
APPLE 10091

The Jini™ Specification

1 APPLE1009

2

The Jini” Technology Series
Lisa Friendly, Series Editor
Ken Arnold, Technical Editor
For more information see: http://java.sun.com/docs/books/jini/

This series, written by those who design, implement, and document the Jini™ technology,
shows how to use, deploy, and create Jini applications. Jini technology aimsto erase the
hardware/software distinction, to foster spontaneous networking among devices, and to
make pervasive a service-basedarchitecture. In doing so, the Jini architecture is radically
changing the way we think about computing. Books in The Jini Technology Series are
aimed at serious developers looking for accurate, insightful, thorough, and practical
material on Jini technology.

The Jini Technology Series website contains detailed information on the Series,
including existing and upcomingtitles, updates, errata, sources, sample code, and
other Series-related resources.

Ken Arnold, Bryan O’ Sullivan, Robert W. Scheifler, Jim Waldo, Ann Wollrath, The Jini™ Specification
ISBN 0-201-61634-3

Eric Freeman, Susanne Hupfer, and Ken Arnold, JavaSpaces™ Principles, Patterns, and Practice
ISBN 0-201-30955-6

3

The Jini™ Specification

tion Ken Arnold

| Bryan O’ Sullivan
Robert W. Scheifler

| Jim Waldo
Ann Wollrath

a
vv

ADDISON-WESLEY

An imprint of Addison Wesley Longman,Inc.

Reading, Massachusetts * Harlow, England « Menlo Park, California
Berkeley, California * Don Mills, Ontario * Sydney

Bonn * Amsterdam * Tokyo * Mexico City

4

This book is dedicated to the Jini team

without whom this book

would not have been necessary

5

Contents

FOreword 0... co.cc ccc cece cece cence cueueeeueaeueuenenes xvii

Preface ...0. 0. occ ccc ccc cece cece cece en eeeeueeetueeeseseeees xix

PART I Overview and Examples

The Jini Architecture: An Introduction 3
1 OVErVieW 2.0.0.0cnet tere enna eenes 3

1.1 Goals ... 0. cece eee teen tee ene nee 4

1.2 Architecture 2.00...eeeee 5

1.3 Whatthe Jini Architecture Depends Upon--- 7
1.4 The Value of a Proxy bcc eeceueeueueveettunertntees 7
1.5 The Lookup Service 2.2... cc cece eee eee eens 9

1.5.1 Attributes 2.0.0.0...eeeee 10

1.5.2 Membership Management--.-+++- 11
1.5.3 Lookup Groups02. 02 2c eee eee eens 12
1.5.4 Lookup Service Compared to Naming/Directory

ServiceS 2.0... ccceee eee 13

1.6 Conclusion 0.00.0 00sec eee cence eee eee e eee 14.
1.7 Notes on the Example Code Lecce eee eee 16

1.7.1 Package Structure ... 2.6.6eeees 16
2 Writing a Client 0.2.0 ee eee e eee cee 19

2.1 The MessageStream Interface 000. c eee ee eee 19
2.2 The Client 2.0... ccceeeee eee eee 20

2.3 In Conclusion 2.2.0... ceeeee ee eens 27

vil

6

viii

3 Writing a Service 2.0.0.6... cece cece eee eens 29
3.1 Good Lookup Citizenship 00.00 e cece eee eee 29

3.1.1 The JoinManager Utility54. 30
3.2 The FortuneStream Service 00000 cece eee 30

3.2.1 The Implementation Design-.-55 32
3.2.2 Creating the Service... 2.6...eeeee 32
3.2.3 The Running Service . 2.2... cece cee ee 34

3.3 The ChatStream Service0 2... cc eee cee eee 37
3.3.1 “Service” versus “Server” 00252-2005: 4]

3.3.2 Creating the Service 0.0. . 05s eee eee Al
3.3.3 The Chat Server 0.0.0... 2020000 e eeu 43

3.3.4 Implementing nextInLine00005 50
3.3.5 Notes on Improving ChatServerImp] 5]
3.3.6 The Clients 2.0.0.0... ccc eee eee eee 52

4 The Rest of This Book0020-00 000 57

PART 2 The Jini Specification

AR The Jini Architecture Specification 61
AR.1 Introduction0....0.00 6020 cece cece eee eee 61

AR.1.1 Goals of the System 2.2.20... 0.022eee 61
AR.1.2 Environmental Assumptions 0.00000 0c eevee eee 63

AR.2 System Overview0...0. 000 c eee cee een ees 65
AR.2.1 Key Concepts 2.0.0... 0.00. ccc eee teens 65

AR.2.1.1 Services 2.0.0.0... 00 cece cece ee eee 65

AR.2.1.2 Lookup Service 1.0.2.2... ce cece eee 66
AR.2.1.3. Java Remote Method Invocation (RMI) 66
AR.2.1.4 Security 2.0.2... ccc tenets 67
AR.2.1.5 Leasing 0ceee eee eee 67
AR.2.1.6 Transactions0. 005 ce eee eee 67

AR.2.1.7 EventS 20.00.00. cece eee eee 67

AR.2.2 Component Overview 00.0... 0600s eee eee ee eee ees 68
AR.2.2.1 Infrastructure 2.0... 02.0 cece eee 69

AR.2.2.2 Programming Model 0.6.00. e ee eee eee 69
AR.2.2.3 Servic€S 0.0...ceeeee ene 71

AR.2.3. Service Architecture 2.0.0...eee 72

AR.2.3.1 Discovery and Lookup Protocols 72
AR.2.3.2 Service Implementation4+45- 75

AR.3 An Example0 0000 c ccc cece eee een eee 77
AR.3.1 Registering the Printer Service0-.00 50s e eee 77

AR.3.1.1 Discovering the Lookup Service-- 77

7

 ix

AR.3.1.2 Joining the Lookup Service-2... 77
AR.3,1.3. Optional Configuration.0...0..0.. 78
AR.3.1.4 Staying Alive . 0.0.2.2eee 78

AR.3.2 Printing 2.0...eccece teens 78

AR.3.2.1 Locate the Lookup Service00. 78
AR.3.2.2 Search for Printing Services0 79
AR.3.2.3 Configuring the Printer...............2...000. 79

AR.3.2.4 Requesting That the Image Be Printed........... 79
AR.3.2.5 Registering for Notification 80
AR.3.2,6 Receiving Notification00. 80

AR4 For More Information0....005. 81

DJ The Jini Discovery and Join Specification 83
DJ.1 Introduction ...0..0.000 000ccccece ec ees 83

DJ.1.1 Terminology 2.2.0.0... 0.0. c ccc cee cnet e enn eeaes 83

DJ.1.2 Host Requirements0.. 0.0.0 c cece cence ees 84
DJ.1.2.1 Protocol Stack Requirements for IP Networks 84

DJ.1.3 Protocol Overview0.. 00 0c cece cence een 85

DJ.1.4 Discovery in Brief 2.2... ccc cence ee 85

DJ.14.1 Groups cece cece cece eee 85
DJ.1.4.2 The Multicast Request Protocol 86
DJ.1.4.3. The Multicast Announcement Protocol 87

DJ.1.4.4 The Unicast Discovery Protocol................ 88
DJ.1.5 Dependencies .. 0.0... 00002 cece eee nes 88

DJ.2 The Discovery Protocols 00.0.0. c ceca eee 89
DJ.2.1 Protocol Roles... 22...ceeees 89

DJ.2.2. The Multicast Request Protocol 00. eae 89
DJ.2.2.1 Protoco] Participants .. 0.0.0.0... 0c: cece eee eee 89
DJ.2.2.2. The Multicast Request Service 90
DJ.2.2.3. Request Packet Format20000000. 91
DJ.2.2.4 The Multicast Response Service 93

DJ.2.3. Discovery Using the Multicast Request Protocol 93
DJ.2.3.1 Steps Taken by the Discovering Entity 93
DJ.2.3.2 Steps Taken by the Multicast Request Server 94
DJ.2.3.3 Handling Responses from Multiple Djinns 95

DJ.2.4 The Multicast Announcement Protocol 95

DJ.2.4.1_ The Multicast Announcement Service 95

DJ.2.4.2 The Protocol 0.0... ccc cece eee ees 97

DJ.2.5 Unicast Discovery .. 0.0.0...eeee eee 97
DJ.2.5.1 The Protocol0.0.0000 200 e eee 98

DJ.2.5.2 Request Format... 2.0.0... eee ees 99

DJ.2.5.3. Response Format-00 eee eueceee 100

8

DJ.3 The Join Protocol 00.0.0. cece eee 101
DJ.3.1 Persistent State... 0.eereee eens 101

DJ.3.2 The Join Protocol 0... ccc cee eens 101

DJ.3.2.1 Initial Discovery and Registration 102
DJ.3.2.2 Lease Renewal and Handling of Communication

Problems 0.2... sees cece eee eee eee 102

DJ.3.2.3. Making Changes and Performing Updates 103

DJ.3.2.4 Joming or Leaving a Group04. 103

DJ.4 Network Issues00.00 0000 e cee eee 105

DJ.4.1_ Properties of the Underlying Transport 105
DJ.4.1.1 Limitations on Packet Sizes 0000065 105

DJ.4.2 Bridging Calls to the Discovery Request Service 105

DJ.4.3 Limiting the Scope of Multicasts-. 106
DJ.4.4 Using Multicast IP as the Underlying Transport 106
DJ.4.5 Address and Port Mappings for TCP and Multicast UDP ... 106

DJ.5 LookupLocator Class00.000.0.0000 00000 c cae 107
DJ.5.1 Jini Technology URL Syntax0....00...00004. 108
DJ.5.2 Serialized Form... 0... ccceee eens 109

DU The Jini Discovery Utilities Specification 111
DU.1 Introduction 0... cece cece ee eens 111

DU.1.1 Dependencies0 00000.ceceee eee 111

DU.2 Multicast Discovery Utility 113
DU.2.1 The LookupDiscovery Class 0.0.0.0... 0c cee eee 114
DU.2.2 Useful Constants 0.0: e cece eee eee ees 115

DU.2.3 Changing the Set of Groups to Discover 115

DU.2.4 The DiscoveryEvent Class 0. ccc cece eee eens 116

DU.2.5 The DiscoveryListener Interface 116

DU.2.6 Security and Multicast Discovery-.20-5 117
DU.2.7 Serialized Forms0..0..002. 02. c eee eee eee 118

DU.3 Protocol Utilities00....0. 0.0.20. e eee eee 119

DU.3.1 Marshalling Multicast Requests00..20200.. 119
DU.3.2 Unmarshalling Multicast Requests-. 120

DU.3.3 Marshalling Multicast Announcements 12]

DU.3.4 Unmarshalling Multicast Announcements 122

DU.3.5 Easy Access to Constants 0.2.0.2... 0. 0c cece eee ee 122

DU.3.6 Marshalling Unicast Discovery Requests 123
DU.3.7 Unmarshalling Unicast Discovery Requests.............. 123

DU.3.8 Marshalling Unicast Discovery Responses 124

DU.3.9 Unmarshalling Unicast Discovery Responses 124

EN The

EN..

EU Thi

EU,

LE Th

LE

LI

EV TI

EE

9

EN The Jini Entry Specification 127
EN.1 Entries and Templates000.000000. 005. 127

EN.1.1 Operations 0.00222eeens 127
EN.1.2 Entry... 0.0.0ccc eect ccc eeuenvave 128
EN.1.3 Serializing Entry Objects5..0.0.. 0.000. e eeu 128
EN.1.4 UnusableEntryException00....00000 00 129
EN.1.5 Templates and Matching00..cceeeeeee 131
EN.1.6 Serialized Form 0.00000... c ccc e eee e ec eeeee 131

EU The Jini Entry Utilities Specification 133
EU.1 Entry Utilities 0000000000eeecee 133

BU.1.1 AbstractEntry 20.0... ccc cece eee eee eeeees 133
EU.1.2 Serialized Form 0... ccc ec cece we eeveneees 134

LE The Jini Distributed Leasing Specification 137
LE.1 Introduction00000000000 00 coe ce ccc. 137

LE.1.1 Leasing and Distributed Systems-.-...000, 137
LE.1.2 Goals and Requirements0....00 cece eceeeeeee 140
LE.1.3° Dependencies ... 2.0.0.2... ccc ccc eee eee eee eee eee 140

LE.2 Basic Leasing Interfaces00...00...0. 141
LE.2,.1 Characteristics of aLease00 0.0000 cece eee 141

LE.2.2 Basic Operations 2.2...eceens 142
LE.2.3 Leasing and Time 0000s cece ce cece eseeee 147
LE.2.4 Serialized Forms 0000s cee c cece cece eeeeee 148

LE.3 Example Supporting Classes 149
LE.3.1 A Renewal Class0 00000 cece eccececeeccveeus 149
LE.3.2 A Renewal Service 2.0.0.0... 0000. c cece cece ee euuues 151

EV TheJini Distributed Event Specification 155
EV.1 Introduction0.0..000 0000 c eve cece cee eee 155

EV.1.1 Distributed Events and Notifications 155
EV.1.2. Goals and Requirements0.0.00.. 00000 cc cee eaes 156
EV.1.3 Dependencies 0.00... cece eee eee 157

EV.2 The Basic Interfaces0..000.000 0.000.000.0002. 159
EV.2.1 Entities Involved 0... c teen cece eee eeeees 159
EV.2.2 Overview of the Interfaces and Classes 161
EV.2.3 Details of the Interfaces and Classes000-. 163

EV.2.3.1 The RemoteEventListener Interface.......... 163
EV.2.3.2 The RemoteEvent Class...............0.005. 164

EBV.2.3.3. The UnknownEventException 165
EV.2.3.4 An Example EventGenerator Interface 166
EV.2.3.5 The EventRegistration Class 168

10

_

EV.2.4 Sequence Numbers, Leasing and Transactions-. 169
EV.2.5 Serialized Forms 2.2... cc cee eee eee eens 170 LU.2

EV.3 Third-Party Objects--.- 0. - eee e eee ee eens 171
EV.3.1 Store-and-Forward Agents 6.6600 eee eee ees 171
EV.3.2 Notification Filters 2.2.06 e dee eee 173

EV.3.2.1 Notification Multiplexing+---++055 174
EV.3.2.2 Notification Demultiplexing+-- 174

EV.3.3 Notification Mailboxes 2.0.2... .0 200s eee eee eens 175
EV.3.4 Compositionality 0.0.0.0... 666 e eee ee eee eee eee 176

EV.4 Integration with JavaBeans Components 179
EV.4.1 Differences with the JavaBeans Component Event Model .. 180 LS The
EV.4.2 Converting Distributed Events to JavaBeans Events 182 LS.1

‘XxX The Jini Transaction Specification 185
TX.1 Introduction00. 006. e cece eee eee ees 185

TX.1.1 Model and Terms cece cece ee eee eens 186 LS.2.
TX.1.2 Distributed Transactions and ACID Properties-.-. 188
TX.1.3 Requirements 11.20... 60... e cece eee eee eee eee ees 189 LS.3
TX.1.4 Dependencies00 22 cece eee eens 190

TX.2 The Two-Phase Commit Protocol-+---- 191
TX.2.1 Starting a Transaction-- eee eee eee eee ees 192
TX.2.2 Starting a Nested Transaction-...-202 00s e seers 193
TX.2.3 Joining a Transaction 6.222. eee eee eee 195 LS.
TX.2.4 Tramsaction States 060 e ee eee eee eee te ete 196
TX.2.5 Completing a Transaction: The Client’s View--. 197
TX.2.6 Completing a Transaction: A Participant’s View 199
TX.2.7 Completing a Transaction: The Manager’s View-. 202
TX.2.8 Crash Recovery 2000.0 cece eee eee ee eens 204

TX.2.8.1 The Roll Decision--. 60. cece ee eee 205
TX.2.9 Durability055 50 eee eet eens 205

TX.3 Default Transaction Semantics-.-.---+:. 207
TX.3.1 Transaction and NestableTransaction Interfaces...... 207
TX.3.2 TransactionFactory Class-..0.4 see eee eens 209 js Tt
TX.3.3. ServerTransaction and NestableServerTransaction .

