
206

196 THE INTERFACE

will not be longer. The value of the leaseDuration argument must bepositive,
Lease. FOREVER, or Lease.ANY; otherwise, an I1legalArgumentException will
be thrown. Two calls to the createLeaseRenewalSet method will never return

objects that are equal. The set's lease is obtained through a method provided by
the set.

LeaseRenewalSet defines the interface to the sets created by the lease
renewalservice. This interface is not a remote interface. Each implementation of
the renewal service exports proxy objects that implement the LeaseRenewalSet
interface local to the client and use an implementation-specific protocol to com-
municate with the actual remote server. All of the proxy methods obey normal
RMIremote interface semantics except where explicitly noted. The proxy objects
for two sets are equal (using the equals method) if they are proxies for the same
set created by the same renewal service. Any method that communicates with the
remote server should throw a NoSuchObjectExceptionifthe set no longerexists.
If a client receives a NoSuchObjectException from one of the operations on a
lease renewal set, the client can infer that the set has been destroyed; however,it
should notinfer that the renewal service has been destroyed.

package net.jini. lease;

public interface LeaseRenewalSet {

final public static long RENEWAL_FAILURE_EVENT_ID = Q;

final public static long EXPIRATION_WARNING_EVENT_ID = 1;

public void renewFor(Lease leaseToRenew,

long desiredDuration,

long renewDuration)

throws RemoteException;

public void renewFor(Lease leaseToRenew,

long desiredDuration)

throws RemoteException;

public EventRegistration setExpirationWarningListener(

RemoteEventListener listener,

long minWarning,

Marshal ledObject handback)

throws RemoteException;

public void clearExpirationWarningListener()

throws RemoteException;

206

207

JINI LEASE RENEWAL SERVICE SPECIFICATION, version 1.1 197

public EventRegistration setRenewalFai lureListener(

RemoteEventListener listener,

Marshal ledObject handback)

throws RemoteException;

public void clearRenewalFailureListener()

throws RemoteException;

public Lease remove(Lease leaseToRemove)

throws RemoteException;

public Lease[] getLeases()

throws LeaseUnmarshalException, RemoteException;

public Lease getRenewalSetLease(Q);

}

Leases can be addedto the set through the renewFor methods. There are two
forms of this method: a three-argument form and a two-argument form. The three-
argument form will be described first. The 1easeToRenew argumentspecifies the
lease to be renewed. An I1legalArgumentException will be thrownif the lease

has not expired and was granted by the renewal service itself. An
I1legalArgumentException will also be thrownif the lease is currently a mem-
ber of another set allocated by the same renewal service. If 1easeToRenewis
nul], aNul1PointerException will be thrown.

The desi redDuration parameteris the numberofmillisecondsthat the client
would like for the client lease to remainin the set. It is used to calculate the client

lease’s desired expiration by adding desiredDuration to the current time (as
viewed by the service). If this causes an overflow, a desired expiration of
Long.MAX_VALUE will be used. Unlike a lease duration, the desired duration is

unilaterally specified by the client, not negotiated between the client and the ser-
vice. Note that a negative value for desi redDuration (including Lease. ANY) will
result in a desired expiration that is in the past. This will cause the client lease to
be dropped immediately from the set and will not result in an exception. A
renewalfailure event will be generated if and only if the client’s actual expiration
is before its desired expiration.

If the actual expiration time of the client lease being addedtotheset is before
both the current time (as viewed by the renewal service) and the client lease’s
desired expiration time, the method will return normally. However, the client lease
will be dropped from the set, and a renewalfailure event will be generated.If the

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

207

208

198 THE INTERFACE

actual expiration time is before the current time and equalto or after the desired
expiration time, the method will return normally, the client lease will be dropped
from the set, and no eventwill be generated.

