Merrimac:

William J. Dally

Frangois Labonté Jung-Ho Ahn
Abhishek Das Jayanth Gummaraju
ABSTRACT

Merrimac uses stream architecture and advanced interconnection
networks to give an order of magnitude more performance per unit
cost than cluster-based scientific computers built from the same
technology. Organizing the computation into streams and exploit-
ing the resulting locality using a register hierarchy enables a stream
architecture to reduce the memory bandwidth required by repre-
sentative applications by an order of magnitude or more. Hence
a processing node with a fixed bandwidth (expensive) can support
an order of magnitude more arithmetic units (inexpensive). This in
turn allows a given level of performance to be achieved with fewer
nodes (a 1-PFLOPS machine, for example, with just 8,192 nodes)
resulting in greater reliability, and simpler system management. We
sketch the design of Merrimac, a streaming scientific computer that
can be scaled from a $20K 2 TFLOPS workstation to a $20M 2
PFLOPS supercomputer and present the results of some initial ap-
plication experiments on this architecture.

1. Introduction

Modemn semiconductor technology makes arithmetic inexpen-
sive and bandwidth expensive. To exploit this shift in cost, a high-
performance computer system must exploit locality, to raise the
arithmetic intensity (the ratio of arithmetic to bandwidth) of the
application as well as parallelism to keep a large number of arith-
metic units busy. Expressing an application as a stream program
fulfills both of these requirements. It exposes large amounts of par-
allelism across stream elements and reduces global bandwidth by
expressing locality within and between kemnels.

A stream processor exploits the parallelism exposed by a stream
program, by providing 100s of arithmetic units, and exploits the
locality of a stream program, by providing a deep register hier-

This work was supported in part by the Department of Energy, NNSA,
under the ASCI Alliances program (contract LLL-B341491), in part by
National Science Foundation Fellowships, in part by Stanford Graduate
Fellowships, in part by the DARPA Smart Memories Project (contract
MDA904-98-R-S855), and in part by the DARPA Polymorphous Comput-
ing Architectures Project (contract F29601-00-2-0085).

Permission to make digital or hard copies of all or pant of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

SC'03, November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

Patrick Hanrahan

Supercomputing with Streams

Mattan Erez
Nuwan Jayasena
lan Buck

Timothy J. Knight
Ujval J. Kapasi

archy. In particular, memory bandwidth is reduced by capturing
short-term producer-consumer locality in large local register files,
and long-term producer-consumer locality in a stream register file.
This locality might not be captured by a reactive cache. More im-
portantly, the stream register file is aligned with individual ALUs
and requires only local on-chip communication while a cache re-
quires global on-chip communication.

We are designing Merrimac', a scientific computer system tai-
lored to exploit the parallelism and locality of streams. The core
of Merrimac is a single-chip (90nm CMOS) stream processor that
is expected to have 128 GFLOPS peak performance. This proces-
sor chip along with 16 high-bandwidth DRAM chips (2G Bytes of
memory) form a single Merrimac node. Application experiments
suggest that this single-node Merrimac will sustain up to half of
peak performance on a range of scientific applications. With an
estimated parts cost of less than $1K per 128 GFLOPS node (in-
cluding network), we expect a Merrimac machine to provide both
capability and capacity — being more cost effective than machines
based on commodity microprocessors.

Merrimac employs a high-radix interconnection network to con-
nect 16 nodes (2 TFLOPS) on a single board, 512 nodes (64 TFLOPS)
in a cabinet, and 8K nodes (1 PFLOPS) in 16 cabinets. The net-
work provides a flat shared address space across the multi-cabinet
system with flat bandwidth across a board (16 nodes) and a global
bandwidth of 1/8 the local bandwidth anywhere in the system,

We have coded three representative scientific applications as stream
programs and measured their performance on a simulated Merri-
mac node. These initial experiments show that typical scientific
applications cast as stream programs maintain a high arithmetic to
memory bandwidth ratio and achieve a high fraction of peak perfor-
mance. The applications simulated have computation-to-memory
ratios in the range of 7:1 to 50:1, achieving between 18% and 52%
of the peak performance of the machine, with less than 1.5% of
data references traveling off-chip.

The remainder of this paper describes stream processors and the
Merrimac project in more detail. In Section 2 we see that modern
VLSI technology makes arithmetic cheap and bandwidth expen-
sive. Section 3 shows how a stream processor exploits the appli-
cation locality using a bandwidth hierarchy and application paral-
lelism by using large numbers of ALUs. Mermimac, a supercom-
puter based on streams, is described in Section 4. We show the
performance of a simulated stream processor on a number of ap-
plications in Section 5. Issues related to scientific computing with
streams are discussed in Section 6

'Merrimac is a Native American word meaning “fast moving
stream”,

Petitioners Amazon
Ex. 1010, p. 114 0of 399

2. VLSI enables inexpensive arithmetic mak-
ing bandwidth the limiting factor

Modern VLSI fabrication processes make it very inexpensive in
terms of both area and power to put large amounts of arithmetic
capability on a chip. With arithmetic almost free, global band-
width, both on-chip and off-chip, becomes the factor limiting per-
formance.

In 0.13zm CMOS technology, a 64-bit floating-point unit (FPU)
(multiplier and adder) has an area of less than Imm? and dissipates
about 50pJ of energy per operation [1]. Over 200 such FPUs can
fit on a l14mm x 14mm chip that can be manufactured in volume
(including testing and packaging) for less than $100. Even at a
conservative operating frequency of S00MHz this gives a cost of
64-bit floating-point arithmetic of less than $1 per GFLOPS and a
power of less than 50mW per GFLOPS. Even though one cannot
completely fill a chip with FPUs, modern graphics chips come close
to realizing these cost performance levels. For example, the nVidia
NV30 sustains 100 GFLOPS (32-bit floating point) [2].

The already low cost of arithmetic is decreasing rapidly as tech-
nology improves. We describe a CMOS technology by its drawn
gate length L. Most chips today are manufactured with L = 0.13um.
Historical trends show that L decreases at about 14% per year [3].
The cost of a GFLOPS of arithmetic scales as L® and hence de-
creases at a rate of about 35% per year [4]. Every five years, L
is halved, four times as many FPUs fit on a chip of a given area,
and they operate twice as fast — giving a total of eight times the
performance for the same cost. Of equal importance, the switching
energy also scales as L* so every five years, we get eight times the
arithmetic performance for the same power.

