
131

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 2 1

9 The effects of modifying the contents of the tmp1 parameter while the invo-

cation is in progress are unpredictable and undefined.

If no service can be found that matches the desired criteria, then the versions of

1ookup from the first category—those that return a single instance of

Se rvi ceItem—will return nu11, whereas the versions from the second cate-

gory—those that return an array of Se rv1' ceItem instances—will return an empty

array.

The versions of 1 ookup from the first category can be used in a fashion simi-

lar to the first form of the 1ookup method defined in the Se rv1' ceRegi st rar‘ inter-

face described in The Jini Technology Core Platform Specification, “Lookup

Service”. That is, an entity would typically invoke one of these versions of 1 ookup

when it wishes to find a single service reference and the particular lookup service

with which that service reference is registered is unimportant to the entity.

Each version of 1ookup defined in the Servi ceDi scoveryManager differs

with the corresponding version of 1 ookup in Se rvi ceRegi st rar in the following

ways:

9 The versions of 1ookup defined in the Se rv1' ceDi scove ryManager query

multiple lookup services (the order in which the lookup services are queried

is dependent on the implementation).

9 The versions of 1ookup defined in the Se rv1' ceD1' scove ryManager can

apply additional matching criteria, in the form of a filter object, when decid-

ing whether a service reference found through standard template matching

should be returned to the entity.

The versions of 1ookup that return an array of Se rv1' ceItem objects can be

used in a fashion similar to the second form of 1ookup defined in the

Se rvi ceRegi st rar interface. That is, an entity would typically invoke these ver-

sions of 1ookup when it wishes to find multiple service references matching the

input criteria. Each of the versions of 1 ookup that return an array of Se rv1' ceItem

objects takes as one of its arguments an int parameter, maxMatches, that repre-

sents the maximum number of matches that should be returned. The array

returned by these methods will contain no more than maxMatches service refer-

ences, although it may contain fewer than that number.

As with the versions of 1 ookup that return a single instance of Se rvi ceItem,

multiple queries and filtering are also notable differences between the second-cat-

egory versions of this method and their counterpart in Se rvi ceRegi st ra r.

For each version of 1 ookup, whenever a lookup service query returns a nu11

service reference, the filter is bypassed, and the service reference is excluded from

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

131

132

122 THE SEMANTICS

the return object. On the other hand, if the query returns a non-nu11 service refer-

ence in which the associated array of attribute contains one or more null ele-

ments, the filter is still applied and the service reference is included in the return

object.

Each version of 1 ookup may be confronted with duplicate references during a

search for a service of interest. This is because the same service may register with

more than one lookup service in the managed set. As with the cache, when a set of

service references is returned by lookup, each service reference in the return set

will be unique with respect to all other service references in the set, as determined

by the eq ua1 5 method provided by each reference.

If it is determined that a lookup service is unavailable (due to an exception or

some other non-fatal error) while interacting with a lookup service from the man-

aged set, all versions of lookup will invoke the discard method on the instance

of Di scoveryManagement being employed by the Se rvi ceD1' scove ryManage r.

Doing so will result in the unavailable lookup service being discarded and made

eligible for rediscovery.

Recall that the propagation of modifications to a service’s attributes across a

set of lookup services typically occurs asynchronously. It is for this reason that

while invoking Tookup to find a set of matching services, it is possible that the set

returned may contain multiple references having the same service ID with differ-

ent attributes. Note that although this sort of inconsistent state can also occur if the

entity employs a cache, the cache will eventually reflect the correct state.

The Blocking Feature of 'l ookup

As noted above, each category contains a version of Tookup that provides a fea-

ture in which the entity can request that if the number of service references found

throughout the available lookup services does not fall into a desired range, the

method will wait a finite period of time until either an acceptable minimum num-

ber of service references are discovered or the specified time period has passed.

The versions of lookup providing this blocking feature each takes as one of

its parameters a value of type long that represents the number of milliseconds to

wait for the service to be discovered. In addition to RemoteExcepti on (described

previously for these methods), each of these versions of lookup may throw an

InterruptedException.

One of these blocking versions of lookup implicitly uses a value of one for

both the acceptable minimum and the allowable maximum number of service ref-

erences to discover. The other blocking version requires that the entity specify the

range through the m1' nMatches and maxMatches parameters, respectively.

Prior to blocking, each of these versions of 1 ookup first queries each available

lookup service in an attempt to retrieve a satisfactory number of matching ser-

132

133

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1.1

vices. Whether or not the method actually blocks is dependent on how many

matching service references are found during the query process. Blocking occurs

only if after querying all of the available lookup services, the number of matching

services found is less than the acceptable minimum. If the waiting period (mea-

sured from when blocking first begins) passes before that minimum number of

service references is found, the method will return the service references that have

been discovered up to that point. If the waiting period passes and no services have

been found, null or an empty array (depending on the version of 1 ooku p) will be
returned.

If, after querying all of the available lookup services, the number of matching

services found is greater than or equal to the specified minimum but less than the

specified maximum, the method will return the currently discovered service refer-

ences without blocking. If the initial query process produces the desired maxi-

mum number of service references, the method will return the results

immediately.

The blocking versions of lookup are quite useful to entities that cannot pro-

ceed until such a service of interest is found. If a non-positive value is input to the

wa1' tDu r argument, then the method will not wait. It will simply query the avail-

able lookup services and employ the return semantics described above.

The values of the m1" nMatches and maxMatches arguments must both be posi-

tive, and maxMatches must be greater than or equal to m1' nMatches; otherwise, an

IT 'I egalArgumentExcepti on will be thrown.

The blocking versions of 1 ookup make a concurrency guarantee with respect

to the discovery of new lookup services during the wait period. That is, while

waiting for matching service reference(s) to be discovered, if one or more of the

desired—but previously unavailable—lookup services is discovered and added to

the managed set, those new lookup services will also be queried for the service(s)
of interest.

In addition, the blocking versions of Tookup throw InterruptedException.

When an entity invokes either version with valid parameters, the entity may

decide during the wait period that it no longer wishes to wait the entire period for

the method to return. Thus, while the method is blocking on the discovery of

matching service(s), it may be interrupted by invoking the interrupt method

from the Th read class. The intent of this mechanism is to allow the entity to inter-

rupt a blocking lookup in the same way it would a sleeping thread.

SD.4.1.4 The getD'i scoveryManager Method

The getDi scove ryManage r method returns an object that implements the

Di scove ryManagement interface. The object returned by this method provides the

123

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

133

134

124 THE SEMANTICS

Se rv1' ceD1' scove ryManager with the ability to set discovery listeners and to dis-

card previously discovered lookup services when they are found to be unavailable.

This method takes no arguments.

SD.4.1.5 The getLeaseRenewa'l Manager Method

The getLeaseRenewal Manager method returns a LeaseRenewal Manager object.

The object returned by this method manages the leases requested and held by the

Se rv1' ceD1' scove ryManager. In general, these leases correspond to the registra-

tions made by the Se rv1' ceD1' scove ryManager with the event mechanism of each

lookup service in the managed set. This method takes no arguments.

SD.4.1.6 The terminate Method

The terminate method performs cleanup duties related to the termination of the

event mechanism for lookup service discovery, the event mechanism for service

discovery, and the cache management duties of the Se rv1' ceD1' scove ryManage r.

