msgNum. Object msg] {
if (msgNum > 6) // print separator

System.out.print1n("——-");

360

361

System.out.print1n{msg);

361

359
ciient.5treamReader

362

____________fi________________________-------IIIIIIIIIIIIIIIIIIIIIIIIIIIII-lllllllll-I-llllllll

360
fortune.FortuneAdmin

package fortune;

import message.MessageStream;

import java.io.DataOutputStream;
import java.io.File;

import java.io.FileOutputStream:
import java.io.IOException;
import java.io.RandomAccessFile;
import java.util.ArrayList;
import java.util.List;

import java.rmi.activation.ActivationException;

/1'n'(

* Administer a <code>FortuneStreamImpl<fcode>.
* <pre>

* java [<i>java options</i>l fortune.FortuneAdmin <i}database-dir</i>
* </pre>I?

The database is initialized From the fortune set in the directory's
<code>fortunes</code> file, creating a file named <code>pos</code> that
contains each fbrtune’s starting position. The <code>fortunes<fcode>
File must be present. The <code>pos</code> file, if it exists, willbe overwritten.=¢-#1'?3GH-

* @see FortuneStreamImpl
*/

public class FortuneAdmin {
/*i\'

* Run the FortuneAdmin utility. The class comment describes the
* possibilities.9‘.-

* @param args

* The arguments passed on the command lineit

W @see FortuneAdmin
1‘:/

public static void mainfiStringE] args) throws Exception {
if (args.length != 1)

usageo;
else

setup(args[@]);

/\‘ti‘

* Set up a directory, reading its <code>fortunes<fcode> File and
* creating a correct <code>pos</code> file.i

362

363

361
fortune.FortuneAdmin

..-:
@param dir

* The fortune database directory.

* @throws java.io.IOException
* Some error accessing the database fiies.
*/

private static void setup(String dir) throws IOException {
Fi1e fortuneFiie = new Fi1eEdir, "fortunes"j;

Fi1e posFiie = new Fiietdir. ”pos");
if (posFile.1astModified() > fortuneFi1e.1astModified()) {

System.out.print1n("positions up to date");
return;

System.out.print(”positions out of date, updating");
// Open the fortunes Fiie
RandomAccessFiie fortunes =

new RandomAccessFi1e£new Fi1eCdir. "fortune5"), "r”);

// Remember the start of each fortune

List positions = new ArrayListC);
positions.add(new LongE6));
String iine;
whiie ((1ine = fortunes.readLine()) I: nuii)

if (1ine.5tartswith(”%%"))

positions.add(new LongCFortunes.getFi]ePointer()));
Fortunes.c1ose();

// Write the p05 fiie
DataflutputStream pos =

new DataOutputStream£new Fi1e0utput5tream(new Fi1e(dir, "pos"))):
int size = positions.size();
pos.writeLong(size);
for (int i = B; i < size; i++)

pos.writeLong(((Long) positions.get(i)).1ongVa1ue());
pos.ciose();
System.out.print1n():

/'II*
* Print out a usage message.
1':/

private static void usage() {
System.out.print1n(”usage: java [java-options] “ + FortuneAdmin.c1ass +

" database—dir"):
363

364

362
fortune. FortuneStr'eam

package fortune;

import message.MessageStream;

import java.rm1.Remote;

import java.rmi.RemoteException;

/1:-k

* A <CODE>FortuneStream</CODE> is a <CODE>MessageStream</CODE> whose
* <CODE>nextMessage</CODE> method returns a random saying on some theme.
* The theme is returned by the <CODE>getTheme</CODE> method.9:

* @See FortuneTheme

*/

interface FortuneStream extends MessageStream. Remote {
fire

* Return the theme of the stream. This is a1so represented in the

* 1ookup service as a <CODE>FortuneTheme</CDDE> object.
*/

String getThemeC) throws RemoteException;

364

365

imp
imp

imp
imp

imp

imp
imp

imp

imp
imp
imp
imp
imp
imp
imp
imp
imp
imp
imp

/k:’e5‘
t

3?
fl
:\'
t

f!
l?
f:
t

11
91'
fi-

iY/
pub

363
fortune.FortuneStreamImp?

package Fortune;

ort message.MessageStrean;
ort uti1.ParseUti1;

ort net.jini.core.discovery.LookupLocator:
ort net.jini.Core.entry.Entry;
ort net.jini.Core.1ookup.ServiceID;

ort com.sun.jini.1ease.LeaseRenewaiManager:
ort com.sun.jini.1ookup.JoinManager:

ort java.io.BufferedInputStream;
ort java.io.DataInputStream:
ort java.io.Data0utputStream:
ort java.io.EOFException:
ort java.io.Fiie;
ort java.io.Fi1eInputStream;
ort java.io.10Exception:
ort java.io.RandomAccessFi1e;
ort java.rmi.Remote;
ort java.rmi.RMISecurityManager;
ort java.rmi.server.UnicastRemoteObject;
ort java.uti1.Random;

Impiement a <code>MessageStream</code> whose
<code>nextMessage</code> method returns “Fortune cookie" seiected
at random. The stream is an activatabie remote object. It requires

no speciai proxy because there is no ciient—side state or smarts --
the simpie RMI stub works perfectly for this use.

<code>FortuneStreamImp1<fcode> objects are created using the
<code>create<lcode>. It’s oniy pubiic constructor is designed for
use by the activation system itseif. The Ciass
<code>FortuneAdmin</code> provides a program that wiii invoke
<code>create</code>.

@see FortuneAdmin

1ic class FortuneStreamImp] impiements FortuneStream {
f‘hik

* Groups to register with (or an empty array).
*/

private String[] groups = new String[@];

/‘7\"R'

* URL to specific join manager (or <CODE>nu11</CODE>).

365

366

364

Fortune.FortuneStreamImp?

:‘r/

private String TookupURL;

/i(f€

* The directory we work in.
’7

private String dir;

/l'fl'r
* The theme of this stream.

*/
private String theme:

1/9“!
* The random number generator we use.
91/

private Random random = new RandomC);

/a':9r

* The positions of the start of each fortune in the fiie.
*/

private Tong[] positions;

firir
* The fiie that contains the Fortunes.

*/

private RandomAccessFiie fortunes;

/'!r'!r

* The join manager does most work required of services in Jini systems.
*/

private JoinManager joinMgr:

/‘A",’:

* @param args The command Tine arguments.
*/

pubiic static void main(String[] args) throws Exception
{

FortuneStreamImpi f = new FortuneStreamImpi(args);
F.execute():

}

/)hk

* Create a stream that reads from the given directory.