ClasSeS 2.ceeee eee nee 210 JS
TX,3.4 CannotNestException Class-6 +202 reece renee 212
TX.3.5 Semantics 2.00.0. ccc cee eee ene ene 212
TX.3.6 Serialized Forms 0.00 cece eens 214

LU The Jini Lookup Service Specification 217
LU.1 Introduction0.0 000 c eect ee ene 217

LU.1.1 The Lookup Service Model... 1.66.46 e eee eee eee ee 217
LU.1.2 Attributes . 0.000.eteee 218

11

|

LU.2

LU.1.3 Dependencies 00.eteen eae 219

The ServiceRegistrar0.000 0c eee ee 221
LU.2.1 ServiceID 0.000000ee221

LU.2.2 ServiceItem 0. cc eee ee eee 222

LU.2.3 ServiceTemplate and Item Matching 223
LU.2.4 Other Supporting Types0 2.0... eee eee eee 224
LU.2.5 ServiceRegistrar.... 0... eeeeees 225
LU.2.6 ServiceRegistration02ers 229
LU.2.7 Serialized Forms0.. 0002 e eee cee eee e ees 230

LS The Jini Lookup Attribute SchemaSpecification 233
LS.1 Introduction. 0.00. c cece cece eee ee 233

LS.1.1 Terminology 0... cee eee ce ee ee eee ee 234
LS.1.2 Design Issues 0.2.0... 2c eee eeeee 234
LS.1.3 Dependencies 2...eeeeee 235

LS.2. HumanAccessto Attributes005. 237

LS.2.1 Providing a Single View of an Attribute’s Value 237
LS.3 JavaBeans Components and Design Patterns 239

LS.3.1 Allowing Display and Modification of Attributes 239
LS.3.1.1 Using JavaBeans Components with Entry Classes 239

LS.3.2 Associating JavaBeans Components with Entry Classes 240
LS.3.3 Supporting Interfaces and Classes--..--5- 241

LS.4 Generic Attribute Classes0..0..0.0... 00.005. 243

LS.4.1 Indicating User Modifiability00045. 243
LS.4.2. Basic Service Information 0.00000 e eee 243

LS.4.3. More Specific Information 00... e eee ee eee 245
LS.4.4 Naming a Service 0... ee cee eee eee 246
LS.4.5 Adding a Comment to a Service02.. 2220000. 246
LS.4.6 Physical Location 0.0... eee eee cee eee eee 247
LS.4.7 Status Information 0... cece eee cee eee eee 248

LS.4.8 Serialized Forms 0... cee eee ee ete teens 249

JS The JavaSpaces Specification 253
JS.1 Introduction.0.0..006. 02000 c eee eee eee 253

JS.1.1 The JavaSpaces Application Model and Terms:. 253
JS.1.1.1 Distributed Persistence-...00. 254

JS.1.1.2 Distributed Algorithms as Flows of Objects 254
JS.1.2 Bemefits 2.0... cece eee cece eee eee eens 256

JS.1.3 JavaSpaces Technology and Databases 257
JS.1.4 JavaSpaces System Design and Linda Systems 258
JS.1.5 Goals and Requirements 0... cece ee erence eens 259
JS.1.6 Dependencies 0.00...cccc eee eee eens 260

xiii

12

XIV

JS.2 Operations000.00 0000ecee, 261
VS.2.10Entries 200.0.ecence ese eeecevneee 261
JS.2.2 net.jini.space.JavaSpace 00... cece cece eeee 262

JS.2.2.1 InternalSpaceException 263
JS.2.30 Write ooocc cece eee e cent eeeevaes 264
JS.2.4 readIfExists andread 2.2.0... ccc ccc cece eee ees 264
JS.2.5 takeIfExists and take 2.00.0... cece ccc eeveuees 205
JS.2.6 smapshot0 000. c cece ccc cee cee eeeeunns 265
JS.2.7 motify oo.ceceete ete eevenyey 266
JS.2.8 Operation Ordering00.0 00000 ccc cee eee ee eee 268
JS.2.9 Serialized Form... 00... ccc cece cece eect eee eee 268

JS.3 Transactions.0000 0000. ece cece veces 269
JS.3.1 Operations under Transactions00..-ceec eee 269
JS.3.2 Transactions and ACID Properties000..0000-0, 270

JS.4 Further Reading0.0.000000 00000 273
JS.4.1 Linda Systems 2.0.0... ccc cece cc eee 273
JS.4.2 The Java Platform 0.00000 ccc eee cece eeuee 273
JS.4.3° Distributed Computing2...... 00000 cece eee 274

DA The Jini Device Architecture Specification 277
DA.1 Introduction00000.00 000 cece ventas 277

DA.1.1 Requirements from the Jini Lookup Service 278
DA.2 Basic Device Architecture Examples................... 281

DA.2.1 Devices with Resident Java Virtual Machines 28]
DA.2.2 Devices Using Specialized Virtual Machines............. 283
DA.2.3 Clustering Devices with a Shared Virtual Machine

(Physical Option)0. 00000 ec ec eee eee ee ee 284
DA.2.4 Clustering Devices with a Shared Virtual Machine

(Network Option)0.00000 000002 cee cece eee eee 286

DA.2.5 Jini Software Services over the Internet Inter-Operability
Protocolocceee eee eee c cern ees 288

PART 3 Supplemental Material

The Jini Technology Glossary 293

Appendix A: A Note on Distributed Computing 307
A.l Introduction 00000... 0 occ cece cece cece 307

A.l.1 Terminology 20.2.0... 2.000. c ccc cece eseucceeevevs 308

13

XV a

A.2 TheVision of Unified Objects 308 a]
A. Déja Vu All Over Again-.-.-0.-0 2c eee 311 cE
A.4 Local and Distributed Computing 312 af

AAL Latency 00... ccc cece cee eee eee e eens 312 f
A.4.2 Memory Access 000 eee eens 314 |

A.5_ Partial Failure and Concurrency 316
A.6 The Myth of “Quality of Service” 318
A.7 Lessons From NFS0000 0020s e eee ees 320
A.8 Taking the Difference Seriously-.-- 322
A.9 A Middle Ground2.0 00200 ce cee cece es 324
A.10 References00 000 e ceceene eee 325
A.11 Observations for this Reprinting 326

Appendix B: The Example Code-. 327

Index o.ooceceteen tent eee e eee e nee 371

Colophon0..0 0.000 c ccc e cece t een eee 385

14

_ mesmaen SEESigRGSSeSi SENSESST

Foreword

Tis emergenceof the Internet has led computing into a new era.It is no longer
what your computer can do that matters. Instead, your computer can have access
to the power of everything that is connected to the network: The Network is the
Computer™. This network of devices and services is the computing environment
of the future.

The Java™ programming language brought reliable object-oriented programs
to the net. The power ofthe Java platform is its simplicity, which allows program-
mersto be fully fluent in the language. This simplicity allows debugged Java pro-
gramsto be written in about a quarter the timeit takes to write programs in C++.
We believe that use of the Java platform is the key to the emergence of a “best
practices” discipline in software construction to give usthe reliability we need in
our software systems as they become more and more widely used.

The Jini™ architecture is designed to bring reliability and simplicity to the
construction of networked devices and services. The philosophy behind Jini is lan-
guage-based systems: a Jini system is a collection ofinteracting Java programs,
and you can understand the behavior of this Jini system completely by under-
standing the semantics of the Java programming language and the nature of the
network, namely that networks have limited bandwidth, inherentlatency, and par-
tial failure.

Becausethe Jini architecture focuses on a few simple principles, we can teach
Java language programmersthe full power of the Jini technologyin a few days. ‘To
do this, we introduce remote objects (they just throw a RemoteException), leas-
ing (commitments in a Jini system are of limited duration), distributed events (in
the network events aren’t as predictable on a single machine), and the need for
two-phase commit (because the network is a world of partial failures). This small
set of additional concepts allows distributed applications to be written, and we can
illustrate this with the JavaSpaces™ service, whichis also specified here.

For me,the Jini architecture represents the results of almost 20 years of yearn-
ing for a new substrate for distributed computing. Ever since I shipped thefirst

14

xvii

15

FOREWORD

widely used implementation of TCP/IP with the Berkeley UNIX system, I have
wanted to raise the level of discourse on the network from the bits and bytes of
TCP/IP to the level of objects. Objects have the enormous advantage of combining
the data with the code, greatly improving thereliability and integrity of systems.
For me, the Jini architecture represents the culmination ofthis dream.

I would like to thank the entire Jini team for their continuing hard work and
commitment. I would especially like to thank my longtime collaborator Mike
Clary for helping to get the Jini project started and for directing the project; the
Jini architects Jim Waldo, Ken Arnold, Bob Scheiffler, and Ann Wollrath for
designing and implementing such a simple and elegant system; Mark Hodapp for
his excellent engineering management; and Samir Mitra for committing early to
the Jini project, helping us understand how to explain it and what problemsit
wouldsolve, and for driving the key business developmentthat helped give Jini
technology the momentum it has in the marketplace today. I would also like to
thank Mark Tolliver, the head of the Consumer and Embedded Division, which
the Jini project becamepart of, for his support.

Finally, I would like to thank Scott McNealy, with me a founder of Sun
Microsystems™, Inc., and its longtime CEO.It is his continuing support for
breakthrough technologies such as Java and Jini that makes them possible. As
Machiavelli noted, it is hard to introduce new ideas, and support like Scott’s is
essential to our continuing success.

BILL Joy

ASPEN, COLORADO
APRIL, 1999

Tue Jini
Networks a

existing thi
are therefor

tiple proces
These

changes ap
A distribut

change. Tk
This b

architectur

following :
first sectio

cal manag
The s¢

you withit
of them a:

tem. As w

can start 5
The s

specificat
ture.

The t

defines te

design, al

16

Preface

Perfection is reached, not whenthere is no longer anything to add,
but when there is no longer anything to take away.

—Antoine de Saint-Exupery

Tie Jini architecture is designed for deploying and using services in a network.
Networks are by nature dynamic: new things are added, old things are removed,
existing things are changed, and parts of the network fail and are repaired. There
are therefore problems unlike any that will appear in a single process or even mul-
tiple processes in a single machine.

These differences require an approach that takes them into account, makes
changes apparent, and allows older parts to work with newerparts that are added.
A distributed system must adapt as the network changes since the network will
change. The Jini architecture is designed to be adaptable.

This book contains three parts. The first part gives an overview of the Jini
architecture, its design philosophy, and its application. This overview sets up the
following sections, which contain examples of programmingin a Jini system. The
first section of the introduction is also usable as a high-level overview for techni-
cal managers.

The sections of the introduction that contain examples are designed to orient
you within the Jini technology and architecture. They are nota full tutorial: Think
of them as a tour through the process of design and implementation in a Jini sys-
tem. As with any tour, you can get the flavor of how things work and where you
can start your owninvestigation.

The second part of the book is the specification itself. Each chapter of the
specification has a brief introduction describing its place in the overall architec-
ture.

The third part of the book contains supplementary material: a glossary that
defines terms used in the specifications and in talking about Jim architecture,
design, and technology, and two appendices. Appendix A is a reprint of “A Note

xix

16

17

PREFACE

on Distributed Computing,” which describescritical differences between local and

remote programming. Appendix B contains the full source code for the examples
in the introductory material.

HISTORY

The Jini architecture is the result of a rather extraordinary string of events. But
then almost everything is. The capriciousness of life—and to the fortunate, its
occasional serendipity—is always extraordinary. It is only in retrospect that we
examine the causes and antecedents of something interesting and decide that,
because they shaped that interesting result, we will call them “extraordinary.”
Other events, however remarkable, go unremarked because they are unexamined.
Those of us who wrote the Jini architecture, along with the many whocontributed
to its growth, are lucky to have a reason to examineourparticular history to notice
its pleasures.

This is not the proper place for a long history of the project, but it seems
appropriate to give a brief summary of the highlights. The project had its origins
in Sun Microsystems Laboratories, where Jim Waldo ran the Large Scale Distri-
bution research project. Jim Waldo and Ken Arnold had previously been involved
with the Object Management Group’s first CORBA specification while working
for Hewlett-Packard. Jim broughtthat experience and a long-term backgroundin
distributed computing with him to Sun Labs.

Soon after joining the Labs, Jim made Ann Wollrath part of the team. Soon
after, observations about many common approachesin the field of distributed
computing led Jim, Ann, and the other authors to write “A Note on Distributed
Computing,” which outlined core distinctions between local and distributed
design. Many people had beentrying to hide those differences under the general
tubric of “local/remote transparency.” The “Note” arguedthat this was not possi-
ble. It has become the most cited Sun Laboratories technical report, and the les-
sonsit distills are at the core of the design approach taken by the project.

At this time the project was using Modula 3 Network Objects for experiments
in distributed computing. As Modula 3 ceased to be developed, the team looked
aroundfor a replacementlanguage.At that time Oak, the language an internal Sun
project, seemed a viable replacement with some interesting new properties. To a
research project, the fact that Oak was commercially insignificant wasirrelevant.
It wasat this time that Ken rejoined Jim on his new team.

Soon after, Oak was renamed “Java.”

Whenit wasstill Oak, it once had a remote method invocation mechanism,
but that was removed when the mechanism failed—it, too, had fallen into the
local/remote transparency trap. When Bill Joy and James Gosling wanted to cre-
ate a working distributed computing mechanism,they asked Jim to leadthe effort,

PREFACE

which swi

Asthefirs

an exploré
uted com]

tral appro
After

its horizoa

name “Jit

a separat
was soon

rience fre

architect
Astk

the archi

lookup d
time to g
and run

Brian M
tecture ¢

impleme
Adrian ¢

Charlie :

nies, sta

team to

duction

to worki

over the
structuri

Our

dan Dal

Emily §
Roman

Hurley
Marksj
ness d

McNer

Vasque
the Jini

Jini
It is

17

18

PREFACE

which switched our team from the laboratories into the JavaSoft product group.
Asthefirst result of this effort, Ann, as the Java RMI architect, steered the team on

an exploration of what could be done with a language-centric approach todistrib-
uted computing (most distributed computing systemsare built on language-neu-
tral approaches).

After RMI becamepart of the Java platform, Bill Joy asked the team to expand
its horizons to include a platform for easier distributed computing, coining the
name “Jini.”! He convinced Sun managementto put the RMI and Jini project into
a separate unit. This new unit started with Jim, Ann, Ken, and Peter Jones, and
was soon joined by Bob Scheiffler who had extensive distributed computing expe-
rience from the X Windowsproject that he ran. This put together the original core
architectural team: Jim, Ann, Ken, and Bob.

Asthe team grew, many people had a handinthe direction of variousparts of
the architecture, including Bryan O’Sullivan who took over the design of the
lookup discovery protocol. Mike Clary took the project under his wing to give it
time to grow. Mark Hodapp joined the team to manageits software development
and run it in partnership with its technical leadership. Gary Holness, Zane Pan,
Brian Murphy, John McClain, and Bob Resendesall reviewed the primary archi-
tecture documents and had responsibility for various parts of the tool design,
implementation design, and the implementations themselves. Laird Dornin and
Adrian Colley joined the RMI sub-team to continue and expand its development.
Charlie Lamb joined the architectural team to oversee work with outside compa-
nies, starting with printing and storage service standards. Jen McGinn joined the
team to document what we had done,later with the help of Susan Snyder on pro-
duction support. Jimmy Torres started out as our release engineer and has changed
to working on helping build our public developer community. Frank Barnaby took
over the release engineering duties. Helen Leary joined early and kept our infra-
structure humming along.

