
1 APPLE 1020

INIT

A Collection of Jini™

Technology Helper
Utilities and Services

Specifications

This Collection of Jini™ Technology Helper Utilities and
Services Specifications definesaset ofstandard helperutilities
and services which extendthe Jini Technology Core Platform.
These helperutilities and services encapsulate desirable
behaviorsin the form ofa set ofreusable componentsthat can be
used to help simplify the process ofdeveloping Jini technology-
enabled clients and services (Jini clients andservices) forthe Jini
technology application environment. Employingtheseutilities
andservices to build such desirable behaviorinto a Jini client or

service can help to avoid poor design and implementation
decisions, greatly simplifying the developmentprocess.

Ss&Sun
microsystems

Version 1.1
October 2000

1 APPLE 1020

2

ii

Copyright © 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights (“Sun IPR”) relating to implementations of the technology
described in this publication (“the Technology”). In particular, and without limitation, Sun IPR may include one or more
patents or patent applications in the U.S. or other countries. Your limited right to use this publication does not grant you any
right or license to Sun IPR noranyright or license to implement the Technology. Sun may,in its sole discretion, make
available a limited license to Sun IPR and/or to the Technology under a separate license agreement. Please visit http://
www.sun.com/software/communitysource/.

Sun, the Sun logo, Sun Microsystems, Jini, the Jini logo, JavaSpaces, Java, and JavaBeans are trademarks or registered
trademarks of Sun Microsystems,Inc. in the United States and other countries.

THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN ANY TECHNOLOGY, PRODUCT, OR PROGRAM DESCRIBED IN
THIS SPECIFICATION AT ANY TIME.

3

Contents

US Introduction to Helper Utilities and Services 1
US.1 Summary0...ees 1
US.2 Terminology0 0.00 cece eee 3

US.2.1 Terms Related to Discovery and Join04.. 3
US.2.2 Jini Clients and Services 0... c cece cece nee 4

US.2.3 Helper Service 0... cece cece tenes 4
US.2.4 Helper Utility... 0...ceeene 5
US.2.5 Managed Sets... 00... cee cence teens 5
US.2.6 What Exceptions Imply about Future Behavior 5
US.2.7 Unavailable Lookup Services 000s eee eens 7
US.2.8 Discarding a Lookup Service 0... c eee eee eee 8

US.2.8.1 Active Communication Discarded Event.......... 8

US.2.8.2 Active No-Interest Discarded Event.............. 9

US.2.8.3 Passive Communication Discarded Event 9

US.2.8.4 Passive No-Interest Discarded Event 9

US.2.8.5 Changed Event 0.0... 00. cece eee ee eee 10
US.2.8.6 Remote Objects, Stubs, and Proxies............. 10

US.2.9 Activation 2.0... . 0... cccccc en ene nes 12

US.3 Introduction to the Helper Utilities 13
US.3.1 The Discovery Utilities 0.0.0... cece eee eee 13

US.3.1.1 The DiscoveryManagement Interface 14
US.3.1.2. The DiscoveryGroupManagement Interface 14
US.3.1.3. The DiscoveryLocatorManagementInterface ... 14
US.3.1.4 The LookupDiscovery Helper Utility 14
US.3.1.5 The LookupLocatorDiscovery HelperUtility ... 15
US.3.1.6 The LookupDiscoveryManager Helper Utility ... 15
US.3.1.7 The Constants Class 0.0.00 ce eens 15

US.3.1.8 The OutgoingMulticastRequest Utility 15
US.3.1.9 The IncomingMulticastRequest Utility 15
US.3.1.10 The OutgoingMulticastAnnouncementUtility .. 16

4

iv

US.3.1.11 The IncomingMulticastAnnouncementUtility . 16
US.3.1.12 The OutgoingUnicastRequest Utility 16
US.3.1.13. The IncomingUnicastRequest Utility 16
US.3.1.14 The OutgoingUnicastResponseUtility 16
US.3.1.15 The IncomingUnicastResponse Utility 16

US.3.2 The Lease Utilities 2.0.0...cceee 17

US.3.2.1 The LeaseRenewalManager HelperUtility 17
US.3.3. The Join Utilities 0.0.0...eens 17

US.3.3.1. The JoinManager Helper Utility 17
US.3.4 The Service Discovery Utilities 0000000 18

US.3.4.1 The ServiceDiscoveryManager Helper Utility.. 18

US.4 Introduction to the Helper Services 19
US.4.1 The Lookup Discovery Service 000 eee ee 19
US.4.2 The Lease Renewal Service 0. cece eee 19

US.4.3. The Event Mailbox Service 0.0.00 cece eee eens 20

US.5 Dependencies0... 21

DU Jini Discovery Utilities Specification 23
DU.1 Introduction0000. 23

DU.1.1 Dependencies 0.0...cette 23

DU.2 The Discovery ManagementInterfaces 25
DU.2.1 Overview ..0...eeee ete 25

DU.2.2 Other Types 0... cece cece een eae 26
DU.2.3 The DiscoveryManagement Interface0. 27

DU.2.3.1 The Semantics 0.0.0 cece cece 27

DU.2.4 The DiscoveryGroupManagement Interface 30
DU.2.4.1 The Semantics 0.0.0.0 ccc eee ences 30

DU.2.5 The DiscoveryLocatorManagementInterface 32
DU.2.5.1 The Semantics 00.0 eee 33

DU.2.6 Supporting Interfaces and Classes 00000 34
DU.2.6.1 The DiscoveryListener Interface 34
DU.2.6.2 The DiscoveryChangeListener Interface 35
DU.2.6.3 The DiscoveryEvent Class 36

DU.2.7 Serialized Forms 0.00eee eens 38

DU.3 LookupDiscovery Utility000. 39
DU.3.1 Other Types 0. ccc ccc cen e ence 39
DU.3.2 The Interface 0...ccen eens 40

DU.3.3 The Semantics 00... cette eens 40

DU.3.4 Supporting Interfaces and Classes00005 4l
DU.3.4.1 The DiscoveryManagement Interfaces Al

DU.3.4.2 Security and Multicast Discovery: The
DiscoveryPermission Class 42

DU.3.5 Serialized Forms 0.0... c cece cece eee 43

5

DU.4 The LookupLocatorDiscovery Utility 45

DU.S5

DU.6

DU.4.1 Overview 2.0.0...ceeeen e ene nnees 45

DU.4.2 Other Types 0... ccc cece eee eens 46
DU.4.3 The Interface 2.0.0.0...0.cece eens 46

DU.4.4 The Semantics 0.0.0... ccc cc cece teens 47

DU.4.5 Supporting Interfaces 0.0... . cece eee 48
DU.4.5.1 The DiscoveryManagement Interfaces 48

The LookupDiscoveryManagerUtility 49
DU.5.1 Overview .. 0.0...ccceee nent n eens 49

DU.5.2 Other Types 0.0.0.0 ccc cece eee eens 49
DU.5.3 The Interface 0.0...cecence eens 50

DU.5.4 The Semantics 0.0... ccceee 50

DU.5.5 Supporting Interfaces and Classes 00.0000 53
DU.5.5.1 The DiscoveryManagement Interfaces 53
DU.5.5.2 Security and Multicast Discovery: The

DiscoveryPermission Class 53

Low-Level Discovery Protocol Utilities 55
DU.6.1 The Constants Class 0.0... ccc ccc ce tenes 55

DU.6.1.1 Overview 0.00... cccnnn ene 55

DU.6.1.2 Other Types 0.0... ee eee eee ee 55
DU.6.1.3 The Class Definition 00.00.0000) 56