* @param dir The directory name.
it/

private FortuneStreamImpiCString args[])

366

367

/1’."}=*

a'r/
pm

/wew

‘5:

throws IOException

// Set the groups. iookupURL, dir, and theme
// fieids...

if (args.1ength l: 3) {
U5a96():

throw new I11ega1ArgumentExceptionC);
}

if (args[0].index0f(’:') < 6)

groups = uti1.ParseUti1.parseGroups(args[9]):
e1se

iookupURL = argsEG];
dir = argsEl};
theme : argsEZ]:

Print out a usage message.

vate void usageC) {

365

fortune.FortuneStreamImpT

System.err.print1n("usage: java " + F0rtuneStreamImp1.c1ass +:-

groups‘1ookupURL database—dir theme"):

Export this service as a UnicastRemoteiject For debugging purposes.

* @see #main

)k/

private void executeC) throws IOException {
System.setSecurityManagerCnew RMISecurityManager());
UnicastRemoteObject.exportObject€this);

// Set up the fortune database
setupFortunes();

// set our FortuneTheme attribute

FortuneTheme themeAttr = new FortuneThemeCtheme};

Entry[] initiaTAttrs : new Entry[] { themeAttr };

LookupLocatorE] 1ocators = nui1;
if (1ookupURL 1= nu11) {

LookupLocator 10: 2 new LookupLocator£10okupURL);
1ocators = new LookupLocator[] { 10c };

}

joinMgr = new JoinManagerCthis, initia1Attrs,
groups, iocators, nu71, nu11);

367

368

366
fOrrune.FortuneSEreamImp?

/1‘:$¥
* Caiied when the database needs to be set up. This can be caiied

* muitipie times, for exampie if the database has been modified whiie
* the service is running.a?

“ @throws java.io.IOException
* Some problem occurred accessing the database Files.
*/

private synchronized void setupFortunes() throws IOException {
// Read in the position of each fortune
Fiie posFiie = new FiieCdir, "pus”j:
DataInputStream in = new DatalnputStreamC

new BufferedInputStream(new Fi]eInputStream(posFi1e)));
int count = (int) in.readLong();

positions = new iong[count];
for (int i 2 0; i < positions.iength; i++)

positions[i] = in.readLong();
in.ciose():

// Close the fortune fiie it previousiy opened
if (fortunes !: nu11)

fortunes.ciose();

// Open up the fortune fiie
fortunes = new RandomAccessFi1e(new FiieCdir. "fortunes"). "r”);

* Return the next message from the stream. Since messages are
* seiected at random, any message is as good as any other and so
* this is idempotent by contract: there wiii be no vioiation of

the contract it the client caiis it a second time after getting

a <code>RemoteException</code>. The <CODE>0bject</CODE> returned
is a <CODE>String</CODE> with embeded newiines. but no trai1ing
newline.

:-
’9‘

Hrfi~#-3?
@throws java.io.EOFException

The database has been corrupted —— no more messages
from this stream.

x6~
#-

*/

pubiic synchronized Object nextMessageC) throws EDFException {
try{

int which = random.nextInt£positions.1ength);
fortunes.seektpositions[which]);

StringBuffer but : new StringBufferC);
String iine;
whiie ((1ine = fortunes.readLine()) != nu11 && Jiine.equa1s(“%%")) {

i‘ (buf.1ength() > 0)

368

369

buf.append(’\n'):
buf.append(iine);

}
return buf.toString();

} catch CIOException e) {
throw new EOFException("directory not avaiiabief

}

// inherit doc comment from interface
pubiic String getTheme() {

return theme;

}

1369

367
fbrtune.FbrtuHEStreamImpT

+ e.getMessageC))i

370

368
fortune.FortuneTheme

package Fortune;

import net.jini.entry.AbstractEntry;
import net.jini.lookup.entry.ServiceControlled;

fut-k
* This class is used as an attribute in the lookup system to tell
* the user what theme of fortunes a stream generates.

‘1/

public class FortuneTheme extends AbstractEntry
implements ServiceControlled

/§:fi'
‘ The serial version UID. Stating it explicitly allows future

* evolution with a guaranteed consistency of the UID itself. It
* is also more efficient since otherwise the U10 must be calculated

* when the class is serialized. A good specification should include
* the serial version UID of each class.

12/
static final long serialVersionUID =

-1696813495991295488L;

.(

* The theme of this collection of fortunes.\‘e

* @see fortune.FortuneStream#getTheme
* @serial

*/

public String theme;

/;‘:ih‘

* Public noearg constructor. Required for all <CODE>Entry</CODE>
“ objects.
:r/

public FortuneTheme() { }

/-X-:z
* Create a new <CODE>FortuneTheme</CODE> with the given theme.
1V

public FortuneThemeCString theme) {
this.theme 2 theme;

370

371

package message;

import java.io.EOFException;
import java.rmi.RemoteException;

/'A'*
* This interface defines a message stream service. Successive
* invocations of <code>nextMessage</code> return the next message in
* turn. Subinterfaces may add methods to rewind the stream or
* otherwise move around within the stream if appropriate.
*7

pubiic interface MessageStream {
/!’r'fl

* Return the next message in the stream. Each message is an
* object whose defauit method of disp1ay is a string returned by

its <CODE>toString</CDDE> method. This method is idempotent: if
the c1ient receives a <code>RemoteException</c0de>. the next
invocation From the ciient shouid return an equivalent message.
A service may specify which kinds of messages wi11 be returned.

eee

ifH'3? @returns The next message as an <CODE>Object</CODE}.

@throws java.io.EOFException
K‘

* The end of t1e stream has been reached.

* @throws java.rmi.RemoteException
* A remote exception has occurred.
-.\-/

Object nextMessage()
throws EDFException, RemoteException;

371

369
message.MessageStream

372

370
ut‘r'] . ParseUtf'.‘

package util;

import java.ut‘i'| .HashSet;
import java.ut11.Set;
import java.uti1.StringTokenizer;

/-.\'$‘r
* This c1a55 h01ds the static <CODE>parseGroups</CODE> method.
1’/

pubWic c1ass ParseUti1 {
/1¥:¥

* Break up a comma-separated 1ist of groups into an array of strings.