Global bandwidth, not arithmetic is the factor limiting the per-
formance and dominating the power of modemn processors. The
cost of bandwidth grows at least linearly with distance in terms of
both availability and power [4]. To keep distances constant across
technology generations, we express distance in units of tracks. One
track (or 1X) is the distance between two minimum width wires on
achip. In 0.13 um technology, 1x = 0.5um. We can put ten times
as many 10°x wires on a chip as we can 10"x wires. More im-
portantly, moving a bit of information over a 10%x wire takes only
1/10" the energy as moving a bit over a 10" x wire. In an 0.13um
technology, for example, transporting the three 64-bit operands for
a 50p] floating point operation over global 3 x 10"x wires con-
sumes about InJ, 20 times the energy required to do the operation.
In contrast, transporting these operands on local wires with an av-
erage length of 3 x 10°X takes only 10pJ, much less than the cost
of the operation.

Contemporary architectures are not yet tuned to these develop-
ing VLSI constraints. These architectures are unable to use more
than a few arithmetic units because they are designed for applica-
tions with limited parallelism and are hindered by a low bandwidth
memory system. Their main goal is to provide high performance
for mostly serial code that is highly sensitive to memory latency
and not bandwidth. To exploit the capabilities of today’s VLSI
technology requires an architecture that can exploit parallelism —
to keep large numbers or arithmetic units busy while hiding the ever
increasing latency to memory, and locality — to increase the ratio
of arithmetic, which is inexpensive, to global bandwidth, which is
the limiting factor,

3. Stream Architecture exploits the character-
istics of VLSI

A Stream Processor is able to take advantage of the large number
of arithmetic units that VLSI technology enables without exceed-
ing the bandwidth limitations of the technology by using a register
hierarchy to exploit locality in the application. This greatly re-
duces the average distance an operand must travel to reach a FPU.
As shown in Figure 1, a stream architecture consists of an array
of clusters, each with a set of FPUs, a set of local register files
(LRFs), and a bank of a stream register file (SRF). Each FPU in a
cluster reads its operands out of an adjacent LRF over very short,
(= 100x), wires. FPU results are distributed to the other LRFs
in a cluster and accesses to the local SRF bank are made via the
cluster switch over short (=~ 1, 000x) wires. While the SRF is sim-
ilar in size to a cache, SRF accesses are much less expensive than
cache accesses because they are aligned and do not require a tag
lookup. Each cluster accesses its own bank of the SRF over short
wires. In contrast, accessing a cache requires a global communi-
cation over long (= 10, 000x) wires. The SRF also plays another
crucial role in keeping the arithmetic units busy by allowing the
software to hide long memory latencies. An entire stream is trans-
ferred between the SRF and the memory with a single instruction.
These stream memory operations generate a large number of mem-
ory references to fill the very deep pipeline between processor and
memory, allowing memory bandwidth to be maintained in the pres-
ence of latency. Arithmetic units are kept busy by overlapping the
execution of arithmetic kemnels with these stream memory opera-
tions.

To see how a stream processor exploits locality, consider a sim-
ple application expressed as a stream program (Figure 2). This fig-
ure shows a synthetic application that is designed to have the same
bandwidth demands as the StreamFEM application (Section 5). Each
iteration, the application streams a set of 5-word grid cells into a se-
ries of four kernels. The kernels operate on the data, performing the
number of operations indicated, and pass intermediate results on to
the next kemnel. To perform a table lookup, kernel K1 generates an
index siream that is used to reference a table in memory generating
a 3-word per element stream into kernel K3.

Figure 3 shows how the stream program of Figure 2 maps to
the register hierarchy of a stream processor. The grid cells start
in memory and are read a strip at a time into a buffer in the SRF.
A typical strip might be 1024 S-word records.” Once a strip of
cells is in the SRF, kernel K1 is run generating a strip of indices
and a strip of intermediate results in the SRF. Kernel K2 is run on
the results, generating a second set of intermediate results while the
indices are applied to memory to read a strip of table values into the
SRF. Table values that are repeatedly accessed are provided by the
cache. The process continues until the updates to the strip of grid
cells, generated by kemnel K4, are written back to memory. Each
strip is software pipelined so that the loading of one strip of cells is
overlapped with the execution of the four kemels on the previous
strip of cells and the storing of the strip before that.

This synthetic application shows how the stream architecture ex-
ploits locality. In Section 5 we shall see that actual applications ex-
ploit locality in a similar manner. Kernels K1...K4 perform all of
their 300 operations out of LRFs, performing 900 LRF accesses per-
grid point, The streams between the kernels are passed through the
SRF generating 58 words of SRF bandwidth per grid point. Finally
memory accesses total 12 words. This gives us a bandwidth ratio
of 75:5:1, 75 LRF references and 5 SRF references for every mem-

*The strip size is chosen by the compiler to use the entire SRF
without any spilling.

Petitioners Amazon
Ex. 1010, p. 115 0of 399

chip 10,000, 1,000y

boundal
i wires clistii wires \
DRAM Swream |}—
Main |—1—{ Cache Bank |—— Reg File |—
Memory Bank || Cluster

Global H
Switch

DRAM
Main |—i—{ Cache Bank |——
Memory

Figure 1: A stream processor consists of an array of clusters each having a number of functional units with local register files and
a stream register file bank connected by a cluster switch. The clusters are connected to each other and to cache banks by a global
switch. At each level of this hierarchy — local register, intra-cluster, and inter-cluster — the wires get an order of magnitude longer.

K1 K2 K3 K4 4
Graol el 1zwuo JLe 1awuo }-Eu{ 1swio }a{ swuo Sl
50 Ops 100 Ops, 70 Ops B0 Ops
Index |1
Strea
Table

Figure 2: A synthetic stream application, modeled after StreamFEM (Section 5) consists of a set of kernels K1 ... K4 that pass
streams of data between them.

Memony Stream Cache Stream Reg File Local Registers
Grid of Cells 5 Celis 2 5:&“
|
1 l 1 Indices ™ Z
] K2
Results 1 100 Ops
Table Table 8
| | K3
8
8 K4
Results 3 | > 80 Ops
Indices 5
| Grid of Cells I] 5 Results 4 '.,J 300 Ops
= 900W
9.5Wards 12Words 58Words

Figure 3: The stream program of Figure 2 is mapped to the bandwidth hierarchy of a stream processor.