DU.6.1.4 The Semantics 0.0.0... cc cece eee eee 56

DU.6.2 The OutgoingMulticastRequest Utility 57
DU.6.2.1 Overview 0... ccccece 57

DU.6.2.2 Other Types 0.0... cece cece eens 57
DU.6.2.3. The Interface... 0.0...cceee 57

DU.6.2.4 The Semantics 0.0... cc cee cece eee 58

DU.6.3. The IncomingMulticastRequest Utility 58
DU.6.3.1 Overview 0...eens 58

DU.6.3.2 Other Types 0... cc eee cece eee 59
DU.6.3.3 The Interface... 0.0... 0.cee 59

DU.6.3.4 The Semantics 0.0... ccc cece eee eee 59

DU.6.4 The OutgoingMulticastAnnouncement Utility 60
DU.6.4.1 Overview 0... ccc cect eens 60

DU.6.4.2 Other Types 0.0... ccceee 60
DU.6.4.3 The Interface... 0.0.0...cceee 61

DU.6.4.4 The Semantics 0.0... cc cece eee eee 61

DU.6.5 The IncomingMulticastAnnouncement Utility 62
DU.6.5.1 Overview 00.0cece ne 62

DU.6.5.2 Other Types 0.0... ccc eens 62
DU.6.5.3. The Interface...0.0... 63

DU.6.5.4 The Semantics 0.0... cc ccc cee eee eee 63

DU.6.6 The OutgoingUnicastRequest Utility 64
DU.6.6.1 Overview 0... ccc cee eens 64

DU.6.6.2 Other Types 0... cc eee eee eee 64

6

vi

DU.6.6.3 The Interface 0.0.0.0. eee 64

DU.6.6.4 The Semantics 0.0.0.0... cece eee ee 64

DU.6.7 The IncomingUnicastRequest Utility 65
DU.6.7.1 Overview 0.0...cece 65

DU.6.7.2 Other Types .. 0.0.0.0... cece eens 65
DU.6.7.3 The Interface 0.0... cceee 65

DU.6.7.4 The Semantics 0.0.0.0... cece eee ee 66

DU.6.8 The OutgoingUnicastResponse Utility 66
DU.6.8.1 Overview 0.00.ceeens 66

DU.6.8.2 Other Types 20.0... cece ence eee 66
DU.6.8.3 The Interface 0.0.0.0. ccc ce ee 67

DU.6.8.4 The Semantics 0.0.00. e ccc eee ee 67

DU.6.9 The IncomingUnicastResponse Utility................. 68
DU.6.9.1 Overview 0.0.00. ccc eee ences 68

DU.6.9.2 Other Types 0.0... ccc cceee 68
DU.6.9.3 The Interface 0.0.0...ceeee 68

DU.6.9.4 The Semantics 0.0.00... c cece eee 68

EU Jini Entry Utilities Specification 71
EU.1 Entry Utilities0..00..00000s 71

EU.1.1 AbstractEntry 0.0.0... cccceeeee 71
EU.1.2 Serialized Form .. 0.0...eeeen eens 72

LM Jini Lease Utilities Specification 73
LM.1 Introduction000000 73

LM.2 The LeaseRenewalManager00.. 75
LM.2.1 Other Types 0... ceceeects 76

LM.3 The Interface0.0.0.77

LM.4 The Semantics0.0 0000000 79

LM.5 Supporting Interfaces and Classes 87
LM.5.1 The LeaseListener Interface 0.0.0... c ce eee 87

LM.5.1.1 The Semantics 0.0.0.0... 0. cece eee eee 88

LM.5.2 The DesiredExpirationListener Interface............. 88
LM.5.2.1 The Semantics 0.0... e cece eee eee 89

LM.5.3 The LeaseRenewalEvent Class............. 0.000000 eee 89

LM.5.3.1 The Semantics 0.0... e cece eee ee 90

LM.5.4 Serialized Forms 0.0... 0c ccc teens 91

JU Jini Join Utilities Specification 93
JU.1 Introduction00.0.00.00 93

JU.2 The JoinManager................0.0.0.0. 95
JU.2.1 Other Types 2.0... ceeccceee eens 96

7

JU.3 The Interface 0... ccc ccc een 97

JU.4 The Semantics0...en99

JU.5 Supporting Interfaces and Classes 105
JU.5.1 The DiscoveryManagement Interface 105
JU.5.2. The ServiceIDListener Interface 106

SD Jini Service Discovery Utilities Specification 107
SD.1 Introduction00.0. 107

SD.2. The ServiceDiscoveryManager 109
SD.2.1 The Object Types... 0.0.0.0... cc cece cece eens 111

SD.3. The Interface0.0 0.0... ccc ccna 113

SD.4 The Semantics0.0.0.0 115

SD.4.1 The Methods 0... 0c ccc cccete 115

SD.4.1.1. The Constructor 0.0.0.0... cece eee eee 115

SD.4.1.2 The createLookupCache Method............. 116
SD.4.1.3. The lookup Method008. 120
SD.4.1.4 The getDiscoveryManager Method 123
SD.4.1.5 The getLeaseRenewalManager Method 124
SD.4.1.6 The terminate Method...................5. 124

SD.4.2 Defining Service Equality 0.0... cee eee eee 125
SD.4.3 Exporting RemoteEventListener Objects 126

SD.5 Supporting Interfaces and Classes 129
SD.5.1 The DiscoveryManagement Interface 129
SD.5.2. The ServiceItemFilter Interface0.. 130

SD.5.2.1 The Semantics 0.0.0.0 ccc ee eee eee 131

SD.5.3 The ServiceDiscoveryEvent Class008. 131
SD.5.3.1 The Semantics 0.0.0.0. e ee eee eee 132

SD.5.4. The ServiceDiscoveryListener Interface 133
SD.5.4.1 The Semantics 00... e cece eens 133

SD.5.5 The LookupCache Interface 0... .0000 0085 135
SD.5.5.1 The Semantics 0.00. c cece cee eee 135

LS Jini Lookup Attribute SchemaSpecification 141
LS.1 Introduction.00 0.0.0. c ccc cece aes 141

LS.1.1 Terminology 0.0... cece cece een eens 142
LS.1.2 Design Issues 0... 0. cece ccc eens 142
LS.1.3. Dependencies 0.0.00 cece cee eee eens 143

LS.2. HumanAccess to Attributes 145

LS.2.1 Providing a Single View of an Attribute’s Value 145

LS.3. JavaBeans Components and Design Patterns 147
LS.3.1 Allowing Display and Modification of Attributes 147

LS.3.1.1 Using JavaBeans Components with Entry Classes 147

Vii

8

Viii

LS.3.2 Associating JavaBeans Components with Entry Classes 148
LS.3.3 Supporting Interfaces and Classes000005 150

LS.4 Generic Attribute Classes 151

LS.4.1 Indicating User Modifiability0.005 151
LS.4.2 Basic Service Information 0.0.0.0. cee eee 151

LS.4.3 More Specific Information 00 eee eee 153
LS.4.4 Naminga Service cece cee eee een ees 154
LS.4.5 Adding a Comment to a Service 02.000 ee eee 154
LS.4.6 Physical Location 0.0 cee cece eee eee eee 155
LS.4.7 Status Information..........0. 0.0.00 ccc cece eee 156

LS.4.8 Serialized Forms0.. 00.0. eens 157

LD Jini Lookup Discovery Service 159
LD.1 Introduction0.. 000000 c ccc eee es 159

LD.1.1 Goals and Requirements 00.0 c eee eee eee 162
LD.1.2 Other Types 0... cece cee eee ene eee 162