A desiredDuration of Long.MAX_VALUE does not imply that the client lease
will remain in the set forever. The client lease will be ejected from the set if the set
is destroyed,the client lease itself expires, the client lease is removed from theset,
or the renewal service makes a renewal attemptontheclient lease that results in a
definite exception.

The renewDurationis the renewal duration to associate with the client lease

(in milliseconds). If desiredDuration is exactly Long.MAX_VALUE, the
renewDuration may be any positive number or Lease.ANY; otherwise it must be
a positive number. If these requirements are not met, the renewal service will
throw an I11legalArgumentException.

Calling renewFor withalease that is equivalentto a client lease already in the
set will associate the existing client lease in the set with the new desired duration
and renew duration. The original copy of the client lease is not replaced with the
new one. These semantics also allow renewFor to be used in an idempotent fash-
ion.

The two-argument form of renewFor is equivalent to

renewFor(leaseToRenew, desiredDuration, Lease. FOREVER)

Client leases get returned to clients in a number of ways (via remove and
getLeases calls, as components of events, etc.). The serial format of client leases
returned to clients may be either Lease .DURATION or Lease. ABSOLUTE.In partic-
ular it may be necessary to use the Lease. ABSOLUTE formatif the implementation
has access to the client lease only in marshalled form and is unable to unmarshal
the client lease before sendingit to the client.

Whenevera client lease gets returned to a client, its actual expiration should
reflect either:

@ The result of the last recorded successful renewal of the client lease per-
formed by the renewalservice; or

@ The expiration time the client lease originally had whenit was addedto the
set, if the renewal service has been unable to successfully renew the client
lease and recordthe result

Although it is impossible for a renewal service to guarantee that all renewal
attempts will be recorded, persistent implementations should attempt to keep the
interval between the renewal of a client lease and the logging of the result to a
minimum.

208

209

JINI LEASE RENEWAL SERVICE SPECIFICATION, version 1.1 199

Client leases are removed from the set by using the remove method. Removal
from the set will not cause the lease to be cancelled. The method will return the

lease that is being removed.If the lease is notin the set, nu11 will be returned; and
this call will not be blocked by in-progress renewal attempts. As a result, a client
lease removed by this method might be renewed after the method has returned.
Implementations should keep the window where renewals of removed leases
could occur as small as possible.

The getLeases methodreturnsall the client leases in the set at the time of the
call, as an array of type Lease.Ifone or more of the Leasesin the array cannot be
deserialized, a LeaseUnmarshalException is thrown.

package net.jini. lease;

public class LeaseUnmarshalException extends Exception {

public LeaseUnmarshalException(

Lease[] leases,

MarshalledObject[] marshalledLeases,

Throwable[] exceptions) {...}

public LeaseUnmarshalException(

Lease[] leases,

MarshalledObject[] marshalledLeases,

Throwable[] exceptions,

String message) {...}

public Lease[] getLeases() {...}

public MarshalledObject[] getMarshalledLeases() {...}

public Throwable[] getExceptions() {...}

}

The leases that could be successfully deserialized will be returned by the
getLeases methodof the exception. If no leases could be deserialized, a zero-
length array will be returned. The leases that could not be deserialized will be
returned in the form of MarshalledObjects by the getMarshalledLeases
method of the exception. For each element of the array returned by the
getMarshalledLeases method, the corresponding element of the array returned
by the getExceptions method will hold a Throwable that indicates why the
given lease could not be deserialized.

Throwing a LeaseUnmarshalException represents a (possibly transient) fail-
ure in the ability to unmarshal one or moreclientleases in the set; it does not nec-
essarily imply anything about the state of the renewalservice or the set that threw
the exception.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

209

210

200 THE INTERFACE

The getRenewalSetLease method of LeaseSet returns the lease associated
with the set itself. This method does not make a remotecall.