Petitioners Amazon
Ex. 1010, p. 116 0of 399

ory reference. Put differently, 93% of all references are made from
the LRFs, where bandwidth is very inexpensive, and only 1.2% of
references are made from the memory system, where bandwidth is
expensive for cache hits and very expensive for misses.?

A stream processor executes a stream instruction set. This in-
struction set includes scalar instructions, that are executed on a
conventional scalar processor, stream execution instructions, that
each trigger the execution of a kemel on one or more strips in the
SRF, and stream memory instructions that load and store (possibly
with gather and scatter) a stream of records from memory to the
SRF. This stream instruction set closely follows that of the Imagine
streaming media processor [5, 6).

Merrimac also provides hardware support for a scatter-add in-
struction, This instruction is an example of a new architectural fea-
ture that is enabled by programming in streams. A scatter-add acts
as a regular scatter, but adds each value to the data already at each
specified memory address rather than simply overwriting the data.
This type of operation was discussed from a parallel algorithm per-
spective in [7].

4. Sketch of Merrimac: a Streaming Scientific

Computer
FPINT FPANT
64 Bit 64 Bit
MADD MADD
64 W RF AW RF
H B4 W RF 4 W RF "
@ 64 W RF 4 W RF £
w G4 WRE Y RE o
= 64 WRE 64 W RF o
64 W RF 64 W RF
FPINT FPANT
64 Bit 84 Bit
MADD MADD
! 2.3 mm '

Figure 4: Floorplan of a Merrimac cluster.

Each Merrimac node contains a stream processor (as illustrated
in Figure 1) with 16 arithmetic clusters. Each cluster contains four
floating-point multiply-add (MADD) units, 768 64-bit words of lo-
cal registers, and 8K words of stream register file. The entire stream
register file has a capacity of 128K 64-bit words, distributed across
the 16 clusters. A floorplan for one cluster is shown in Figure 4.
Each MADD unit measures 0.9mm x 0.6mm and the entire clus-
ter measures 2.3mm x 1.6mm. We conservatively plan to operate
with a clock cycle of Ins (37 FO4 inverters in 90nm[3]) giving a
performance of 8 GFLOPS per cluster and 128 GFLOPS across the
16 clusters.

A floorplan of the entire Merrimac stream processor chip is shown
in Figure 5. The bulk of the chip is occupied by the 16 clusters. The

*Many of our applications have very large kemels that in effect
combine several smaller kernels — passing intermediate results
through LRFs rather than SRFs. While this increases the fraction of
LRF accesses, it also stresses LRF capacity. Ideally, the compiler
will partition large kernels and combine small kernels to balance
these two effects. We have not yet implemented this optimization.

- - - w
3 2 2]
2 e ff 2|2
Mips6d 20ke 5 & G G
s e |s]s
$ bank g g E] E]
Sbank || © i 2 i [
E
z § bank Microcontroller i
S | $bank =]
€ _ " . v
g $ bank g § § .;:;
$ bank S 5 S S
$ bank
$ bank] 3 5 g
Netwark o o T} o
! 9.8 mm !

Figure 5: Floorplan of a Merrimac stream processor chip.

left edge of the chip holds the remainder of the node. A scalar pro-
cessor [8] fetches all instructions, executes the scalar instructions
itself, and dispatches stream execution instructions to the clusters
(under control of the microcontroller) and stream memory instruc-
tions to the memory system, The node memory system consists of
a set of address generators (not shown), a linc-interleaved eight-
bank 64K-word (512KByte) cache, and interfaces for 16 external
DRAM chips. A network interface directs off-node memory refer-
ences to the routers. We estimate that each Merrimac processor will
cost about $200 to manufacture and will dissipate a maximum of
31W of power. Area and power estimates in a standard cell process
in 90nm technology are derived from models based on a previous
implementation of stream processor [1].

Figure 6 illustrates a single Merrimac board containing 16 nodes
— 16 128GFLOPS stream processors (Figure 5) each with 2 GBytes
of DRAM — and four router chips. The router chips interconnect
the 16 processors on the board, providing flat memory bandwidth
on board of 20 GBytes/s per node. The routers also provide a gate-
way to the inter-board network, with a 4:1 reduction in memory
bandwidth (to 5 GBytes/s per node), for inter-board references.

Larger Merrimac systems are interconnected by a five-stage folded-
Clos [9] network® using high-radix routers as illustrated in Figure 7.
The routers on each 16-node board serve as the first and last stage
of this network. The basic building block of this network 1s a 48-
input % 48-output router chip. Each bidirectional router channel
(one input and one output) has a bandwidth of 2.5 GBytes/s (four
5Gb/s differential signals) in each direction. On each 16-processor
board, each of four routers has two 2.5 GByte/s channels to/from
each of the 16 processor chips and eight ports to/from the backplane
switch. The remaining eight ports are unused. Thus each node pro-
vides a total of 32 channels to the backplane. At the backplane
level, 32 routers connect one channel to each of the 32 boards and
connect 16 channels to the system-level switch. A total of 512 2.5
GByte/s channels traverse optical links to the system-level switch
where 512 routers connect all 48 ports to up to 48 backplanes (the
figure shows just 32 backplanes).

Table 1 shows the estimated cost of a streaming supercomputer.
The processor and router chip are modest-sized (10mm x |1mm)
ASICs in 1000-pin flip-chip BGA packages that are expected to

*This topology is sometimes called a Fat Tree [10].

Petitioners Amazon
Ex. 1010, p. 117 of 399

Board 0
16 Proc
84 TFLOPS Board
Per Backplane 2TFLOPS L Reard 3t
32GByles
32 x 2,568/ 1
2878/ -—-f20 i
Router
1]
oG
[o= | |

512 x 2,568/~ |

Router
1 2

Router
a3 511

Figure 7: A 2 PFLOPS Merrimac system uses a high-radix interconnection network.

node
DRAM DRAM DRAM
2Coytes | 2c8ytes | | 2c8yes [2Gbytes
206B/s
Steam
Proc 0 Stream Stream
TFLOP ~
el | Proct |™° Proc 15
GFLOPS
e
TS
32068/5--4 f— 13 T
Router Router Router Router
0 1 2 3
LH—|:
L —
sas T T e T 1= 1
L} L} L] LIl 1

Figure 6: Sixteen 128 GFLOPS stream processors each with 2
GBytes of DRAM memeory can be packaged on a single board.
The board has a total of 2 TFLOPS of arithmetic and 32 GBytes
of memory. Such a board is useful as a stand-alone scientific
computer and as a building-block for larger systems.