* @param groupDesc A comma—separated list of groups.
* @returns An array of strings (empty if none were specified).
*/

pub1ic static String[] parseGroupsCString groupDesc) {
if (groupDesc.equa1s(""))

return new String[] {""};

Set groups = new HashSetO;
StringTokerizer strs = new StringTokenizengroupDesc, ”. \t\n");
while (strs.hasMoreTokens())

groups.add[strs.nextToken());
return (String[]) groups.toArray(new StringEgroups.5ize()]):

}

}

372

373

Index

It's a d—iim poor mind that can only think ofwie way to spell a word!
-—Andrcw Jackson

. A components of, 68—71
! environmental assumptions of, 63

i aborted votes, 187 goals of, 61—62
ABSOLUTE constant, 143 infrastructure component of, 61, 68
AbstractEnt ry class key concepts of, 65—67

equa‘l 5, hashCode, and to String printing service example of, 77n-80
E functions of, 133—134 programming model component of, 62,

i serialized forms of, 134 68
access control list, 67 service architecture in, 72—76

ACID properties services component of, 62, 68
L atomicity, 188, 270 atomicity. 188: 270

consistency, 138, 270 attribute classes, 243—250
' durability, 188, 270 adding comments with, 246—247

isolation, 188, 270 getting service information with, 243—

in JavaSpaces, 270—271 245
activation, 43—45 getting status information with, 248—

activatable classes and objects, 43—44 249
, in chat server, 43 modifying, 243
! definition of, 293 naming a service with, 246

lazy activation and, 29'; physical location and, 247448
activation constructor, 44 561313111sz forms of, 249—250

attributes. See also lockup attribute
activation descriptor, 293

schema specificationactivation group

creating, 45 definition of, 294
definition of. 293 FortuneSt ream service and, 31
function of, 43—44 human access to, 234—235, 237

interoperability with JavaBeans, 235
localization of, 235

lookup services and, 29, 101, 217-218
matching, 1.1
modifying, 103, 235, 239
overview 01", MPH

activation system, 43—45

activator, 293

g active object, 294
5 Address class, 247—248, 249

algorithms, distributed, 254-256

A'- L—GROUPS constants, 115 registering and querying based on, 233
ancestor "311530150115 service items and, 218w219

definition of, 294 sing1e views of, 237

i execution of, 212 specifying, 20, 73774
i ANY constant, 143 static quality of, 234
5 architecture specification, 61—82 using as service properties, 11

371

373

374

—

3'72

using names as, 14

B

bridging calls, 105—106
bui'l dTmpl method, 24—25

C

CannotNestException class, 212

channel, 294
chat room service. See ChatStr'eam

chat server, 43—50

activation and, 43—45, 48
classes and methods of, 4560

implementation of, 43
improvements to, 51—52
registration in, 48

ChatMessage, 327—329

Chat Proxy, 330—331

ChatServer‘, 332-333

ChatServerAdmin, 45, 49, 334—337

ChatServerImpl, 43, 45, 338—343

ChatSpeaker, 344—345

ChatStor-e object, 49

ChatStr‘eam, 37—55
chat server and, 43—50, 51-52

clients for, 52—55

complete code for, 345—346
creating, 41413
getSubj ect and, 40, 43
lastIndex field and, 43
nextInLi ne method and, 41—43, 50—51

nextMes sage method and, 38, 41
overview of, 3741

public service interface for, 39
toStri ngMethod and, 40

ChatSubj ect, 347

Chatter, 52—55, 348—349

Chat te r'TI'Iread, 350—351

Ciardi, John

quotation, 57
classes

Comment class, 246—247, 249
Constants class, 122—123

Di scoveryEvent class, 116

entry classes, 128—129, 239—241
EntryBeans class, 242

THE JA Wt PROGMMMING LMVGUAGE

event interfaces and, 161—162, 163—168

EventRegi stration class, 162, 168
Incomi ngMul ti castAnnouncement class,

122

Incomi ngMu'l ti castRequest class, 120—
121

Incomi ngUni castRequest class, 123—124
Incomi ngUni castResponse class, 124—125
JavaBeans and, 241—242

Location class, 247, 249

LookupDi scove r'y class, 113—115

LookupLocator class, 107—109
Name class, 246

packages and, 16—17
RemoteEvent class, 162, 164—165
Se r'ver‘Tr'ansacti on class, 2097212
Se rvi ceIn'Fo attribute class, 243
ServiceMatches class, 224

Se rvi ceType class, 245
Status class, 250
StatusBean class, 249

StatusType class, 249

TransactionFacto ry class, 187, 209
clients

ChatStream service and, 52755

completing transactions and, 197—198
definition of, 234

locating services and, 73
service interfaces and, 74775

specifying attributes for, 73—74
clients, writing, 19—28

bui l dTmpl method and, 24—25

creating search template for, 20
execute method and, 22

LookupDi scove ry and, 22—23
main method and, 21

MessageStream interface and, 19—28
readSt ream method and, 26—27
searchDi scove red method and, 22—24

setting security manager for, 22
specifying attributes for, 20

users specifications for, 20—21
code

downloading, 7, 63

Java application environment and, 62
notes on, 16

passing with RM], 66
code, examples, 327—370

ChatMes sag e, 327—329
ChatProxy, 330—331

374

375

INDEX

ChatSe rver, 332—333
ChatSe rue rAdmi n, 334—337

ChatServerImpl, 338—343
ChatSpeaker, 344—345
ChatStream, 345—346

ChatSubject, 347
Ch atte r, 348—349

Chatte rTh read, 350—351
F0 r'tuneAdmi I], 360—362

Fo rtuneStreamImpl, 363—367
Fo rtuneTheme, 368
MessageSt ream, 369
ParseUt-i l, 370
StreamReade r', 352—359

collaboration

quotation, 385
Comment class, 246—247, 249

commit points, 204

Common Object Request Broker Architec-

ture (CORBA), 288—289, 308
com.sun.j‘in1‘, 16—18

com . sun . j 'in'i .lookup. Joini-Ianager', 30

concurrency problems, 316-318

cennection, 294

consistency, ACID property, 188, 270
constants, 1 15

ABSOLUTE, 143
ALL_GROUPS, 115

ANY constant, 143
DURATION constant, 143
FOREVER constant, l43
lease interface and, I43

NELGROUPS, 115

protocol utilities and, 122—123

CORBA (Common Object Request Broker

Architecture), 288-289

core packages, 16—17

crash recovery, 204-205

commit points and, 204
roll decisions and, 205

createGroup, 47

D

data

Java application environment and, 62
passing with RM1, 66

databases, 257

delegation event model, 179

373

designing lockup services, 234—235. See also

lookup services

automated matching and, 234
changing attributes and, 235

human understanding and, 234-235
JavaBeans and, 235

static nature of attributes and, 234

do Saint-Exupery, Antoine

quotation, xix

device architecture specification, 277—289

combining hardware and software
applications and, 2277278

devices connected via HOP streams, 288—289

devices using specialized virtual machines,
283—284

devices with resident JVMs, 281—283
devices with shared virtual machines

(network option), 286—289
devices with shared virtual machines

(physical optionO, 284—286
introduction to, 277—279

Java programming language and, 278
participating in discovery protocol and, 278

registering with lockup services and, 278
requirements of, 278—279

devices connected via IIOP streams, 288-289

advantages and disadvantages of, 289

directly interpreting IIOP streams and, 289
requirements of, 289

using CORBA ORBs and, 288
devices using specialized virtual machines

advantages and disadvantages of, 28 3—284
simplifying JVM structure for, 284

devices with resident Java Virtual Machines,
281—283

costs of, 283

design illustration of, 282
functionality of, 282

Java programming language and, 283

utilizing RMI and, 283
devices with shared virtual machines (net-

work option), 286—289

advantages and disadvantages of, 288

building gateways between devices with, 288
complexity of individual devices in, 288