LD.2 The Interface0.000 163

LD.3 The Semantics0000 000.00 165

LD.3.1 Registration Semantics 0.0.0... cece eee eee eee 165
LD.3.2 Event Semantics 0.0.00 c ccc eee eens 168

LD.3.3 Leasing Semantics 00... c ccc eee ences 170

LD.4 Supporting Interfaces and Classes 171
LD.4.1 The LookupDiscoveryRegistration Interface 171

LD.4.1.1 The Semantics0 0.0. ccc cece eee 173

LD.4.2 The RemoteDiscoveryEvent Class...............00005 180
LD.4.2.1 The Semantics 00... 00 cee eee eee 182

LD.4.2.2 Serialized Forms 0.0.00. ce cee eee 184

LD.4.3. The LookupUnmarshalException Class 184
LD.4.3.1 The Semantics 000.000 cee eee ee 186

LD.4.3.2 Serialized Forms 0.0.00. cece eens 187

LR Jini Lease RenewalService Specification 189
LR.1 Introduction000000... 189

LR.1.1 Goals and Requirements 00 cece eee eee 190
LR.1.2 Other Types 0.0...ceceeee ees 191

LR.2 The Interface 000000 193
LR.2.1 Events 0.0.0.0...cccete e eee n ees 200

LR.2.2 Serialized Forms 0.0... 0c ccc cee eee 204

EM Jini Event Mailbox Service Specification 205
EM.1 Introduction000 00... ccc eee ees 205

EM.1.1 Goals and Requirements 0.0.0. e cece eee eee 206

9

EM.1.2 Other Types 0... c ccc cece eens 206
EM.2 The Interface00.0 0... c ccc cece nae 207

EM.3 The Semantics0 00... cece cece eens 209

EM.4 Supporting Interfaces and Classes 211
EM.4.1 The Semantics 00... c cece cece een enn 212

ix

10

11

US

Introduction to Helper
Utilities and Services

US.1 Summary

Warn developing clients and services that will participate in the application
environmentfor Jini™ technology, there are a numberofbehaviors that the devel-
oper may find desirable to incorporate in the client or service. Some of these
behaviors may satisfy requirements described in the specifications of various Jini
technology components; some behaviors may simply represent design practices
that are desirable and should be encouraged. Examplesof the sort of behavior that
is required or desirable include the following:

@ It is a requirementof the Jini discovery protocols that a service must con-
tinue to listen for and act on announcements from lookup services in which
the service hasregistered interest.

It is arequirementofthe Jini discovery protocolsthat, until successful, a ser-
vice must continue to attempt to join the specific lookup services with which
it has been configuredto join.

@ Under many conditions, a Jini technology-enabled client (Jini client) or ser-
vice will wish to regularly renew leases that it holds. For example, when a
Jini technology-enabled service (Jini service) registers with a Jini lookup
service, the service is requesting residency in the lookup service. Residency
in a lookupservice is a leased resource. Thus, when the requested residency
is granted, the lookup service also imposesa lease on that residency. Typi-
cally, such a registered service will wish to extend the lease on its residency

12

SUMMARY

beyondthe original expiration time, resulting in a need to renew the lease on
a regularbasis.

@ Many Jini services will need to maintain a dormant(inactive) state, becom-
ing active only when needed.

@ ManyJini clients and services will need to have a mechanism for finding and
managing Jini services.

@ Many Jini clients and services will find it desirable to employ a separate ser-
vice that will handle events, in some useful way, on behalfof the participant.

To help simplify the process of developing clients and services for the appli-
cation environment for Jini technology (Jini application environment), several
specifications in this documentcollection define reusable components that encap-
sulate behaviors such as those outlined above. Employing such utilities and ser-
vices to build such desirable behaviorinto a Jini client or service can help to avoid
poor design and implementation decisions, greatly simplifying the development
process.

What is presented first is terminology that may be helpful when analyzing
these specifications. Following the section on terminology, brief summaries of the
content of each of the current helper utilities and services specifications are pro-
vided. Finally, the other specifications on which these specifications depend are
listed for reference.

13

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 3

US.2. Terminology

Tus section defines terms and discusses concepts that may be referenced
throughout the helper utilities and services specifications. While the terms and
concepts that appear in this section are general in nature and may apply to multi-
ple components specified in this collection, each specification may define addi-
tional terms and concepts to further facilitate the understanding of a particular
component. Each specification may also present supplemental information about
some of the terms defined in this section and their relationship with the compo-
nent being specified.

Because this document makesuse of a numberof terms defined in the “Jini™

Technology Glossary”, reviewing the glossary is recommended. A numberofthe
terms defined in the glossary are also defined in this section to provide easy refer-
ence because those terms are used extensively in the helper utilities and services
specifications. Additionally, this section augments the definitions of some of the
terms from the glossary with details relevant to those specifications.

In addition to the glossary, the Jini™ Technology Core Platform Specification
(referred to as the core specification) presents detailed definitions of a number of
terms and concepts appearing both in this section and throughout the helperutili-
ties and services specifications. When appropriate, the relevant specification will
be referenced.

US.2.1 Terms Related to Discovery and Join

The Jini Technology Core Platform Specification, “Discovery and Join”, defines a
discovering entity as one or more cooperating software objects written in the
Java™ programming language (Java software objects), executing on the same
host, that are in the process of obtaining references to Jini lookup services. That
specification also defines a joining entity as one or more cooperating Java soft-
ware objects, on the same host, that have received a reference to a lookup service
and are in the process of obtaining services from, and possibly exporting services
to, a federation of Jini technology-enabled services and/or devices and Jini lookup
services referred to as a djinn. The lookupservices comprising a djinn may be

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

14

TERMINOLOGY

organized into one or more sets known as groups. Multiple groups may or may not
be disjoint. Each group of lookup servicesis identified by a logical name repre-
sented by a String object.

The Jini Technology Core Platform Specification, “Discovery and Join”
defines two protocols used in the discovery process: the multicast discoveryproto-
col and the unicast discovery protocol.

Whena discovering entity employs the multicast discovery protocol to dis-
cover lookup services that are members of one or more groups belonging to a set
of groups, that discovery processis referred to as group discovery.

The utility class net. jini.core.discovery.LookupLocatoris defined in
The Jini Technology Core Platform Specification, “Discovery and Join”. Any
instance of that class is referred to as a Jocator. When a discovering entity
employs the unicast discovery protocol to discover specific lookup services, each
corresponding to an elementin a set of locators, that discovery processis referred
to as locator discovery.

US.2.2 Jini Clients and Services

For the purposes of the helper utilities and services specifications, a Jini client is
defined as a discovering entity that can retrieve a service (or a remote reference to
a service) registered with a discovered lookup service and invoke the methods of
the service to meet the entity’s requirements. An entity that acts only as a client
never registers with (requests residency in) a lookupservice.

A Jini service is defined as both a discovering and a joining entity containing
methods that may be of use to someother Jini client or service, and whichregis-
ters with discovered lookup services to provide access to those methods. Note that
a Jini service can also act as a Jini client.

The term client-like entity may be used, in general, whenreferring to Jini cli-
ents and Jini servicesthat act as clients.

Note that when the term entity is used, that term maybereferring to a discov-
ering entity, a joining entity, a client-like entity, a service, or some combination of
these types of entities. Wheneverthat general term is used, it should be clear from
the context whattype of entity is being discussed.

US.2.3 Helper Service

A Jini technology-enabled helper service is defined in this documentas an inter-
face or set of interfaces, with an associated implementation, that encapsulates
behaviorthat is either required or highly desirable in service entities that adhere to

15

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 5

the Jini technology programming model(or simply the Jini programming model).
A helperserviceis a Jini service that can be registered with any numberof lookup
services and whose methods can execute on remote hosts.