[Ttem Cost($) | Per Node Cost (5)
Processor Chip 200 200
Router Chip 200 69
Memory Chip 20 320
Board 1000 63
Router Board 1000 2
Backplane 5000 10
Global Router Board 5000 8
Power 1 S0
Per Node Cost 718
$/GFLOPS (128/Node) 6
$/M-GUPS (250/Node) 3

Table 1: Rough Per-Node Budget. Parts cost only, does not
include 1/O.

cost $200 each in moderate quantities (1000s). DRAM chips are
projected to cost $20 each, making DRAM, at $320 the largest sin-
gle cost item. Board and backplane costs, including connectors,
capacitors, regulators, and other components is amortized over the
16 nodes on each board and the 512 nodes in each backplane. The
router board and global router board costs reflect the costs of the
intra-cabinet and inter-cabinet networks respectively. Supplying
and removing power costs about §1 per W or about $50 per 50W
node. Overall cost is less than $1K per node, which translates into
$6 per GFLOP of peak performance and $3 per M-GUPS®.

*GUPS or global updates per second is a measure of global un-
structured memory bandwidth. It is the number of single-word
read-modify-write operations a machine can perform to memory
locations randomly selected from over the entire address space.

Petitioners Amazon
Ex. 1010, p. 118 0of 399

Application Sustained GFLOPS | FP Ops/ Mem Ref | LRF Refs | SRF Refs | Mem. Refs |
StreamFEM (Euler, quadratic) 32.2 235 169.5M 10.3M 1.4M
(93.6%) | (5.7%) (0.7%)
StreamFEM (MHD, cubic) 335 50.6 733.3M 43.8M 3.2M
(94.0%) (5.6%) (0.4%)
StreamMD 14.2 12.1 90.2M 1.6M 0.7
(97.5%) (1.7%) (0.8%)
StreamFLO 11.4 7.4 234.3M 72M 3.4M
(95.7%) (2.9%) (1.4%)

Table 2: Performance measurements of streaming scientific applications

5. Applications exploit the locality of a stream
processor

Three scientific applications were used to evaluate the single
node performance of the Merrimac stream processor: StreamFEM,
StreamMD, and StreamFLO. These applications feature a number
of characteristics which are common in scientific applications in
general, including regular and irregular multidimensional meshes,
multigrid techniques, and particle-in-cell computations.

StreamFEM is a finite element application designed to solve sys-
tems of first-order conservation laws on general unstructured meshes.
The StreamFEM implementation has the capability of solving sys-
tems of 2D conservation laws corresponding to scalar transport,
compressible gas dynamics, and magnetohydrodynamics (MHD)
using element approximation spaces ranging from piecewise con-
stant to piecewise cubic polynomials. StreamFEM uses the discon-
tinuous Galerkin (DG) method developed by Reed and Hill [11]
and later popularized by Cockburn, Hou and Shu [12). In the
present StreamFEM implementation, the limiting procedure of Cock-
burn et al. has been replaced by variational discontinuity capturing
terms as discussed in Jaffre, Johnson and Szepessy [13] with fur-
ther overall algorithmic simplifications as discussed in Barth [14].

StreamMD is a molecular dynamics solver [15, 16] that is based
on solving Newton's equations of motion. The velocity Verlet method
(or Leap-frog) is used to integrate the equations of motion in time;
using this method, it is possible to simulate the complex trajectories
of atoms and molecules for very long periods of time. The present
StreamMD implementation simulates a box of water molecules,
with the potential energy function defined as the sum of two terms:
clectrostatic potential and the Van der Waals potential. A cutoff
is applied so that all particles which are at a distance greater than
Teutoff d0 not interact. A 3D gridding structure is used to accelerate
the determination of which particles are close enough to interact —
each grid cell contains a list of the particles within that cell, and
each timestep particles may move between grid cells. StreamMD
makes use of the scatter-add functionality of Merrimac by com-
puting the pairwise particle forces in parallel and accumulating the
forces on each particle by scattering them to memory.

StreamFLO [17] is a finite volume 2D Euler solver that uses a
non-linear multigrid algorithm. It is based on the FLO82 code
[18][19], which influenced many industrial and research codes. The
choice of the code is motivated by the need for an application that
is representative of a typical computational fluid dynamics appli-
cation, without unnccessary complexity. A cell-centered finite-
volume formulation is used to solve the fluid equations together
with multigrid acceleration. Time integration is performed using a
five stage Runge-Kutta scheme.

Table 2 presents measurements from running these three applica-
tions on a cycle-accurate simulator of one Merrimac node. These
simulations were run on a version of the simulator that included

four 2-input multiply/add units per cluster (for a peak performance
of 64GFLOPS/node) rather than the four integrated 3-input MADD
units (128GFLOPS/node) that is the current design.

The Sustained GFLOPS and FP Ops / Mem Ref columns illus-
trate the arithmetic intensity of the applications; they are able to
sustain from 18% to 52% of the node’s peak arithmetic perfor-
mance, by performing from 7 to 50 floating point operations for
cach global memory access. Note that only “real” ops are counted
in this figure, such as floating point add/mul/compare instructions,
and not non-arithmetic ops such as branches. Divides are counted
as single floating point operations, even though each divide requires
several multiplication and addition operations when executed on
the hardware. This leads to the lower performance numbers for
StreamMD and StreamFLO — for example, the sustained perfor-
mance of StreamFLO would double if we counted all the multiplies
and adds required for divisions as well.

The right-most three columns list the respective numbers of LRF,
SRF, and memory references made by the program, along with the
percentage of references satisfied by each level. Note that only a
small fraction of references, usually less than 1%, require commu-
nication over global (> 10, 000X or off-chip) wires, and that over
95% of all data movement is on local (100x) wires (at the LRF
level). The register hierarchy of a stream processor exposes costly
global communication and allows the locality inherent in applica-
tions to be exploited to keep communications local.

Exploiting locality using a register hierarchy increases perfor-
mance and reduces power dissipation. By performing less data
movement per arithmetic operation, we can support a much larger
number of arithmetic units before saturating the limited global band-
width, At the same time power per operation is dramatically re-
duced by eliminating much of the global communication that dom-
inates power.

6. Discussion

6.1 Streams vs Vectors

Stream processors share with vector processors, like the Crayl
through Cray C90 [20][21], the ability to hide latency, amortize
instruction overhead, and expose data parallelism by operating on
large aggregates of data. In a similar manner, a stream processor,
such as Merrimac, hides memory latency by fetching a stream of
records with a single stream load instruction. A kemnel is performed
on one or more streams of records in the stream register file (SRF)
with a single operate instruction. This both amortizes the overhead
of the operate instruction and exposes data parallelism.