Our QA team was Mark Schuldenfrei and Anand Dhingra, managed by Bren-
dan Daly. Alan Mortensen wrote the conformance tests and their infrastructure.
Emily Suter and Theresa Lanowitz started out our marketing team, with Franc
Romano, Donna Michael, Joan MacEachern, and Paula Kozak joining later. Jim

Hurley started setting up our support organization, and Keith Thompsonand Peter
Marksjoined to work on sales engineering. Samir Mitra led a marketing and busi-
ness development team that included Jon Bostrom, Jaclyn Dahlby, Mike
McNermy, Miko Matsamura, Darryl Mocek, Sharam Moradpour, and Vince
Vasquez. Many others, too numerous to mention, did important work that made
the Jini architecture possible andreal.

' Jini is not an acronym. To rememberthis, think ofit as standing for “Jini Is NotInitials.”
It is pronounced the sameas “genie.”

Xxi

18

19

XXxii

PREFACE

ACKNOWLEDGMENTS

Asthe specifications were written, almost every memberof the team made impor-
tant contributions. Their namesare listed above; we note the fact here to express
our gratitude. A good idea and a dollar will buy a bad cup of espresso—you need
people who will make that idea live, sand off any rough edges, and help you
rework any bad parts ofthe idea into good ones. We had those people—some of
the best we’ve ever worked with. Without them the Jini architecture would be
some rathernice ideas on paper. Becauseof their commitmentto adoptthe vision
as their own, to make it better, and to makeit real, there are people(like you, the
reader) whocare about these ideas and can do something with them. We thankthe
entire team for whatthey have doneto improve the Jini architecture and to help us
write and release the Jini technology.

Bill Joy created the environmentin whichtheJini architecture could be devel-
oped and nurtured, and fed the architecture with his own reviews and ideas. His
vision and support inside and outside of Sun madethe project possible. This book
itself is also his idea.

Bob Sproull gave the Large Scale Distribution project scope and support that
has continuedto this day, throughall its many twists and turns, even after we were
no longer were part of his Sun Labs organization, Mike Clary’s protection and
guidance wascritical to fostering the creative atmosphere around the Jini project.

Jen McGinn and Susan Snyder did a lot of work to make this book possible,
including hoursin front of a screen converting the specification documents from
their original form into that of the book. Jen also worked hard to improve the con-
tent of the specifications and introductory material during their creation, making
them clearer and their English more correct. Dick Gabriel contributed to the con-
tent and organization of the Jini Architecture Specification, makingit clearer and
easierto use.

Many people reviewed the introductory material, making comments that
improved it tremendously: Liz Blair, Charlie Lamb, John McClain, Bob
Resendes, and Bob Sproull. Lisa Friendly has applied her experience asseries edi-
tor with the Java Series to help us create this sibling Jini Series. We would also
like to thank the people at Addison-Wesley’s Professional Computing group who
worked with us on this book andtheseries: Mike Hendrickson, Julie DeBaggis,
Sarah Weaver, Marina Lang, and Diane Freed. And without Susan Stambaugh’s
help, communicating with Bill (and sometimes Mike) is not merely difficult, but
probablytheoretically impossible.

To these and many others too numerous to mention we give our thanks and
appreciation for what they did to make these ideas andthis book possible,

19

20

PART 1
Overview and

Examples
aESnNROARLSR

21

~The Jini Architecture:

An Introduction

1 Overview

The man who sets out to carry a cat byits tail
learns something that will always be useful
and which neverwill grow dim or doubtful.

—Mark Twain

JINI technology is a simple infrastructure for providing services in a network,
and for creating spontaneous interactions between programs that use these ser-
vices. Services can join or leave the network in a robust fashion, and clients can
rely upon the availability of visible services, or at least upon clear failure condi-
tions. When you interact with a service, you do so through a Java object provided
by that service. This object is downloaded into your program so that you can talk
to the service even if you have never seen its kind before—the downloaded object
knows how to do the talking.

That’s the whole system in a nutshell. It’s not very much to say (although you
will learn a lot more aboutthe details). But like many ideas that are relatively sim-

ple to explain, there is a lot of power in those few ideas. Together, they allow you
to build systems that are dynamic, flexible, and robust, and to build them out of
manyparts, created independently by many providers.

This book contains the formal specifications for the Jini technology, preceded
by this introductorypart that gives you an overview of the design and basic usage.
The specifications that follow give you the details that make this flexibility possi-
ble. Each specification has a brief introduction that places it in context.

In this section you will find discussion of several examples. Some of these
will come from standard office environments and talk about printers, fax

21

22

GOALS

machines, and desktop systems. But others will come from less traditional net-
working environments: home entertainment systems, cars, and houses. These
environments are quickly becoming networked, and Jini systems, with their rela-
tively small size, are ideal for such use.

1.1 Goals

The Jini architectureis designed to allow a service on a network be available to
anyone whocanreachit, and to do so ina type-safe and robust way. The goals of
the architectureare:

¢ Network plug-and-work: You should be able to plug a service into thenet-
work and haveit be visible and available to those who wanttouseit. Plug-
ging something into a network should be all or almostall you need to do to
deploy the service.

¢ Erase the hardware/softwaredistinction: You want a service. You don’t
particularly care whatpartofit is software and whatpart is hardware as long
as it does what you need.A service on the network shouldbeavailable in the
same way under the samerules whetheritis implemented in hardware,soft-
ware, or a combination of the two.

Enable spontaneous networking: Whenservicesplug into the network and
are available, they can be discovered and used by clients and by otherser-
vices. Whenclients and services work in a flexible networkof services, they
can organize themselves in the most appropriate way forthe set of services
that are actually available in the environment.

¢ Promote service-based architecture: With a simple mechanism for
deploying services in a network, more products can be designed as services
instead ofstand-alone applications. Inside almost every application is a ser-
vice or twostruggling to get out, An application lets people whoarein par-
ticular places (such asin front of a keyboard and monitor) useits underlying
service. Theeasierit is to make the service itself available on the network,
the moreservices youwill find on the network.

¢ Simplicity: We are aesthetically driven to make things simple because sim-
ple systems please us. Much of our design time is spent trying to throw
things outof a design. Wetry to throw out everything we can, and where we
can’t throw something out, we try to inventreusable pieces so that one idea
can do duty in manyplaces. You benefit becausethe resulting system is eas-
ier to learn to use andeasier to provide systems in. Being a well-behavedJini
serviceis relatively simple, and much of what you needto do can be auto-

THEJINI A

m

Ec
m

12 ¢£

Each Jin

is where

be one o

Whe

find the .

lookup
impleme
a proxy

also cay
FaxRece

Ac

use. Ac

mentstl

22

23

THE JINI ARCHITECTURE:AN INTRODUCTION

matedby other tools, leaving you with a few necessary pieces of workto do.
Equally important, a large system built on simple principles is going to be
more robust than a large complicated system.

1.2 Architecture

Each Jini system is built around one or more lookup services. The lookupservice
is where services advertise their availability so that you can find them. There may
be one or more lookup services running in a network.

Whena service is booted on the network, it uses a process called discovery to
find the local lookup services. The service then registers its proxy object with each
lookupservice. The proxy object is a Java object, and its types—the interfacesit
implementsand its superclasses—define the service it is providing. For example,
a proxy object for a printer will implement a Printer interface.Ifthe printer is
also capable of receiving faxes, the proxy object will also implement the
FaxReceiver interface.

Lookup Service

—_
/

Interface

A client program asks for services by the Java languagetypetheclientwill
use. A client wanting a printer will ask the lookup service for a service that imple-
ments the Printer interface. Whenthe lookup servicereturns the printer’s proxy

23

24

i

ARCHITECTURE THE JIN;

object, the client will automatically download the code for that objectif it doesn’t In
haveit already. deman:

encour

Lookup Service ent’s ci

Printer —_
Interface

\ needed
1.3

The Ji
. _ Client

r — | e

Theclient issues printer requests by invoking methods on the proxy object.
The proxy communicates with the printer as it needs to in order to execute the °
requests. The Jini system does not define whatthe protocol between the proxy and
its service should be; that is defined by theprinter andits proxy object.

°

Printer >

Interface .
Client Printer Service

| Pri | |rint |

request |
Proxy — | Takenbe a! on —___ ——-_! :

work j

on dy
. useful

In fact, the proxy maytalk to any number of remote systemsto implement a dation
single method, including zero. Whoeverwrites the proxy object determines when
it talks to whom to get what, constrained, of course, by the security environment
in which it executes. As long as the proxy object provides the services advertised 1.4
by its interfaces and/orclasses, the client will be satisfied. This encapsulation is
one ofthe basic powersof object-oriented programming. The invoker of a method The pi
cares only that the method implementation does what is expected, not howit does a serv
it. The proxy objectin a Jini system extends the benefits of this encapsulation to ever y
services on the network, basic

know

24

25

THE JINI ARCHITECTURE: AN INTRODUCTION

In effect, the proxy object is a driver for the printer that is downloaded on
demand. This allows a client to speak to a kind of printer it has never before
encountered without any human havingtoinstall the printer’s driver on the cli-
ent’s computer. Whenthe driver is needed, it is downloaded. Whenit is no longer
needed,it can be disposed of automatically.

1.3. Whatthe Jini Architecture Depends Upon

TheJini architecture relies upon several properties of the Java virtual machine:

@ Homogeneity: The Java virtual machine provides a homogeneousplat-
form—a single execution environment that allows downloaded code to

behave the same everywhere.

¢ A Single Type System: This homogeneity results in types that mean the
same thing on all platforms. The same typing system can be usedfor local
and remote objects and the objects passed between them.

¢ Serialization: Java objects typically can be serialized into a transportable
form that can later be deserialized.

¢ Code Downloading: Serialization can mark an object with a codebase: the
place or places from which the object’s code can be downloaded. Deserial-
ization can then download the code for an object when needed.

¢ Safety and Security: The Java virtual machine protects the client machine
from viruses that could otherwise come with downloaded code. Downloaded

codeis restricted to operations that the virtual machine’s security allows.

Taken together, these properties mean that objects can be moved aroundthe net-
workin a consistent and trustable manner. These properties enable a system built
on dynamic service proxies moving object state and implementation to the most
useful parts of a system when they are needed. Such proxiesare part of the foun-
dation on which the Jini architectureis built.

1.4 The Value of a Proxy

The proxy objectis central to the benefit of using a Jini system. The proxy defines
a service type by beingofa particular Java type. It implements that type in what-
ever way is appropriate for the service implementation that registered it. This is
basic object-oriented philosophy: You know what the object does because you
know its Java language type, but you don’t know howit implements the methods

25

26

THE VALUE OF A PROXY

defined by that type. The proxy is the part of the service that runs in the client’s
virtual machine.

This encapsulation allows the Printer interface to be designedas a goodcli-
ent API without requiring it to be a good network protocol for talking to a remote
printer. The Printer interface should be designedat the abstraction level appro-
priate for client code. Each proxy object that implements the Printer interface
does so in the right way for the particular printer, using that printer’s network pro-
tocol. While it is very useful for everyone to agree on the design of the Printer
interface, nobody needs to agree on the network protocol. The Printer inter-
face’s printText method would be implemented differently for a PostScript
printer than for one that had a different printer language. The proxy object encap-
sulates such differences so the client can simply invoke the method.

And anyone can write a proxy object. If the printer manufacturer does not pro-
vide a Jini service proxy, you can write your own or buy one from someoneelse.
As long as the proxy correctly implements the appropriate interface it is a valid
proxyfor the printer. If your use of a Jini system relies upon, say, a video camera,
and the camera’s manufacturer hasn’t yet provided a proxy implementation you
need, you can write it yourself or find someone else whohas already done so. This
works for integration of legacy services of any kind, not just devices. An existing °
database server can be madeavailable through a Jini service’s proxy, usually with-
out modifying the server.

The service defines where the proxy code is loaded from. This allows the ser-
vice to be its own HTTPserver forits classes or to rely on an HTTP server some-
where else in the network. The service can, in fact, be unrelated to the hardware
and software on which it is based. A service might, for example, be built from a
server that monitors the network for some legacy hardware and when the hard-
ware is present, registers a proxy on that hardware’s behalf, unregistering the ser-
vice when the hardwareis disconnected. In such a model the service is completely
uncoupled from the hardware on whichitrelies.

26

-

27

THE JINI ARCHITECTURE: AN INTRODUCTION 9

1.5. The Lookup Service

Each lookup service providesa list of available services, the proxy objects that
know how to talk to the service, and attributes defined by either the local adminis-
trator or the service itself.

, i

__ Client = —Client tient—l1 Pp]. ClientClient
r [|

__|

LookupService_ ma,

— oS

“ \

Service Service

[| Service |

Whena service is first booted up, it uses a discovery protocolto find local
lookupservices. This protocol will vary depending upon the kind of network, but
its basic outline is:

¢ The service sends a “looking for lookup services” messageto the local net-
work. This is repeated for some period oftimeafter initial startup.

@ Each lookup service on the network responds with a proxyforitself.

¢ The service registers with each lookupservice using its proxy by providing
the service’s proxy object and any desired initial attributes.

A client that wants a service goes through a matching protocol:

¢ The client sends a “looking for lookup services” message to the local net-
work.

¢ Each lookupservice in the network responds with a proxy foritself,

27

28

10
THE LOOKUP SERVICE

@ Theclient searches for types of services it needs using the proxies of one or
more lookup services. The lookup service returns one or more matching
proxy objects, whose code is downloaded to the client if necessary.

The discovery protocol is how services and clients find nearby lookup ser-
vices. A client or service can also be configured to locate specific lookup services
as well as (or instead of) ones discovered on the local network. For example, when
youplug in yourlaptop in a hotel, you might wantnot only to find the lookupser-
vice for your hotel room, but also to contact the lookup service in your home so
you caninteract with services there (such as programming the “Call Me” button
on your home’s telephone to call your hotel and ask for your room). Once a
lookup service is located, rather than discovered, the registration and lookup steps
are the samefor service and client.

Matching in the lookup service is performed using standard Java language
typing rules. If you ask for Printer objects, you will get only objects that imple-
ment the Printer interface. The actual object you get may also implement other
interfaces, including subinterfaces of Printer, such as ColorPrinter. As with
any other object you can check to see whattypes it supports. For example, you
could check to see whether the Printer proxy implements the ColorPrinter
interface, printing in colorif it does, and otherwise printing in black and white.

Sometimes a service will be attached to a network when no lookupservice
can be found, for example in a broken network.The service’s “looking for lookup
services” messagewill therefore not reach the lookupservice, and so the service
cannot register. When the network is repaired, the service will be available but
invisible. In order that this invisibility be temporary, each lookupservice intermit-
tently sends a “here I am” message to the network. When a service gets such a
message,it registers with that lookupserviceif it isn’t currently registered.

1.5.1 Attributes

When you look up an object by type you will get an object with the capabilities
you need, but it might not be the one you want. If you have two television sets in
your house connected on one network, you will want to connect your VCR to the
one you are about to watch. Both televisions will be VideoDisplay objects, so
how do you distinguish between them?

Each proxy object in the lookup service can have attributes. These are objects
that describe features relevantto distinguish one service from another in waysthat
are not reflected by the interfaces supported by the service. These often reflect
ways to choose among services of the same type but are different in some waythat
is important to a human.In a home entertainment service, naming each television
set by its location is probably enough—youcan set the VCR to send its output to

28

THE

the

env

tha!

Thi
ror

fin

the
or

fa
ar

a

29

THE JINI ARCHITECTURE: AN INTRODUCTION

the VideoDisplay object with the Name attribute "living room". In an office
environment you might use Locationattributes to help you choose the printer
that is near youroffice, not at the other end of the hallway.