LR.2.1 Events

The lease renewal service does not support multiple simultaneous event listener
registrations for the same kind of event. Although it would be useful in some lim-
ited circumstances, to do so would require event registrations to be leased sepa-
rately from the set they are associated with. For the average client of the lease
renewal service, this ability would increase the numberof leases that it would
have to manage. Since the renewal service is based on the premise that somecli-
ents have difficulty managing their own leases, increasing the numberof leases
that a client would need to manage could significantly complicate the implemen-
tation of those clients. Because there can be at most one listener for each kind of

event, a given set provides a set/clearinterface instead of the more common
addListener/removeListener or addListener/lease. cancel interfaces.

The source field of each event generated by a lease renewal service is the
renewalset that the event is associated with. In the case of an expiration warning
event, this is the set that is about to expire. In the case of a renewalfailure event,
this is the set the client lease was in whenthe event occurred. Note that the value

of the source field will in general be a copy of the set in question, the equals
method will return true for any other copies ofthe set the client has in its posses-
sion, but in general it will not be the same object (that is, comparing twosets
using == will usually return false).

The event ID LeaseRenewalSet.EXPIRATION_WARNING_EVENT_ID is used

for all expiration warning events. One event ID is used because there is only one
kind of expiration warning event. Similarly, all renewal failure events will have
the event ID LeaseRenewalSet .RENEWAL_FAILURE_EVENT_ID.

Because all of the expiration warning events generated by a given set will
have the same source and event ID, the sequence number of any given expiration
warning event generated by the set will be different from the sequence number of
any other expiration warning event generated by the set. Similarly, the sequence
number of any renewal failure event generated by a given set will be different
from the sequence numberof any other renewal failure event generated bytheset.
Two different events with the same source and event ID will have different

sequence numberseven if different event registration were in effect when each
event was generated.

If a RemoteEventListener registered for a renewal failure or expiration
warning event throws an UnknownEventException, this action will only clear the
specific event registration. It will not cancel the lease on the renewalset or affect

210

211

JINI LEASE RENEWAL SERVICE SPECIFICATION, version 1.1 201

any other event registration on the set. If the listener throws a bad object excep-
tion, the renewal service mayclear that specific event registration; it will not clear
any registration associated with other listeners, nor will it cancel the lease on the
associated renewalset.

If an event listener is replaced and one or more event delivery attempts on the
original listener failed, implementations may choose to send someorall of these
events to the new listener.

Eventlisteners mayreceive notification of events that they are no longerregis-
tered to receive, if those events occurred before they were unregistered. Imple-
mentations should keep the window where such notifications could occur as small
as possible.

The setExpirationWarningListener method of LeaseRenewalSet allows
the client to register for notification of the approaching expiration of the set's
lease. Expiration warning events are not generated for client leases. The 1istener
argumentspecifies which listener should be notified when the set’s lease is about
to expire. The minWarning argument specifies the minimum numberof millisec-
onds before set lease expiration that the first event delivery attempt should be
madeby the service. The service may also make subsequent delivery attempts if
the first and any subsequent attempts resulted in an indefinite exception. The
minWarning argument must be zero or a positive number; if it is not, an
I1legalArgumentException must be thrown. If the current expiration of the
set’s lease is less than minWarning milliseconds away, the event will occur imme-
diately (thoughit will take time to propagate to the handler).

The handback argument to setExpirationWarningListener specifies an
object that will be part of the expiration warning event notification. This mecha-
nism is detailed in The Jini Technology Core Platform Specification, “Distributed
Events”.

The setExpirationWarningListener methodreturns the event registration
for this event. The Lease object associated with the registration will be equivalent
(in the sense of the equals method) to the Lease on the renewal set. Because the
event registration shares a lease with the set, clients that want to just removetheir
expiration warning registration without destroying the set should use the
clearExpirationWarningListener method described below, instead of cancel-
ling the registration’s lease. The event ID returned with the registration will be
LeaseRenewalSet .EXPIRATION_WARNING_EVENT_ID. The source ofthe registra-
tion will be the set. The method will throw a Nul1PointerException if the

listener argumentis nu11. If an event handler has already been specified for this
event, the current registration is replaced with the new one. Because both registra-
tions are for the same kind ofevent, the events sent to the new registration must be
in the same sequenceasthe events sentto the old registration.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

211

212

202 THE INTERFACE

The clearExpirationWarningListener method of LeaseRenewalSet
removesthe event registration currently associated with the approaching expira-
tion of the set’s lease. It is acceptable to call this method evenif there is no active
registration.