In general, a helper service should be of use to more than one type of entity
participating in the Jini application environment and should provide a significant
reduction in development complexity for developers of such entities.

US.2.4 Helper Utility

This documentdistinguishes betweena helperutility and a helper service. Helper
utilities are programming components that can be used during the construction of
Jini services and/orclients. Helper utilities are not remote and do not register with
a lookup service. Helper utilities are instantiated locally by entities wishing to
employ them.

US.2.5 ManagedSets

Whenperforming discovery duties, entities will often maintain referencesto dis-
covered lookup services in a set referred to as the managedset oflookup services.
The entity may also maintain two other notable sets: the managed set ofgroups
and the managedset oflocators.

Each element of the managedset of groupsis a name of a group whose mem-
bers are lookupservices that the entity wishes to be discovered via group discov-
ery. The managed set of groupsis typically represented as a String array, or a
Collection of String elements.

Each element of the managed set of locators correspondsto a specific lookup
service that the entity wishes to be discoveredvia locator discovery. Typically, this
set is represented as an array of net.jini.core.discovery.LookupLocator
objects or some other Collection type whose elements are LookupLocator
objects.

Note that when the general term managedsetis used, it should be clear from
the context whether groups, locators, or lookup services are being discussed.

US.2.6 What Exceptions Imply about Future Behavior

Wheninteracting with a remote object, an entity may call methodsthat result in
exceptions. The specification of those methods should define what each possible
exception implies (if anything) about the current state of the object. One important

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

16

TERMINOLOGY

aspect of an object’s state is whether or not further interactions with the object are
likely to be fruitful. Throughoutthe helper utilities and services specifications, the
following general terms may be usedto classify what a given exception implies
about the probability of success of future operations on the object that threw the
exception:

@ Bad object exception: If a method invocation on an object throws a bad
object exception, it can be assumedthat any further operations on that object
will also fail.

@ Bad invocation exception: If a method invocation on an object throws a bad
invocation exception, it can be assumedthat any retries of the same method
with the same argumentsthat are expected to return the samevalue will also
fail. No new assertions can be madeaboutthe probability of success of any
future invocation of that method with different arguments or if a different
return value is expected, nor can any new assertions be made aboutthe prob-
ability of success of invocations of the object’s other methods.

Indefinite exception: Ifa method invocation on an object throwsan indefinite
exception, no new assertions can be madeaboutthe probability of success of
any future invocation of that method, regardless of the arguments used or
return value expected, nor can any newassertions be made aboutthe proba-
bility of success of any other operation on the same object.

Unless otherwise noted, the throwing of a bad object, bad invocation,or indef-
inite exception by one object does not imply anything about the state of another
object, even if both objects are associated with the same remoteentity.

These terms can be used in the specification of a method to describe the mean-
ing of exceptions that might be thrown, as well as in the specification of what a
given utility or service will, may, or should do whenit receives an exception in the
course of interacting with a given object.

If a specification does not say otherwise, the following classification is used to
categorize each RuntimeException, Error, or java. rmi.RemoteExceptionsas
a bad object, bad invocation, or indefinite exception:

@ Bad object exceptions:

¢« Any java.lang.RuntimeException

+ Any java.lang.Error except onethat is a java. lang.LinkageErroror
java. lang.OutOfMemoryError

¢ Any java.rmi.NoSuchObjectException

17

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 7

¢ Any java.rmi.ServerError with a detail field that is a bad object
exception

+ Any java.rmi.ServerException with a detai1 field that is a bad object
exception

@ Bad invocation exceptions:

¢ Any java.rmi.MarshalException with a detail field that is a
java.io.ObjectStreamException

¢ Any java.rmi.UnmarshalException with a detail field that is a
java.io.ObjectStreamException

¢ Any java.rmi.ServerException with a detai1 field that is a bad invo-
cation exception

@ Indefinite exceptions

¢« Any java.lang.OutOfMemoryError

¢ Any java.lang.LinkageError

¢ Any java.rmi.RemoteException except those that can be classified as
either a bad invocation or bad object exception

US.2.7 Unavailable Lookup Services

While interacting (or attempting to interact) with a lookup service, an entity may
encounter one of the exception types described in the previous section. When the
entity does receive such an exception, what may be concluded aboutthe state of
the lookup service is dependent on the type of exception encountered.

If an entity encounters a bad object exception while interacting with a lookup
service, the entity can usually conclude that the associated proxy it holds can no
longer be used to interact with the lookup service. This can be due to any number
of reasons. For example, if the lookup service is administratively destroyed, the
old proxy will never be capable of communicating with any new incarnations of
the lookup service, allowing the entity to dispose of the old proxy since it is no
longer of any usetothe entity.

If an indefinite exception occurs while interacting with a lookupservice, the
entity can interpret such an occurrence as a communication failure that may or
maynot be only temporary.

Finally, entities that encounter a bad invocation exception while interacting
with a lookup service should view the lookup service as being in an unknown,

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

18

TERMINOLOGY

possibly corrupt state, and should discontinue further interaction with that lookup
service until the problem is resolved.

Wheneveran entity receives any of these exceptions while interacting with a
lookup service, the affected lookup service is referred to as unavailable or
unreachable. For most entities the unavailability of a particular lookup service
should not prevent the entity from continuing its processing, although in othersit-
uations an entity might consider at least some of these exceptional conditions
unrecoverable. In general, when an entity encounters an unreachable lookup ser-
vice, the exceptionor error indicating that the lookup service is unavailable should
be caught and handled, usually by requesting that the lookup service be discarded
(see the next section), and the entity should continue its processing.

US.2.8 Discarding a Lookup Service

Whenan already discovered lookup service is removed from the managedset of
lookupservices,it is said to be discarded. The processof discarding a lookupser-
vice is initiated either directly or indirectly by the discovering entity itself or by
the utility that the entity employs to perform the actual discovery duties.

Whenevera lookup service is discarded by a utility employed bythe entity,
the utility sendsto all of the entity’s discovery listeners, a notification event refer-
encing both the discarded lookup service and the member groups to which the
lookup service belongs. This event is referred to as a discarded event. It may be
useful to note that discarded events can beclassified by two characteristics:

@ Whether the event was generated as a direct consequence of an explicit
request madebytheentity itself (active) or as a consequenceof a determi-
nation made by someutility employed by the entity (passive)

@ Whether the event is related to communication problemsorto the entity los-
ing interest in discovering the affected lookup services

US.2.8.1 Active Communication Discarded Event

Whenthe occurrence of exceptional conditions causes an entity to concludethat a
lookup service is unreachable, the entity typically will request that the lookup ser-
vice be discarded. Whentheentity itself requests that such an unreachable lookup
service be discarded, the resulting discarded event may bereferred to as an active
communication discarded event. The term active is used because the entity takes
specific action to request that the lookup service be discarded. Becausethe entity

19

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 9

cannot communicate with the unreachable lookupservice, the event is associated
with communication.

US.2.8.2 Active No-Interest Discarded Event

Whenever the entity makes a request that results in the removal of an element
from the relevant managedset of groups or locators, one or more of the lookup
services associated with the removed groupsor locators may be discarded—even
though the lookup services are still reachable. The lookup services may be dis-
carded in this situation because the contents of the sets of groups and locators the
entity wishes to discover may have changed in such a waythat one or more of the
previously discovered lookup services are no longerofinterest to the entity. In this
case, if any already discovered lookup service is found to belong to none of the
groups in the new managedset of groupsorif its locator no longer belongs to the
entity’s new managedsetof locators, a discarded event is generated andsentto all
of the entity’s discovery listeners. This type of discarded event maybereferred to
as an active no-interest discarded event (active becausethe entity itself executed
an action that resulted in the discarding of one or more lookup services).