That is, the terminate method will terminate each LookupCache instance created

and managed by the Se rv1' ceD1' scove ryManager. Additionally, if the discovery

manager employed by the Se rv1' ceD1' scove ryManager was created by the

Serv1' ceD1' scoveryManager itself, then the term1' nate method will also termi-

nate that discovery manager.

Note that if the discovery manager was created externally and supplied to the

Se rv1' ceD1' scove ryManager, then any reference to that discovery manager held

by the entity will remain valid, even after the Se rv1' ceD1' scove ryManager has

been terminated. Similarly, if the entity holds a reference to the lease renewal

manager employed by the Se rv1' ceD1' scove ryManage r, that reference will also

remain valid after termination, whether lease renewal manager was created exter-

nally or by the Se rv1' ceD1' scove ryManager itself.

The Se rv1' ceD1' scove ryManager makes certain concurrency guarantees with

respect to an invocation of term1' nate while other method invocations are in

progress. The termination process described above will not begin until completion

of all invocations of the public methods defined in the public interface of

Se rv1' ceD1' scove ryManager; that is, until completion of invocations of

createLookupCache, lookup, getD1' scoveryManager, and

getLeaseRenewa'l Manager.

Upon completion of the termination process, the semantics of all current and
future method invocations on the terminated instance of the

Se rv1' ceD1' scove ryManager are undefined.

134

135

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 25

SD.4.2 Defining Service Equality

The ability to accurately determine when two different service references are

equal is very important to the Se rvi ceDi scove ryManager in general, and the

LookupCache in particular. Any restriction placed on that ability can result in inef-

ficient and undesirable behavior. Storing and managing duplicate service refer-

ences—that is, proxies that refer to the same version of the same back end

service—is usually viewed as undesirable. In other words, when storing and man-

aging service references, it is very desirable to be able to determine not only that

two different proxies refer to the same back end service, but if they do refer to the

same back end, whether or not the current version of the referenced service has

been replaced with a new version.

The mechanism employed by the LookupCache to avoid storing duplicate ser-

vice references is the equals method provided by the discovered services them-

selves. This is because an individual well-behaved service of interest will usually

register with multiple lookup services, and for each lookup service with which

that service registers, the LookupCache will receive a separate event containing a

reference to the service. When the LookupCache receives events from multiple

lookup services, the service ID (retrieved from the service reference in the event)

together with the equals method provided by the service itself, is used to distin-

guish the service references from each other. In this way, when a new event arrives

containing a reference associated with the same service as an already-stored refer-

ence, the LookupCache can determine whether the new reference is a duplicate or

the service has been replaced with a new version of itself. In the former case, the

duplicate would be ignored; in the latter case, the old reference would be replaced
with the new reference.

Thus, the LookupCache relies on the provider of each service to override the

equals method inherited from the class Object with an implementation that

allows for the identification of duplicate service proxies. In addition to the equals

method, each service should also provide a proper implementation of the

hashCode method. This is because even if an entity never explicitly calls on the

equals method to compare service references, those references may still be stored

in container classes (for example, Hashtabl e) where such comparisons are made

“under the covers.” From the point of View of the Se rv1' ceDi scove ryManager

and the LookupCache, providing an appropriate implementation for both the

equals method and the hashCode method is a key characteristic of good behavior
in a Jini service.

Note that there is no need to override either the equals method or the hash—

Code method if the service is implemented as a purely remote object in which the

service proxy is an RMI stub. In this case, appropriate implementations for both

methods are already provided in the stub.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

135

136

126 THE SEMANTICS

SD.4.3 Exporting RemoteEventL'i stener' Objects

A subset of the methods on the Se rvi ceDi scove ryManage r, when invoked, will

result in a request for registration with the event mechanism of one or more

lookup services. The methods that result in such a request are

createLookupCache and the blocking versions of the Tookup method.

Any entity that invokes one of these methods must export, to each lookup ser-

vice with which a registration occurs, the stub classes of the

RemoteEventLi stener object through which instances of RemoteEvent will be

received. Furthermore, each of these methods must throw Remote Excepti on. The

reasons that a RemoteExcepti on can occur fall into one of the following catego-
ries:

0 Each of these methods attempts to export a remote object, a process that can

throw RemoteExcepti on.

0 Each of these methods attempts to register with the event mechanism of at

least one lookup service, a process that can throw RemoteExcepti on.

How each of the affected methods handle the Remote Excepti on is dependent

on the reason for the exception. If a RemoteExcepti on (or any other non-fatal

exception or error) is thrown during an attempt to register for events from a

lookup service, that lookup service will be discarded and made eligible for redis-

covery. On the other hand, if a RemoteException occurs during an attempt to

export the listener, the method from which that attempt is made will re-throw the

same exception.

The potential for RemoteException during the export process imposes the

following requirement: the same instance of the listener must be exported to each

lookup service from which events will be requested. Furthermore, the creation and

export of the listener must occur prior to the event registration process. This

requirement guarantees that should a RemoteExcepti on occur after the registra-

tion process has begun, the exception will not be propagated and event processing
will continue.

To understand the significance of this requirement, consider the scenario in

which a different instance of the listener is exported to each lookup service. If a

new lookup service is discovered after the event process has begun for the other

lookup services in the managed set, a new instance of the listener must be created

and exported. Should a RemoteException occur during the export process, the

exception will be propagated and all event processing will stop—a result that

many entities may view as undesirable.

136

137

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 127

To facilitate exporting the listener, the entity—whether it is a Jini client or a

Jini service—is responsible for providing and advertising a mechanism through

which each lookup service will acquire the listener’s stub classes.

For example, one implementation of the Se rv1' ceD1' scove ryManager might

provide a special JAR file containing only the listener stub classes to optimize

download time. By including this JAR file in the entity’s

java. rm1' .server . codebase property (in the appropriate format, specifying

transport protocol and location), the entity advertises the mechanism that lookup

services can employ to acquire the stub classes. By executing a process to serve up

the JAR file (for example, an HTTP server), the mechanism through which each

lookup service acquires those stub classes is provided.

It is important to note that should such a mechanism not be made available to

each lookup service with which event registration will be requested, a “silent fail-

ure” can occur repeatedly. If the mechanism is not available, each lookup service

cannot acquire the exported listener. Because each lookup service cannot acquire

the exported listener, any attempts to register for events will fail. Whenever an

attempt to register for events fails, the associated lookup service will be discarded

and made eligible for rediscovery. Upon rediscovery of the discarded lookup ser-

vice, the cycle repeats when a new attempt to register for events is made.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

137

138

1 28 THE SEMANTICS

138

139

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 29

SD.5 Supporting Interfaces and Classes

THE Se rvi ceDi scove ryManager utility class depends on the following inter-
faces defined in The Jini Technology Core Platform Specification, “Lookup Ser-

vice”: Servi ceTemp'l ate, Servi ceItem, and Servi ceMatches. This class also

depends on a number of interfaces, each defined in this section; those interfaces

are Di scove ryManagement, Se rvi ceItemFi 'I te r, Se rvi ceDi scove ryLi stene r,

and LookupCache.

The Se rvi ceDi scove ryManager class references the following concrete

classes: LookupDiscove ryManager and LeaseRenewa'l Manager, each described

in a separate chapter of this document, and Se rvi ceDi scove ryEvent, which is

defined in this chapter.

SD.5.1 The Di scover-yManagement Interface

Although it is not necessary for the Se rvi ceDi scove ryManager itself to execute

the discovery process, it does need to be notified when one of the lookup services

it wishes to query is discovered or discarded. Thus, at a minimum, the

Se rvi ceDi scove ryManager requires access to the instances of Di scoveryEvent

sent to the listeners registered with the event mechanism of the discovery process.