design illustration of, 287

network proxy for, 286
protocols needed for, 287

requirements for, 287

375

376

374

devices with shared virtual machines (physi-

_ cal option)
cowlocation of JVM and, 284

costs and savings with, 286

design illustration of, 285

“device bay” functionality of, 284—285

directory service, 13—14

discovering entity, 83, 294

discovery and join specification, 228—229. See

also discovery protocols; join protocols

discovery protocols, 85-100
definition of, 5

device architecture specification and, 278

finding lookup services with, 9710, 66, 72—75
in Jini infrastructure, 69

multicast announcement protocol, 85, 87, 95—
97

multicast request protocol, 85, 86—87, 89—95
network issues of, 105—109

registering printing services and, 77

unicast discovery protocol, 85, 88

discovery request service, 294

discovery response service, 295

discovery utilities specification. See multicast

discovery utilities; protocol utilities;

utilities specification

Di scover‘yEvent class

LookupD‘i 5covery and, 113
methods of, 116

serialized forms of, 118

Bi scoveryLi stener interface, 22, 114, I 16-
117

Bi scover'yPermission, 117—118

distributed algorithms

design of, 253

JavaSpaces and, 254—256

distributed computing. See atso distributed

vs. local computing

compared with centralized networks, 62

dealing with out of date information in, 138—
139

dealing with partial failure problems in, 138
definition of, 308

difficulties of, 253, 307-325

Java application environment and, 62

Jini system and, 61

_—~

THE JA VA PROGRAMMING biNGUAGE

distributed event adapters, 171—177

notification composition and, 176—177r
notification filters and, 173—175
notification mailboxes and, 175—176

storevand-forward agents and, 171—173
distributed event model, 179, 180

distributed event specification, 155—182. See
also events

distributed event adapters for, 171—177
goals and requirements for, 156-157

integrating with JavaBeans, 179—182
interfaces for, 159—170

overview of, 155—156

registration methods in, 267

distributed leasing specification, 137-153. See

also leasing

distributed systems and, 137—139
goals and requirements of, 140
interfaces for, 141—148

supporting classes for, 1497152
distributed notification

compared with local notification, 179
third-party objects for, 179

distributed persistence, 254

distributed systems. See distributed comput-
mg

distributed vs. local computing, 307—326

historical view of, 311—312
introduction to, 307—308

latency problems in, 312—314
lessons from NFS, 32[L322

memory access problems in, 314-315
middle ground situations, 324—325
partial failure and concurrency problems in,

316—3 18

quality of service myth and, 318—320
taking the differences into account, 322-324

unified objects vision for, 308—3 10

djinns
definition of, 295

handling responses from multiple djinns, 95
host requirements for, 84

Jini system and, 83
DNS names, 108

durability, ACID property, 188, 270

DURATION constant, 143

dynamic class loading, 295

dynamic stub loading, 295

376

377

INDEX

E

encapsulation

object-oriented programming and, 6

proxy objects and, 8
RMI and, 66

endpoint, 295
entities

definition of, 34
in event interfaces, 159—1 6-]

entries. See also attributes

aggregating attributes with. 233
definition of, 296
Fo rtuneTheme and, 31

JavaSpaccs seivices and, 261
overview of, l28—129
semantics of, '11

entry classes, 128-429, 239—241

entry specification, 127—131
constructors for, 128

entries defined, 127
fields and, 128

Jini utility for, 132

operations of, 127
serialized forms of, 131

serializing entry objects, 128—129

templates and matching in, 127, 131
types and, 128
Unusab'l eEntryExcepti on and, 129—130

entry utilities specification, 133—135
EntryBeans class, 242

environmental prerequisites, Jini systems

Java programming language compliance, 63
memory and processing capacity, 63
reasonable network latency, 63

equal 5

Abst ractEnt ry class, 133—134
LookupLocator class, 107

event generators, 160, 296
event interfaces, 159—170

entities involved in, 159—161
functions of, 159
interfaces and classes of, 161—168

leasing and, 169470
sequence numbers and, 169—170
serialized forms of, 170
transactions and, 169—170

event listener, 296

event models, 179—180

event registration, 169

375

EventGener'ator interface, 166—167

EventRegistrat ion class, 162, 168

events. See also distributed event specification
definition of, 159, 296

event generator and, 160
local events, 298

registration of, 159, 160
remote events, 160

support for distributed events and, 67
types of, 159

exception types, 145—147

exclusive leases, 67

execute method, 22

exporting, 296

exportobj ect, 47

extended packages, 16—17

F

faulting remote reference, 296—297

federated groups, 65

fetch operations, 127, 129

“flow of objects” approach, JavaSpaces, 254—
256

FOREVER constant, 143
fortune cookie service. See Fortu neSt ream

service

FortuneAdm-i n, 33, 360—362.

FortuneStream service, 30—36

administration program for, 33
attributes of, 31

creating, 32—33

entry and, 31
implementation design for, 32
overview of, 30—3]

running, 34~36
security options for, 34

FortuneStreamImp, 32—33, 363—367

FortuneTheme, 31, 35, 368

Fuller, R. Buckminster

quotation, 29

G

gateways, devices, 288

getHost method, 107

getPor-t method, 107

getReg‘istrar method, 108

377

378

_

376

getSubject, 43

getSubj ect method, 40

getTheme method, 30

glossary, 293—307

goals, J ini system

easy and portable network access, 62
erasing hardware/software distinctions, 4

plug—and-work functionality, 4
service—based architecture, 4

sharing resources, 62
simple network administration, 62
simplicity and reusable code, 4—5
spontaneous networking, 4

groups

chat server and, 47

discovery process and, 85~86
djinns and, 84
join protocols and, 29, ME, 103

limiting scope with. 13
lookup services and, 12713
modifying. 115—1 16
object groups and, 75
public groups and, 101

H

hard mounts, 321
hardware

device architecture specification and, 277—
278

implementing within J ini architecture, 281
hashCode, 133—134

“here I am” messages, 29

host requirements, 84

hosts, 83, 296-497

I

idempotent methods, 38, 297

[DL (Interface Definition Language), 322
IIOP (Internet Inter-Operability Protocol),

288-289

Incomi ngMu'l ti castAnnouncement class, 122

Incom'i ngMuT ti castRequest class, 120-121

IncomingUnicastRequest class, 123—124

Incomi ngUn'i castResponse class, 124—125
indeterminacy, 316

inferior transactions, 297

THE J/t VA PROGRAMMING LANGUAGE

infrastructure

discovery and join protocols in, 69
distributed security system in, 69
Jini architecture and, 61, 68
lookup service in, 69

interface definition languages, 322
interfaces, 228

client/server interactions with, 74—75

for core, standard, and extended packages,
lfkl 7

designing for distributed systems, 317L318
event. interfaces, 161—162, 163—168
for event specification, 159—170
finder—style visual interfaces, 95