The setRenewalFailureListener method of LeaseRenewalSetallows the

client to register for the event associated with the failure to renewaclient lease in
the set. These events are generated whena client lease in the set reaches its actual
expiration before its desired expiration or when the service attempts to renew a
client lease and gets a definite exception. The listener argumentspecifies the
listenerto be notified if a client lease could not be renewed.

The handback argument to setRenewalFai lureListener specifies an object
that will be part of the renewal failure event notification. This mechanism is
detailed in The Jini Technology Core Platform Specification, “Distributed
Events”.

The setRenewalFailureListener method returns the event registration for
this event. The Lease object associated with the registration will be equivalent(in
the sense of the equals method) to the Lease on the renewal set. Because the
event registration shares a lease with theset, clients that want to just removetheir
expiration warning registration without destroying the set should use the
clearRenewalFailureListener method (described below) instead of cancelling
the registration’s lease. The registration ID returned with the registration will be
LeaseRenewalSet.RENEWAL_FAILURE_EVENT_ID. The sourceof the registration
will be the set.The method will throw Nu11PointerException if the listener

argument is nu11. If an event handler has already been specified for this event, the
current registration is replaced with the new one. Because both registrations are
for the same kind of event, the events sent to the new registration must be in the
same sequenceas the events sent to the old registration.

The clearRenewalFailureListener method of LeaseRenewalSet removes

the event registration currently associated with the failure to renew client leases.It
is acceptable to call this method evenif there is no active registration.

package net.jini. lease;

public class ExpirationWarningEvent extends RemoteEvent {

public ExpirationWarningEvent(
LeaseRenewalSet source,

long seqNum,

MarshalledObject handback) {...}

public Lease getRenewalSetLease() {...}

212

213

JINI LEASE RENEWAL SERVICE SPECIFICATION, version 1.1 203

ExpirationWarningEvent objects are passed to the event handlers specified
in calls to the LeaseRenewalSet method, setExpirationWarningListener. The
ExpirationWarningEvent is a subclass of RemoteEvent and adds noadditional
state. Because the source of a Expi rationWarningEventis theset that is about to

expire, the lease that needs to be renewed can be obtained by: calling getSource,
casting the result to a LeaseRenewalSet and then invoking the set’s
getRenewalSetLease method. The convenience method getRenewalSetLease

in ExpirationWarningEvent uses this techniqueto retrieve the lease on theset.
The Lease object returned will be equivalent (in the sense of the equals method)
to other Lease objects associated with the set but may not be the same object. One
notable consequence of having two different objects is that the getExpiration
methodofthe Lease object returned by the event’s getRenewalSetLease method
may return a different time than the getExpiration methods of other Lease
objects granted on the sameset.

The expiration time associated with the Lease object returned by the
getRenewalSetLease method will reflect the expiration the lease had when the
event occurred. Renewal calls may have changed the expiration time of the under-
lying lease between the time when the event was generated and whenit wasdeliv-
ered.