The instance of Di scove ryManagement passed to the constructor of the

Se rvi ceDi scove ryManager provides a mechanism for acquiring access to those

events. For a complete description of the semantics of the methods of this inter-

face, refer to the Jini Discovery Utilities Specification.

One noteworthy item about the semantics of the Se rvi ceDi scove ryMan ager

is the effect that invocations of the discard method of Di scoveryManagement

have on any cache objects created by the Se rvi ceDi scove ryManage r. The

Di scove ryManagement interface specifies that the di scard method will remove a

particular lookup service from the managed set of lookup services already discov-

ered, allowing that lookup service to be rediscovered. Invoking this method will

result in the flushing of the lookup service from the appropriate cache. This effect

ultimately causes a discard notification to be sent to all Di scove ryLi stener‘

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

139

140

130 SUPPORTING INTERFA CES AND CLASSES

objects registered with the event mechanism of the discovery process (including

all listeners registered by the Se rvi ceDi scove ryManage r).

The receipt of an event notification indicating that a lookup service from the

managed set has been discarded must ultimately result in the cancellation and

removal of all event leases that were granted by the discarded lookup service and

that are managed by the LeaseRenewal Manager on behalf of the

Se rvi ceDi scove ryManage r.

Furthermore, every service reference stored in the cache that is registered with

the discarded lookup service but is not registered with any of the remaining

lookup services in the managed set will be “discarded” as well. That is, all previ-

ously discovered service references that are registered with only unavailable

lookup services will be removed from the cache and made eligible for service

rediscovery.

SD.5.2 The Ser'vi ceItemFil ter' Interface

The Se rvi ceItem Fi l ter interface defines the methods used by an object such as

the Se rvi ceDi scove ryManager or the LookupCache to apply additional match-

ing criteria when searching for services in which an entity has registered interest.

It is the responsibility of the entity requesting the application of additional criteria

to construct an implementation of this interface that defines the additional criteria,

and to pass the resulting object (referred to as a filter) into the object that will

apply it.

The filtering mechanism provided by implementations of this interface is par-

ticularly useful to entities that wish to extend the capabilities of the standard tem-

plate matching scheme. For example, because template matching does not allow

one to search for services based on a range of attribute values, this additional

matching mechanism can be exploited by the entity to ask the managing object to

find all registered printer services that have a resolution attribute between say, 300

dpi and 1200 dpi.

package net.jini.lookup;

public interface ServiceItemFilter {

public boolean checkCServiceItem item);

}

14o

141

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 3 1

SD.5.2.1 The Semantics

The check method defines the implementation of the additional matching criteria

to apply to a Se rv1' ceItem object found through standard template matching. This

method takes one argument: the Se rv1' ceItem object to test against the additional

criteria. This method returns true if the input object satisfies the additional crite-
ria and false otherwise.

Neither a null reference nor a Se rv1' ceItem object containing null fields

will be passed into this method by the Se rv1' ceD1' scove ryManager.

If the parameter input to this method is a Se rv1' ceItem object that has non-

null fields but is associated with attribute sets containing null entries, this

method must process that parameter in a reasonable manner.

Should an exception occur during an invocation of this method, the semantics

of how that exception is handled are undefined.

This method must not modify the contents of the input Se rv1' ceItem object

because it could result in unpredictable and undesirable effects on future process-

ing by the Se rv1' ceD1' scove ryManager. That is why the effects of any such modi-

fication to the contents of that input parameter are undefined.

SD.5.3 The Ser'V'iceD'i scover'yEvent Class

The Se rv1' ceD1' scove ryEvent class encapsulates the service discovery informa-

tion made available by the event mechanism of the LookupCache. All listeners

that an entity has registered with the cache’s event mechanism will receive an

event of type Se rv1' ceD1' scoveryEvent upon the discovery, removal, or modifica-

tion of one of the cache’s services, as described previously in “Events and the
Cache.”

This class is a subclass of the class EventObject. In addition to the methods

of the EventObject class, this class provides two additional accessor methods
that can be used to retrieve the additional state associated with the event:

getPreEventSe rv1' ceItem and getPostEventSe rv1' ceItem.

The getSource method of the EventObject class returns the instance of

LookupCache from which the given event originated.

package net.jini.lookup;

public class ServiceDiscoveryEvent extends EventObject {

public ServiceDiscoveryEventCObject source,

ServiceItem preEventItem,

Servi ceItem postEventItem)

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

141

142

132 SUPPORTING INTERFACES AND CLASSES

{...}

public ServiceItem getPr‘eEventServiceItemO {...}

public ServiceItem getPostEventSerV‘iceItemO {...}

SD.5.3.1 The Semantics

The constructor of Se rvi ceD1' scove ryEvent takes three arguments:

9 An instance of Object corresponding to the instance of LookupCache from

which the given event originated

o A Se rv1' ceItem reference representing the state of the service (associated

with the given event) prior to the occurrence of the event

0 A Se rvi ceItem reference representing the state of the service after the
occurrence of the event

If null is passed as the source parameter for the constructor, a

Null Po1' nterException will be thrown.

Depending on the nature of the discovery event, a null reference may be

passed as one or the other of the remaining parameters, but never both. If nu'l'l is

passed as both the preEventItem and the postEventItem parameters, a

Null Po1' nterException will be thrown.

Note that the constructor will not modify the contents of either Se rvi ceItem

argument. Doing so can result in unpredictable and undesirable effects on future

processing by the Servi ceDiscoveryManager. That is why the effects of any

such modification to the contents of either input parameter are undefined.

The getPreEventSe rv1' ceItem method returns an instance of Servi ceItem

containing the service reference corresponding to the given event. The service

state reflected in the returned service item is the state of the service prior to the
occurrence of the event.

If the event is a discovery event (as opposed to a removal or modification

event), then this method will return null because the discovered service had no

state in the cache prior to its discovery.

The getPostEventSe rv1' ceItem method returns an instance of Se rvi ceItem

containing the service reference corresponding to the given event. The service

state reflected in the returned service item is the state of the service after the
occurrence of the event.

If the event is a removal event, then this method will return null because the

discovered service has no state in the cache after it is removed from the cache.

142

143

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 33

Because making a copy can be a very expensive process, neither accessor

method returns a copy of the service reference associated with the event. Rather,

each method returns the appropriate service reference from the cache itself. Due

to this cost, listeners (see Section SD.5.4, “The ServiceDiscoveryListener Inter-

face” below) that receive a Se rvi ceDi scove ryEvent must not modify the con-

tents of the object returned by these methods; doing so could cause the state of the

cache to become corrupted or inconsistent because the objects returned by these

methods are also members of the cache. This potential for corruption or inconsis-

tency is why the effects of modifying the object returned by either accessor
method are undefined.