Java programming language and, 69—70
for Javchans, 2417242

service protocols as, 66
for services, 71

for store-and-fonvard agents, 173
Internal SpaceExcept-ion, 263—264, 268

Internet Inter-Operability Protocol (IIOP),
288—289

interposition, 28']
IP addresses

assigning to hosts, 84
URL syntax and, 108

IP broadcast protocols, 106

[P multicast protocols, 106
IP networks, 84

isolation, ACID property, I88, 270
item matching, 223—224

J

Jackson, Andrew

quotation, 371

Java application environment, 62

Java Development Kit (JDK), 118

Java Foundation Classes (JFC), 179
Java objects, 5

Java programming language

device architecture specification and, 278,
283

Jini system and, 63, 69—70
security options of, 34
service types and, 73

using for matching, 10
Java Remote Method Invocation (RMI). See

Remote Method Invocation (RMI)

378

379

INDEX

Java Virtual Machines (JVMS)
devices with full versions of, 281—283

devices with specialized versions of, 2837284
hosts and, 83

in lini systems, 63

properties of, 7
RM} system and, 279

sharing between devices, 284—288
JavaBeans component event model, 179—182

characteristics of, 180
distributed event model and, 1804 82

JavaBeans components

displaying and modifying attributes with, 239
supporting interfaces and classes with, 241—

242

using with entry classes, 239724]
JavaBeans specification, 237

JavaSpace interface, 262—263

JavaSpaces application model, 253-256

compared with Linda systems, 258—259
design issues of, 258—259
distributed algorithms as flow objects in,

254—256

distributed persistence in, 254

goals and requirements of, 259—260
JavaSpaces specification, 253—274

benefits of, 256—257

compared with databases, 257

dependency on other specifications, 260
distributed object persistence in, 257
entries and, 261

further reading on, 273M274

handling concurrent access with, 256
introduction to, 253—260
methods of, 263—268

notify operation of, 261

order of operations in, 268
read operation of, 26]
reliable distributed storage in, 256
replication of, 259
services of, 7|

take operation of, 261
transactions and, 269-271

write operation of, 261
Jini system, introduction, 3—18

architectural features of, 5—7

flexibility of, 15
goals of, 4—5

lookup service in, 9—14
overview of, 34

377

package structure in, 1648
properties of, 7
robust nature of, 14—15

value of a proxy in, 7~8
Johnson, S.C.

quotation, 19
join configuration, 29

join protocols, 101—109
attribute modification and, 103

definition of, 297

initial discovery and registration with, 102
in Jini infrastructure, 69

joining or leaving groups with, 102, 103
joining with lookup services, 66, 72-75
lease renewal and handling communication

with, 102

making changes and performing updates with,
103

order of discovery and, 102
registering and unregistering with lookup

services, 103

registering printing service with, 77—78
joining entities, 83, 297
JoinManager

FortuneStream service example and, 35—36

managing lookup membership with, 30

L

1ast1ndex field, 43

latency problems, 312—314

efficiency disparities due to, 312-313
masking with increased speed, 313

lazy activation, 297

lease grantors, 298
lease holders, 298

Lease interfaces, 141—148
constants used with, [43

exceptions and, 145—147
methods of, 143—145

operations of, 142—147
overview of, 137
serialized forms of, 148

time grants for, 147L148
LeaseDen‘iedExcep‘t'ion, 145, 148

LeaseExcept-ion, 146, 148

LeaseMapException, 148

Lease-Renew class, 149—151

LeaseRenewService interface, 151—152

379

380

378

leases. See also distributed leasing specifica-
tlon

accessing services and, 67
benefits of, 12
Characteri stics of, 1417142
definition of, 297—298

event registration transactions and, 169
exclusive or non-exclusive, 67

JavaSpaces and, 254
lockup citizenship and, 29

for printing services, 78
registering services and, 11
renewing, 102, 149—152
storeeandsforward agents and, 173

Linda systems, 258—259

live references, 298 _
local area networks (LANs), 89, 93

local computing, 308. See also distributed vs.

local computing
local event model, 179

local events, 298

local notification, 179

local object invocation. See local computing

local objects
with remote characteristics, 324

in unified object system, 308
Location class, 247, 249

lockup attribute schema specification, 233—
250. See also attributes

attribute standards in, 219

dependency on other Specifications, 235
generic attribute classes and, 2437250
human access to attributes and, 237—238

introduction to, 2337235

JavaBeans components and, 239—242
lockup citizenship, 29—30

lockup discovery protocol, 298

lockup protocols

invoking services with, 72—75
in Jini infrastructure, 69

lockup service model, 217—218
administrative uses of, 218

imposing hierarchical views on, 218
service items in, 217

lockup service specification, 217—230

dependency on other specifications, 219
introduction to, 212—219

Servi ceReg-istrar and, 2257229
Se rvi ceReg-i st rati on and, 229—230

THE IA VA PROGMMMING LA NGUAGE

types defined in, 221—224

lockup services, vii, 371. See also services
attributes of, 10—1 1, 217—218,218—219
available services list in, 9

compared to directory services, 13—14
definition of, 5. 299

design issues of, 234
device architecture specification and, 278

discovery process and, 9—10
functions of, 217

good standing of, 29—30
groups and, 12—13
Java languages rules for, 10

matching services with, 66, 218, 223—224
membership management in, 11—12
multicast request protocol and, 89
RMI interface and, 279

LookupD-iscovery class, 113—115
methods of, 114—1 15

registering with, 79
use of, l 13

writing a client and, 22—23
LookupLocator class, 107—109

as interface for unicttst discovery, 10?
methods of, 107—108

specifying lockup services by URL with, 20

M

ma'i n method

writing a client and, 21

writing a service and, 34—35
managers

commit point and, 204

completing a transaction, 2027204
roll decision of, 205

marshal] streams, 299

marshalled objects, 299

Marshall edObject, 47

match operations
of entries, 127, 131

item matching and, 223—224

Java programming language and, 10
cf lockup services, 66, 218, 2234224

membership management

with 301' nManage r utility, 30
leases and, 11—12

in lockup services, 1 1—12

380

381

INDEX

memory access problems, 314—315
illusion of unified programming model and,

315

transparency and, 314
MessageStream, 37—55

complete code for, 369
FortuneStream example of, 30—36

writing a client and, 19-20
method—invocation-style design, 255
methods

of Di scoveryEvent class, 116
execute method, 22

getHost method, 107
getPo rt method, 107
getRegistrar method, 108
getSubject method, 40
getTh eme method, 30

of JavaSpaces specification, 263—268
of Lease interfaces, 143—145

of LookupD'i scovery class, ll-Ll 15
of LookupLocator class, 107—108
nextInL‘i no method, 4143