Other aspects of the event’s state are described in The Jini Technology Core
Platform Specification, “Distributed Events”. Sequence numbers for a given
event ID are increasing. If there is no gap between two sequence numbers, no
events have been missed;if there is a gap, events might (but might not) have been
missed.

package net.jini. lease;

public abstract class RenewalFailureEvent
extends RemoteEvent

{

public RenewalFailureEvent(LeaseRenewalSet source,

long seqNum,

MarshalledObject handback) {...}

abstract public Lease getLease()

throws IOException, ClassNotFoundException;

abstract public Throwable getThrowable()

throws IOException, ClassNotFoundException;

}

RenewalFailureEvent objects are passed to the event handlers specified in
calls to the LeaseRenewalSet method, setRenewalFailureListener. The

RenewalFailureEvent is a subclass of RemoteEvent, adding two additional

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

213

214

204 THE INTERFACE

items of abstract state: the client lease that could not be renewedbefore expiration
and the Throwable object that was thrownbythe last recorded renewalattempt(if
any). The client lease is returned by the getLease method, and the Throwable
object is returned by the getThrowable method. If the Throwable object is nu11,
it can be assumed that during the time between the last-recorded, successful
renewal (or whenthe client lease was addedto the set if there have been no renew-
als) and the actual expiration time of the client lease the renewal service was
either unable to attempt a renewalofthe client lease, or that it attempted a renewal
but was unable to record the result.

Both the getLease and getThrowable methods may throw IOException or
ClassNotFoundException. This declaration allows implementations to delay
unmarshalling this state until it is actually needed. Once either method of a given
RenewalFailureEvent object returns normally, future calls on that method must
return the same object and maynot throw an exception.

If the renewal service was able to renew the client lease and record the result

before the event occurred, the expiration time of the Lease object returned by the
event’s getLease method will reflect the result of the last-recorded successful
renewalcall. Note that this time may be distorted by clock skew between hosts if
it is currently set to use the Lease. ABSOLUTEserial format. If the Lease objectis
using the Lease. DURATIONserial format, and the event only unmarshals the lease
when getLeaseis called, the expiration time may be distorted if a long time has
passed between the time the event was generated by the renewal service and when
the client called getLease. When a renewalfailure event is generated for a given
lease, that lease is removed from theset.

The event’s other state is described in The Jini Technology Core Platform
Specification, “Distributed Events’. Sequence numbers for a given event ID are
increasing. If there is no gap between two sequence numbers, no events have
been missed;if there is a gap, events might (but might not) have been missed.

LR.2.2 Serialized Forms

Class serialVersionUID Serialized Fields

Renewal Fai lureEvent 889145704195932943L none

ExpirationWarningEvent -2020487536756927350L none

LeaseUnmarshalException -6736107321698417489L Lease[]unmarshalledLeases

MarshalledObject[]
stil]lMarshalledLeases

Throwable[] exceptions

214

215

EM

Jini Event Mailbox Service

Specification

EM.1 Introduction

Ti The Jini Technology Core Platform Specification, “Distributed Events”
states the ability to interpose third-party objects, or “agents,” into an event notifi-
cation chain as oneofits design goals. This specification also describes a notifica-
tion mailbox object, which stores and forwards event notifications on behalf of
other objects, as an example of a useful third-party agent. These mailbox objects
can be particularly helpful for objects that need more control over how and when
they receive eventnotifications.

For example, it would be impossible to send event notifications to a transient
entity that has detacheditself from a system of Jini technology-enabled services
and/or devices (Jini system). In such a situation an entity could employ the ser-
vices of an event mailbox to store event notifications on its behalf before leaving
the system. Upon rejoining the Jini system, the entity could then contact the event
mailboxto retrieve any collected events that it would otherwise have missed. Sim-
ilarly, an entity that wishes to deactivate could use an event mailbox to collect
eventnotifications on its behalf while dormant.

Like other Jini technology-enabled services (Jini services), the event mailbox
service will grant its services only for a limited period of time without an active
expression of continuing interest. Therefore, event mailbox clients still need to
renew their leases if they intend to maintain the mailbox’s services beyondtheini-
tially granted lease period. Any resources (for example, remote objects or storage
Space) associated with a particular client can be freed once the client’s lease has
expired or been cancelled. In the previous usage scenarios, it might also benefit a
transient or deactivatable entity to employ the services of a lease renewal service

215

205

216

206 INTRODUCTION

(see the Jini Lease Renewal Service Specification) to help mitigate the issue of
lease maintenance.