SD.5.4 The ServiceDi scover'yLi stener' Interface

The Se rvi ceDi scove ryLi stener interface defines the methods used by objects

such as a LookupCache to notify an entity that events of interest related to the ele-

ments of the cache have occurred. It is the responsibility of the entity wishing to

be notified of the occurrence of such events to construct an object that implements

the Se rvi ceDi scove ryLi stener interface and then register that object with the

cache’s event mechanism. Any implementation of this interface must define the

actions to take upon receipt of an event notification. The action taken is dependent

on both the application and the particular event that has occurred.

package net.jini.lookup;

pub11'c interface Se rvi ceDi scove ryLi stener‘ {

public void servi ceAddedCServi ceDi scove ryEvent event) ;

pub] 1' c void servi ceRemoved (Servi ceDi scove r'yEvent event);

public void servi ceChanged (Servi ceDi scove ryEvent event) ;

SD.5.4.1 The Semantics

As described previously in the section titled “Events and the Cache,” when the

cache receives from one of the managed lookup services, an event signaling the

registration of a service of interest for thefirst time (or for the first time since the

service has been discarded), the cache invokes the servi ceAdded method on all

instances of Servi ceDi scoveryLi stener that are registered with the cache;

doing so notifies the entity that a service of interest has been discovered. The

method servi ceAdded takes one argument: an instance of

Se rvi ceDi scove ryEvent containing references to the service item correspond-

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

143

144

134 SUPPORTING INTERFA CES AND CLASSES

ing to the event, including representations of the service’s state both before and
after the event.

When the cache receives, from a managed lookup service, an event signaling

the removal of a service of interest from the last such lookup service with which it

was registered, the cache invokes the servi ceRemoved method on all instances of

Se rv1' ceD1' scove ryLi stener that are registered with the cache; doing so notifies

the entity that a service of interest has been discarded. The servi ceRemoved

method takes one argument: a Se rv1' ceD1' scove ryEvent object containing refer-

ences to the service item corresponding to the event, including representations of
the service’s state both before and after the event.

When the cache receives, from a managed lookup service, an event signaling

the unique modification of the attributes of a service of interest (across the

attribute sets of all references to the service), the cache invokes the

serv1' ceChanged method on all instances of Servi ceD1' scoveryL1' stener that

are registered with the cache; doing so notifies the entity that the state of a service

of interest has changed. The servi ceChanged method takes one argument: a

Se rv1' ceD1' scove ryEvent object containing references to the service item corre-

sponding to the event, including representations of the service’s state both before
and after the event.

Should an exception occur during an invocation of any of the methods defined

by this interface, the semantics of how that exception is handled are undefined.

Each method defined by this interface must not modify the contents of the

Se rv1' ceD1' scove ryEvent parameter; doing so can result in unpredictable and

undesirable effects on future processing by the Se rv1' ceD1' scove ryManage r. It is

for this reason that if one of these methods modifies the contents of the parameter,
the effects are undefined.

This interface makes the following concurrency guarantee: for any given lis-

tener object that implements this interface, no two methods (either the same two

methods or different methods) defined by the interface can be invoked at the same

time by the same cache. For example, the servi ceRemoved method must not be
invoked while the invocation of another listener’s servi ceAdded method is in

progress.

Finally, it should be noted that the intent of the methods of this interface is to

allow the recipient of the Se rv1' ceD1' scove ryEvent to be informed that a service

has been added to, removed from, or modified in the cache. Calls to these methods

are synchronous to allow the entity that makes the call (for example, a thread that

interacts with the various lookup services of interest) to determine whether or not

the call succeeded. However, it is not part of the semantics of the call that the noti-

fication return can be delayed while the recipient of the call reacts to the occur-

rence of the event. It is therefore highly recommended that implementations of

this interface avoid time consuming operations and return from the method as

144

145

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 35

quickly as possible. For example, one strategy might be to simply note the occur-

rence of the Se rvi ceDi scove ryEvent and perform any time-consuming event

handling asynchronously.

SD.5.5 The LookupCache Interface

The LookupCache interface defines the methods provided by the object created

and returned by the Servi ceDiscoveryManager when an entity invokes the

createLookupCache method. Within this object are stored the discovered service

references that match criteria defined by the entity. Through this interface the

entity may retrieve one or more of the stored service references, register and

unregister with the cache’s event mechanism, and terminate all of the cache’s pro-

cess1ng.

package net.jini.lookup;

public interface LookupCache {

public ServiceItem lookupCServiceItemFilter filter);

public Servi ceItem[] lookupCServi ceItemFilter filter,

int maxMatches);

public void addLi stener

(Se rvi ceDi scove ryLi stener listener);

public void removeLi stener

(Se rvi ceDi scove ryLi stener listener);

public void discardCObject serviceReference);

public void termi nateC);

SD.5.5.1 The Semantics

Depending on which version is invoked, the lookup method of the LookupCache

interface returns one or more elements—each matching the input criteria—that

were stored in the associated cache. The object that is returned is either a single

instance of Se rvi ceItem or a set of service references in the form of an array of

Se rvi ceItem objects. Each service item that is returned by either form of this

method must have been previously discovered both to be registered with one or

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

145

146

136 SUPPORTING INTERFA CES AND CLASSES

more of the lookup services in the managed set and to match criteria defined by

the entity.

One argument is common to both forms of 1ookup: an instance of

Se rv1' ceItemFi 1 te r. The semantics of the fi1ter argument are identical to

those of the fi 1 te r argument specified for a number of the methods defined in the

interface of the Se rv1' ceD1' scove ryManager utility class. This argument is

intended to allow an entity to separate its filtering into two steps: an initial filter

applied during the discovery phase and then a finer resolution filter applied upon

retrieval from the cache. As with the methods of the Se rv1' ceD1' scove ryManager,

if nu11 is the value of this argument, then no additional filtering will be per-
formed.

The second form of the 1ookup method of the LookupCache interface takes an

additional argument: a parameter of type int that represents the maximum num-

ber of matches that should be returned. The array returned by this form of 1 ookup

will contain no more than the requested number of service references, although it

may contain fewer than that number. The value input to this argument must be

positive; otherwise, an I11ega1ArgumentExcept1‘on will be thrown.

If the cache is empty, or if no service can be found that matches the input cri-

teria, then the first form of 1 ookup will return nu11, whereas the second form of

1ookup will return an empty array. The algorithm used to select the return ele-

ment(s) from the set of matching service references is implementation dependent.

Neither form of the 1ookup method of the LookupCache interface returns a

copy of the matching service reference(s) that were selected; rather, each form

returns the actual service reference(s) from the cache itself. Because the actual

service reference(s) are returned, entities that invoke either form of this method

must not modify the contents of the returned reference(s). Modifying the returned

service reference(s) could cause the state of the cache to become corrupted or

inconsistent. This potential for corruption or inconsistency is why the effects of

modifying the service reference(s) returned by either form of 1 ookup is undefined.

Typically, an entity will request the creation of a separate cache for each ser-

vice type of interest. When the entity simply needs a reference to a service of a

particular type, the entity should invoke the first form of 1ookup to retrieve one

element from the cache; in this case, which particular service reference that is

returned will not, in general, matter to the entity. If for some reason it does matter

to an entity which service reference is returned, then the entity can invoke the sec-

ond form of 1ookup requesting that Integer.MAX_VALUE service references be

returned; doing so will return all elements of the cache that match the input crite-

ria. The entity can then iterate through each element, selecting the desired refer-
ence.

The addL1' stener method will register a Se rv1' ceD1' scove ryL1' stener object

with the event mechanism of a LookupCache. This listener object will receive a

146

147

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 37

Se rvi ceD1' scove ryEvent upon the discovery, removal, or modification of one of

the cache’s services, as described previously in “Events and the Cache.” This

method takes one argument: a reference to the Se rvi ceD1' scove ryL1' stener

object to register.

If nu'l'l is input to the addL1' stener method, a Nu'l'lPoi nterException is

thrown. If the object input is a duplicate (using the equals method) of another

element in the set of listeners, no action is taken.