The Jini architecture does not define which attributes a service should have.
The local administrator will decide which attributes are helpful in the local envi-
ronment, and the service designer will decide which ones help users and clients
find the right service, The Jini architecture does define a few exampleattributes in
the package net.jini.lookup.entry as suggestions, but whether to use these,
or others, or none, is up to service designers and local administrative policies.

Anattribute is an object that is an entry, that is, it must implementthe inter-
face net.jini.core.entry.Entry, and have the associated semantics, which
are:

¢ All non-static, non-transient, non-final fields mustbe public.
¢ Eachfield must be of an object type, not a primitive type (int, char, ...).
@ The class must be public and have a public no-arg constructor.

An entry may have other kinds offields, but they will not be saved when an
attribute (entry) is stamped on a proxy or considered when matching attributes in
lookup requests.

Attribute matching is done with simple expressions that use exact matching.
You can say one of two things aboutan attribute: You require an attribute of that
class (including a subclass) to be stamped on the proxy, or you don’t care. Within
each attribute you require, you can say a similar thing about each field: You
require the field to have exactly some value or you don’t care about its value. If
you specify more than oneattribute, the lookup service will return only proxies
that matchall the attributes you specify,

Attributes are properties of the service, not of its proxy in each individual
lookup service. A service will have the sameattributes in all lookup services in
whichit is registered (although network delays may allow you to see inconsistent
sets of attributes in different lookup services while the service is updating its
registrations).

1.5.2 Membership Management

Whena service registers with a lookupservice,it gets back (amongotherthings) a
lease on its presence in the lookup service. Leases are a programming model
within the Jini architecture designed to allow providers of resources to clean up
when the resource is no longer needed. In the lookupservice case, for example,
the lease keepsthelist of available services fresh—as long as a service is up and

29

11

30

12 THE LOOKUP SERVICE

running, it will renew its lease. If the service crashes or the network between the
service and the lookup service breaks, the service will fail to renew its lease and
thus be evicted from the lookupservice.

This meansthatthe list of services you find in a lookupserviceisa list of ser-
vices that are available to you, modulo the time allowedby the lease. For example,
if the lease time given to services by the lookup service (both initially and upon
renewal) is five minutes, each service you see in the lookup service spoke to the
lookup service within the last five minutes. Most lookup service implementations
will let you tune this time to your required tolerances.

When combined with discovery of lookup services, the leased membership
gives a powerfulresult: Thelist of services is current, self-healing, and self-repli-
cating:

¢ It is current (modulothe lease times) because the leases makeit so. Anynet-
workor host failure will force the removal of unreachable services.

@ Itis self-healing becauseif a networkfailure isolates a service from a lookup
service, when the network is fixed, the service will receive a “here I am”

message from the lookup service andrejoin.

@ It is self-replicating because a service joins each lookup serviceit belongs
to. If you wantreplication to increase robustness, just start another lookup
service. All the services will simply register with both lookup services.If the
only host running your lookupservice crashes, just start a new one on a new
host, and all the services will register with the new lookupservice.

These features work together. If you run two lookup services on different
hosts and the network between them fails, after the leases expire each will have
the available services on its part of the network. When the networkis fixed, each
lookupservice’s “here I am” message will reconnectit with the services that were
lost.

1.5.3. Lookup Groups

The discovery request may encounter many lookupservices, but you might want a
service to be visible in only a few of them. For example, if you have a lookupser-
vice that represents those services available to users of a conference room (fax
machine, printer, projector, telephone, web server), you do not want those services
available as default resources for the people whosit in offices next to the confer-
ence room. Nor do you wantthe people in the conference room to accidentally use
a printer downthehall.

30

¢

]
1]
1

31

THE JINI ARCHITECTURE: AN INTRODUCTION

To limit a lookup service’s scope, you place the lookup service in the confer-
ence roomin its own group and configure each of the room’s servicesto join only
jookupsin that group. The lookup discovery messages include the groupsof the
parties involved. Lookup services ignore discovery messages that are for groups
they are not in, and services ignore “here I am” messages of lookupservices in
groups they are not configured to join. So when new services are added to the
neighborhood, they will not be registered in the conference room’s lookupservice
unless they are explicitly configured to join lookupsin the right group.

1.5.4 Lookup Service Compared to Naming/Directory Services

A lookup service in a Jini system is the nexus where clients locate network ser-
vices. In this senseits role is analogousto whatare called namingordirectory ser-
vices in other distributed systems. The analogy isreal, butit fails at some crucial
junctures. In discussing the failures of the analogy wewill use the term “naming
services” to mean both naming and directory services, which are equivalent for
this discussion.

In a directory system, services are stored by name, a human-readablestring.
The string is split up by conventional symbols that separate the components. For
example, all printers may be stored under the directory "/devices/printers”.
If you wantto see the printers that are available in the directory service, you ask it
for all the references to remote objects in this directory. Eachinstalled printer will
be placed in the directory whenit is installed.

This system starts becoming unwieldy as you increase the numberof services
and their types. Color printers, for example, might be placed in the printers’ direc-
tory, or possibly in a separate "/devices/printers/color"directory, or both
so that people finding regular printers can find color printers, which after all can
also be used as printers. Printers that are also fax machines would certainly be
placed in at least two directories, since nobody would think to look for a fax
machinein the printers’ directory.

Also, note that the correlation between "/devices/printers”and print ser-
vices is purely conventional. Should someone mistakenly place a fax service in
the directory, clients will get very confused when the remote reference they get
back is not actually a printer.

Tofind a service in a directory-based system, yourclient does the following:

1.. Takesa string that is bound by convention toprinters.

2. Asksthe directory service whatit has bound underthat string.

31

13

32

CONCLUSION

3, Takes whatit gets back andtries to use it as a Printer object(in the Java
programming language this would be by castingit to the type Printer after
checking, if you want a robust program,to be sure thatit is a Printer).

Because the strings in a directory service are related only by convention to the
type you need, failures to follow convention lead to errors for the client. The
human-readablestrings are actually of no value to the client except as a (risky)
means to an end. The Jini Lookupservice architecture gives your client a way to
get at that end directly:

1. Asks the lookup service for a Printer object.

2. Takes the Printer objectit gets back and usesit.

This directness also provides the benefits of object-oriented polymorphism:
Theobject you get back will be at least a Printer, butit may in addition be some-
thing more: a ColorPrinter, possibly, or a FaxSender, FaxReceiver, or
Scanner. You canuseit as a Printer withoutregard to these extra capabilities, or
you cantest for their presence using the instanceof operatorin the language.

People want to name things, of course. Most computers, printers, and other
major systems in network are named.In a Jini system those namesare attributes
on the service that help humansdistinguish betweenservices. As attributes, names
can be used to distinguish between services of identical type, but the primary
mechanism a program uses to find services is the thing the program most cares
about: the type of the serviceit will use.

1.6 Conclusion

TheJini architecture provides a platform for deploying services in a network. This
platform is robust at many levels:

@ It is robust in the face of network failures. The set of services automatically

adapts the actual state of the network andservice topology.
It is robust in the face of changes in the implementation of services. As long
as the service interface is implementedcorrectly, the details of the service
implementation can change as you buy new equipment and as equipment
generally becomes more capable.

@ It is robustin the face ofold services.It is relatively easy to incorporate old
devices and servers seamlessly instead of leaving them as an impedimentto
progress.

THE JINI ARCHIT.

 Itisrob

cooper:

service

vice)—
on con

compa

MyCom

generi
@ Itis ro

and ca

The Jini

afew waysi

@ Youc
exam

ask fi

simp.
tions

vice

as a.

@ You

prov
travé

Exp:

soft

@ You
sevi

tor

the)

tior

“se

fro

thir

Thes'

nology. 1
and servi

32

33

———_—#_—____—

THE JINI ARCHITECTURE: AN INTRODUCTION 15

It is robust in the face of competition. The minimum standardsnecessary for
cooperation are definedin the architecture—the definition of what defines a
service (a Java language type) and how youfind a service (in a lookup ser-
vice)—andlets variation exist whereit needsto. An industry can standardize
on common ground (such as the basic Printer interface) and individual
companies can addspecific features in company-specific interfaces (such as
MyCompanysPrinter) for clients that want to use them, without breaking
generic clients that want only the common Printer functionality.

It is robustin the face ofscale. Jini services can be very large or very small,
and can work with small devices via a supporting virtual machine.

The Jini architecture is not only robust,it is also flexible. Here are sketchesof
a few ways in which it can be used.

@ You could design a kiosk that allowed the user to download information. For
example, I might plug my PDA (personaldigital assistant) into the kiosk and
ask for directions to someplace. The kiosk can publish the information as a
simple TextPublisher service which I would use to downloadthe direc-
tions onto a text device such as a pager, as well as an HTMLPublisher ser-
vice which I would use to download them onto a more capable device, such

as a laptop computer.

You could have expense sources (such as a taxi meteror credit card scanner)
provide an ExpenseSource service that my PDA could use to download
travel expense details. When I return to my office, my PDA could be its own
ExpenseSourceservice that my spreadsheet or company expense report
software could use as a source for expense report information.

You could make sensors in a water supply system be Jini services and have
several monitoring and report-generating applications adapt automatically
to new sensors that are added to the network. Adding a new sensor would

then be as simple as plugging it into the network: The monitoring applica-
tions would find the new service and incorporateit into the data flow. New
“sensors” could be software services that aggregate and analyze information
from sensorsinto higher-level data. The clients will be blissfully unaware of
this hardware-software distinction.

These examples suggest theflavor of the benefits you can find using Jini tech-
nology. The example code that follows introduces you to the design of Jini clients
and services. The specification that comes afterwardsgive youthe details.

33

34

Eea nnnS

6 NOTES ON THE EXAMPLE CODE THE JINIA

1.7 Notes on the Example Code @ cc
i

In the following two sections you will see an example service, an exampleclient
that uses that service, and two example implementationsofthat service. There are These p%
a few things you should know before wegetstarted. (defined

First, we have kept the examples as simple as possible. This means, for exam- (usefult
ple, that we are using commandline programsinstead ofgraphical userinterfaces.
Graphicaluser interfaces require a good deal of programming,and explaining that @ ni
part of the code would teach you nothing aboutusing the Jini technology. We have si
also used very simple error-checking and handling except where more sophisti- en
cated techniques help us explain how you should use theJini architecture. en

Wehave also not shown someparts of the code that do not explain anything
about programming in a Jini system—file system manipulation, string parsing, en
and so on. The full code for all the examples is in Appendix B. @n

@n

1.7.1 Package Structure tl
en

The Jini technology is expressed in Java languageinterfaces and classes thatlive

in three major package categories: er
@ net.jini.core: Standard interfaces and classes that are central (“core”) to or

the Jini architecture live in subpackages of net. jini.core. §

@ net. jini: Interfaces and classes that are standardsin the Jini architecture ot

are in subpackages of net. jini (except the net. jini.core subpackage). (
@ com.sun.jini: Some interfaces and classes that are non-standard but a

potentially useful live in the subpackages of com.sun.jini. These pack-
ages may contain utility classes that help you write clients and services, + |
example implementationsof standard services, orutility classes used inside
the example implementations. °

As an example, there are actually three separate lookup packages:
©

@ net.jini.core. lookup: The interfaces and class that comprise the lookup
service that is at the heart of the Jini architecture. e

@ net. jini. lookup: An interface (DiscoveryAdmin) that lookup services
can support to allow administrators to configure which lookup groups the *
service will be a memberof. This interface is advisory but standard: you
need notuseit, but it is a common,traditional way to enable such changes.

34

35

THE JINI ARCHITECTURE: AN INTRODUCTION

¢ com.sun.jini. lookup: A utility class (JoinManager) that helps service
implementations to manageregistration with appropriate lookup services.

These packages progress from the core (the lookup service itself) to the standard
(defined, though optional, ways to administer a lookup service) to the extended
(useful utilities you may choose to use). Broken out these ways, the packagesare:

¢*¢©@¢©@
net.jini.core.discovery: A class (LookupLocator) that connects to a
single lookup service

net.jini.core.entry: The Entry interface that definesattributes

net. jini.core.event: The interfaces and classes for distributed events

net.jini.core. lease: The interfaces and classesfor distributed leases

net.jini.core. lookup: The interfaces and classes for the lookup service

net.jini.core. transaction: Theinterfaces andclassesforthe clients of
the transaction service

net.jini.core.transaction.server: The interfaces and classes for the
manager andparticipants in the transaction service

@ net.jini.admin: Some standard administrative interfaces for services

 net.jini.discovery: Somestandard utility classes that help clients and
service implementations with the discovery protocol

net.jini.entry: A useful base utility class (AbstractEntry) for entry
(attribute) classes

net. jini. lookup: A standard administrative interface (Di scoveryAdmin)
for lookup services

net.jini.lookup.entry: Somestandard attribute interfaces and classes
you can use

net.jini.space: The interfaces and classes that define the JavaSpaces
technology

com.sun.jini.admin: Interfaces for administering some commonservice
necessities

com.sun.jini.discovery: A utility class (LookupLocatorDiscovery)
that helps you contact specific lookup services

com.sun.jini.lease: Someutility classes that may help yourclient man-
age the leases thatit gets from services (such as a lookupservice)

com.sun.jini. lease. landlord: Someutility classes that may help your
service implement and managetheleasesit exports to its clients

35

17 REITECIVO}

36

NOTES ON THE EXAMPLE CODE

* com.sun. jini. lookup:A utility class (JoinManager)to help yourservice
implementation discover and join lookup services in the network, and man-
age its attributes in those lookupservices

com.sun.jini.lookup.entry: Some utility classes for working with
lookup service attributes.

Other com. sun. jini classes exist. We havelisted here the ones that you are most
likely to find valuable in implementing your ownclients and services.

As you will notice, we have taken a fine-grained approach to packagestruc-
ture—we make each package contain only related interfaces and classes. This
leads to many well-focused packages instead of a few packages with manyloosely
related interfaces and classes. Asthe Jini architecture evolves, other packageswill
be added to this list. The notions of “core;’ “standard,” and “extended” are cur-
rently mapped directly to package names. Future additions might not be able to
follow this. For example, if a standard evolves that becomescore to the Jini archi-
tecture it could be viewed as “core” without renaming the package with a
net.jini.core name. Such decisionsare still in the future, and we cannotyet
define a fixed policy until we have examples to consider,

You will see code from manyof these packages in our example code. We will
name the package ofeach Jini architecture interface or class whenit first appears.
The packages of the example classes themselves will be described at the begin-
ning of the example. To keepthe code to a reasonablesize for the text, we will not
show the import statements in the chapters. The full source (including import
statements) is in Appendix B.

THE JINT ARC

A SUC

Lers 1
write a Cc!

would w

client. W

21 17

The exai

message

pac

pub

3

The ne:

method

the stre

Th

will shi

service

Becau:

type ol
ent cal

O1

reques

ways.

36

37

THE JINI ARCHITECTURE:AN INTRODUCTION

4, Writing a Client

A successful [software] tool is one that was used to do something undreamedofby its author.—S.C. Johnson

Lers make this architecture more concrete, first by showing how you would
write a client that uses the Jini architecture. The next section will show how you
would write two corresponding service implementations that are usable by this
client. We will first describe the service being performed.

2.1 The MessageStream Interface

The example interface MessageStream provides an iterator through a stream of
messages.It provides one method that returns the next message in the stream:

package message;

public interface MessageStream {
Object nextMessage()

throws EOFException, RemoteException;
}

The nextMessage method returns the next message as an object whose toString
method prints out its default printed form. An EOFException signals the end of
the stream. A RemoteException reflects failures in network messaging.