The remainderofthis specification defines the requirements, interfaces, and
protocols of the event mailboxservice.

EM.1.1 Goals and Requirements

The requirements ofthe set of interfaces specified in this documentare:

To define a service that is capable of storing eventnotifications on behalf of
its clients and capable ofdelivering stored event notifications to those clients
upon request

To provide this service in such a waythat it can be used by entities that are
temporarily unable or unwilling to receive event notifications

To provide a service that complies with the policies embodied in the Jini
technology programming model

The goals of this specification are:

@ To describe the event mailbox service

To provide guidancein the use and deploymentof the event mailbox service

EM.1.2 Other Types

The types defined in the specification of the event mailbox service are in the
net.jini.event package. This specification assumes knowledge of The Jini
Technology Core Platform Specification, “Distributed Events” and The Jini Tech-
nology Core Platform Specification, “Distributed Leasing”. The following object
types maybe referenced in this chapter. Whenever referenced, these object types
will be referenced in unqualified form:

java.rmi.NoSuchObjectException

java.rmi.RemoteException

net.jini.core.event.RemoteEvent

net.jini.core.event.RemoteEventListener

net.jini.core.lease.Lease

net.jini.core. lease.LeaseDeniedException

216

217

JINI EVENT MAILBOX SERVICE SPECIFICATION, version 1.1 207

EM.2 The Interface

Tue EventMai 1box defines the interface to the event mailbox service. Through
this interface, other Jini services and clients may request that event notification
management be performed on their behalf. This interface belongs to the
net.jini.event package, and any service implementing this interface must
comply with the definition of a Jini service. This interface is not a remote inter-
face; each implementation exports a proxy object that implements this interface
local to the client, using an implementation-specific protocol to communicate with
the actual remote server. All of the proxy methods obey normal Java Remote
Method Invocation (RMI) interface semantics and can therefore be implemented
directly using RMI(except where explicitly noted). Two proxy objects are equal
(using the equals method) if they are proxies for the same event mailbox service.

package net.jini.event;

public interface EventMai 1box
{

MailboxRegistration register(long leaseDuration)

throws RemoteException, LeaseDeniedException;

Event mailbox clients wishing to use the mailbox service first register them-
selves with the service using the register method. Clients then use the methods
of the returned Mai lboxRegistration object (a registration) in orderto:

@ Managethe lease for this particular registration

@ Obtain a RemoteEventListener reference that can be registered with event
generators (that is, objects that support event notification for changes in
their abstract state). This listener will store any received notificationsforthis
particularregistration.

@ Enable or disable the delivery of any stored notifications for this particular
registration

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

217

218

208 THE INTERFACE

218

219

JINI EVENT MAILBOX SERVICE SPECIFICATION, version 1.1 209

EM.3 The Semantics

To employ the event mailbox service, a client must first register with the event
mailbox service by invoking the EventMailbox interface’s only method,
register. Each invocation of the register method producesa new registration.

The register method may throw a RemoteException or a
LeaseDeniedException. Typically, a RemoteException occurs whenthere is a
communication failure between the client and the event mailbox service. If this

exception does occur, the registration may or may not have been successful. A
LeaseDeniedException is thrown if the event mailbox service is unable or

unwilling to grant the registration request. It is implementation specific as to
whetheror not subsequent attempts (with or without the same argument) are likely
to succeed.

Eachregistration with the event mailbox serviceis persistent across restarts or
crashes of the event mailbox service, until the lease on the registration expires or
is cancelled.

The register method takes a single parameter of type long that represents
the requested initial lease duration for the registration, in milliseconds. This dura-
tion value must be positive (except for the special value of Lease. ANY). Other-
wise, an I] legalArgumentExceptionis thrown.