Once a listener is registered, it will be notified of all service references discov-

ered to date, and will be notified as new services are discovered and existing ser-
vices are modified or discarded.

The LookupCache makes a reentrancy guarantee with respect to any

Se rvi ceD1' scove ryL1' stener objects registered with it. Should the LookupCache

invoke a method on a registered listener (a local call), any call from that method to

a local method of the LookupCache is guaranteed not to result in a deadlock con-
dition.

The removeLi stener method will remove a Servi ceD1' scoveryLi stener

object from the set of listeners currently registered with a LookupCache. Once all

listeners are removed from the cache’s set of listeners, the cache will send no

more Se rvi ceD1' scove ryEvent notifications. This method takes one argument: a

reference to the Se rv1' ceD1' scove ryLi stener object to remove.

If the parameter value to removeLi stene r is null, or if the listener passed to

this method does not exist in the set of listeners maintained by the implementation

class, then this method will take no action.

If an entity determines that a service reference retrieved from the cache is no

longer available, the entity should request the removal of that reference from the

cache. The mechanism for discarding an unavailable service from the cache is

provided by the discard method of the LookupCache interface. The discard

method takes one argument: an instance of Object whose reference is the service

reference to remove from the cache. If the proxy input to this method is ml 1 , or if

it matches (using the equals method) none of the service references in the cache,
this method takes no action.

The discard method not only deletes the service reference from the cache,

but also causes a notification to be sent to all registered listeners indicating that the

service has been discarded (see the description of the serv1' ceRemoved method in

the section that specifies the Se rv1' ceD1' scove ryLi stener interface). The service

is guaranteed to have been removed from the cache when this method completes

successfully; the service is then said to have been discarded. No such guarantee is

made with respect to when the discard event is sent to the client’s registered listen-

ers. That is, the event that notifies the client that the service has been discarded

may or may not be sent asynchronously.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

147

148

138 SUPPORTING INTERFA CES AND CLASSES

With respect to discarding services, there is a situation that must be handled

by all implementations of the LookupCache. Because the LookupCache discovers

a service through a lookup service rather than through the service itself, there is a

danger that, unless the LookupCache takes action (described below), once a ser-

vice has been discarded, it may never be rediscovered. This can happen because

even though a service may be discarded from the cache, it may not be discarded

from the lookup services with which it is registered.

To understand this situation, it might help to first consider the conditions

under which a service is normally discarded from the cache and then rediscov-

ered. An entity typically discards a service when the entity determines that the ser-

vice has become unavailable. Recall that a service usually becomes unavailable to

an entity when the service crashes, the service is shut down, or the link between

the entity and the service experiences a network partition. Under normal circum-

stances, when a well-defined service becomes unavailable because it has crashed

or has been shut down, and the entity—after determining that the service is

unavailable—discards the service, the cache will rediscover the service when the

service comes back on line. The service is rediscovered because a well-behaved

service will typically reregister with each lookup service with which it was regis-

tered prior to crashing or shutting down. Note that such a service will reregister

even when its original lease with a lookup service is still valid. When the service

reregisters with a lookup service, the lookup service notifies the cache’s listener

that a reregistration has occurred, and the service is then rediscovered.

A special case of the scenario just described involves services that choose to

persist their leases. Typically, when a service that persists its leases comes back on

line after a crash or a shutdown, the service will not reregister with any lookup
service for which the associated lease is still valid. If none of the service’s leases

expire during the period in which the service is down, then when the service

comes back on line, it will never reregister with any of the desired lookup ser-

vices, and the cache will never be notified that the discarded service has become

available once again.

Therefore it is important to note that there are conditions that may hinder

rediscovering certain types of services that were discarded as a result of a crash or

shutdown. This situation should not occur with any frequency because services

that persist their leases are expected to be less common than other types of ser-

vices. However, there is a common scenario in which any type of service may be

discarded but never rediscovered. This new scenario is characterized not by ser-

vice crashes or shutdowns, but by communication failures. In this situation, com-

munication failures cause only the entity to view the service as unavailable; that is

each lookup service in the managed set can still communicate with the service.

As with service crashes or shutdowns, communication failures between the

entity and the service can also cause the entity to discard the service. But prob-

148

149

JINI SER VICE DISCOVERY UTILITIES SPECIFICA TION, version 1. I 1 39

lems can arise when the communication failures occur between the entity and the

service, but not between the service and any of the lookup services in the managed

set. Although the service never goes down, it is still discarded by the entity

because the inability to communicate with the service causes the entity to view the
service as unavailable. But because the service can still communicate with the

lookup services, the service will continue renewing its residency in each lookup

service. Thus, since none of the service’s leases expire, the service never reregis-

ters with any of the lookup services, and the lookup services will never send
events to the cache’s listener that cause the service to be rediscovered.

To address the scenarios described above, all implementations must do the

following when a service is discarded from the cache:

9 Place the reference to the discarded service in separate storage, and remove

the reference from the cache’s storage (to guarantee that subsequent queries

of the cache do not return that same unavailable reference).

9 Wait an implementation-dependent amount of time that is likely to exceed

the typical service lease duration.

9 If a Se rv1' ceEvent with a transition equal to TRANSITION_MATCH_NOMATCH

is received (indicating that the service’s lease has expired), then the service

reference that was set aside can be flushed, and the service is then truly dis-
carded.

o If such a Se rv1' ce Event is not received (indicating that a transient commu-

nication failure probably occurred), the service reference that was set aside

should be placed back in the cache’s local storage, and if the entity is regis-

tered for events from the cache, the appropriate event should be sent to the

entity’s registered listener.

The terminate method performs cleanup duties related to the termination of

the processing being performed by a particular instance of LookupCache. For that

instance, this method cancels all event leases granted by the lookup services that

supplied the contents of the cache, and unexports all remote listener objects regis-

tered with those lookup services. The terminate method is typically called when

the entity is no longer interested in the contents of the LookupCache. Upon com-

pletion of the termination process, the semantics of all current and future method

invocations on the current instance of LookupCache are undefined.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

149

150

140 SUPPORTING INTERFACES AND CLASSES

150

151

LS

Jini Lookup Attribute Schema

Specification

LS.1 Introduction

THE Jini lookup service provides facilities for services to advertise their avail-
ability and for would-be clients to obtain references to those services based on the

attributes they provide. The mechanism that it provides for registering and query-

ing based on attributes is centered on the Java platform type system, and is based

on the notion of an entry.

An entry is a class that contains a number of public fields of object type. Ser-

vices provide concrete values for each of these fields; each value acts as an

attribute. Entries thus provide aggregation of attributes into sets; a service may

provide several entries when registering itself in the lookup service, which means

that attributes on each service are provided in a set of sets.

The purpose of this document is to provide a framework in which services and

their would-be clients can interoperate. This framework takes two parts:

9 We describe a set of common predefined entries that span much of the basic

functionality that is needed both by services registering themselves and by

entities that are searching for services.

9 Since we cannot anticipate all ofthe future needs ofclients ofthe lookup ser-

vice, we provide a set of guidelines and design patterns for extending, using,

and imitating this set in ways that are consistent and predictable. We also

construct some examples that illustrate the use of these patterns.

151

141

152

142 INTRODUCTION

LS.1.1 Terminology

Throughout this document, we will use the following terms in consistent ways:

0 Service—a service that has registered, or will register, itself with the lookup
service

0 Client—an entity that performs queries on the lookup service, in order to

find particular services

LS.1.2 Design Issues

Several factors influence and constrain the design of the lookup service schema.