This simple interface could be used for many situations; in the next section we
will show two: a “fortune cookie”service that returns a random saying, and a chat
service whose messages are the utterances of the speakers in the discussion.
Because the stream interface is general, the client that reads it can work with any
type of message stream. The implementations of each stream will vary, but the cli-
ent can do the samething.

Our exampleclient will simply find a user-specified stream andprint out the
requested number of messages. Other general clients could be fancier in many
ways.In fact, many design features of our example client and service implementa-

37

38

20 THE CLIENT

tions are optimized for simplicity to keep the focus on the relevant Jini architec-
ture and technology. You will see commandline applications instead of graphical
userinterfaces, basic choicesavailable rather than rich ones, and simple error han-
dling. These simplifying choices help teaching by keeping the focus on therele-
vant parts of the code, even if they are sometimes unrealistic for product design
(although simple choices for products are very often correct ones, too). The com-
plete code for all examples is in Appendix B.

2.2 The Client

Now let’s look at how you would write a client that finds and uses a message
stream. Your users will need to give you enough information to pick the correct
stream from amongthe available streams. Our example client allows the user to
specify:

¢ Lookup groupsthat will be used in discovery ora specific lookup service
@ The type of the service

¢ Attributes to use in selecting the service

The client bundles the service type andattribute information into a search tem-
plate, queries the appropriate lookup services to find a matching service, and
prints out one or more messages.

Wewill examine the client from the top down.Parts of the codethat havelittle
to do with learning the Jini architecture have beenleft out of the code presented
here. The complete source to all examplesis in Appendix B.

The commandline syntax lookslike this:

java [java-options] client.StreamReader [-c count]
Lgroups| lookup-url] [stream-type| attributes ww]

The java-optionswill typically includesetting a security policy file. The name
of our client class is client.StreamReader (the StreamReader class in the
client package). The -c optionlets the user specify a countof messages to read;
the default is one message. The user must choose from the set of lookup services
by providing either a group specification for lookup discovery or an explicit
lookup locator, which specifies a particular lookup service by its URL, which has
the form jini://host{:port]. The user may also specify a type of stream,
which must be a subtype of MessageStream, and/ora list of attributes. To sim-
plify parsing,attributes are specified by either their type name,or their type name
and a String parameter for the constructor. This meansthat only attributes with

38

TH

nc

St

ati

In

pt
ar

Fc

SE

39

THE JINI ARCHITECTURE: AN INTRODUCTION

no-arg constructors or with single-argument String constructors can be used with
StreamReader (a fancier client could let the user specify a richer set of
attributes.)

A typical invocation might looklike this:

java -Djava.security.policy=/policies/policy
client.StreamReader "" fortune. FortuneStream

fortune. FortuneTheme:General

In this invocation the group will be the empty string, which is the name of the
public group; the type of the stream mustbeat least fortune. FortuneStream;
and the registration in the lookup service mustatleast have anattribute of the type
fortune.FortuneTheme that matches an attribute created with the string

"General". We will discuss the fortune package types when we show how the
service is written.

Whena user invokes the client commandline, the main method ofthe class

client.StreamReader will be invoked:

package client;

public class StreamReader implements DiscoveryListener {
private int count;
private String[] groups = new String[Q];
private String lookupURL;
private String[] typeArgs;

public static void main(String[] args) throws Exception

{

StreamReader reader = new StreamReader (args);

reader.execute();

} i

[fase

}

The main method simply creates a StreamReader object with the commandline
arguments and then invokes the object’s execute method. The StreamReader
constructor parses the commandline to set the fields count, groups, lookupURL,
and typeArgs. This parsing is shown onlyin the full source.

39

40

22 THE CLIENT

The execute methodstarts discovering lookup services:

public void execute() throws Exception {
if (System.getSecurityManager() == nu71)

System. setSecurityManager(new RMISecuri tyManager());

// Create lookup discovery object and have it notify us
LookupDiscovery Id = new LookupDiscovery(groups);
Id.addDiscoveryListener(this);

searchDiscovered(); // search discovered lookup services
}

First we set a security managerto protect the client against misbehaving down-
loaded code. RMIrequires a security managerto be in place during calls to ensure
that you have thought aboutthe security aspects of the codeit will download.This
code uses the RMISecurityManager, which is quite conservative about whatit
permits.

LookupDi scoveryis a utility class that you can use to help you perform the
lookup discovery protocol. It lives in the net. jini.discovery package, Each
LookupDiscovery objectstarts a thread that notifies listeners when new lookup
services are discovered or when known ones have gone away. We create a
LookupDiscovery object andtell it that this StreamReader object is alistener.
Oncethis is set up, we will have two threads of control running in parallel: the
main thread in which execute was invoked and a separate thread in which
LookupDiscovery will invoke callback methods. Our implementation uses a sim-
ple model to coordinate these threads—the registrarsfield contains a list of
known net.jini.lookup.ServiceRegistrar objects (the main interface for
the lookupservice).

LookupDiscovery doesits callbacks via the DiscoveryListener interface
(also in the net.jini.discovery package), which declares the methods
discovered and discarded. Weuse these methods to maintain the registrars
list:

public synchronized void discovered(DiscoveryEvent ev) {
ServiceRegistrar[] regs = ev.getRegistrars():
for Cint i = 0; i < regs.length; i++)

registrars.add(regs[il]);

notifyAl1Q; // notify waiters that the list has changed

public synchronized void discarded(DiscoveryEvent ev) {

40

THE

sel

lor

re

m

Ol

41

_——

THEJINI ARCHITECTURE; AN INTRODUCTION

ServiceRegistrar[] regs = ev.getRegistrarsQ) ;
for Cint i = 0; i < regs. length; i++)

registrars.remove(regs[i]);
notifyAl1Q; // notify waiters that the list has changed

}

Each invocation of discovered represents one or more newly discovered lookup
services. Our implementation gets the array of ServiceRegistrar objects (the
lookup service’s primary interface) and adds each to the list of known registrars.
Whenitis complete,it invokes noti fyA11 in case searchDi scoveredis blocked
waiting for the list to have some elements. Our discarded implementation
removes elements from thelist.

The searchDiscovered method invoked by execute loops checking out
membersof thatlist until it finds a matching service or until MAX_WAIT millisec-
onds have passed:

private List registrars = new LinkedListQ;

private final static int MAX_WAIT = 5000; // Five seconds

private synchronized void searchDiscovered()
throws Exception

{

ServiceTemplate serviceTmp] = buildTmp] (typeArgs);

// Loop searching in discovered lookup services
long end = System.currentTimeMillis() + MAX_WAIT;
for (53) {

// wait until a lookup is discovered or time expires
long timeLeft = end - System.currentTimeMillisQ;
while (timeLeft > 0 && registrars.isEmpty()) {

wait(timeLeft);

timeLeft = end - System.currentTimeMillis();

}

if (timeLeft <= @)

break;

// Check out the next lookup service
ServiceRegistrar reg =

(ServiceRegistrar) registrars. remove(Q) ;
try {

MessageStream stream =

41

42

THE CLIENT

THEJINT ARC:

(MessageStream) reg. lookup(serviceTmp]) ; fe
if (stream != null) {

readStream(stream);
return;

}

} catch (RemoteException e) {
continue; // skip on to next

}

}

System.err.println¢€"No service found");
System.exit(1); // nothing happened in time

}

First the method uses the commandline argumentsto build up a template. It then
starts looping. Each timethroughthe loopthelist of registrars is checked.Ifit is
empty, we wait until either the remaining time expires or the list ceases to be
empty. During the invocation of wait the discovered method can be invoked by
LookupDiscoveryinits thread, addingregistrars to the list. When registrars are }
added, the notifyAl1 in the discovered method will allow the wait in E
searchDiscovered to return. The code in searchDiscovered then takes the
first element from the list and asksit to look up a service that matches our tem-
plate. If it finds one, it asks readStream to try and read messages from the stream
(you will see readStream shortly).

If readStream executes successfully, searchDi scovered will return, which
signals successful execution. If searchDiscovered does not find a readable
stream within the allotted time,it prints out an error message and exits with a non- ;
zero status, indicating failure of the command, The bu1

The buildTmp1 method creates the net.jini.lookup.ServiceTemplate line. The
object that is passed to the lookup service’s lookup method. Let’s look at how the name fol
template is built: type(ar

has an op
private ServiceTemplate buildTmp1¢€String[] typeNames) the argur

throws ClassNotFoundException, Il legalAccessException, has been
InstantiationException, NoSuchMethodException, Class ot
InvocationTargetException so an ot

t method ¢
Set typeSet = new HashSet(); // service types must be
Set attrSet = new HashSet(); // attribute objects port. Wt

and att

// MessageStream class is always required priate a
typeSet.add(MessageStream.class);

42

43

 THE JINI ARCHITECTURE:AN INTRODUCTION 25 ee
es)

for Cint i = 0; i < typeNames. length; i++) { ae |
// break the type name up into name and argument es :
StringTokenizer tokens = // breaks up string : ss

new StringTokenizer(typeNames[i], ":"); i
String typeName = tokens.nextToken() ;
String arg = null; // string argument
if Ctokens.hasMoreTokens())

arg = tokens.nextTokenQ;
Class cl = Class. forName(typeName);

// test if it is a type of Entry (an attribute)
if (Entry.class.isAssignableFrom(€cl))

attrSet.add(attribute(cl, arg));
else

typeSet.add(cl);
}

// create the arrays from the sets 2
Entry[] attrs = (Entry[])

attrSet.toArray(new Entry[attrSet.sizeQ]);
Class[] types = (Class[])

typeSet.toArray(new Class[typeSet.sizeQ)]); a

return new ServiceTemplate(null, types, attrs); ;

The buildTmp1 method loops through the type arguments given on the command
line. The arguments can be either a type nameor, in the case of attributes, a type
name followed by a String argument to pass to the constructor, of the form
type(arg). Thefirst part of the loop takes the name and checksto see whetherit
has an open parenthesis. Ifit does, it strips any closing parenthesis and remembers
the argumentin the variable arg, which is otherwise null. Once any argument
has beenstripped off from the class name in cName, we translate the name into a |
Class object for the type. If the type is assignable to Entryit is an attribute, and i
so an object is created of that attribute type, using arg if it was present—the 4

must be a service type, and so we addits type to the types the service must sup-
port. When the loop is finished, typeSet containsall the required service types
and attrSet contains all the required attribute templates. We then create appro-
priate arrays from the contents of these sets and pass the arrays to the

method attribute (not shown) does this work.If it is not assignable to Entry,it 4fF

43

44

26 THE CLIENT

ServiceTemplate constructor(thefirst nu11 argument would betheservice ID if
we neededto match on a specific one),

As you have seen, when searchDiscoveredfinds a matching service, it tries
to read the stream by invoking the readStream method:

private final static int MAX_RETRIES = 5S:3

public void readStream(MessageStream stream)
throws RemoteException

{

int errorCount = Q; // # of errors seen this message
int msgNum = @; // # of messages
while (msgNum < count) {

try {

Object msg = stream.nextMessage();
printMessage(msgNum, msg);
msgNum++; - // successful read
errorCount = @; // Clear error count

} catch (EOFException e) {
System.out.printIn("---EOF---");
break;

} catch (RemoteException e) {
é.printStackTrace();

if G+errorCount > MAX_RETRIES) {
if CmsgNum == @) // got no messages

throw e;
else {

System.err.println("too many errors");
System.exit(1);

}

}

try {

Thread.sleep(1000); // wait 1 second, retry
} catch (InterruptedException ie) {

System.err.printIn("---Interrupted---") ;
System.exit(1);

}

}

}

}

THEJINI

pul

}

The re

readS*

ing one
gle me
contint

its fail)

and a 1

ber of

2.3

Let us

that cc

(an int
fortu

condu

are fou
our di
searc

ing sit
it out,

match

A
user S

attribt

works

will 5
proxy
servic
next s

strez

44

45

THE JIN] ARCHITECTURE: AN INTRODUCTION

public void printMessage(int msgNum, Object msg) f{
if (msgNum > @) // print separator

System.out.printIn("---");
System.out.printIn(msg);

&

a PeeC)ERGINOye ea
_

}

The readStream method will try to read the number of messages desired. If
readStream gets a RemoteException,it retries up to MAX_RETRIEStimes, wait-
ing one second (1,000 milliseconds) between eachtry. If it fails to read even a sin-
gle message it throws RemoteException, letting the loop in searchDi scovered
continue looking for a usable stream.If it reads at least one message,it prints out
its failure and exits, so that the user will not see some messages from one stream
and a few more from the next one shouldafailure occur before the desired num-
ber of messagesare read.

2.3. In Conclusion

Let us revisit the example execution of StreamReader from page 21. If you use
that commandline, the client will look for a fo rtune.FortuneStreamservice
(an interface that wewill define in the next section) with anattribute that is of type q
fortune. FortuneTheme created with the string "General". This search will be
conducted in lookup services that manage the public group. If any such lookups
are found, the LookupDiscoveryutility object we created in executewill invoke
our discovered method, which addsit to the list of known lookup services. The
searchDiscovered method looks in each discovered lookupservice for a match-
ing stream, and invokes readStream to read one messagefrom a stream and print
it out. When all this is complete, you should (assuming there is an available a
matching fortune cookie service) have a fortune cookie message on your screen.

Again, notice that this client can work with any MessageStream service. The
user specifies which particular service to use by the service's type and any desired |
attributes. Each message stream service implementation provides a proxy that
works properly for the service’s needs. The StreamReader client you have seen
will print messages from any implementation of a message stream, using the
proxy as an adaptorfrom the service definition (MessageSt ream)to the particular |
service that was matched (FortuneStream, ChatStream, or whatever). You will | q
next see how to write two different message stream services that can be used by |
StreamReader or any other MessageStreamclient.

45

46

THE JINI ARCHITECTURE:AN INTRODUCTION

3 Writing a Service

Dare to be naive.

—R. Buckminster Fuller

Te MessageStream interface is designed to work for many purposes. We will
now show you two example implementations of a message stream service. The
first will be a FortuneStream subinterface that returns randomly selected “for- |
tune cookie” messages. The second will provide a chat stream that records a his- |
tory of a conversation amongseveral speakers. First, though, we musttalk about |what it meansto be a Jini service. |

A service differs from a clientin that a service registers a proxy object with a i
lookup service, thereby advertising its services—the interfaces and classes that
makeup its type. A client finds one or more services in a lookup service that it |
wants to use. Of course, a service might rely on other services and therefore be
both a service and a client of those other services. 4

3.1 Good Lookup Citizenship

To be a usable service, the service implementation must register with appropriate I
lookupservices. In other words, it must be a good lookupcitizen, which means:

@ Whenstarting, discovering lookupservices of appropriate groups and regis-
tering with any that reply lt

@ Whenrunning, listening for lookup service “here I am” messages and, after
filtering by group, registering with any new ones

¢ Rememberingits join configuration—thelist of groupsit should join and the
lookuplocators for specific lookup services |

@ Remembering all attributes stamped on it and informing all lookups of
changes in thoseattributes

@ Maintaining all leases in lookupservices for as long as the serviceis avail-
able

46

47

30
THE FortuneStream SERVICE

Rememberingthe service ID assignedto the service by thefirst lookupser-
vice, so that all registrations of the same service, no matter when made, will
be under the same service ID

3.1.1 The JoinManager Utility

Although the work for these tasks is not a vast amount of labor, it is also more
thantrivial. Services may provide these behaviors in a numberof ways. Theutility
class com.sun.jini. lookup. JoinManager (part of the first release of the Jini
Technology Software Kit) handles most ofthese tasks on a service’s behalf,
except for the managementofstorageforattributes and service IDs whichthe ser-
vice implementation mustprovide.

Our example service implementations use JoinManager to manage lookup
membership. You are not required to do so—you might find other mechanisms
more to yourliking, or you might wantor needto invent your own.