Every method invocation on an event mailbox service (whether the invocation
is directly on the service, or indirectly on a MailboxRegistration that the ser-
vice has created) is atomic with respect to other invocations.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

219

220

210 THE SEMANTICS

220

221

JINI EVENT MAILBOX SERVICE SPECIFICATION, version 1.1 211

EM.4 Supporting Interfaces and Classes

Tue register method returns an object that implements the interface
MailboxRegistration. It is through this interface that the client controls its reg-
istration and notification management with the event mailbox service.

package net.jini.event;

public interface MailboxRegistration
{

Lease getLease();

RemoteEventListener getListener();

void enableDelivery(RemoteEventListener target)

throws RemoteException;

void disableDeliveryQ throws RemoteException;

}

The Mai lboxRegistration interface is not a remote interface. Each implementa-
tion of the event mailbox service exports proxy objects that implementthis inter-
face local to the client. These proxies use an implementation-specific protocol to
communicate with the remote server. All of the remote proxy methods obey nor-
mal RMI interface semantics and can therefore be implemented using RMI. Two
proxy objects are equal (using the equals method) if they are proxies for the same
registration, created by the same event mailbox service.

Each remote method ofthis interface may throw a RemoteException. Typi-
cally, this exception occurs when there is a communication failure between the
client and the event mailbox service. Whenever a method invocation results in a

RemoteException, the method mayor may not have successfully completed.
Any invocation of a remote method defined in this interface will result in a

NoSuchObjectException if the client’s registration with the event mailbox ser-
vice has expired or has been cancelled. Note that upon receipt of a
NoSuchObjectException, the client can assume that the registration no longer
exists; the client cannot assume that the event mailbox service itself no longer
exists.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

221

222

212 SUPPORTING INTERFACES AND CLASSES

EM.4.1 The Semantics

The getLease method returns the Lease object associated with the registration.
The client can renew or cancelthe registration with the mailbox service through
the Lease object returned by this method (see The Jini Technology Core Platform
Specification, “Distributed Leasing’’). This method is not remote and takes no
arguments.

The getListener method returns an object that implements the interface
RemoteEventListener. This object, referred to as a mailbox listener, can then be
submitted as the RemoteEventListener argument to an event generator’s regis-
tration method(s) (see The Jini Technology Core Platform Specification, “Distrib-
uted Events”). Subsequent calls to this method will return equivalent objects (in
the equals sense). Note that mailbox listeners generated by different registrations
will not be equal. This methodis not remote and takes no arguments.

The valid period of use for a mailboxlistener is tied to the associated registra-
tion’s lease. A NoSuchObjectExceptionwill be thrown if an attempt is made to
invoke the noti fy method on a mailboxlistener whose associated lease has termi-
nated.

Mailbox listener references, just like their associated registrations, are persis-
tent across server restarts or crashes until their associated registration’s lease ter-
minates.

The enableDelivery method allowsa client to initiate delivery of event noti-
fications (received on its behalf by this particular registration) to the client-speci-
fied listener, referred to as the target listener. This method takes a single argument
of type RemoteEventListener. Subsequent calls to this method simply replace
the registration’s existing target listener, if any, with the specified target listener.
Passing null as the listener argument has the sameeffect as disabling delivery
(see below).

Resubmitting a mailbox listener back to the same mailbox service that gener-
ated it will result in an I11egalArgumentException being thrown. This is neces-
sary to prevent a recursive event notification chain. Therefore, the event mailbox
service must keep track of any listener objects that it generates and reject the
resubmission of those objects.

Once enabled, event delivery remains enabled until it is disabled. Any events
received while delivery is enabled will also be scheduled for delivery.

Event delivery guarantees with respect to exception handling, ordering, and
concurrency are implementation specific and are not specified in this document.
However, implementations are encouraged to support the following functionality.
If an event delivery attempt produces an indefinite exception, then reasonable
efforts should be made to successfully redeliver the event until the associated reg-
istration’s lease terminates. On the other hand, if an event delivery attempt pro-

222

223

JINI EVENT MAILBOX SERVICE SPECIFICATION, version 1.1 213

duces a definite exception, then event delivery should be disabled for the
associated registration until it is explicitly enabled again.