US.2.8.3 Passive Communication Discarded Event

If the utility that the entity uses to perform group (multicast) discovery determines
that one of the previously discovered lookup services has stopped sending multi-
cast announcements,that utility may discard the lookup service. That is, the utility
may removethe lookup service from the managedset and send a discarded event
to notify the entity that the lookup service is unavailable. The discarded event sent
in this situation is often referred to as a passive communication discarded event.

US.2.8.4 Passive No-Interest Discarded Event

If the utility that the entity uses to perform group discovery determines that the
membergroups of one of the previously discovered lookup services has changed,
the utility may discard that lookup service. The lookup service may be discarded
in this situation because the lookup service may no longer be a memberofany of
the groups the entity wishes to discover; that is, the lookup service is no longer of
interest to the entity. In this case, the utility sends a discarded event to all of the
entity’s discovery listeners. This type of discarded event maybereferred to as a
Passive no-interest discarded event (passive because the entity itself did not
explicitly request that the lookup service be discarded).

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

20

10 TERMINOLOGY

If a lookup service is discarded because it was found to be unreachable (asso-
ciated with a communication discarded event), that lookup service will be made
eligible for rediscovery. In this case, the process of discarding a lookup service—
either actively or passively—can be viewed as a mechanism for the removal of
stale entries in the managedset of lookup services. Discarding such a lookupser-
vice removesthe need for operations such as lease renewal attempts on a lookup
service that is currently unavailable. Upon rediscovery of the discarded lookup
service, the entity typically processes the rediscovered lookup serviceas if it were
discoveredforthe first time.

Any lookup service corresponding to a no-interest discarded event is no
longereligible for discovery until one of the following occurs:

@ The entity changes its managedset of locators or its managed set of groups
to include, either the discarded lookupservice’s locatoror at least one ofits
membergroupsrespectively.

@ The set of member groups of the discarded lookup service is changed to
include one or moreofthe groupsthe entity is currently interested in discov-
ering.

US.2.8.5 Changed Event

An event related to the discarded event is referred to as a changed event. This
event notifies the entity of changes in the contents of the member groupsof one or
more of the lookup services in the managedset. If the entity registers interest in
such an event and if the utility that the entity uses to perform group discovery
determines that one or more of those membergroup sets has indeed changed, then
a changedeventis sent.

US.2.8.6 Remote Objects, Stubs, and Proxies

The “Jini™ Technology Glossary” defines a remote object as an object whose
methods canbe invoked from a Java virtual machine (JVM)!, potentially on a dif-
ferent host. Furthermore, the glossary states that such an object is described by
one or more remote interfaces.

When invoking methods remotely through Java Remote Method Invocation
(RMI), it is useful to think of the invocation as consisting of two components: a
client component and a server component. When the client componentinitiates a

| Theterms “Java virtual machine” or “JVM” meana virtual machinefor the Java platform.

20

21

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 11

remote method call, the server componentcarries out the execution of the remote
method, and RMIfacilitates the necessary communication between the two par-
ties. Note that in discussing concepts related to RMI, the term server (or remote
server) is sometimesusedin place of the term remote object.

To initiate an invocation of a remote method, the client must have access to an

object referred to as the stub of the remote object. The stub is an object local to the
client that acts as the “representative” of the remote object. The stub implements
the same set of remote interfaces that the remote object implements. From the
point of view ofthe client, the stub is the remote object. Whenthe client invokes a
method on the local stub, communication with the remote object occurs, resulting
in the execution of the corresponding method in the remote object’s JVM.

The term proxy is used extensively throughoutthe helperutilities and services
specifications. With respect to remote objects in general, and entities operating
within a Jini application environmentin particular, a proxy is simply an intermedi-
ary object through which one entity (the client) may request the invocation of the
methods provided by anotherentity (the remote object or the service).

Proxies can take a numberofdifferent forms. A smartproxy typically consists
of a set of local methods and a set of one or more remote object references(stubs).
Clients invoke one or more of the local methods to access the methods of the

remote objects referenced in the proxy.
Another form that a proxy can take is that of the stub of a remote object. That

is, all stubs are simply proxies to their corresponding remote objects. Except for
the local methods equals and hashCode, this type of proxy consists of remote
methods only.

Someproxies are implementedasstrictly local. Proxies of this form consist of
only local methods, each executing in the client’s JVM. Unlike smart proxies, no
remote invocations result when any methodofa strictly local proxy is invoked.

Typically, Jini services provide a proxy that has one of the forms described
above. Whena service registers with a lookup service, the service’s proxy is cop-
ied (throughserialization) into the lookup service. Whena client looksup theser-
vice, the service’s proxy is downloaded to the client. The client can then invoke
the methods contained in the service’s proxy. If the invoked method is a local
method, then execution will occur in the JVM ofthe client. If the invoked method

is a remote method(or results in a remote invocation), then execution is initiated
in the client’s JVM,but ultimately occurs in the JVM ofthe service.

Note that the term front-end proxy (or simply front end) is often used inter-
changeably with the term proxy. Similarly, the term back-end server (or simply,
back end) is often used interchangeably with the term remote object. Thus, the
back end ofa service is the part of the service’s implementation that satisfies the
contract advertised in the service’s remote interface.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

21

22

12 TERMINOLOGY

US.2.9 Activation

The glossary defines active object as a remote object that is instantiated and
exported in a JVM on some system. Remote objects can be implemented with the
ability to change their state from inactive to active, or from active to inactive; the
process of doing sois referred to as activation or deactivation, respectively. Many
Jini services that wish to conserve computational resources mayfind this capabil-
ity desirable. When the back end of any Jini service is implemented with the abil-
ity to activate and deactivate, the service is referred to as an activatable service.
Refer to the Java™ Remote Method Invocation Specification for the details of
activation.

22

23

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 13

US.3 Introduction to the Helper Utilities

US.3.1 The Discovery Utilities

Ti Jini Discovery Utilities Specification defines a set of general-purpose util-
ity interfaces collectively referred to as the discovery management interfaces.
Those interfaces define the policies to apply when implementing helper utilities
that manage an entity’s discovery duties. Currently, the set of discovery manage-
mentinterfaces consists of the following three interfaces:

@ DiscoveryManagement

@ DiscoveryGroupManagement

@ DiscoveryLocatorManagement

Because the discovery management interfaces provide a uniform way to
define utility classes that perform discovery-related management duties on behalf
of an entity, the discovery utilities specification defines a numberofhelperutility
classes that implementone or moreof these interfaces. Those classesare:

@ LookupDiscovery

@ LookupLocatorDiscovery

@ LookupDiscoveryManager

The discovery utilities specification closes with a discussion of a set of low-
level utility classes that can be useful when applying the discovery management
policies to build higher-level helper utilities for discovery. Those classesare:

@ Constants

@ OutgoingMulticastRequest

@ IncomingMulticastRequest

@ OutgoingMulticastAnnouncement

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

23

24

14 INTRODUCTION TO THE HELPER UTILITIES

@ IncomingMulticastAnnouncement

@ OutgoingUnicastRequest

@ IncomingUnicastRequest

@ OutgoingUnicastResponse

@ IncomingUnicastResponse

US.3.1.1. The DiscoveryManagement Interface

The DiscoveryManagement interface defines methods related to the discovery
event mechanism and discovery process termination. Through this interface an
entity can register or unregister DiscoveryListener objects to receive discovery
events, retrieve proxies to the currently discovered lookup services, discard a
lookupserviceso thatit is eligible for rediscovery, or terminate the discovery pro-
cess.