Matching Cannot Always Be Automated

No matter how much information it has at its disposal, a client of the lookup ser-

vice will not always be able to find a single unique match without assistance when

it performs a lookup. In many instances we expect that more than one service will

match a particular query. Accordingly, both the lookup service and the attribute

schema are geared toward reducing the number of matches that are returned on a

given lookup to a minimum, and not necessarily to just one.

Attributes Are Mostly Static

We have designed the schema for the lookup service with the assumption that

most attributes will not need to be changed frequently. For example, we do not

expect attributes to change more often than once every minute or so. This decision

is based on our expectation that clients that need to make a choice of service based

on more frequently updated attributes will be able to talk to whatever small set of

services the lookup service returns for a query, and on our belief that the benefit of

updating attributes frequently at the lookup service is outweighed by the cost in

network traficic and processing.

Humans Need to Understand Most Attributes

A corollary of the idea that matching cannot always be automated is that

humans—whether they be users or administrators of services—must be able to

understand and interpret attributes. This has several implications:

152

153

JINI LOOKUP A TTRIB UTE SCHEMA SPECIFICA TION, version 1.1

9 We must provide a mechanism to deal with localization of attributes

o Multiple-valued attributes must provide a way for humans to see only one

value (see Section LS.2, “Human Access to Attributes”)

We will cover human accessibility of attributes soon.

Attributes Can Be Changed by Services or Humans, But Not Both

For any given attribute class we expect that attributes within that class will all be

set or modified either by the service, or via human intervention, but not both.

What do we mean by this? A service is unlikely to be able to determine that it has

been moved from one room to another, for example, so we would not expect the

fields of a “location” attribute class to be changed by the service itself. Similarly,

we do not expect that a human operator will need to change the name of the ven-

dor of a particular service. This idea has implications for our approach to ensuring
that the values of attributes are valid.

Attributes Must Interoperate with JavaBeans Components

The JavaBeans specification provides a number of facilities relating to the local-

ized display and modification of properties, and has been widely adopted. It is to

our advantage to provide a familiar set of mechanisms for manipulating attributes

in these ways.

LS.1.3 Dependencies

This document relies on the following other specifications:

9 The Jini Technology Core Platform Specification, ”Entry”

9 Jini Entry Utilities Specification

9 JavaBeans Specification

143

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

153

154

144 INTRODUCTION

154

155

JINI LOOKUPATTRIB UTE SCHEMA SPECIFICATION, version 1.1 145

LS.2 Human Access to Attributes

LS.2.1 Providing a Single View of an Attribute’s Value

CONSIDER the following entry class:
public class Foo implements net.jini.core.entry.Entry {

public Bar baz;

}

public class Bar {

int quux;

boolean zot;

}

A visual search tool is going to have a difficult time rendering the value of an

instance of class Bar in a manner that is comprehensible to humans. Accordingly,

to avoid such situations, entry class implementors should use the following guide-

lines when designing a class that is to act as a value for an attribute:

9 Provide a property editor class of the appropriate type, as described in Sec-

tion 9.2 of the JavaBeans Specification.

9 Extend the java. awt . Component class; this allows a value to be represented

by a JavaBeans component or some other “active” object.

9 Provide either a non-default implementation of the Object . toStri ng

method or inherit directly or indirectly from a class that does so (since the

default implementation of Obj ect . toStri ng is not useful).

One of the above guidelines should be followed for all attribute value classes.

Authors of entry classes should assume that any attribute value that does not sat-

isfy one of these guidelines will be ignored by some or all user interfaces.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

155

156

146 HUMANACCESS TOATTRIBUTES

156

157

JINI LOOKUP A TTRIB UTE SCHEMA SPECIFICA TION, version 1.1

LS.3 JavaBeans Components and Design
Patterns

LS.3.1 Allowing Display and Modification of Attributes

S ~ E use JavaBeans components to provide a layer of abstraction on top of the
individual classes that implement the net. jini .core.entry.Entry interface.

This provides us with several benefits:

9 This approach uses an existing standard and thus reduces the amount of

unfamiliar material for programmers.

o JavaBeans components provide mechanisms for localized display of

attribute values and descriptions.

o Modification of attributes is also handled, via property editors.

LS.3.1.1 Using JavaBeans Components with Entry Classes

Many, if not most, entry classes should have a bean class associated with them.

Our use of JavaBeans components provides a familiar mechanism for authors of

browse/search tools to represent information about a service’s attributes, such as

its icons and appropriately localized descriptions of the meanings and values of its

attributes. JavaBeans components also play a role in permitting administrators of a

service to modify some of its attributes, as they can manipulate the values of its

attributes using standard JavaBeans component mechanisms.

For example, obtaining a java. beans . BeanDescr‘i ptor for a JavaBeans

component that is linked to a “location” entry object for a particular service allows

a programmer to obtain an icon that gives a visual indication of what that entry

class is for, along with a short textual description of the class and the values of the

individual attributes in the location object. It also permits an administrative tool to

view and change certain fields in the location, such as the floor number.

147

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

157

158

1 48 JA VABEANS COlllPONENTS AND DESIGN PA TTERNS

LS.3.2 Associating JavaBeans Components with Entry Classes

The pattern for establishing a link between an entry object and an instance of its

JavaBeans component is simple enough, as this example illustrates:

package org.example.foo;

import java.io.Serializable;

import net.jini.lookup.entry.EntryBean;

import net.jini.entry.AbstractEntry;

public class Size {

public int value;

}

public class Cavenewt extends AbstractEntry {

public CavenewtC) {

}

public CavenewtCSize anvilSize) {

this.anvilSize = anvilSize;

}

public Size anvilSize;

public class Cavenethean implements EntryBean, Serializable {

protected Cavenewt assoc;

public CavenetheanC) {

superC);

assoc = new CavenewtC);

}

public void setAnvilSizeCSize x) {

assoc.anvilSize = x;

}

public Size getAnvilSizeC) {

return assoc.anvilSize;

}

public void makeLinkCEntry obj) {

assoc = (Cavenewt) obj;

}

public Entry followLink() {

158

159

JINI LOOKUP A TTRIB UTE SCHEMA SPECIFICA TION, version 1.1

}

return assoc;

From the above, the pattern should be relatively clear:

9 The name of a JavaBeans component is derived by taking the fully qualified

entry class name and appending the string Bean; for example, the name of

the JavaBeans component associated with the entry class foo. bar. Baz is

foo. bar. BazBean. This implies that an entry class and its associated Java-

Beans component must reside in the same package.

The class has both a public no-arg constructor and a public constructor that

takes each public object field of the class and its superclasses as parameter.

The former constructs an empty instance of the class, and the latter initial-

izes each field of the new instance to the given parameter.

The class implements the net. j 1' n1' . core . entry. Entry interface, prefera-

bly by extending the net . j 1' n1' . entry . Abst ractEnt ry class, and the Java-

Beans component implements the net. ji ni .100kup . entry . EntryBean
interface.

There is a one-to-one link between a JavaBeans component and a particular

entry object. The make L1' nk method establishes this link and will throw an

exception if the association is with an entry class of the wrong type. The

followLi' nk method returns the entry object associated with a particular

JavaBeans component.

The no-arg public constructor for a JavaBeans component creates and makes

a link to an empty entry object.

For each public object field foo in an entry class, there exist both a setF00

and a getFoo method in the associated JavaBeans component. The setFoo

method takes a single argument of the same type as the foo field in the asso-

ciated entry and sets the value of that field to its argument. The getFoo
method returns the value of that field.