3.2 The FortuneStream Service

Our first example service will extend MessageStream to provide a “fortune
cookie” service, which returns a randomly selected message from a set of mes-
sages. ‘Typically, such messages are intended to be amusing, informative, or
inspiring. Thecollections are often broken up into various themes. The most gen-
eral theme is to be amusing, but collections drawn from particular television
shows, movie types, comic strips, or inspirational speakers also exist, Our
FortuneStream interface lookslike this:

package fortune;

interface FortuneStream extends MessageStream, Remote {
String getTheme() throws RemoteException;

}

As with all the classes defined in this example, this interface is in the fortune
package. The FortuneStream interface extends the MessageStreaminterface
becauseit is a particular kind of message stream. FortuneStream extends the
interface Remote, which indicates to RMI that objects implementing the
FortuneStreaminterface are accessible remotely using RMI.

The getTheme method returns the themeof the particular stream. As youwill
see, the themeis primarily reflected as an attribute on the serviceso that a user can

47

THEJINI 4

select a

added h
Eac

getThe
stream |

puk

}

The Fi

of our

of For
Tl

object
conve

Fort

getT|
streal

it WO

obtai
F

ment

ing
Abst

impl
troll

istra

Ser!

cont

48

— ===FurarinivluUClivV — ———

select a FortuneStream with a th
addedhereto allow queriesafter a

Each fortune stream’s theme is represented both in the interface via the
getTheme method and as an atiribute in the lookup service to help users find a
stream that gives the types of fortunes they want:

emeto their liking. The getTheme method is
stream has been selected.

public. class FortuneTheme extend Ss AbstractEntry
implements ServiceControlled

{

public String theme;

public FortuneTheme() { }

public FortuneTheme(String theme) {
this.theme = theme;

}

of FortuneStream would use the sameattribute type.
The FortuneTheme attribute fits the requirementsforall entries; It has publicobject-typed fields and a public no-arg constructor. It adds another constructor for

convenience. Each FortuneStream service expresses its theme as both a
FortuneTheme attribute and a value returned by the FortuneStream class’s

it would bepossible for a fortune strea
obtained without using a FortuneThe

FortuneTheme extends net.
ments Entry and provides useful
ing semantics for the equals,

me attribute.

jini.entry.AbstractEnt ry, which imple-
semantics for entry classes, specifically in defin-

hashCode, and toString methods.

trolled bythe service itself, as opposed to one placed onthe service by an admin-
istrator. Any tools that let administrators modify attributes should not let
ServiceControlled attributes be changed. Only attributes that are exclusivelycontrolled bythe service itself Should be marked with this interface.

48

49

32 THE FortuneStream SERVICE

TH

3.2.1 The Implementation Design stt
se

The overall fortune service implementation lookslikethis:
ra

Lookup Service da

a oN iC
/ FortuneStreamImp1 Stub \, ,
| }

NN -~

—f- _FortuneStreamImp1 T
FortuneStream [d

Interface | st

 Client —_

nextMessage—

 y,

fortunes

The running service is composed ofthree parts:

¢ A databaseof fortunes, consisting of the collection of fortunes and position
offsets for the start of each fortune. The position informationis built by read-
ing the fortune collection.

¢ A serverthat runs on the same system thatcontainsthe database. This server
reads the database, choosing a fortune at random eachtimeit needsto return
the next message.

@ A proxy for the service. This proxy is the objectinstalled in the lookup ser-
vice to representthe fortune stream servicein the Jini system.In this partic-
ular case, the proxy is simply a Java RMIstub that passes method invocations
directly to the remote server.

3.2.2 Creating the Service

Our FortuneStream implementation is provided by the FortuneStreamImp1
class, which is a Java RMI remote object. Requests for the next messagein the

49

50

THE JINI ARCHITECTURE: AN INTRODUCTION

stream will be sentdirectly to this remote object that will return a random fortune
selected from its database.

The fortune databaselives in a particular directory, which is set up by a sepa-
rate FortuneAdmin program that creates the database of fortunes from the raw
data. The FortuneAdmin program is run before the service is created to set up the
database a running FortuneStream service will use. When the databaseis ready,

you will run FortuneStreamImp1 to get the service going.
The FortuneStreamAdmin commandline lookslike this:

java [java-options] fortune.FortuneAdmin database-dir

The database-dir parameter is the directory in which the database lives. This
directory mustinitially contain a file named fortunes, which contains fortunes
separated by lines that start with %%, as in:

"As an adolescent I aspired to lasting fame, I craved
factual certainty, and I thirsted for a meaningful vision
of human life -- so I became a scientist. This is like

becoming an archbishop so you can meet girls."
-- Matt Cartmill

Hr

As far as the laws of mathematics refer to reality, they
are not certain, and as far as they are certain, they do

not refer to reality.
-- Albert Einstein

ore

As far as we know, our computer has never had an undetected
error.

The FortuneAdmin program creates the position database in that directory if it
does not already exist or if it is older than the fortune databasefile. The position
databaseis stored in a file named pos. A typical invocation mightlooklike this:

java fortune.FortuneAdmin /files/fortunes/general

FortuneAdmin will look in the directory /files/fortunes/general for a
fortunesfile and will readit to create a /files/fortunes/general/posfile.!
The source to FortuneAdmin just manipulates files, so we will not describe it
here.

| On a Windows system it would be something like C:\files\fortunes\general; on a
MacOSsystem it would be more like Hard Disk: fortunes: general. We use POSIX-
style paths in this book.

50

Aa

Perse

51

34 THE FortuneStream SERVICE

3.2.3 The Running Service

The fortuneservice is started by the main method of FortuneStreamImp1]. The
commandline lookslikethis:

java [java-options] fortune.FortuneStreamImp] database-dir
groups|lookup-url theme

The java-options mustinclude a security policy file and the RMI server code-
base URL. The database-dir should be the directory given to FortuneAdmin.
The running service will join lookup services with the given groupsor the speci-
fied lookup service, with a FortuneTheme attribute with the given name. A typi-
cal invocation might look like this:

java -Djava.security.policy=/file/policies/policy
-Djava.rmi.server.codebase=http://server/fortune-d1 .jar
fortune.FortuneStreamImp1] /files/fortunes/general ""
General

Our implementation of the fortune stream service executes in the virtual
machine this commandcreates, and therefore lives only as long asthat virtual
machineis running. Later you will see how to write services that live longer than
the life of a single virtual machine.

Hereis the codethatstarts the service running:

public class FortuneStreamImp] implements FortuneStream {
private String[] groups = new String[Q]:
private String lookupURL;
private String dir;
private String theme;

private Random random = new Random();
private long[] positions;
private RandomAccessFile fortunes:
private JoinManager joinMgr;

public static void main(String[] args) throws Exception
{

FortuneStreamImp] f = new FortuneStreamImp] (args);
f.execute();

}

// sae

51

THEJID

The m

tialize
comir

methc

p

Firs!

expt
the :
mac

dies

actt

VICE
sery

bas:

ple:
im

ide

Jo-

52

THE JIN] ARCHITECTURE: AN INTRODUCTION

The main method creates a FortuneStreamImp1 object, whose constructor ini-
tializes the groups, lookupURL, dir, theme, and initialAttrsfields from the
commandline arguments. The rest of the work is done in the object’s execute
method:

private void execute() throws IOException {
System.setSecurityManager(new RMISecurityManager()) ;
UnicastRemoteObject.exportObject(this);

// Set up the fortune database

setupFortunes();

// set our FortuneTheme attribute
FortuneTheme themeAttr = new FortuneTheme(theme);

Entry[] initialAttrs = new Entry[] { themeAttr };

LookupLocator[] locators = null;
if ClookupURL != null) {

LookupLocator loc = new LookupLocator(lookupURL);
locators = new LookupLocator[] { loc };

}

joinMgr = new JoinManager(this, initialAttrs,
groups, locators, null, null);

}

First execute sets a security manager, as you saw done in the client. Next we
export the FortuneStreamImp1 object as an RMIobject. Specifically, we export
the object as a UnicastRemoteObject, which meansthat as long asthis virtual
machineis running,the object will be usable remotely. When the virtual machine
dies, the remote object that it represents dies too. RMI provides a mechanism for
activatable servers that will be restarted when necessary; most Jini software ser-
vices are actually best written as activatable services. You will see an activatable
service in the next example.

Wethen call setupFortunesto initialize this server’s useofits fortune data-
base. We do not show the codefor that here because it is not relevantto the exam-

ple; setupFortunessets the positions and fortunes fields that are used by the
implementation of nextMessage

The next two lines create the service-owned FortuneThemeattribute that will

identify the theme ofthis fortune stream in the lookup service. Then wecreate the
JoinManager, which managesall the interactions with lookup services in the net-

52

53

THE FortuneStream SERVICE

work. To do so, you musttell the JoinManager several things. The constructor
used by execute (there are others) takes the following parameters:

The proxy object for the service. We use this because RMIwill convert
this to the remote stub for the FortuneStreamImp1 object, which is what
we want in this case. (FortuneStreamImp1 implements a Remote inter-
face—FortuneStream extends Remote—so when a FortuneStreamImp1
object is marshalled, it gets replaced by its stub.)
An Entryarray thatis the initial set of attributes to be associated with the

service. Here we provide an array that contains only our FortuneTheme.

¢ A String array thatis the initial set of lookup groups. In ourcase this will
be taken from the commandline andbeeither an array of the groups speci-
fied or an empty array if a URLwasspecified instead.

@ A net.jini.discovery.LookupLocator array. LookupLocator is a
class that locates lookup services by URL. The array has a LookupLocator
for the URL specified, or nu11 if groups were specified instead.

@ A com.sun.jini.lookup.ServiceIDListener object. The interface
ServiceIDListener provides a method to be called whenthe service’s ID

is assigned. This is a hook thatlets the service store its ID persistently ifit
needs to. Since our particular service does not outlive its virtual machine
there is no needto store the ID. We therefore pass nu11, meaningthe service
will not be notified. (The next example will show this feature in action.)

A com.sun.jini.lease,LeaseRenewalManager object to manage
renewing the leases returned by lookup services. We use nu11, which tells
the JoinManager to create and use its own LeaseRenewalManager. In
another situation (for example, exporting multiple services in the same vir-
tual machine) you might wantto specify this parameter (in our example, by
using the same object in each service’s JoinManager to reduce the number
of lease manager objects).

When executeis finished we have a service ready to receive messages and,
vy virtue ofits JoinManager,the service registers with all appropriate lookup ser-
vices and will continue to register appropriately so as long as the service is run-
1ing. In other words, at this point we have a running Jini service. When execute
eturns, so does main. RMIwill keep the virtual machine running in another
hread, waiting to receive requests.

The rest of the code implements nextMessage by picking a random fortune
ind getTheme by returning the theme field. Again, since these parts show no Jini
iervice code, we leave them to Appendix B.

THE JINI ARCHITE:

33 TheCcl

For a more inv:

the utterances |

there must be a

at random, so :

will want the n

Consider «

occurs. Either «

@ The nety

Client

@ The req

respons:

Client
|

These are ver

guish betweer
was stored at

either messag

53

54

THE JINI ARCHITECTURE: AN INTRODUCTION

3.3 The ChatStream Service

For a more involved example, we provide a message stream whose messages are
the utterances of people in a conversation, such as in a chat room.In this case
there must be an order to the messages. The fortune stream waspicking a message
at random, so any message was as good asany other. For a conversation clients
will want the messagesin the order in which they were spoken.

Consider what happens when nextMessage is invoked and a network failure
occurs. Either of two interesting situations may have occurred:

@ The networkfailure prevented the request from getting to the remove server:

Network| Failure

ServerClient

@ The request madeit to the remoteserver, but the network failure blocked the
response:

Client_ Server
J LCC

Network| Failure

These are very different situations, but the client has no possible way to distin-
guish betweenthe two cases. If the current position in the stream for each client
was stored at the server, the next call to nextMessage by the client could return
either message 29 (in the first case, in which the server never got the original,

54

55

THE ChatStream SERVICE

failed request) or message 30 (in the second case, in which the server thoughtit
had returmmed message 29 but it didn’t get to the client).

The nextMessage method of MessageStream is documented to be idempo-
tent, that is, it can be re-invoked after an error to get the same result that would
have come had there been noerror. For FortuneStream idempotency was easy—
the fortune was picked at random,so the next message will be equally random, no
matter which ofthe failure situations actually happened.

But for ChatStream, this is not good enough. If the proxy was designed
naively, an utterance might be skipped, and the utterance skipped could be the
most important one of the discussion. If a call to nextMessage throws an excep-
tion because of a communication failure, the next time the client invokes

nextMessageit should get the same message from thelist that it would have got-
ten on the previous call had there been nofailure. Suppose, for example, that we
used the same strategy for a ChatStream proxy that we did for the
FortuneStreamImp1 proxy—an RMIstub. Then, after getting message number
28 from the server, a network exception is thrown when trying to get message
number 29,

So the proxy object registered with lookup services for a ChatStream cannot
be a simple RMIstub. It must contain enoughstate to help the service return the
right message even in the face of a network failure. To accomplish this, the proxy
object will implement the ChatStream interface for the client to use, but the
server will have an implementation-specific interface that the proxy uses to tell the
server which message should be next. It will look like this:

Lookup Service
—

fo ChatProxy oS\
/

ChatServer ___ChatServerImp]
Interface

ChatStream

Interface

Client — >re

nextMessage Chat
History

THE JINI ARCHITEC

The proxy will
cessfully retries
interface. That :
the ChatStrea

maintain the id
The ChatS:

inherits nextMe
ods of its own:

package ¢

public 71
publ:

publ:
publ

}

Like all the cc

method lets pe
is the name of

whatthe subje
These last twi

used to look u
Whena 1r

public ¢
priv
priv

pub”

pub

pub

pub

55

56

THE JINI ARCHITECTURE: AN INTRODUCTION

The proxy will use its internal stored state (the numberofthe last message suc-
cessfully retrieved) as an argumentto the nextInLine method ofthe ChatServer
interface. That methodis hidden from the client, and different implementations of
the ChatStream service are welcometo usea different mechanism so long as they
maintain the idempotency of nextMessage.

The ChatStream interface—the public service interface that the clients use—
inherits nextMessage from the MessageStream interfaces, and adds a few meth-
ods of its own:

package chat;

public interface ChatStream extends MessageStream {
public void add(String speaker, String[] message)

throws RemoteException;
public String getSubject() throws RemoteException;
public String[] getSpeakers() throws RemoteException;

}

Like all the code in this example this class is part of the chat package. The add
method lets people add new messagesto the discussion. The speaker parameter
is the nameof the speaker; message is what they say. You can ask a ChatStream
what the subject of the chat is, and for the namesofthe people who have spoken.
Theselast two things are also stored as attributes of the service so they can be
used to look up streams.

Whena messageis read,it will be a ChatMessage object:

public class ChatMessage implements Serializable {
private String speaker;
private String[] content:

public ChatMessage(String speaker, String[] content) {
this.speaker = speaker;
this.content = content;

}

public String getSpeaker() { return speaker; }

public String[] getContent() { return content; }

public String toString) {
StringBuffer buf = new StringBuffer(speaker);
buf.append(": "):

56

57

40 THE ChatStream SERVICE

for Cint i = 0; i < content. length; i++)
buf.append(content[i]).append(’\n’);

buf.setLength(buf.length() - 1); // strip newline
return buf.toString();

}

ChatMessage has methodsto pick out the piecesof the message—its speaker and
the content—andits toString methodprints out a reasonable default representa-
tion of the message.