US.3.1.2. The DiscoveryGroupManagement Interface

The Di scoveryGroupManagement interface defines methods and constants related
to the managementofthe set containing the names of the groups whose members
are the lookupservicesthat are to be discovered via group discovery. The methods
of this interface define how an entity retrieves or modifies the managed set of
groupsto discover.

US.3.1.3. The DiscoveryLocatorManagement Interface

The DiscoveryLocatorManagement interface defines methods related to the
managementof the set of LookupLocator objects corresponding to the specific
lookup services that are to be discovered via locator discovery. The methods of
this interface define how anentity retrieves or modifies the managed set of loca-
tors to discover.

US.3.1.4 The LookupDiscovery Helper Utility

The LookupDiscoveryhelperutility encapsulates the functionality required of an
entity that wishes to employ multicast discovery to discover a lookup service
located within the entity’s multicast radius. This utility provides an implementa-
tion that makes the process of acquiring lookup service instances, based on no

24

25

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1

information other than group membership, which is much simpler for both ser-
vices andclients.

US.3.1.5 The LookupLocatorDiscovery Helper Utility

The LookupLocatorDiscovery helper utility encapsulates the functionality
required of an entity that wishes to employ the unicast discovery protocol to dis-
cover a lookup service. This utility provides an implementation that makes the
process of finding specific instances of a lookup service much simpler for both
services andclients.

US.3.1.6 The LookupDiscoveryManager Helper Utility

The LookupDiscoveryManager is a helperutility class that organizes and man-
ages all discovery-related activities on behalf of a Jini client or service. Rather
than providing its own facility for coordinating and maintaining all of the neces-
sary state information related to group names, locators, and listeners, such an
entity can employthis class to provide thosefacilities on its behalf.

US.3.1.7. The Constants Class

The Constantsclass provides easy access to defined constants that may be useful
whenparticipating in the discovery process.

US.3.1.8 The OutgoingMulticastRequest Utility

The OutgoingMulticastRequestclass providesfacilities for marshalling multi-
cast discovery requests into a form suitable for transmission over a network to
announce one’s interest in discovering a lookupservice.

US.3.1.9 The IncomingMulticastRequest Utility

The facilities provided by the IncomingMulticastRequestclass encapsulate the
details of the process of unmarshalling received multicast discovery requests into
a form in whichthe individual parameters of the request may beeasily accessed.

15

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

25

26

16 INTRODUCTION TO THE HELPER UTILITIES

US.3.1.10 The OutgoingMulticastAnnouncement Utility

The OutgoingMulticastAnnouncementclass encapsulates the details of the pro-
cess of marshalling multicast discovery announcements into a form suitable for
transmission over a network to announcethe availability of a lookup service to
interested parties.

US.3.1.11 The IncomingMul ticastAnnouncement Utility

The IncomingMulticastAnnouncementclass encapsulates the details of the pro-
cess of unmarshalling multicast discovery announcements into a form in which
the individual parameters of the announcement maybeeasily accessed.

US.3.1.12 The OutgoingUnicastRequest Utility

The OutgoingUnicastRequest class encapsulates the details of the process of
marshalling unicast discovery requests into a form suitable for transmission over a
network to attempt discovery of a specific lookup service.

US.3.1.13 The IncomingUnicastRequest Utility

The IncomingUnicastRequest class encapsulates the details of the process of
unmarshalling unicast discovery requests into a form in which the individual
parameters of the request may beeasily accessed.

US.3.1.14 The OutgoingUnicastResponse Utility

The OutgoingUnicastResponse class encapsulates the details of the process of
marshalling a unicast discovery response into a form suitable for transmission
over a network to respond to a unicast discovery request.

US.3.1.15 The IncomingUnicastResponse Utility

The IncomingUnicastResponseclass encapsulates the details of the process of
unmarshalling a unicast discovery response into a form in which the individual
parameters of the request may beeasily accessed.

26

27

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1

US.3.2. The Lease Utilities

The Jini Lease Utilities Specification defines helperutility classes, along with sup-
porting interfaces and supporting classes, that encapsulate functionality which
provides for the coordination, systematic renewal, and overall managementof a
set of leases associated with some object on behalf of another object. Currently,
this specification defines only one helperutility class:

@ LeaseRenewalManager

US.3.2.1 The LeaseRenewalManager Helper Utility

The LeaseRenewalManager is a helperutility class that organizes and managesall
of the activities related to the renewal of the leases granted to a Jini client or ser-
vice by another Jini service. Rather than providing its own facility for coordinat-
ing and maintainingall of the necessary state information related to lease renewal,
such an entity can employthis class to provide thosefacilities on its behalf.

US.3.3 The Join Utilities

The Jini Join Utilities Specification defines helperutility classes, supporting inter-
faces, and supporting classes, that encapsulate functionality related to discovery
and registration interactions that a well-behaved Jini service will typically have
with a lookup service. Currently, this specification defines only one helperutility
class:

@ JoinManager

US.3.3.1. The JoinManager Helper Utility

The JoinManager is a helperutility class that performsall of the functions related
to lookup service discovery, joining, lease renewal, and attribute management,
functions that the programming model requires of a well-behaved Jini service.
Rather than providing its own facility for providing such functions, a Jini service
can employthis class to provide thosefacilities on its behalf.

17

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

27

28

18 INTRODUCTIONTO THE HELPER UTILITIES

US.3.4 The Service Discovery Utilities

The Jini Service Discovery Utilities Specification defines helper utility classes
(with supporting interfaces and classes) that encapsulate functionality that aids a
Jini service or client in acquiring services of interest, registered with the various
lookup services with which the service or client wishes to interact. Currently, the
service discovery utilities specification defines only one helperutility class:

@ ServiceDiscoveryManager

US.3.4.1 The ServiceDiscoveryManager Helper Utility

The ServiceDiscoveryManager classis a helperutility class that any entity can
use to create and populate a cache of service references, and with which the entity
can register for notification of the availability of services of interest. Although the
ServiceDiscoveryManager performslookup discovery event handlingforclients
and services, the primary functionality the ServiceDiscoveryManager provides
is service discovery and management.

The ServiceDiscoveryManager class can be asked to “discover” services an
entity is interested in using andto cachethe references to those services as eachis
found. The cache can be viewedas a set of services that the entity can access
through a set of public, non-remote methods. The ServiceDiscoveryManager
class also provides a mechanism for an entity to request notification whena ser-
vice of interest is discovered for the first time or has encountered a state change
(such as removal from all lookup servicesor attribute set changes).

For convenience, the ServiceDiscoveryManager class also provides ver-
sions of a method named lookup, which employs invocation semantics similar to
the semantics of the lookup method of the ServiceRegistrar interface, speci-
fied in The Jini Technology Core Platform Specification, “Lookup Service”. Enti-
ties needing to find services on only an infrequent basis, or in which the cost of
making a remote call is outweighed by the overhead of maintaining a local cache
(for example, because of limited resources), may find this method useful.

All three mechanisms described above—local queries on the cache, service
discovery notification, and remote lookups—employ the same template-matching
scheme as that described in The Jini Technology Core Platform Specification,
“Lookup Service’’. Additionally, each mechanism allowsthe entity to supply an
action object referred to as a filter. Such an object is a non-remote object that
defines additional matching criteria that will be applied when searching for the
entity’s services of interest. This filtering facility is particularly useful to entities
that wish to extend the capabilities of the standard template-matching scheme.