149

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

159

160

150 JA VABEANS COlllPONENTS AND DESIGN PA TTERNS

LS.3.3 Supporting Interfaces and Classes

The following classes and interfaces provide facilities for handling entry classes

and their associated JavaBeans components.

package net .jini .lookup . entry;

public class EntryBeans {

public static EntryBean createBeanCEntry e)

throws ClassNotFoundException, java.io.IOException {...}

public static Class getBeanC'lassCClass c)

throws ClassNotFoundException {...}

public interface EntryBean {

void makeLinkCEntry e);

Entry followLinkO;

}

The EntryBeans class cannot be instantiated. Its sole method, createBean, cre-

ates and initializes a new JavaBeans component and links it to the entry object it is

passed. If a problem occurs creating the JavaBeans component, the method throws

either java . i o . IOExcepti on or Cl assNotFoundExcepti on.

The createBean method uses the same mechanism for instantiating a Java-

Beans component as the java.beans.Beans.i nstanti ate method. It will ini-

tially try to instantiate the JavaBeans component using the same class loader as

the entry it is passed. If that fails, it will fall back to using the default class loader.

The getBeanCl ass method returns the class of the JavaBeans component

associated with the given attribute class. If the class passed in does not implement

the net . ji ni . core . entry . Entry interface, an 11 'I egalArgumentExcepti on is

thrown. If the given attribute class cannot be found, a Cl assNotFoundExcepti on
is thrown.

The EntryBean interface must be implemented by all JavaBeans components

that are intended to be linked to entry objects. The make Li nk method establishes a

link between a JavaBeans component object and an entry object, and the

fol l owLi nk method returns the entry object linked to by a particular JavaBeans

component. Note that objects that implement the EntryBean interface should not

be assumed to perform any internal synchronization in their implementations of

the make Li nk or 1‘01 '| owLi nk methods, or in the setFoo 0r getFoo patterns.

160

161

JINI LOOKUP ATTRIB UTE SCHEMA SPECIFICA TION, version 1.1 151

LS.4 Generic Attribute Classes

WE will now describe some attribute classes that are generic to many or all ser-
vices and the JavaBeans components that are associated with each. Unless other-

wise stated, all classes defined here live in the net. j i ni .lookup . entry

package. The definitions assume the following classes to have been imported:

java.io.Serializable

net. ji ni . entry.AbstractEntry

LS.4.1 Indicating User Modifiability

To indicate that certain entry classes should only be modified by the service that

registered itself with instances of these entry classes, we annotate them with the
Se rvi ceCont rol l ed interface.

public interface ServiceControlled {

}

Authors of administrative tools that modify fields of attribute objects at the lookup

service should not permit users to either modify any fields or add any new

instances of objects that implement this interface.

LS.4.2 Basie Service Information

The Se rvi ceIm‘o attribute class provides some basic information about a service.

public class ServiceInfo extends AbstractEntry

implements ServiceControlled

{

public ServiceInfoO {...}

public ServiceInfoCString name, String manufacturer,

String vendor, String version,

String model, String serialNumber) {...}

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

161

162

152 GENERIC A TTRIBUTE CLASSES

public String name;

public String manufacturer;

public String vendor;

public String version;

public String model;

public String serialNumber;

}

public class ServiceInfoBean

implements EntryBean, Serializable

{

public String getNameC) {m}

public void setNameCString s) {m}

public String getManufacturerC) {m}

public void setManufacturerCString s) {m}

public String getVendorC) {m}

public void setVendorCString s) {m}

public String getVersionC) {m}

public void setVersionCString s) {m}

public String getModelC) {m}

public void setModelCString s) {m}

public String getSerialNumberC) {m}

public void setSerialNumberCString s) {m}

}

Each service should register itself with only one instance of this class. The fields

of the Se rvi ceIm‘o class have the following meanings:

o The name field contains a specific product name, such as "U'I tra 30" (for a

particular workstation) or " J avaSafe " (for a specific configuration manage-

ment service). This string should not include the name of the manufacturer
or vendor.

o The manufactu rer field provides the name of the company that “built” this

service. This might be a hardware manufacturer or a software authoring

company.

0 The vendor field contains the name of the company that sells the software

or hardware that provides this service. This may be the same name as is in

the manufactu re r field, or it could be the name of a reseller. This field exists

so that in cases in which resellers relabel products built by other companies,
users will be able to search based on either name.

162

163

JINI LOOKUP ATTRIB UTE SCHEMA SPECIFICA TION, version 1.1 153

9 The version field provides information about the version of this service. It

is a free-form field, though we expect that service implementors will follow

normal version-naming conventions in using it.

o The model field contains the specific model name or number of the product,

if any.

9 The seri al Number field provides the serial number of this instance of the

service, if any.

LS.4.3 More Specific Information

The Se rvi ceType class allows an author of a service to deliver information that is

specific to a particular instance of a service, rather than to services in general.

public class ServiceType extends AbstractEntry

implements ServiceControlled

{

public Servi ceTypeO {...}

public java.awt.Image getIconCint iconKind) {...}

public String getDisplayNameO {...}

public String getShortDescriptionO {...}

}

Each service may register itself with multiple instances of this class, usually with

one instance for each type of service interface it implements.

This class has no public fields and, as a result, has no associated JavaBeans

component.

The getIcon method returns an icon of the appropriate kind for the service; it

works in the same way as the getIcon method in the java.beans.BeanInfo

interface, with the value of i con Ki nd being taken from the possibilities defined in

that interface. The getDi spl ayName and getShortDescri ption methods return

a localized human-readable name and description for the service, in the same

manner as their counterparts in the java. beans . Featu reDescri ptor class. Each

of these methods returns null if no information of the appropriate kind is defined.

In case the distinction between the information this class provides and that

provided by a JavaBeans component’s meta-information is unclear, the class

Se rvi ceType is meant to be used in the lookup service as one of the entry classes

with which a service registers itself, and so it can be customized on a per-service

basis. By contrast, the FeatureDescri ptor and BeanInfo objects for all

EntryBean classes provide only generic information about those classes and none

about specific instances of those classes.

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

163

164

154 GENERIC ATTRIBUTE CLASSES

LS.4.4 Naming a Service

People like to associate names with particular services and may do so using the
Name class.

public class Name extends AbstractEntry {

public NameO {...}

public Name(String name) {...}

public String name;

public class NameBean implements EntryBean, Serializable {

public String getNameO {...}

public void setNameCString s) {...}

}

Services may register themselves with multiple instances of this class, and either

services or administrators may add, modify, or remove instances of this class from

the attribute set under which a service is registered.

The name field provides a short name for a particular instance of a service (for

example, “Bob’s toaster”).

LS.4.5 Adding a Comment to a Service

In cases in which some kind of comment is appropriate for a service (for example,

“this toaster tends to burn bagel s”), the Comment class provides an appro-

priate facility.

public class Comment extends AbstractEntry {

public CommentC) {...}

public CommentCString comment) {...}

public String comment;

public class CommentBean implements EntryBean, Serializable {

public String getCommentO {...}

public void setCommentCString s) {...}

164

165

JINI LOOKUP A TTRIB UTE SCHEMA SPECIFICA TION, version 1.1

A service may have more than one comment associated with it, and comments

may be added, removed, or edited by either a service itself, administrators, or
users.