Stream processors extend the capabilities of vector processors
by adding a layer to the register hierarchy, and adding a layer of in-
struction sequencing that enables them to operate in record (rather
than operation) order. The functions of the vector register file (VRF)
of a vector processor is split between the local register files (LRFs)

Petitioners Amazon
Ex. 1010, p. 119 of 399

and the stream register file (SRF) of a stream processor. The LRFs
stage data between ALU operations to exploit fine-grained producer-
consumer locality (sometimes called kernel locality). To support
a large number of ALUs, they have a very high aggregate band-
width. Because they exploit only kernel locality, their capacity can
be modest, a few thousand words - about the same size as a modemn
VRE. The stream register file (SRF) of a stream processor stages
data to and from memory and stages data to and from the LRFs
to exploit coarse-grained (sometimes called outer-loop) producer-
consumer locality. Because it is relieved of the task of forwarding
data to/from the ALUs, its bandwidth is modest (an order of magni-
tude less than the LRFs) which makes it economical to build SRFs
large enough to exploit coarse-grained localiry.

6.2 Balance

The ratios between arithmetic rate, memory bandwidth, and mem-
ory capacity on Merrimac are balanced based on cost and utility —
so that the last dollar spent on each returns the same incremen-
tal improvement in performance. This balancing by diminishing
retumns gives ratios quite different from the common approach of
fixing the ratio of GFLOPS to GBytes irrespective of cost. If we
took this approach with Merrimac, we would have to provide 128
GBytes of memory (costing about $20K) for each $200 processor
chip making our processor to memory cost ratio 1:100. If one needs
128 GBytes of memory, it is more efficient to provide 64 nodes,
even if the additional processors are not required — their cost is
small compared to the memory.

A similar argument applies to the ratio of arithmetic to memory
bandwidth. Merrimac provides only 20 GBytes/s (2.5 GWords/s) of
memory bandwidth for 128 GFLOPS, a FLOP/Word ratio of over
50:1. Many vector machines have FLOP/Word ratios of 1:1 [21],
and conventional microprocessors have ratios between 4:1 and 12:1
[22][23]. Providing even a 10:1 ratio on Merrimac would be pro-
hibitively expensive. We would need 80 external DRAMs rather
than 16. Interfacing to this large number of DRAMSs would require
at least 5 external memory interface chips (pin expanders). As with
memory capacity, taking this fixed-balance approach to memory
bandwidth causes the cost of bandwidth to dominate the cost of
processing. Its more efficient to just use Merrimac processor chips
to directly interface to 16 DRAMSs each. For memory bandwidth
dominated computations (e.g., sparse vector-matrix product) most
of the arithmetic will be idle. However, even for such computations
the Merrimac approach is more cost effective than trying to provide
a much larger memory bandwidth for a single node.

6.3 High-Radix Routers

In the 1980s and early 90s, when routers had pin bandwidth in
the range of 1-10Gb/s, torus networks gave high throughput while
balancing serialization latency against network diameter. For this
reason, torus networks were quite popular during this period [24,
25, 26). Today, with router chip pin bandwidths between 100Gb/s
and 1Tb/s possible, a torus can no longer make effective use of
this bandwidth. A topology with a higher node degree (or radix) is
required. When used in conjunction with channel slicing, slicing
each node's 20GB/s of network bandwidth across eight 2.5GB/s
channels, building routers with high degree (48 for Merrimac) en-
ables a network with very low diameter (2 hops to 16 nodes, 4
hops to 512 nodes, and 6 hops to 24K nodes) compared to a 3-D
torus (with a node degree of 6).° The use of a Clos network has

51f we employed a butterfly rather than a Clos topology these di-
ameters would be nearly halved. Unfortunately a butterfly network
is not practical because of its poor performance routing certain per-
mutations.

the added advantage that its hierarchical nature facilitates the use
of optical links to cover the long distances required at the top level
[27].

7. Conclusion

Modern VLSI technology makes arithmetic very cheap (100s
of 64-bit FPUs per chip) and bandwidth very expensive (a few
words/cycle of off-chip bandwidth). Expressing an application as
a stream program exposes parallelism — to take advantage of the
large number of arithmetic units and to hide the ever increasing
memory latencies — and locality — to reduce the demand on the
limited bandwidth. A stream processor exploits this parallelism
and locality by providing a deep bandwidth hierarchy that exposes
communication so it can be optimized by a compiler. By capturing
short-term producer-consumer locality in local registers and long-
term producer-consumer locality in a stream register file, a stream
processor significantly reduces an application’s demand on mem-
ory bandwidth.

Merrimac is a stream processor tailored for scientific applica-
tions. Merrimac is scalable from a 2 TFLOPS single-board work-
station to a 2PFLOPS supercomputer. A 90nm CMOS stream pro-
cessor chip with a peak performance of 128 GFLOPS enables Mer-
rimac to sustain a high ratio of arithmetic operations to external
bandwidth. This allows Merrimac to achieve an efficiency of 128
MFLOPS/$ peak and 23-64 MFLOPS/S sustained on our pilot ap-
plications’. A high-radix network gives Merrimac a flat global ad-
dress space with only an 8:1 (local:global) bandwidth ratio. This
gives Merrimac a memory efficiency of 250 K-GUPS/$. This rel-
atively flat global memory bandwidth simplifies programming by
reducing the importance of partitioning and placement.

Three representative scientific applications have been converted
to stream programs, compiled for Merrimac, and executed on a
cycle-accurate simulation of a Merrimac node. These applications
all exhibit high locality, maintaining arithmetic to memory access
ratios from 7 to 50. Across these applications, over 96% of all
data accesses are from local register files and less than 1.5% are
to memory. These experiments verify that streams can extract suf-
ficient locality from representative scientific codes to sustain high
arithmetic rates with limited memory bandwidth.

The results we present here establish the feasibility of using stream
processing for scientific computing — by showing that stream lo-
cality exists in representative scientific codes — and suggests that
a stream processor can significantly improve the performance per
unit cost of scientific computing.