28

29

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 19

US.4 Introduction to the Helper Services

US.4.1 The Lookup Discovery Service

Unorr certain circumstances, a discovering entity mayfind it useful to allow a
third party to perform the entity’s discovery duties. For example, an activatable
entity that wishes to deactivate may wish to employ a separate helper service to
perform discovery duties on the entity’s behalf. Such an entity may wish to deacti-
vate for various reasons, one being to conserve computational resources. While
the entity is deactivated, the helper service, running on the same or a separate
host, would employ the discovery protocols to find lookup services in which the
entity has expressed interest and would notify the entity when a previously
unavailable lookup service becomesavailable. Such a helperserviceis referred to
as a lookup discovery service.

The LookupDiscoveryService interface defines the lookup discovery helper
service. Through that interface, other Jini services and clients may request that
discovery processing be performed ontheir behalf.

US.4.2. The Lease Renewal Service

The lease renewal service—defined by the
net. jini. lease.LeaseRenewalService interface—is a helper service that can
be employed by both Jini clients and services to perform all lease renewal duties
on their behalf. Services that wish to remain inactive until they are needed may
find the lease renewal service quite useful. Such a service can request that the
lease renewal service take on the responsibility of renewing the leases granted to
the service, and then safely deactivate without risking the loss of access to the
resources corresponding to the leases being renewed.

Entities that have continuous access to a network but that cannot be continu-

ously connected to that network (for example, a cell phone), may also find this
service useful. By allowing a lease renewal service (which can be continuously
connected) to renew the leases on the resources acquired bythe entity, the entity

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

29

30

20 INTRODUCTIONTO THE HELPER SERVICES

may remain disconnected until needed. This lease renewal service removes the
need to perform the discovery and lookup process each time the entity reconnects
to the network, potentially resulting in a significant increase in efficiency.

US.4.3. The Event Mailbox Service

The event mailbox service defined by the net. jini.event.EventMai | box inter-
face is a helper service that can be employed byentities to store event notifications
on their behalf. When an entity registers with the event mailbox service, that ser-
vice will collect events intended for the registered entity until the entity initiates
delivery of the events.

A service such as the event mailbox service can be particularly useful to enti-
ties that desire more control over the delivery of the events sent to them. Some
entities operating in a distributed system may find it undesirable or inefficient to
be contacted solely for the purpose of having an event delivered, preferring to
defer the delivery to a time that is more convenient, as determined by the entity
itself.

For example, an entity wishing to deactivate or detach from a network may
wish to have its events stored until the entity is available to retrieve them. Addi-
tionally, some entities may wish to batch process eventnotifications for efficiency.
In both scenarios, the entities described may find the event mailbox service useful
in achieving their respective event delivery goals.

30

31

INTRODUCTION TO HELPER UTILITIES AND SERVICES, version 1.1 21

US.5 Dependencies

Tue helperutilities and services specifications rely on one or moreof the fol-
lowing specifications:

@ Java™ Remote Method Invocation Specification

@ Java™Object Serialization Specification

@ Jini™ Technology Glossary

@ Jini™ Technology Core Platform Specification

¢ Section DJ “Discovery and Join”

¢ Section LE “Distributed Leasing”

+ Section TX “Transaction”

¢ Section LU “Lookup Service”

@ Jini Lookup Attribute Schema Specification

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

31

32

22

32

DEPENDENCIES

33

DU

Jini Discovery Utilities
Specification

DU.1 Introduction

Eacs discovering entity in a Java virtual machine (JVM)! on a given hostis
independently responsible for obtaining references to lookup services. In this
specification wefirst cover a set of discovery managementinterfaces that define
the policies to apply when implementing helperutilities that manage an entity’s
discovery duties: in particular, the management of multicast (group) discovery
and unicast (locator) discovery. After the discovery management interfaces are
defined, a set of standard helper utility classes that implement one or more of
those interfaces is presented. This specification closes with a discussion ofa set of
lower-level utility classes that can be useful when applying the discovery manage-
mentpolicies to build higher-level helper utilities for discovery.

DU.1.1 Dependencies

This specification relies on the following other specifications:

@ Java Object Serialization Specification

@ The Jini Technology Core Platform Specification, “Lookup Service”

@ The Jini Technology Core Platform Specification, “Discovery and Join”

| The terms “Java virtual machine” and “JVM” meana virtual machinefor the Java platform.

33

23

34

24

34

INTRODUCTION

35

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 25

DU.2 The Discovery ManagementInterfaces

DU.2.1 Overview

Discovery is one behavior that is commonto all entities wishing to interact
with a Jini lookup service. Whetheran entity is a client, a service, or a service act-
ing as a client, the entity must first discover a lookupservice, before the entity can
begin interacting with that lookupservice.

The interfaces collectively referred to as the discovery managementinterfaces
specify sets of methods that define a mechanism that may be used to managevari-
ous aspects of the discovery duties of entities that wish to participate in an appli-
cation environment for Jini technology (a Jini application environment). These
interfaces provide a uniform way to define utility classes that perform the neces-
sary discovery-related management duties on behalf of a client or service. Cur-
rently, there are three discovery managementinterfaces belonging to the package
net.jini.discovery:

@ DiscoveryManagement

@ DiscoveryGroupManagement

@ DiscoveryLocatorManagement

The DiscoveryManagement interface defines semantics for methods related
to the discovery event mechanism and discovery process termination. Through
this interface, an entity can register or un-register for discovery events, discard a
lookupservice, or terminate the discovery process.

The DiscoveryGroupManagement interface defines methods related to the
managementofthe sets of lookup services that are to be discovered using the mul-
ticast discovery protocols (see The Jini Technology Core Platform Specification,
“Discovery and Join”). The methods of this interface define how an entity
accesses or modifies the set of groups whose membersare lookup servicesthat the
entity is interested in discovering through group discovery.

The DiscoveryLocatorManagement interface defines methodsrelated to the

managementofthe set of lookup services that are to be discovered using the uni-

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

35

36

26 THE DISCOVERY MANAGEMENTINTERFACES

cast discovery protocol (as defined in the Jini Discovery and Join Specification).
The methods ofthis interface define how an entity accesses or modifies the con-
tents of the set of LookupLocator objects corresponding to the specific lookup
services the entity has targeted for locator discovery.

Although each interface defines semantics for methods involved in the man-
agement of the discovery process, the individual roles each interface plays in that
process are independent of each other. Because of this independence, there may
be scenarios whereit is desirable to implement somesubsetof these interfaces.

For example, a class may wish to implement the functionality defined in
DiscoveryManagement, but may not wish to allow entities to modify the groups
and locators associated with the lookup services to be discovered. Such a class
may have a “hard-coded”list of the groups and locators that it internally registers
with the discovery process. For this case, the class would implement only
DiscoveryManagement.

Alternatively, another class may not wish to allow the entity to register more
than one listener with the discovery event mechanism; nor may it wish to allow
the entity to terminate discovery. It may simply wish to allow the entity to modify
the sets of lookup services that will be discovered. Such a class would implement
both DiscoveryGroupManagement and DiscoveryLocatorManagement, but not
DiscoveryManagement.

A specific example of a class that implements only a subsetofthe set ofinter-
faces specified here is the LookupDiscovery utility class defined later in this
specification. That class implements both the DiscoveryManagement and
Di scoveryGroupManagement interfaces, but not the
DiscoveryLocatorManagement interface.

Throughout this discussion of the discovery management interfaces, the
phrase implementation class refers to any concrete class that implements one or
more of those interfaces. The phrase implementation object should be understood
to mean an instance of such an implementation class. Additionally, whenever a
description refers to the discovering entity (or simply, the entity), that phrase is
intended to be interpreted as the object (the client or service) that has created an
implementation object, and which wishesto use the public methodsspecified by
these interfaces and provided bythat object.