Whenlooking for a ChatStream, a user might want to choosethe subject, so
we define a ChatSubject attribute type:

public class ChatSubject extends AbstractEntry
implements ServiceControlled

t

public String subject;

public ChatSubject() { }

public ChatSubject(String subject) {
this.subject = subject;

}

}

A ChatStream service should markitself as being on a certain subject—the same
subject that getSubject would return. A user might also want to search for chats
that had particular speakers, so a stream should also mark itself with a
ChatSpeaker attribute for each speaker:

public class ChatSpeaker extends AbstractEntry
implements ServiceControlled

{

public String speaker;

public ChatSpeaker() { }

public ChatSpeaker(String speaker) {
this.speaker = speaker;

}

}

57

58

THE JINI ARCHITECTURE:AN INTRODUCTION

(Rememberthat we have chosento use string-based attributes to simplify the
examplesin this text. Fieldsin attributes can be anyserializable type, so when you
design your ownattributes, don’t use the string-based nature of our examples with
a requirementofattributes in general. Use the types you need, not juststrings.)

3.3.1 “Service” versus “Server”

At this point it is important to discuss the difference between the word “service”
and the word “server.” A service is a logical notion that has at least one object—
the object registered in the lookupservice.It usually has other parts as well. Often
at least one of those parts will be a server—a process running on a machinein the
network.

Our fortune service is made up of a proxy object (the RMI stub), a fortune
server (the FortuneStreamImp1 object running on some host), and the underly-
ing storage. A service may use one or more servers to provideits service. In both
the fortune and chat examples, each service uses exactly one remote object, which
in turn uses an underlying store. Other services might talk to no remote servers
(doing all computationlocally in the proxy) or several (combining the information
from more than oneserver).

3.3.2 Creating the Service

As westated before, the chat service’s proxy (which runs on the client) needs to
hold somestate so that it can tell the server which message waslast returned suc-
cessfully. The communication between the proxy and the server must includethis
information. The nextMessage method has no way to impart that data, so the
proxy will need a different way to talk to the serverin orderto passit along. For
this purpose the implementation of our service adds an internal, package-accessi-
ble interface:

interface ChatServer extends Remote {
ChatMessage nextInLine(int lastIndex)

throws EOFException, RemoteException;
void add(String speaker, String[] msg)

throws RemoteException;
String getSubject() throws RemoteException;
String[] getSpeakers() throws RemoteException;

}

The proxy will use the nextInLine methodto get the message followingthelast
successful one, which it represents by index. The messageis returned to the client
by the proxy’s nextMessage method, and the new index is remembered for the

58

59

42

THE ChatStream SERVICE

next invocation. The other methods do not require any different treatment from
those in the ChatStreaminterface, and so they are declared identically.

The proxy implementationis pretty simple: The proxyobject contains an RMI
referenceto the server that implements ChatServer and the index ofthe last suc-
cessfully returned message:

class ChatProxy implements ChatStream, Serializable {
private final ChatServer server;
private int lastIndex = -1;
private transient String subject:

ChatProxy(ChatServer server) {
this.server = server:

}

public synchronized Object nextMessage()
throws RemoteException, EOFException

{

ChatMessage msg = server.nextInLine(lastIndex);
lastIndex++;

return msg;

}

public void add(String speaker, String[] msg)
throws RemoteException

{

server.add(speaker, msg);

public synchronized String getSubjectQ
throws RemoteException

{

if (subject == null)
subject = server.getSubjectQ);

return subject;
}

public String[] getSpeakers() throws RemoteException {
return server.getSpeakers();

}

59

60

THE JINI ARCHITECTURE; AN INTRODUCTION

When the client invokes nextMessage, the proxy invokes the remote server’s
nextiInLine method, passing in the lastIndex field. If nextInLine returns suc-
cessfully, it increments its notion of the last message index and then returns the
message. If instead nextInLine throws an exception, the code following the
invocation will not be executed, leaving the value of lastIndex unchanged. So in
our example, even if a network failure happens after the request reaches the
server,the client will get an exception and so the next invocation of nextMessage
by the client will cause a nextInLine to be sent that gets the same message |
again.” |

The proxy’s add and getSpeakers methods simply forward the request along
to the remote server. The proxy’s getSubject method uses the fact that the sub-
ject of a single ChatStream never changes—oncethe proxygets the subject it can
be remembered to avoid a roundtrip to the server to get it again. Here again the

proxy addsvalue.

3.3.3 The Chat Server

Now let us look at the server side. Our chat server implementation is decidedly
simple to keep the example focused on the Jini service. We will allow an adminis-
trator to create a new chat service, which means creating a remotely accessible

ChatServerImp1 object that implements the ChatServer interface. This object
registers a ChatProxy object with the lookup service, giving it the appropriate
ChatSubject attribute and(initially) no ChatSpeaker attributes. The ChatProxy |

object contains a reference to its ChatServerImp1 object.

The ChatServerImp1 object will be activatable, that is, it will use the RMI
activation mechanism to ensure thatit is always available, even if the system it is
running on crashes and reboots. The fortune service you saw before lives only as
long as its virtual machine. Should the machine on whichit runs die, it will die
too. This may be acceptable for some services, but not others. Many Jini services
will need to be activatable, or use some other mechanism to outlast reboots.

This service will be activatable, but this is not the place for a full tutorial on of
writing activatable services. We will give an overview, point out the places in the
code whereactivation is visible, and provide the full code in Appendix B.

Activation works by having an activation system that starts virtual machines
for remotely accessible objects when needed. Each activatable object is part of an
activation group—temotely accessible objects that are part of the same group will

2. Note that the proxy’s implementation of nextMessageis synchronized. This ensuresthat
two threads in the same virtual machine invoking nextMessageat the same time on the

same proxy object will not both use or modify lastIndex inconsistently.

60

61

Eeee
44 THE ChatStream SERVICE

always be activated in the same virtual machine, while objects that are in different
groups will always be in different virtual machines.

Anactivatable object is created by registering it with the activation system,
telling the system which group the object belongs to, providing a storage key that
can be used by the object when it is activated to find its persistent state, and
optionally a “keep active” flag. This registration returns a remote reference to a
newly available remote object. The reference can be sent around the network like
any other remote reference.

If the “keep active” flag is true, the activation system will always keep the
object active when it can. For example, when a system is rebooted, the activation
system will activate each “keep active” object. If the flag is false, the activation
system will waituntil it gets the first message for the object and thenactivateit. In
our example wewill set the “keep active” flag to be true so the active service can
register with the lookup service and maintain its lease. Otherwise the service
would be inactive, unable to renew its leases, and so would never be found by any-

one looking for a chat stream.
Activation of an object is done via its activation constructor—a constructor

with the following signature:

public ActivatableClass(ActivationID id,
MarshalledObject state)

ae

}

During activation the activation system first either creates a virtual machine to
manage the group,orfinds the existing virtual machinethatis already doingso.It
then hasthat virtual machine create a new local objectof the correct class using its
activation constructor.

Anactivatable class must extend java. rmi.activation.Activatab]le—in
which case the activation constructor must invoke super(id)—or invoke the

static method java.rmi.activation.ActivatableObject.exportObject.
Either of these actions lets the activation system know that the object is ready to
receive incoming messages.

Oncethe activation constructor returns, the activation system will tell clients
of the remote object to talk directly to the running server object. This meansthat
at most the first message from a client to an activatable object requires talking to
the activation system (unless there is an intervening server crash). All subsequent
requests go directly to the runningservice.

61

THE J

Chat
servi

Cha’

for|

duri

doe:

info

tain
sam

virtl

diffi

last

you
fil

nin
the

Thi

pol
pol

like

Th
sat

stc

pu
en

an

qu

62

THE JINI ARCHITECTURE: AN INTRODUCTION

In our example we will provide a ChatServerImp1 class that provides a
ChatStream service by registration with the activation system. You create a new
server with the following command:

java [java-options] chat.ChatServerAdmin directory subject
[groups| lookup-ur] classpath codebase policy-file]

ChatServerAdmin is a class that creates an activatable ChatServerImp1 object
for the server. The java-optionstypically include the security policyfile used
during creation. The directory will define an activation group. If the directory
does not exist it will be created; a new activation group will also be created andits
information written intoafile in that directory. If the directory does exist and con-
tains sucha file, that information will be used to place the new chatstream into the
sameactivation group. A typical chat stream will not significantly occupy a single
virtual machine, so grouping multiple activatable ChatServerImp1 objects for
different subjects into the same virtual machinewill keep overall overhead low.

If you wantto create a new activation groupforthe stream, you mustgive the
last four parameters: the groups or lookup-urto specify the lookup services
you want the chat registered with, and the classpath, codebase, and poli cy~
fi Te for the activated virtual machine. The classpath will be the one for the run-
ning server, the codebasewill be whereclients will download the remoteparts of
the service from, and the policy file will be the one used by the running server,
This is different from the policy file provided in the java-options, which is the
policy file used only during creation. The policy-file parameter defines the
policy file that will be used by theactivated virtual machine.

So a typical invocation to create a new chat stream im a new group would look
like this:

java ~Djava.security.policy=/policies/creation
chat. ChatServerAdmin /files/chats/technical "Cats"
/jars/chat.jar http://server/chat-d1.jar
/policies/runtime

This invocation would create the /Ffiles/chats/technical directory (if neces-
sary), create a new activation group, store the group information in it, and put the
storage for the "Cats" chat in that directory. The service would register with the
public group, "". The server would run using classes from /jars/chat. jar, cli-
ents would download code from the codebase http://server/chat-dl. jar,
and the server’s security policy file would be /policies/runtime. The subse-
quent command

java -Djava.security.policy=/policies/creation
chat. ChatServerAdmin /files/chats/technical "Dogs"

62

63

46 THEChatStream SERVICE

would create a "Dogs" chat stream in the sameactivation groupas the stream for
the subject "Cats", and therefore with the same lookup group, classpath, code-
base, and security policy because these are defined by the activation group—all
objects sharing an activation group will, by virtue of sharing a single virtual
machine, have the same lookup registration, classpath, codebase, and security
policy.

Let us look at ChatServerAdmin.main

public static void main(String[] args) throws Exception
{

if Cargs.length != 2 && args.length != 6) {
usage(); // print usage message
System.exit(1);

File dir = new FileCargs[Q]);
String subject = args[1];

ActivationGroupID group = null;
if (args.length == 2)

group = getGroup(dir);
else {

String[] groups = ParseUtil.parseGroups(args[2]);
String lookupURL =

Cargs[2].indexOF(’:’) > @ ? args[2] : null):
String classpath = args[3];
String codebase = args[4];
String policy = args[5];
group = createGroup(dir, groups, lookupURL,

classpath, codebase, policy);
}

File data = new File(dir, subject);
MarshalledObject state = new MarshalledObject(data);
ActivationDesc desc =

new ActivationDesc(group, "chat.ChatServerImp1",
null, state, true);

Remote newObj = Activatable.register(desc);
ChatServer server = (ChatServer)new0bj;

63

THE JINI é

}

The mai
anewg!

that cor

that is p

ing it to
mation

true Hl

getSub
this firs
servert

Thi

When t

setup 0

in that ;
stream,

given ¥
piece o
its acti’

it wher

the act

future,

way, bI
Th

ChatS

to the :

the acl

system
it is al

sent di
messa

Tt

mand

4 A
sh.
mi

pa
it.

64

THE JINI ARCHITECTURE: AN INTRODUCTION

String s = server.getSubject(); // force server up

System.out.printIn("server created for " + s);

}

The main methodfirst figures out whether it is using an existing group or creating
anew group, and gets the group accordingly. It then creates a Marshal ledObject
that contains the directory and subject; this Marshal ledObject will be the one
that is passed in to the activation constructor when eachstream is activated, allow-
ing it to recoverits state, as you will see shortly. With the group andstartup infor-
mation in hand, we cantell the activation system to register this new object. The
true in the registration call is the “keep active” flag. We then invoke the
getSubject method to force the chat stream to be active for the first time. Until
this first call, the chat stream object will be inactive. Once getSubject forces the
server to be active, it will start its discovery and registration.

This process of creation and subsequent activating is shown in Figure 3-1.
When main invokes createGroup,the activation system remembers the group
setup options. After register, the activation system has a record of a new object
in that activation group. When main invokes getSubject on the newly registered
stream, the activation system (1) starts up a new virtual machineusing the settings
given when the group was created; and then (2)tells the virtual machine (via a
piece of its own code runningin it) to create a new ChatStreamImp1 object using
its activation constructor, passing the persistent state Marshal]ledObject given to
it when the object was registered. When the constructor invokes exportObject,
the activation system views the object as ready for incoming messages. In the
future, when the activation system starts up it will start up the object in the same
way, but without requiring any method invocation to get things going.

The figure shows all this work being handled internally by the client’s
ChatServerImp]1 stub. A stub for an activatable object contains a direct reference
to the remote service. When the stubis first used, it sets this reference by asking
the activation system for a direct reference to the remote server. The activation
system either activates the service to get a directreference and then returns it or, if
it is already active, simply returns the direct reference. The actual messages are
sent directly to the service. Once the stub has a direct reference, it sendsall future
messages directly to the remote server without contacting the activation system.

The createGroup method creates the activation group, setting up the com-
mandline that will start the virtual machineto use the correct classpath, codebase,

3 A java.rmi.MarshalledObject stores an object in the same wayas it would be mar-
shalled to be passed as an argument in an RMI methodcall. Its get method returnsthe un-
marshalled object. The activation system uses a MarshalledObjectfor the persistence
parameter because it does not use the object—it just holds on to it and passes it back—so

it has no need to download any required code for the persistence parameter.

64

47

65

THE ChatStream SERVICE THE JINI ARCH

When C

Activation System | ChatServerImp1] server system restéChatServerAdmin

ee to create the

register(group, state,
execution setup,
“keep active’)

| | th

oo), {
reference Fi

_ st
Ch

public

invokes getSubject

| : erence Lo
| —ee if

| jo| invoke activation constructor

ee Ac
return direct —_— }
reference The activat

getSubject | find the dir
the directot

The Ct

serveris fit

to know w.

provide a ¢
when the

ChatServe

store for fu

handledinternallybyChatServerImp]stub

 FIGURE 3-1: Registration and Activation in ChatAdmin cl assit

{

and policyfile. It thenserializes the group descriptorintoafile so that future cre- /,
ations that want to share it can find it, adding the lookup groups and URLtothe pl
file for the server to use. The getGroup methodfinds an existing group by open-
ing up the directory’s group description file and returning the deserialized
ActivationGroupID. The details of this activation and file work are in the full

code in Appendix B.

65

66

THE JINI ARCHITECTURE: AN INTRODUCTION

When ChatServerAdmin.main invokes getSubject or whentheactivation
system restarts, the ChatServerImp] class’s activation constructor gets invoked
to create the local objectin the activated virtual machine:

DPMAATAQos
==]

=
iI
ie

es

public ChatServerImp](ActivationID actID,
MarshalledObject state)

throws IOException, ClassNotFoundException
{ |

File dir = (File) state.getQ); |
store = new ChatStore(dir);

ChatProxy proxy = new ChatProxy(this); i

LookupLocator[] locators = null; |
if ClookupuRL != null) {

LookupLocator loc = new LookupLocator(lookupURL); La
locators = new LookupLocator[] { loc };

3

joinMgr = new JoinManager (proxy, getAttrs(), groups,
locators, store, renewer);

Activatable.exportObject(this, actID, 0);
}

The activation constructor uses the state object stored by ChatServerAdmin to
find the directory in which the chat record is stored andto find its record within
the directory (by the subject name).