Scientific stream processing raises many interesting questions
for future research. Our initial experiments used programs that
were manually restructured into stream programs. The develop-
ment of compilation methods to automate this process of partition-
ing a vectorized or parallelized code into kernels would make it eas-
ier to apply stream processing to enhance the locality of a large vol-
ume of existing code. We are also interested in compilation meth-
ods that perform transformations on stream programs, splitting and
merging kernels to balance register use, and rescheduling kernels
and memory operations to most efficiently stage data through the
stream register file.

On the architecture front, we are exploring alternative stream
register file organizations that appear to offer even greater reduc-
tions in required memory bandwidth. We are investigating how
to best use a cache in combination with a stream register file and
how to give the compiler more control over caching policies. We
are also investigating global communication and synchronization

"Projected from the experiments of Section 5.

Petitioners Amazon
Ex. 1010, p. 120 0of 399

mechanisms that are suitable for use with streams. This includes
our scatter-add operation, which reduces the need for synchroniza-
tion in many applications.

Finally our initial experiments used relativiey simple 2D codes
running on a single node of a simulated machine. We are currently
exploring the properties of larger and more complex 3D codes run-
ning across multiple nodes of a simulated machine. Initial indi-
cations are positive — that these codes exhibit at least as much
‘stream’ locality as their simpler counterparts.

8. Acknowledgements

We would like to thank Massimiliano Fatica and Eric Darve from
the Mechanical Engineering Department at Stanford, as well as
Timothy J. Barth and Alan Wray from NASA Ames for their great
contribution to the project, and specifically for providing applica-
tions and working with us on their Merrimac implementation. We
would also like to thank Bill Reynolds, Parviz Moin, and Juan J.
Alonso from Stanford University for their support of this work as
part of the Center for Integrated Turbulence Simulation.

9. REFERENCES

[1] Khailany, B., Dally, W. J., Rixner, S., Kapasi, U. J., Owen,
J. D, and Towles, B., “Exploring the VLSI Scalability of
Stream Processors,” Proceedings of the Ninth Symposium on
High Performance Computer Architecture, Anaheim,
California, USA, February 2003, pp. 153-164.

[2) nVIDIA®, “pVIDIA® GeFORCE™™ FX,"
http://www.nvidia.com/docs/10/2430/SUPP/
PO_GFFX_Consumer_030503.pdf.

[3) Semiconductor Industry Association, The International
Technology Roadmap for Semiconductors, 2001 Edition.

[4] Dally, W. J. and Poulton, W., Digital Systems Engineering,
Cambridge University Press, 1998.

[5] Khailany, B., Dally, W. J., Rixner, S., Kapasi, U. J., Mattson,
P., Namkoong, J., Owens, J. D., Towles, B., and Chang, A.,
“Imagine: Media Processing with Streams,” JEEE Micro,
March/April 2001, pp. 35-46.

[6] Kapasi, U.], Rixner, S., Dally, W. J., Khailany, B., Ahn,

J. H., Mattson, P.,, and Owens, J. D., “Programmable Stream
Processors,” IEEE Computer, August 2003,

[7] Kallinderis, Y. and Vidwans, A., “Generic Parallel
Adaptive-Grid NavierStokes Algorithm,” AJAA4 Journal,
Vol. 32, 1994, pp. 54-61.

[8] MIPS Technologies, MIPS64 20Kc Core,
http://www.mips.com/ProductCatalog/P_MIPS6420KcCore.

[9] Clos, C., “A Study of Non-Blocking Switching Networks,”
Bell System Technical Journal, Vol. 32, 1953, pp. 406-424.

[10] Leiserson, C. E., “Fat-Trees: Universal Networks for
Hardware Efficient Supercomputing,” /EEE Transactions on
Computers, Vol. 34, No. 10, October 1985, pp. 892-901.

[11] Reed, W. H. and Hill, T. R., “Triangular mesh methods for
the neutron transport equation,” Tech. Rep. LA-UR-73-479,
Los Alamos National Laboratory, Los Alamos, New Mexico,
1973.

[12] Cockbum, B., Hou, S., and Shu, C., “TVB Runge-Kutta
Local Projection Discontinuous Galerkin Finite Element
Method for Conservation Laws [V: The multidimensional
case,” Math. Comp., Vol. 54, 1990, pp. 545-581.

[13] laffre, J., Johnson, C., and Szepessy, A., “Convergence of the
Discontinuous Galerkin Finite Element Method for
Hyperbolic Conservation Laws,” Marth, Models and Methods
in Appl. Sci., Vol. 5, No. 3, 1995, pp. 367-386.

[14] Barth, T, “Simplified Discontinuous Galerkin Methods for
Systems of Conservation Laws with Convex Extension,”
Discontinuous Galerkin Methods, edited by Cockbum,
Karniadakis, and Shu, Vol. | | of Lecture Notes in
Computational Science and Engineering, Springer-Verlag,
Heidelberg, 1999.

[15] Darve, E. and Pohorille, A., “Calculating Free Energies
using Average Force,” Chemical Physics, Vol. 115, No. 20,
2001, pp. 9169-9183.

[16] Darve, E., Wilson, M., and Pohorille, A., “Calculating Free
Energies using a Scaled-Force Molecular Dynamics
Algorithm,” Molecular Simulation, Vol. 28, No. 1-2, 2002,
pp. 113-144.

[17] Fatica, M., Jameson, A., and Alonso, J. 1., “STREAMFLO:
an Euler solver for streaming architectures,” submitted to
AlAA Conference, Reno, Nevada, USA, 2004.

[18] Jameson, A., “Analysis and design of numerical schemes for
gas dynamics 1. Artificial diffusion, upwind biasing, limiters
and their effects on accuracy and multigrid convergence,”
International Journal of Computational Fluid Dynamics,
Vol. Volume 4, 1995, pp. 171-218.

[19] Jameson, A., “Analysis and design of numerical schemes for
gas dynamics 2. Artificial diffusion and discrete shock
structure,” International Journal of Computational Fluid
Dynamics, Vol. Volume 5, 1995, pp. 1-38.

[20] Russell, R. M., “The CRAY-1 Computer System,”
Communications of the ACM, Vol. 21, No. 1, Jan, 1978,
pp. 63-72.

[21] Simmons, M. L., Wasserman, H. J., Lubeck, O. M., Eoyang,
C., Mendez, R., Harada, H., and Ishiguro, M., “A
performance comparison of four supercomputers,”
Communications of the ACM, Vol. 35, No. 8, Aug. 1992,
pp. 116-124,

[22] Intel®, “Intel® 850 Chipset,”
hrtp:#www.intei‘corrﬁdcsigﬁchipselsfﬁiﬂefindex.hrm.