DU.2.2 Other Types

The types defined in the specification of the discovery managementinterfaces are
in the net. jini.discovery package. The following additional types may also be

36

37

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1

referenced in this specification. Whenever referenced, these object types will be
referenced in unqualified form:

net.jini.core.discovery.LookupLocator

net.jini.core. lookup.ServiceRegistrar

net. jini.discovery.DiscoveryEvent

net.jini.discovery.DiscoveryListener

net.jini.discovery.DiscoveryChangeListener

net.jini.discovery.LookupDiscovery

net.jini.discovery.LookupDiscoveryManager

java.io.IOException

java.security.Permission

java.util.EventListener

java.util.EventObject

java.util.Map

DU.2.3. The DiscoveryManagement Interface

The public methods specified by the DiscoveryManagement interface are:

package net.jini.discovery;

public interface DiscoveryManagement {

public void addDiscoveryListener

(DiscoveryListener listener);

public void removeDiscoveryListener

(DiscoveryListener listener);

public ServiceRegistrar[] getRegistrars();

public void discard(ServiceRegistrar proxy);

public void terminateQ);

DU.2.3.1 The Semantics

The DiscoveryManagement interface defines methods related to the discovery
event mechanism and discovery process termination. Through this interface, an
entity can register or un-register DiscoveryListener objects to receive discovery
events (instances of DiscoveryEvent), retrieve proxies to the currently discov-
ered lookupservices, discard a lookup service so thatit is eligible for re-discov-
ery, or terminate the discovery process.

27

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

37

38

28 THE DISCOVERY MANAGEMENTINTERFACES

Implementation classes of this interface may impose additional semantics on
any method. For example, such a class may chooseto require that rather than sim-
ply terminate discovery processing, the terminate method additionally should
cancel all leases held by the implementation object and terminate all lease man-
agement being performed on behalfofthe entity.

For information on any additional semantics imposed on a method ofthis
interface, refer to the specification of the particular implementationclass.

The Di scoveryEvent, DiscoveryListener, and DiscoveryChangeListener
classes are defined later in this specification.

The addDiscoveryListener method addsa listener to the set of objects lis-
tening for discovery events. This method takes a single argument as input: an
instance of DiscoveryListener correspondingto the listener to addto theset.

Oncea listener is registered, it will be notified of all lookup services discov-
ered to date, and will then be notified as new lookup services are discovered or
existing lookup services are discarded.

If the addedlistener is also an instance of DiscoveryChangeListener (a sub-
class of DiscoveryListener), then in addition to receiving events related to dis-
covered and discarded lookupservices, that listener will also be notified of group
membership changesthat occur in any of the lookup services targeted for at least
group discovery.

If null is input to this method, a Nu11PointerExceptionis thrown.If the
listener input to this method duplicates (using the equals method) another ele-
mentin the set of listeners, no action is taken.

Implementations of the DiscoveryManagement interface must guarantee
reentrancy with respect to DiscoveryListener objects registered through this
method. Should the instance of DiscoveryManagement invoke a method on a reg-
istered listener (a local call), calls from that method to any method of the
DiscoveryManagement instance are guaranteed notto result in a deadlock condi-
tion.

The removeDiscoveryListener method removesa listener from the set of

objects listening for discovery events. This method takes a single argumentas
input: an instance of DiscoveryListener correspondingto the listener to remove
from theset.

If the listener object input to this method does notexist in the set of listeners
maintained by the implementation class, then this method will take no action.

The getRegistrars method returns an array consisting of instances of the
ServiceRegistrar interface. Each elementin the returned set is a proxy to one
of the currently discovered lookup services. Each time this method is invoked, a
new array is returned. If no lookup services have been discovered, an empty array
is returned. This method takes no argumentsas input.

38

39

JINI DISCOVERYUTILITIES SPECIFICATION, version 1.1 29

The discard method removesa particular lookup service from the managed
set of lookup services, and makesthat lookup service eligible to be re-discovered.
This method takes a single argument as input: an instance of the ServiceRegis-
trar interface correspondingto the proxy to the lookup service to discard.

If the proxy input to this method is nu11, or if it matches (using the equals
method) none of the lookup services in the managed set, this method takes no
action.

Currently, there exist utilities such as the LookupDiscovery and
LookupDiscoveryManager helperutilities that will, on behalf of a discovering
entity, automatically discard a lookup service upon determining that the lookup
service has become unreachable or uninteresting. Although mostentities will typ-
ically employ such a utility to help with both its discovery as well as its discard
duties, it is importantto note that if the entity itself determines that the lookupser-
vice is unavailable, it is the responsibility of the entity to invoke the discard
method. This scenario usually happens whenthe entity attempts to interact with a
lookupservice, but encounters an exceptional condition (for example, a communi-
cation failure). When the entity actively discards a lookup service, the discarded
lookup service becomes eligible to be re-discovered. Allowing unreachable
lookup services to remain in the managedset can result in repeated and unneces-
sary attempts to interact with lookup services with which the entity can no longer
communicate. Thus, the mechanism provided by this method is intended to pro-
vide a way to removesuch “stale” lookup service references from the managed
set.

Invoking the discard method defined by the DiscoveryManagementinter-
face will result in the flushing of the lookup service from the appropriate cache,
ultimately causing a discard notification—treferred to as a discarded event—to be
sent to all listeners registered with the implementation object. When this method
completes successfully, the lookup service is guaranteed to have been removed
from the managed set, and the lookup service is then said to have been “dis-
carded”. No such guarantee is made with respect to when the discarded eventis
sent to the registered listeners. That is, the event notifying the listeners that the
lookupservice has been discarded may or may notbe sent asynchronously.

The terminate method endsall discovery processing being performed on
behalf of the entity. This method takes no input arguments.

After this method has been invoked, no new lookupservices will be discov-
ered, and the effect of any new operations performed on the current implementa-
tion object are undefined.

Anyadditional termination semantics must be defined by the implementation
class.

A COLLECTION OF JINI™ TECHNOLOGYHELPER UTILITIES AND SERVICES SPECIFICATIONS

39

40

30 THE DISCOVERY MANAGEMENTINTERFACES

DU.2.4 The DiscoveryGroupManagement Interface

The public methods specified by the DiscoveryGroupManagement interface are
as follows:

package net.jini.discovery;

public interface DiscoveryGroupManagement {

public static final String[] ALL_GROUPS = null;

public static final String[] NO_GROUPS = new String[0];

public String[] getGroups();

public void addGroups(String[] groups) throws IOException;

public void setGroups(String[] groups) throws IOException;

public void removeGroups(String[] groups);

DU.2.4.1 The Semantics

The Di scoveryGroupManagement interface defines methods and constants related
to the managementofthe set containing the names of the groups whose members
are the lookupservicesthat are to be discovered using the multicast discovery pro-
tocols; that is, lookup services that are discovered by way of group discovery. The
methods of this interface define how anentity retrieves or modifies the managed
set of groups to discover, where phrases such as “the groups to discover”or “dis-
covering the desired groups”refer to the discovery of the lookup servicesthat are
membersofthose groups.

The methods that modify the managed set of groups each take a single input
parameter: a String array, none of whose elements may be nu11. Each of these
methods throws a Nul1PointerException whenat least one element of the input
array is null.

The empty set is denoted by an empty array, and “no set” is indicated by nu11.
Invoking any of these methods with an input array that contains duplicate group
names is equivalent to performing the invocation with the duplicates removed
from the array.

The ALL_GROUPS and the NO_GROUPS constants are defined for convenience,

and represent no set and the empty set respectively.
The getGroups method returns an array consisting of the names of the groups

in the managedset; that is, the names of the groups the implementation objectis
currently configured to discover.

40