The ChatStore object manages the server’s persistent storage. When the
serveris first activated, the Jini service ID has not yet been assigned, so we want
to know when the ID gets assigned. The JoinManager constructor allows us to
provide a com.sun. jini. lookup.ServiceIDListener object that will be told
when the identifier is assigned. The ChatStore class is an inner class of
ChatServerImp1 that implements this interface, adding the ID to the persistent
store for future use. The relevant part of ChatStorelookslike this:

class ChatStore extends LogHandler

implements ServiceIDListener

[foes
public void serviceIDNotify(ServiceID serviceID) { |

try { :
log.update(servicelID);

} catch (IOException e) {
unexpectedException(e);

66

67

50 THE ChatStream SERVICE

}

ChatServerImp].this.serviceID = serviceID;

t

The serviceIDNoti fy method is invoked by the join manager when the service
ID is first allocated. Our implementation storesit in the file system for future use.
The log field and the LogHand1er interfaceare part of a “reliable log” subsystem
from the com.sun.jini.reliableLog packagein the release ofthe Jini technol-
ogy; the details are left for the full source in Appendix B.

3.3.4 Implementing nextInLine

The nextInLine methodofthe chat server takes the incoming message number,
looks up the message associated with it, and returnsit:

public synchronized ChatMessage nextInLine(int index) {
try {

int nextIndex = index + 1;

while (nextIndex >= messages.size())
wait();

return (ChatMessage)messages.get(nextIndex) ;
} catch (InterruptedException e) {

unexpectedException(e);

return null; // keeps the compiler happy

}

If the next message isn’t available yet, nextInLine waits until someone has put
one in using add:

public synchronized void add(String speaker, String[] lines)
{

ChatMessage msg = new ChatMessage(speaker, lines);
store.add(msg);

addSpeaker (speaker);

messages.add(msg);
notifyAl1();

}

private synchronized void addSpeaker(String speaker) {
if (speakers.contains(speaker))

Oombet
~

67

68

THE JIN] ARCHITECTURE: AN INTRODUCTION

return;

speakers.add(speaker);
Entry speakerAttr = new ChatSpeaker(speaker);

attrs.add(speakerAttr);

joinMgr.addAttributes(new Entry[] { speakerAttr });
}

When a new messageis added, we create the ChatMessage object for the message
and thenstore it in the log. We then add the speaker (addSpeaker ignores already
knownspeakers), add the message to our in-memory list of messages, and notify
any waiting nextInLine methodthat there is a new messageto return.

If the speaker is a new one, addSpeaker creates a new ChatSpeaker attribute
object and stamps it on itself by using the join manager’s addAttributes
method. The join manager will add this attribute to all current and future lookup
service registrations.

We have not shown the store.add method because it consists only offile-
system and data structure management, not Jini service implementation. Thefull
code in Appendix B, of course, showsits implementation.

3.3.5 Notes on Improving ChatServerImp]

As shown ChatServerImp1 works, but it does not scale to large systems well.
Each client uses up a thread in the server virtual machine when nextInLine
blocks waiting for a future message.If there are hundreds of observers of a discus-
sion, the numberof threads blockedin the server will also be hundreds as eachcli-

ent waits for its invocation of nextInLine to return. There are many possible
solutions to this problem. The most interesting is to rewrite the proxy/server inter-
action to use event notification as described in the distributed event specification.
The design would look somethinglike this:

@ The nextInLine method takes a RemoteEventListener object. When
nextInLine has no messageto return, it returns an event registration instead
of a message.

@ When a new messageis added,all registered listeners are notified.

A proxy that gets an event registration will renew the registration’s lease
until it receives notification from the server that a new messageis available.
It will then resume asking for the nextInLine until it is blocked again.

Weleave an actual implementation of this as an exercise to the reader, as well as
other things that could be done to improve the service, such as:

68

31

69

52 THE ChatStream SERVICE

@ Making add idempotent.

¢ Handling the results of system crashes that result in partial creation of the
service. The activation constructor should detect such corrupt data and

unregisteritself.

¢ A way to mark a chat as being completed so that people can see a record of
it without adding to it. This might require adding a new method ortwo in
ChatStream.

Administrative interfaces to allow users and administrators to add their own
attributes to the service and to configure a running service as to which
lookup groups and lookup URLsit will join. As examples, see the interface
net.jini.admin. JoinAdmin.

Other improvements could be madeas well. You mightfind it useful to get the
existing source compiled and running, and then try adding one or more improve-
mentsto it to get a better feel for Jini service implementation.

3.3.6 The Clients

When a chat stream serviceis created, we will have a service that can be used any-
where in the network that can reach the relevant lookup services. The generic
StreamReader client can read a chat discussion stream from the beginning. A
more specialized client would let users add messages to the chat stream. The
generic client has more limited functionality but can work across a broader array
of services. A specialized chat client uses the extended features of a ChatStream.
Both use the same service in different ways.

As an example of a specialized client, here is a Chatter client that will use a
commandline to provide access to a ChatStream:

package chatter;

public class Chatter extends StreamReader {
public static void main(String[] args) throws Exception
{

String[] fullargs = new String[args.length + 3];
fullargs[@] = "-c";
fullargs[1] = String. valueOf (Integer .MAX_VALUE);
System.arraycopy(args, 9, fullargs, 2, args.length);
fullargs[fullargs.length - 1] = “chat.ChatStream”;
Chatter chatter = new Chatter(fullargs);
chatter.execute();

69

70

THEJINI ARCHITECTURE: AN INTRODUCTION

}

private Chatter(String[] args) {
super(args);

}

public void readStream(MessageStream msgStream)

throws RemoteException
{

ChatStream stream = (ChatStream)msgStream; |
new ChatterThread(stream).startQ); |
super.readStream(stream) ; i

}

public void printMessage(int msgNum, Object msg) {
if (!(msg instanceof ChatMessage))

super.printMessage(msgNum, msg);
else {

ChatMessage cmsg = CChatMessage)msg;

System.out.printIn(cmsg.getSpeaker() + ":");

String[] lines = cmsg.getContentQ;
for Cint i = @; 71 < lines. length; i++) {

System.out.print(” "); |
System.out.printInClines[i]);

}

All the client code in this section is in the chatter package. Chatter extends
StreamReader (the generic client described in Section 2) to force an effectively

|

infinite count of messages to read, and to require that the stream foundbeatleast
a ChatStream, not simply a MessageStream. It overrides readStream sothat |||
when the stream is found, a new thread will be created to read the user’s input.

|

The printMessage method is overridden to take advantage of the knowledgethat
the message object is a ChatMessage.

ChatterThread uses the stream’s add method whenthe user types some-
thing:

class ChatterThread extends Thread {

private ChatStream stream;

70

71

a

54 THE ChatStream SERVICE

ChatterThread(ChatStream stream) {

this.stream = stream;

}

public void run() {
BufferedReader in = new BufferedReader(

new InputStreamReader(System.in));

String user = System.getProperty("user.name");
List msg = new ArrayListQ;

String[] msgArray = new String[@];
for (;;) f

try {

String line = in.readLine();

if Cline == null)

System.exit(@);

boolean more = line.endsWithC("\\");

if (more) f{ // strip trailing backslash

int stripped = line.length() - 1;
line = line.substring(®@, stripped);

}

msg.add(line) ;
if (!more) {

msgArray = (String[])
msg.toArray(new String[msg.size(Q)]);

stream.add(user, msgArray);
msg.clear();

}

} catch (RemoteException e) {

System.out.printInC"RemoteException: retry");
for (33) f

try {
Thread. sleep(10@@);
stream.add(user, msgArray);

msg.clear();
break:

} catch (RemoteException re) {

continue; // try again

} catch (InterruptedException ie) {

System.exit(1);
}

71

72

THE JINI ARCHITECTURE: AN INTRODUCTION

}

} catch (IOException e) {
System.exit(l);

}

}

The run method will be invoked by the virtual machine whenthe thread is started.
It reads lines from the user to build up messages and uses add to add each mes-
sage to the chat. Lines that end in \ (backslash) mean that the message continues
on the next line. Whenthe user typesa line that doesn’t end in backslashthat line
is put together with any preceding lines to create the message. The value defined
in the user.name property (provided by the virtual machine) will be user’s name
in the chat. If add throws a RemoteException weretry adding the messageuntil
we succeedor until the user kills the application.

Whenthe end of input has been reached, readLine returns nu11, and this
thread will invoke System. exit to bring downthe entire virtual machine, includ-
ing the thread that is reading other speakers’ messages.

72

a
Bis

aosa WE: PeliOG

73

;aa
seeST

He JINI ARCHITECTURE: AN INTRODUCTION

4 The Rest of This Book

A good question is never answered.
It is not a bolt to be tightenedinto place but a seed to be planted

and to bear more seed toward the hope of greening the landscapeof idea.
—John Ciardi

By now you should have an overview of how the Jini technology works and
whatit takes to write a client and service. Therest of this book contains the speci-
fication of the Jini architecture. Each subpart of the specification is prefaced by a
short paragraph describing whereit fits into the architecture. After the specifica-
tion you will find a glossary that defines terms used in the specifications. Appen-
dix A is a reprint of “A Note on Distributed Computing,” whose thinking
undergirds the Jini architecture. You can follow the Jini architecture and related
technical discussions at http: //jini.org. Appendix B contains the full code for
the examples.

Eachspecification has a two-letter code. For example, the Jini Architecture
Specification has the code “AR.” This provides a common name for each part of
the specification (for example AR.2.1) no matter what order the parts are placed
in. For example, in this book we have placed the parts in a reasonable reading
order. In another bookit might be best to publish only relevantparts of the specifi-
cation, or publish the parts in a different order. The common names let you talk
with others about specification sections using the same section names no matter
where each of you read the work. The two letter codes are shownat the beginning
of each specification part, in the section and figure numbers within that part, and
on the black thumbtabs at the edge of the right-hand pages.

This book is the first in a series that will come “...from the source”— from
those who design, implement, and documentthe Jini system. These books will all
be written either by the originators of the work in question or by people who work
closely with them to documentthe designs and technologies. Other good books
and websites will, we expect, also follow from other sources. Wehopethat the
Jini system and its designs prove useful to you both as user and as developer. At
our series’ web site http: //java.sun.com/docs/books/jini/ you will find

—sojdwexy PeOc@ae

73

74

58 THEChatStream SERVICE

related resources including a downloadable version of the source in the series’
books (including this book’s source), errata, and other series-related information.

74

75

THE JINI ARCHITECTURESPECIFICATIONdefines the top-level view of the Jini
architecture, its components, and the systems on which the Jini

architecture is layered. This will give you a high-level
view of the architecture that will be filled out in the

aN following specifications.

75

76

rchitecture

The Jini A
Specification

AR.1 Introduction

Tus documentdescribes the high-level architecture of a Jini software system,
defines the different components that make up the system, characterizes the use of
those components, discusses some of the component interactions, and gives an
example. This document identifies those parts of the system that are necessary
infrastructure, those that are part of the programming model, and those that are
optional services that can live within the system.

AR.1.1 Goals of the System

A Jini system is a distributed system based onthe idea of federating groups of
users and the resources required by those users. The overall goal is to turn the net-
work into a flexible, easily administered tool with which resources can be found
by human and computational clients. Resources can be implemented as either
hardware devices, software programs, or a combination of the two. The focus of
the system is to make the network a more dynamic entity that better reflects the
dynamic nature of the workgroup by enabling the ability to add and delete ser-
vices flexibly.

A Jini system consists of the following parts:

@ A set of components that provides an infrastructure for federating services
in a distributed system

61

eae PMUeSyItAAA
cannyaprenuarmearmean

76

77

62 GOALS OF THE SYSTEM

¢ A programming model that supports and encourages the productionof reli-
able distributed services

@ Services that can be madepartof a federated Jini system andthat offer func-
tionality to any other memberofthe federation

Although these pieces are separable and distinct, they are interrelated, which
can blurthe distinction in practice. The components that makeup the Jini technol-
ogy infrastructure make use of the Jini programming model; services that reside
within the infrastructure also use that model; and the programming modelis well
supported by componentsin the infrastructure.

The end goals of the system span a numberofdifferent audiences; these goals
include the following:

@ Enabling users to share services and resources over a network

@ Providing users easy access to resources anywhere on the network while
allowing the network location of the user to change

¢ Simplifying the task of building, maintaining, and altering a network of
devices, software, and users

The Jini system extends the Java application environmentfrom a single vir-
tual machine to a network of machines, The Java application environment pro-
vides a good computing platform for distributed computing because both code
and data can move from machine to machine. The environmenthas built-in secu-

rity that allows the confidence to run code downloaded from another machine.
Strong typing in the Java application environment enables identifying the class of
an object to be run on a virtual machine even whenthe object did not originate on
that machine. Theresult is a system in which the network supports a fluid config-
uration of objects that can move from place to place as needed and can call any
part of the network to perform operations.

The Jini architecture exploits these characteristics of the Java application
environmentto simplify the construction of a distributed system. The Jini archi-
tecture adds mechanismsthatallow fluidity of all components in a distributed sys-
tem, extending the easy movementof objects to the entire networked system.

The Jini technology infrastructure provides mechanismsfor devices, services,
and users to join and detach from a network. Joining and leaving a Jini system are
easy and natural, often automatic, occurrences. Jini systems are far more dynamic
than is currently possible in networked groups where configuring a network is a
centralized function done by hand.

77

78

THE JINI ARCHITECTURE SPECIFICATION 63

AR.1.2 Environmental Assumptions

The Jini system federates computers and computing devices into what appears to
the user as a single system.It relies on the existence of a network of reasonable
speed connecting those computers and devices. Some devices require much higher
bandwidth and others can do with much less—displays andprinters are examples
of extreme points. We assumethatthe latency of the network is reasonable.

We assume that each Jini technology-enabled device has some memory and

processing power. Devices without processing power or memory may be con-
nected to a Jini system,but those devices are controlled by another piece of hard-
ware and/or software, called a proxy, that presents the device to the Jini system
and itself contains both processing power and memory. The architecture for
devices not equipped with a Java virtual machine (JVM)is discussed morefully in
a separate document.

TheJini system is Java technology centered. The Jini architecture gains much
of its simplicity from assuming that the Java programming languageis the imple-
mentation language for components. The ability to dynamically download and run
code is central to a numberofthe features of the Jini architecture. However, the
Java technology-centerednatureofthe Jini architecture depends onthe Java appli-
cation environmentrather than on the Java programming language. Any program-
ming language can be supportedby a Jini system if it has a compiler that produces
compliant bytecodes for the Java programming language.

=
a

>a
o
—"—_e
a
is")
ie](a
i
=@

78

79

THE JINI ARCHITECTURE SPECIFICATION

AR.2 System Overview

AR.2.1 Key Concepts

Tix purpose of the Jini architecture is to federate groups of devices and soft-
ware componentsinto a single, dynamic distributed system. The resulting federa-
tion provides the simplicity of access, ease of administration, and support for
sharing that are provided by a large monolithic system while retaining the flexibil-
ity, uniform response, and control provided by a personal computer or worksta-
tion.

The architecture of a single Jini system is targeted to the workgroup. Mem-
bers of the federation are assumed to agree on basic notions of trust, administra-
tion, identification, and policy. It is possible to federate Jini systems themselves
for larger organizations.

AR.2.1.1 Services

The most important concept within the Jini architecture is that of a service. A ser-
vice is an entity that can be used by a person, a program,or anotherservice. A ser-
vice may be a computation, storage, a communication channel to another user, a
software filter, a hardware device, or another user. Two examples of services are
printing a document and translating from one word-processor format to some
other.

Membersof a Jini system federate to share access to services. A Jini system
should notbe thoughtofassets of clients and servers, users and programs, or even
programsandfiles. Instead, a Jini system consists of services that can be collected
together for the performanceof a particular task. Services may makeuse of other
services, and a client of one service may itself be a service with clients of its own.
The dynamic nature of a Jini system enables services to be added or withdrawn
from a federation at any time according to demand,need,or the changing require-
ments of the workgroup using the system.

Jini systems provide mechanismsfor service construction, lookup, communi-
cation, andusein a distributed system. Examplesof services include: devices such

65

a=
QO

—Lele
ad
o

fe |oa
=
5fe)

79