LS.4.6 Physical Location

The Location and Address classes provide information about the physical loca-

tion of a particular service.

Since many services have no physical location, some have one, and a few may

have more than one, it might make sense for a service to register itself with zero or

more instances of either of these classes, depending on its nature.

The Location class is intended to provide information about the physical

location of a service in a single building or on a small, unified campus. The

Add ress class provides more information and may be appropriate for use with the

Location class in a larger, more geographically distributed organization.

public class Location extends AbstractEntry {

public LocationO {...}

public LocationCStri ng floor, String room,

String building) {...}

public String floor;

public String room;

public String building;

public class LocationBean implements EntryBean, Serializable {

public String getFloorC) {m}

public void setFloorCString s) {m}

public String getRoomC) {m}

public void setRoom(String s) {m}

public String getBuildingC) {m}

public void setBuildingCString s) {m}

public class Address extends AbstractEntry {

public AddressO {...}

public AddressCString street, String organization,

String organizationalUnit, String locality,

String stateOrProvince, String postalCode,

155

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

165

166

156 GENERICATTRIBUTE CLASSES

String country) {...}

public String street;

public String organization;

public String organizationalUnit;

public String locaiity;

public String stateOrProvince;

public String postalCode;

public String country;

}

public class AddressBean implements EntryBean, Serializabie {

public String getStreetC) {m}

public void setStreetCString s) {m}

public String getOrganizationC) {m}

public void setOrganizationCString s) {m}

public String getOrganizationalUnitC) {m}

public void setOrganizationalUnitCString s) {m}

public String getLocalityC) {m}

public void setLocalityCString s) {m}

public String getStateOrProvinceC) {m}

public void setStateOrProvinceCString s) {m}

public String getPostalCodeC) {m}

public void setPostaiCodeCString s) {m}

public String getCountryC) {m}

public void setCountryCString s) {m}

}

We believe the fields of these classes to be self-explanatory, with the possible

exception of the locality field of the Address class, which would typically hold

the name of a city.

LS.4.7 Status Information

Some attributes of a service may constitute long-lived status, such as an indication

that a printer is out of paper. We provide a class, Status, that implementors can

wemaMmfiummwmgmmsmmmbmwdmws

public abstract class Status extends AbstractEntry {

protected StatusO {...}

protected StatusCStatusType severity) {...}

166

167

JINI LOOKUP ATTRIB UTE SCHEMA SPECIFICA TION, version 1.1 157

public StatusType severity;

}

public class StatusType implements Serializable {

private final int type;

private StatusTypeCint t) { type = t; }

public static final StatusType ERROR = new StatusTypeCl);

public static final StatusType WARNING =

new StatusTypeCZ);

public static final StatusType NOTICE = new StatusTypeC3);

public static final StatusType NORMAL new StatusType(4);

}

public abstract class StatusBean

implements EntryBean, Serializable

{

public StatusType getSeverityO {...}

public void setSeverityCStatusType i) {...}

}

We define a separate StatusType class to make it possible to write a property edi-

tor that will work with the StatusBean class (we do not currently provide a prop-

erty editor implementation).

LS.4.8 Serialized Forms

Class seri a'l VersionUID Serialized Fields

Add ress 2896136903322046578L allpublicfields

AddressBean 4491500432084550577L Address asoc

Comment 7138608904371928208L allpublicfields

CommentBean 5272583409036504625L Comment asoc

Location —327527667796743 1315L allpublicfields

LocationBean 4182591284470292829L Location asoc

Name 2743215148071307201L allpublicfields

Name Bean —602679l845102735793L Name asoc

A COLLECTION OF JINITM TECHNOLOGYHELPER UTILITIES AND SER VICES SPECIFICA TIONS

167

168

158

Class

ServiceInfo

ServiceInfoBean

ServiceType

Status

StatusBean

StatusType

ser'ia1VersionUID

—1116664185758541509L

8352546663361067804L

—6443809721367395836L

—5193075846115040838L

—1975539395914887503L

—8268735508512712203L

168

GENERIC A TTRIBUTE CLASSES

Serialized Fields

allpublicfields

ServiceInfo asoc

allpublicfields

allpublicfields

Status asoc

int type

169

LD

Jini Lookup Discovery
Service

LD.1 Introduction

PART of The Jini Technology Core Platform Specification, “Discovery and Join”
is devoted to defining the discovery requirements for well-behaved Jini clients and

services, called discovering entities, which are required to participate in the multi-

cast discovery protocols. Discovering entities are required to send multicast dis-

covery requests to lookup services with which the entities wish to interact. In

addition, they must continuously listen for and act on announcements from the

desired lookup services. Interactions with a discovered lookup service may

involve registration with that lookup service, or may simply involve querying the

lookup service for services of interest (or both). To find specific lookup services,

discovering entities also need to be able to participate in the unicast discovery pro-
tocol.

Under certain circumstances, a discovering entity may find it useful to allow a

third party to perform the entity’s discovery duties. For example, an activatable

entity that wishes to deactivate may wish to employ a special Jini technology-

enabled service (Jini service)—referred to as a lookup discovery service—to per-

form discovery duties on its behalf. Such an entity may wish to deactivate for var-

ious reasons, one being to conserve computational resources. While the entity is

inactive, the lookup discovery service, running on the same or a separate host,

would employ the discovery protocols to find lookup services in which the entity

has expressed interest and would notify the entity when a previously unavailable

lookup service has become available.

The facilities of the lookup discovery service are of particular value in a sce-

nario in which a new lookup service is added to a long-lived djinn containing mul-

169

159

170

160 INTRODUCTION

tiple inactive services. Without the use of a lookup discovery service, the time

frame over which the new lockup service is fully populated can be both unpredict-
able and unbounded.

To understand why this time frame can be unpredictable, consider the fact that

an inactive service has no way of discovering a new lookup service. This means

that each inactive service in the djinn that wishes to discover and join a new

lookup service must first activate. Since activation of a service occurs when some

client attempts to use the service, the amount of time that passes between the

arrival of the new lookup service and the activation of the service can vary greatly

over the range of services in the dj inn. Thus, the time frame over which the lookup

service becomes fully populated cannot be predicted because it could take arbi-

trarily long before all of the services activate and then discover and join the new

lookup service.

In addition to being unpredictable, the time it takes for the lookup service to

fully populate can also be unbounded. This is because there is no guarantee that

the lookup service will send multicast announcements between the time the ser-

vice activates and the time it deactivates. If the timing is right, it is possible that

one or more of the services in the djinn may never discover and join the new

lookup service. Thus, without the use of the lookup discovery service, the new

lookup service may never fully populate.

As another example of a discovering entity that may find it useful to allow a

third party to perform the entity’s discovery duties, consider an entity that exists in

an environment with one of the following characteristics:

0 The environment does not support multicast.

o The environment contains no lookup services within the entity’s multicast

radius (roughly, the number of hops beyond which neither the multicast

requests from the entity nor the multicast announcements from the lookup

service will propagate).

o The environment does contain lookup service(s) within the entity’s multicast

radius, but at least one service needed by the entity is not registered with any

lookup service within that radius.

If such an entity was provided with references to lookup services—located

outside of the entity’s multicast radius—that contain services needed by the entity,

the entity could contact each lookup service and retrieve the desired service refer-

ences. One way to provide the entity with access to those lookup services might

be to configure the entity to find and use a lookup discovery service, operating

beyond the entity’s range, that can employ multicast discovery to find nearby

lookup services belonging to groups in which the entity has expressed interest.

170