nextMessage method, 36
Regi ster method, 78
searchD'i scoverecl method, 22—24

of Se rvi ceRegi strar interface, 225—227
of Sew-i ceRegi strati on, 22397230
toStr-i ngMethod, 40

multicast announcement protocol

announcing service availability with, 95
definition of, 85

discovery process in, 87

steps in process of, 97
multieast announcement service, 95—97

address for, 106
fields of, 96
multicast UDP and, 95

packet requirements of, 96
size of, 97'

multicast discovery utilities, 113—1 18

Di scover‘yEvent class, 116
Bi scoveryLi stener interface, 116—1 17
LookupDi scovery class, 113—1 15

modifying groups with, 1 15—116
security methods of, 117—1 18
serialized form of, 1 18

useful constants of, 1 15

multicast network protocols. See network

protocols

multieast request client, 89—90

379

multicast request packet format
contents of, 91—92
size of, 92—93

specifications of, 91
variables in, 92

multicast request protocol, 89—95
definition of, 85

discovering lockup services with, S9
discovery process in, 86—87

handling responses from multipic djinns, 95
multicast request service and, 90—91
multicast response service and, 93
net.jini .core.‘|ookup. Servi ceRigi str

air and, 86

protocol participants in, 89410

request packet format for, 91—93
steps taken by the discovering entity, 93—94
steps taken by the multicast request server,

94~95

multicast request server, 90, 94—95

multicast response client, 90

multicast response server, 90

multicast response service, 93
multicast UDP, 84, 95

N

Name class, 246, 249

naming service, 13—14
Nestah'l eServerTransact'ion class, 209—212

Nestab'l eTransact‘ionManager

starting a nested transaction and, 193—194
two-phase commit and, 191

net . core . entry . Ent ry interface, 239

net.jin'i,16-17

net.j‘in'i .cor'e, 16—17

net . j'i n1' .core . entry, 219

net . j ‘1 Hi .core . entry. Entry, 253

net .j'in-i .core .entry.Unusab1eEntryEx-

ception, 129-130

net .j ini .cor‘e .event, 161

net . jin'i . core .1ease, 142

net .j1'm' . core . lockup, 221

net . j 'in1' .discovery . LookupDi scover'y.See
LookupDiscovery class

net . j'irli . core . 'Iookup . ServiceRegistrar

multicast request protocol and, 86
unicast discovery protocol and, 88

381

382

380

net. jini .core. transaction, 269

net.j1'n1' .discoveryfi-iscoveryEvent, 116

net . j in'i .d-i scovery . D'i scoveryL-i sterner,
116-117

net . j 'in'i . entry. AbsrtactEntry, 133

net . j 'in'i . spaace . JavaSpace, 262—264

network access, 62

network administration, 62

network protocols, 105—107

address and port mappings for TCP and UDP,
106

bridging calls with, 105—106

limiting the scope of multicasts in, 106
multicast IP and, 106

packet size limitations of, 105
transport properties of, 105

networking
centralized, 62

distributed computing and, 62
1F networks and, 84

in Jini systems, 4
nextInL‘i no method, 41—43, 50—51

nextMessage method, 36, 38, 4]

NFS, 320—322

limitation on scaiability in, 3217322

stateless protocol of, 321
use of soft and hard mounts in, 32]

N0_GRDUPS constant, 115

non-exclusive leases, 67

notification composition, 176—177

notification filters, 173-175
definition of, 299

functions of, 1737174

notification multiplexing with, 174—175
notification, local and distributed, 179
notification mailboxes, 175—176

definition of, 299—230

delivery to, 175

purpose of, 175
use of, 175—176

notification multiplexing, 174

notify, 261, 266—267
in transactions, 270

0

object groups, 75

Object Linking and Embedding (OLE), 309

_—V

THE IA VA PROGRAMMING LANGUAGE

object-oriented programming, 6. See also dis-

tributed computing

Object Request Broker (ORB), 288~289

object serialization, 300

orphans, 213

Outgoi ngMul ticastAnnouncement class, 121

Outgo'i ngMu'l t1" castRequest class, 119-120

Outgoi ngUnicastRequest class, 123

OutgoingUnicastResponse class, 124

P

package structure

core, standard, and extended categories of,
16—17

in Jim systems, 16—18
lookup packages of, 16—17

packets
in multicast announcement service, 96

in multicast request protocol, 91792
size limitations on, 105

ParseUt‘i'l , 370

partial failure problems, 138, 316—318
participants

commit point and, 204
completing a transaction and, 199—201
roll decision of, 205

passive objects, 300

peer lookup, 75

permissions, 117

persistence of information, 139

plug-and-work, 4

port mapping, 106

prepared votes, 187

principal, security, 67

printing service, 71

example using, 77—80
printing with, 78730
registering, 77—78

programming model, 69—71

ability to move code in, 69
combining with infrastructure and services,

71

for distributed services, 62
interfaces in, 69—70

as segment of Jim architecture, 62, 68

properties, Jini architecture, 7

protocol stack requirements, 84

382

383

INDEX

protocol utilities
Constants class, 122—123

Incom‘l ngMu'l ti castAnnouncement class.
122

Incomi ngMu1 ti castRequest class, 120-
121

Incomi ngUni castRequest class, 123—124
Incomi ngUni castResponse class, 1247125

Outgoi ngMu'l ti castAnnouncement class,
121

Outgoi ngMulti castRequest class, 1 19-
120

Outgoi ngUni castRequest class, 123

Outgoi ngUni castReSponse class, 124

protocols

discovery protocols. See discovery protocols
1P broadcast protocols, 106
IP multicast protocols, 106

join protocols. See join protocols

lockup discovery protocols, 298
lockup protocols, 69, 72-75
multicast announcement protocols, 95

multieast request protocols, 89—95
network protocols, 105407r

for proxies, 6
roles of, 89

service protocols, 66
two-phase commit protocol, 191~206
unicast discovery protocol, 85

proxy objects
clustered devices and, 286

defining service type with, 7—8
for devices, 281

encapsulation and, 6, 8
functioning as downloadable drivers, 7
as Java object, 5

protocol definition and, 6
representing devices to Jini system with, 63
smart proxies and, 75
value of, 7—8

writing, 8
public groups

lookup services in, 86
services and, 101

pure transactions, 300

Q

Quotations
Ciardi, John, 57

collaboration, 385

de Saint—Exupery, Antoine, xix
Fuller, R. Buckrninster, 29
Jackson, Andrew, 37]
Twain, Mark, 3