Also, implementations may concurrently deliver event notifications to the
same target listener, which implies that events may be sent in a different order
than the order in which they were originally received. Hence, it is the target lis-
tener’s responsibility to guard against potential concurrent, out-of-order event
delivery.

Similarly, implementations are encouraged to support this method’s intended
semantics regarding listener replacement. That is, a mailbox client can reasonably
assume that listener replacement has occurred upon successful return from this
method and can therefore safely unexport the previous listener object. This also
implies that any in-progress delivery attempts to the previous listener are either
successfully cancelled before returning from this method (blocking), or subse-
quently retried using the replacement listener after returning from this method
(non-blocking). Note that the non-blocking case can potentially allow the previous
listener to be notified after successfully returning from this method.

The disableDelivery method allowsthe client to cease event delivery to the
existing target listener, if any. It is acceptable to call this method evenifno target
listener is currently enabled. This method takes no arguments.

Again, event delivery guarantees are implementation specific and are not
specified in this document. Implementations are encouraged to support the
method’s intended semantics regarding delivery suspension. That is, a mailbox
client can reasonably assumethat event delivery has been suspended upon suc-
cessful return from this method and can therefore safely unexport the previously
enabled listener object if desired. This also implies that any in-progress delivery
attempts to the previously enabledlistener are either successfully cancelled before
returning from this method (blocking), or subsequently retried using the next
enabled listener after returning from this method (non-blocking). Note that the
non-blocking case can potentially allow the previously enabledlistener to be noti-
fied after successfully returning from this method.

The event mailbox service does not normally concern itself with the attributes
of the RemoteEventsthat it receives. The one circumstance about which it must

concern itself is when a target listener throws an UnknownEventException during
an event delivery attempt. The event mailbox service must maintain a list, on a
per-registration basis, of the particular combinations of event identifier and source
reference (obtained from the offending RemoteEvent object) that produced the
exception. The event mailbox must then propagate an UnknownEventException
back to any event generator that attempts to deliver a RemoteEventwith an identi-
fier-source combination held in a registration’s unknown exceptionlist. The ser-
vice will also skip the future delivery of any stored events that have an identifier-
source combinationheldin thislist.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

223

224

214 SUPPORTING INTERFACES AND CLASSES

A registration’s unknown exception list is cleared upon re-enabling delivery
with any target listener. This list is persistent across service restarts or crashes,
until the associated registration’s lease terminates.

Note that the act of comparing event source objects for equality poses a secu-
rity risk because source objects are potentially given references to other source
objects that are currently using the mailbox. If security is a concern, then care
should be taken to prevent independent event sources from obtaining information
about each other.

Again, although implementation details are not specified in this document,
service implementations needto carefully weigh the trade-offs of taking a particu-
lar security approach. For example, a low-security implementation could simply
compare source objects using the equals method. This approach assumes well-
behaved equals methods that pose no security risk. A more secure implementa-
tion might compare only source objects (using equals) that have the same code-
base on the assumption that classes from the same codebase are trusted.
Unfortunately, this approach will not work for services that evolve by changing
their codebase (presumably to the location of the upgradedclassfiles).

The event mailbox does not support multiple, concurrent notification targets
per registration. As a result, the interface supports only a set/clear model rather
than the more commonadd/remove model.

Event persistence guarantees are not specified in this document because no
single policy can coverall the possible design trade-offs between reliability, effi-
ciency, and performance.It is expected that operational parameters—controls for
how the event mailbox deals with issues such as persistence guarantees, storage
quotas, and low space behavior—will be exposed through an administration inter-
face, which can vary acrossdifferent event mailbox implementations.

224