[23] intel®, “Intel® Pentium® 4 Processor,”
http://www.intel.com/products/desktop/processors/
pentium4/index.htm.

[24] Dally, W. J., “Performance Analysis of k-ary n-cube
Interconnection Networks,” JEEE Transactions on
Computers, Vol. 39, No. 6, June 1991, pp. 775-785.

[25] Kessler, R. E. and Schwarzmeier,). L., “Cray T3D: a new
dimension for Cray Research,” Proc. of the IEEE Computer
Society Internationa! Conferrence (COMPCON), Feb. 1993,
pp. 176-182.

[26] Scott, S. L. and Thorson, G. M., “The Cray T3E Network:
Adaptive Routing in a High Performance 3D Torus,” Proc. of
the Symposium on Hot Interconnects, Aug. 1996, pp.
147-156.

[27] Gupta, A. K., Dally, W. I, Singh, A., and Towles, B.,
“Scalable Opto-Electronic Network (SOENet),” proceedings
of Hot Interconnects (Hetl) X, Stanford, California, USA,
August 2002.

Petitioners Amazon
Ex. 1010, p. 121 of 399

A Streaming Supercomputer

Bill Dally, Pat Hanrahan, and Ron Fedkiw
" September 18, 2001

1 Introduction

1.1 We are starving in an era of plenty

We are in an era where computational building blocks are plentiful and inexpensive. A single chip today
can hold over 100 1GHz floating-point units for a total performance of 100 GFLOPS/chip. Many graphics
chips achieve 80GFLOPS and over 1TOP rendering performance, and cost less than $100. Embedded
processors are less powerful, but incredibly cheap. It is fair to say that a raw GFLOPS costs less than
$1. Memory is currently selling for less than 20 cents a MByte. Bandwidth has become less expensive
as well. Chips with a Tb/s of aggregate bandwidth have recently been demonstrated.

In this era of plenty, however, we have not developed technology to cost effectively scale computing.
Supercomputers cost significantly more per GFLOPS and GByte than their low-end counterparts. For
example, it is estimated that total cost of future large-scale ASCI machines with 10’s of thousands of
nodes is greater than $1,000 per GFLOPS. This factor of a 1000:1 in cost effectiveness is paradoxical:
it should be possible to reap economies of scale with computing, just as in other major acquisitions.
Although scalability has long been a focus of computer science research, it has not been transferred into
practical commercial systems. Now more than ever we need to build the technological infrastructure to
cost-effectively scale computation. :

In addition to being cost inefficient, contemporary high-end computers, constructed from clusters
of workstations or servers, do not deliver their promised performance. They achieve a small fraction
of peak performance on many key applications that are dominated by global communication. Critical
calculations, such as verifying nuclear weapons, performing signal intelligence, calculating the dynamics
of protein folding, and fluid flow through complex turbomachinary, do not map well to these machines.

The performance of the microprocessors {rom which these clusters are composed is no longer scaling
at the historic rate of 50% per year. Microprocessors have reached a point of diminishing returns in
terms of gates per clock and clocks per instruction. As we enter an era of billion transistor chips,
there is not enough explicit parallelism in conventional programs to efficiently use these resources. For
example, a modern graphics processor has at least 64 floating point ALUS and 1000’s of integer ALUs,
almost a hundred times the arithmetic density of a microprocessor. In contrast, most of the chip area
in a microprocessor is devoted to cache memory or the support infrastructure (e.g. supporting out-of-
order execution) to keep a few ALUS running at their peak clock rate. It is expected that without
new innovations in parallel processor designs, microprocessor performance will only increase with the
increase in gate speed, at a rate of about 20% per year. Such as change would have a major effect on
the computer business, and the entire economy.

Cluster supercomputers, like the microprocessors they are constructed from, are inefficient because
they are poorly matched to the technology from which they are constructed and the applications which
they run. They are unable to efficiently exploit the large numbers of floating-point units that can be
fabricated on a chip. They also have low global bandwidth and have register and cache architectures
that do not capture large amounts of application locality and hence make excessive demands on this
bandwidth. Because these systems are not well-designed, they are difficult to program. Programmers t
spend all their time working around the limitations of the machine, rather than on developing efficient
algorithms for their application.

1.2 Streaming processors leverage emerging technology

Recent developments enable streaming architectures that efficiently convert the capabilities of emerging
technology into realized performance on scientific applications. We envision a streaming supercomputer
that delivers orders of magnitude more performance per dollar than clusters of servers (850 per GFLOPS

Petitioners Amazon
Ex. 1010, p. 122 0of 399

and $2 per million GUPS?) and is scalable to a machine with one PFLOPS of peak performance and
10'3 GUPS. We expect that applications will achieve a large fraction of the peak FLOPS (at least 25%)
on arithmetic-limited code sections and a large fraction of peak GUPS on memory-limited code sections.

Streaming supercomputers with this level of performance and efficiency are made possible by the
confluence of three recent innovations: stream architecture, high-speed signaling, and efficient inter-
connection network architecture. Stream architectures expose and exploit parallelism and locality in
applications. This in turn enables architectures with a high degree of arithmetic intensity, that is ap-
plications with a high ratio of arithmetic to memory bandwidth. Streams also offer an easy way to hide
the inherent latency of global memory references. Stream architectures have been proven on signal-
and image-processing applications. Qur initial investigations show that they are equally applicable to
a broad class of scientific applications. High-speed signaling and efficient network architecture together
enable economical memory systems with very high global bandwidth,

The streaming architecture we envision leverages commodity technology to economically achieve
high performance. It does not, however, use commodity processors. Processors, in fact, are not really
a commodity - they are not interchangeably available from multiple vendors at prices close to cost.
Commodity technology is leveraged in three ways. First, the main memory of the system is built entirely
out of commodity high-bandwidth memory chips. Such memory chips truly are a commodity - they are
available in volume from a number of different suppliers at competitive prices. Second, the streaming
processor chips are fabricated using a standard CMOS process. As with memories, CMOS walfers are
a commodity - being available in volume from multiple vendors. Finally, the system interconnect is
constructed using off-the-shelf connectors and backplane technology.

Realizing the performance of a streaming supercomputer, of course, requires recoding applications
in a streaming style - as streams of records passing through networks of arithmetic kernels. Coding
applications in this style makes communication explicit, making it easy for the software tools to efficiently
map the application to a streaming architecture.