R

read, 261, 264—265
in transactions, 269—270

readI fEx-i sts, 264-265

readStr'eam method, 26—27

reference lists, 300

Register method, 78

registration
chat server and, 48
of events, 159, 160, 169

join protocols and, 102
notify and, 2667267

registering and unregistering with lookup
services, 103

of services, 29, 77—73, 226

registry, 300
remote event generators, 301
remote event listeners, 160, 301. See also

events

remote events, 160, 300—301. See also events

remote interfaces, 301
Remote Method Invocation (RMI)

communicating between services with, 66
definition of, 301

downloading, 84

encapsulation and, 66
lockup services and, 279
using with devices, 273, 283

remote object invocation. See distributed

computing

remote objects
definition of, 301

unified objects vision and, 308
remote procedure calls (RFC), 308

remote referencr: layers (RRL), 301
RemoteEvent class, 162, 164465
RemoteEventL‘lstener

enabling features for third-party entities, 176—
177

event interface, 161—162

implementation of, 163—164
request format, 99

383

384

382

resource allocation, 140

response format, 100
rmic, 301—302

rmid, 302

rmiregistry, 302

RMISecuri tyManger, 22

roll back transaction, 187

roll decisions, 205

roll forward transaction, 187

S

safety and security, 7

search templates, 20

searchDiscover-ed method, 22—24

security
access control list and, 67

distributed security system and, 69

in Java application environment, 62
JDK model for, 118

principal and, 67
safety and, 7

security manager, 22

security methods, 117—118

security policy file

for multicast discovery, '1 l7
settings for, 20

semantic transactions, 302

sequence numbers, 169, 228

servers, 41

ServerTransact 'i on class, 209—212

service architecture, 72—76

discovery protocol and, 72—75
join protocol and, 72275

lockup protocol and. 72—75
service implementation, 75—76

service ID, 30

service implementation, 75—76
service items

attributes of, 218—219
definition of, 303

in lockup service model, 217
service protocols, 66

service registrars, 303

service types, 73

defined by proxy objects, 7—8
serialized form of, 230

Service Event class, 224, 230

_

THE JAVA PROGRAMMING L'lNGU/lGE

Serv-i ceID, 221—222, 223, 230
SerV'i ceInfo attribute class, 243

SerV'i ceItem, 230

ServiceItem and, 222—223

ServiceMatches, 230

Service-Matches class, 224

Servi ceRegi st rar, 225—229
function of, 225
methods of, 225—227

objects and, 23
sequence numbers and, 228

ServiceReg‘i st ration

manipulating service items with, 229
methods of, 229—230

services. See also lookup services

availability of, 62

communicating between, 66
communication problems and, 102
compared with servers, 41
definition of, 65, 234, 302
examples of, 71
interfaces of, 71

in Jini system, 62, 68
maintaining, 101
multicast announcement protocol and, 95
object nature of, 71
registering, 226
Se r'vi ceID and, 228

sharing access to, 65
services, writing, 29-55

ChatSt ream service example, 37—55
Fo r‘tuneSt ream service example, 30—36

Joi nManager utility and, 30
lookup citizenship and, 29—30

Se r'V'i ceTemp'l ate, 223—224, 230

Se rviceType class, 245
setupFortunes, 35

sharing resources, 62
skeletons, 303

smart proxies, 75

snapshot, 265—266

soft mounts, 321

software, 277—278

standard packages, 16—17

Status class, 248—249, 250

StatusBean class, 249, 250

StatusType class, 249, 250

store-and-forward agents, 171—173
definition of, 303

384

385

fNDEX

implementation of, 173
interface for, 173

issuing leases with, 173
notifications and, 171—173

reliability of, 171

store operations, 12?
StreamReader, 352-359

stubs, 303

T

take, 261, 265
in transactions, 270

takeIfExi sts, 265

TCP, 84, 98

templates
definition of, 304

item matching with, 223—224
search templates, 20
Se rvi ceTemp'l ate, 2234324, 230

using for exact matches with entries, 127, 131
time grants, 147-148
time-to-live {TTL) field, 106

to St ring, 133—134

toStri ngMethod, 40

transaction clients, 304

transaction managers, 7] , 304

transaction participants, 304. See also partici-
pants

transaction specification, 185—214, 269
default transaction semantics and, 207—214

dependency on other specifications, 190
introduction to, 185—190

two-phase commit protocol and, 191—206
transaction states, 196
TransactionConstants interface, 196

TransactionFactory class, 187, 209

Tran sact'ionManager interface, 186

starting a transaction and, 192—193
two-phase commit and, 191

TransactionParticipant interface

joining a transaction and, 195-196
two-phase commit and, 191

transactions

ACID properties of, 188—189
ancestors in, 212

committing or aborting in, 187—188

completing, 185—186, 1972204

383

crash recovery and, 204-205
definition of, 304

event registration and. 169
inferior transactions, 297

joining, 195496
managers for, 186
minimizing protocols for, 185
nested transaction and, 193—194

participants in, 187
pure transactions and, 300
requirements of, 189—190
semantics of, 187, 302

starting, 192—193

two—phase commit in, 67, 186
uses of, 185

transactions, JavaSpaces, 269-271

ACID properties and, 270—271
notify operation in, 270

read operation in, 269—270
take operation in, 270

write operation in, 269
transaction semantics, 207—214

CannotNestException class, 212
Nestabl eSe rverTransacti on class, 209—

212

Nestab1eTransactionManager interface,
207—209

orphans and, 213
sequential execution and, 212
serialized forms of transaction classes, 214
ServerTransacti on class, 209—212

Transaction interface, 2073-209

Transacti on Facto ry class, 209

two-phase locking in, 212—21 3
Visibility and, 213
VOTING stage and, 213

translators, note to, 385

transport, 305

transport layer, 305

two-phase commit protocol, 191—206

completing a transaction, client's View, 197—
198

completing a transaction, manager's View,
202—204

completing a transaction, participant's View,
1 99fl201

crash recovery and, 204—205

defining with primary types, 19]
durability of, 205

importing types for, 191

385

386

#— —._..'..

THE J11 VA PROGRAMMING MNGUAGE

384

Jini transaction interfaces and, 67 UnknownLeaseExcept'ion

joining a transaction, 195—196 seriaJized forms of, 148
starting a nesred transaction, 193—194 use of, 145
starting a transaction, 192—193 UnusableEfltI‘yException
transaction states and, 195 entry specification and, 129430

Twain, Mark JavaSpaces services and, 261
URL syntax, 108
user interfaces, 75

user specifications, 20—21

utilities specification, 111—125

U multicast discovery utility and, 1 13—118
protocol utilities and, 119—125

quotation, 3

two-phase locking, 212-213

UDP, 84

unicast discovery, 97—100 V
referencing remote djinns with, 98

request format of, 99 variables, 92
as request—response protocol, 98-89 visibility, transactions, 213
response format of, 100 VOTING stage, 187, 213
unicast TCP and, 98

unicast discovery protocol W
definition of, 85

discovery process in, 85 weak references, 305
net. ji m' . co re .‘Iookup. Se r'vi ceRi gi str wide area networks (WANS), 89

er and, 88 workgroups, 65

unified objects, 308—310 write, 261, 264
UnknownEventException, 165—166 in transactions, 269

386

387

Collaboration, it:

A literary partnership based or: the false assumption that the other people can. spell.

THIS book is set in 11 point Times Roman, with variations of size, angle, and
weight for headers, chapter quotes, and diagram labels. All code is set in Lucida
Sans Typewriter at 83% of the surrounding text size. A few decorations are in
Zapf Dingbats.

The text was written using FramcMaker on several Sun workstations and two

Macintosh laptop computers.

Code examples in the introductory material and its associated appendix were
written and compiled on the Solaris systems and then broken into fragments by a
Perl script looking for specially formatted comments. Source fragments and gen-
erated output were inserted in the book by another Perl script.

NOTE TO TRANSLATORS

The fonts in this book have been chosen carefully. The font for code, when mixed

with body text, has the same “x” height and roughly the same weight and “color."
Code in text looks even—if you read quickly it can seem like body text, but it is

nonetheless easy to tell that code text is different. Please use the fonts that we
have used (we would be happy to help you locate any that you do not have) or
choose other code and body fonts that are balanced in the same way.

387

385

388

m a . .

0U

”’53-'35" . ‘3'
we -

ORS AB

KEN ARNOLD, of Sun Microsystems, Inc., is one of the original architects of
the]ini technology and is the lead engineer of Sun’s JavaSpaces technology. He
is the co—author, with James Gosling, of The Java Programming Language and is

a leading expert in object-oriented design, C, C++ and distributed computing.

BRYAN O’SULLIVAN, while at Sun Microsystems, Inc., developed the Jini

Discovery and Join Protocol. He supports his rock climbing habit by designing
and building distributed systems.

ROBERT W. SCHEIFLER is a Senior Staff Engineer and one of the original

architects of Jini technology with Sun Microsystems, where he has been respon-
sible for the design and implementation of the lookup service and the associated
discovery protocol and attribute schema. Before joining Sun, he spent nine years
as Director and then President of the X Consortium, a non—profit organization

devoted to the development and evolution of the X Window System. He was
chief architect of the X Window System protocol, and created the Consortium

originally while a principal research scientist at the MIT Laboratory for
Computer Science.

JIM WALDO is a Distinguished Engineer with Sun Microsystems, Where he
has been the lead architect for the Jini project since its inception. Prior to the
Jini project, Jim worked in Sun’s Java Software group and in Sun Microsystems
Laboratories, doing research in the areas of object-oriented programming and
systems, distributed computing, and user environments. Jim is also on the
faculty of Harvard University, where he teaches distributed computing in the
department of computer science.

ANN WOLLRATH is a Senior Staff Engineer with Sun Microsystems where she
is the architect of the Java Remote Method Invocation (RMI) system and one of

the original architects of the Jini technology. Previously, during her tenure at
Sun Microsystems Laboratories and at the MITRE Corporation, she researched
reliable, large-scale distributed systems and parallel computation.

388

389

I TM

Introducing...The Jim Technology Series
W garage almost twenty years ago, l felt that the basic ideas of Lindacesl’rifldl’les' ll could be used to make an important advance in the ease of distrib—

. and Practice tried and parallel programming. As part of the fruits ofSun’sJ‘ini
ll project, we now have theJaVGSpaces technology a wonderfully

‘11 simple platform for developing distributed applications that takes
1| advantage of the power of the Java programming language, This

l important book and its many examples will help you learn about
". distributed and parallel programming. 1 highly reCOmmend it to

e? l students, programmers, and the technically curious.”il'rll' us'i I

{fir—4' iBill Joy, Chief Scientist and coifounder, Sun Microsystems, Inc.

JavaSpaces" technology, a powerful Jini" service from Sun Microsystems, facilitates building

distributed applications for the Internet and intranets. The .lavaSpaces model involves persis—

tent Object exchange ”areas” in which remote Java" processes can coordinate their actions and

exchange data. It provides a necessary ubiquitous, cross—platform framework for distributed

computing, emerging as a key technology in this expanding field.

This book introduces the JavaSpaces architecture, provides a definitive and comprehensive

description of the model, and demonstrates how to use it to develop distributed computing

applications. The book presents an overview of the .lavaSpaces design and walks you through

the basics, demonstrating key features through examples Every aspect of JavaSpaces

programming is examined in depth: entries, distributed data structures, synchronization,

communication, application patterns, leases, distributed events, and transactions. You will

find information on the official JavaSpaces specification from Sun MicrosystemsJavaSpoces

Principles, Patterns, and Practice also includes two full-scale applications—one collaborative

and the other parallel—that demonstrate how to put the JavaSpaces model to work.

Thefini " Technology Series

From the creators of the Jini" technology at Sun Microsystems
comes the official Series for reference material and programr

ming guides. Written by those who design, implement, and

document the technology, these books show you how to use,
deploy, and create applications using the Jini architecture. The
Series is a vital resource of unique insights for anyone utilizing

the power of the Java" programming language and the sim—
plicity of Jini technology.

...from the Source"

http:ljavasuncom/docs/books/jini v‘v Addison—Wesley

389

390

Addison-Wesley Computer and Engineering Publishing Group

__ How to _
_ Interact .

. http:/fwwwawlcomlcseng
When you think you’ve read enough,tbere’s always more content for you at

W,th Us Addison—Wesley's web site. Our web site contains a directory of complete
product information including:

- Chapters
‘ Exclusive author interviews

- Links to authors'pages
- Tables of contents

- Source code

You can also discoverwhai tradeshows and conferences Addison—Wesley will

be attending, read what others are saying about our titlesr and find out where

and when you can meet our authors and have them sign your book.

2. Subscribe to OurEmailMailing lists 3. Contact [is via Email
Subscribe to our electronic mailing lists and be the firstto know cepuhprof@awi.com
when new books are publishing. Here‘s how it works: Sign up for our Ask general questions about our books.
electronic mailing at hitp:Jiwwwawl.comicseng/mailinglists.html. Sign up for our electronic mailing lists.
Just select the subject areas that interest you and you will receive ' Submit corrections for our web site.

_ . . m‘ we . b . .notification viae allwhen publlsba ookmthatarea bexpress®awlcom

Request an Addison—Wesley catalog.

Get answers to questions regarding

your order orour products.

innovations@awl.com

Request a current Innovations Newsletter.

webmaster@awl.com

Send comments about our web site.

mikeh@awl.com

Submit a book proposal.

Send errata for an Addison-Wesley book,

We encourage you to patronize the many fine retailers
who stock Addison—Wesley titlesiiisit our online directory

to find stores near you or visit our onitne store:

http:/{storeawlcom/ or call 8011—8240799.

cepubpublicity@awl.com

Request a review copy for a member oftbe media
interested in reviewing new Addison-Wesley titles.

Addison Wesley Longman

Computer and Engineering Publishing Group
One Jacob Way, Reading, Massachusetts 01867 USA
TEL 781 344-3 700 - FAX 781-942-3076

390