1.3 Domain-specific languages simplify mapping problems to streaming su-
percomputers

We envision a three-level programmign system that will simplify the mapping of applications to a stream
architecture and at the same time make the resulting code more portable. At the top level, several domain
specific languages will target specific classes of applications, e.g., Monte-Carlo integration, ODEs, PDEs,
etc.... Bach of these languages will enable a scientist to describe their problem’s equations, its geometry,
constraints on its solution, and solution methods. A compiler then uses this description to map the
problem to a streaming programming model. Domain specific languages have proven successful in many
applications. In particular, graphics shading languages have been effective in describing complex shading
calculations in terms of high-level primitives and mapping these calculations to a variety of hardware,
including stream processors.

The target of the domain-specific language compiler is a stream language that describes the appli-
cation in terms of streams of records passing through kernels of computation. We envision generalizing
streams so they can describe not just linear sequences of records but also unordered collections of records,
higher-dimensional arrays of records, and arbitrary graph structures (e.g., to describe a finite-element
mesh). These collections will be operated on by kernels that map a function over the collection, filter
the collection, selecting certain elements, ezpand a collection, producing several results for each input, or
reduce a collection, combining several inputs into a smaller set - or even a single - result. By describing
the application at an abstract stream level, this stream language will be completely hardware indepen-
dent but yet will expose available parallelism and locality. A stream compiler will accept such a stream
program and a machine description and generate output in our low-level programming language.

The output of the stream compiler is a program in a low-level stream language. In addition to streams,
this language includes constructs to describe DSP and SIMD operations, threads and synchronization,
and memory management. We anticipate writing several back-ends for the low-level stream compiler

'A GUPS (global updates per second) is the number of single word memory references to random locations across its
entire memory space that a machine can support per second.

Petitioners Amazon
Ex. 1010, p. 123 of 399

that will enable us to map programs not only to a streaming supercomputer, but also to conventional
hardware.

1.4 Paper outline

The remainder of this paper describes our vision of a streaming supercomputer in more detail. We start
by sketching the architecture of a streaming supercomputer in Section 2. Section 3 describes our vision
of a three-level programming system in more detail. Applications and the domain-specific languages
to describe them are discussed in Section 4. Finally, we outline a plan to accomplish this research in
Section 5.

2 Architecture of a Streaming Supercomputer

In this section we sketch a possible architecture of a streaming superocomputer to demonstrate the
feasibility of this approach. There are many details that remain to be worked out and many parameters
and ratios may change by as much as a factor of two. However, the sketch here demonstrates the
feasibility of a machine of the class we propose.

2.1 Overview

Figure 1 shows a block diagram of a streaming supercomputer. Each node contains a streaming processor
with 64 1-GHz floating-point units (FPUs) and a local memory with 16 1Gb DRDRAM chips with a
bandwidth of 2.4GB/s each?. The local memory capacity is 2GBytes and the local memory bandwidth
is 38GB/s. Each node has a 20GB/s channel to the global interconnection network. Nodes can sustain
simultaneous accesses to the memory of adjacent nodes at this rate - half the local memory bandwidth.

The global network enables any processor to access any memory location in the system. The network
has a bisection bandwidth of 4NGB/s, that is 4GB/s per node. Thus, each node can simultaneously
sustain accesses to global memory at greater than 10% of the local memory bandwidth of the node. We
expect that a global memory access in a N =16,384 node machine, including a round trip over the global
network and remote memory access time will have a total latency of less than 500ns - 500 processor
cycles.

To sustain full global bandwidth - 4GB/s or one word every two 1ns cycles - while tolerating this
latency, the processors make streaming memory references- stream loads and stream stores. A stream load
operation loads a stream of records. The individual records may be addressed with unit-stride, arbitrary-
stride, or indexed addressing modes. An indexed stream load gathers individual records (possibly as
small as a single word) from arbitrary global locations. A single stream load can request thousands of
multi-word records, more than enough to fill the 250-word deep memory pipeline. By fetching contiguous
multi-word records, rather than individual words (like a vector load), stream loads result in more efficient
access to modern memory chips.

We plan to package 16 nodes of the streaming supercomputer on a circuit card measuring 300mm by
400mm. This card will contain 16 processor chips, 256 DRAM chips, and will have a peak performance of
1TFLOPS?®. Each cabinet will hold 64 of these cards, in 4 rows of 16, along with associated power supplies
and cooling for a total of 1K nodes with 64TFLOPS and 2TBytes of memory per cabinet. Machines
larger than 1K nodes are assembled by cabling cabinets together with optical fibers. We anticipate being
able to scale the machine to 16K nodes (1IPFLOPS) while maintaining our global latency and global to
local bandwidth ratio.

The major properties of the streaming supercomputer we envision are summarized in Table 1.

Petitioners Amazon
Ex. 1010, p. 124 of 399

£ s/sakgly9 uonoasig

xa|dnp [In} aJe sypMmpueq |y
12qy Jo sed Jad s/q9G syl IV
MIOMJBN jJuIgeD-igiu

Petitioners Amazon
Ex. 1010, p. 125 0of 399

V]] Jaqi4 uoqqry
T syuiyig+M8
s/sa)gls
(Ajuo saum - aaissed) 30
YJoMisN jeulgqed-equ| o3
X399 auhpesa) 50l
———}—] sited 962+952
- ~ s/saikgo09L
3JOM]aN pJeog-uQ
-
sa)hglz | | | sued ze+ze
SdO14199 = s/salAgo0z
SNdd M9
(X 1] SOPON M| wmuhmomm SdO1491%9
spieog $9 SdOT4Ll hwwmn_mnn_,.. H._m_
Z 1|puigen eee | SNd4d Ml
¥9 piecg SOpON 91 wealns
Z pieog 9 leeel ¢
4 see]
OREN SFaN Hsisavigoge
saiigoz L H—3PON
WvHaydd e
X wr 1 _u m
— jaulqe)

Figure 1: Block diagram of a streaming supercomputer

$/916°}L = Mg Bay jeoo

|
Y

4
I

[
Scratch
Pad

dd

aav
d4d

|| aav
d4

1NN
dd

1NN
dd

sbay
<—{sbax J«—

Cluster Switch

(s/1g9 092)
43S woi4/oy

| 4

H=-
L

Cluster 15
Cluster 1
Cluster 0

_ wwion

(s)go8e) (s/189 02)
AVHEaYa sleuueyd
|eooT NIOMIBN
A A
] \ J
|onuoD
2> [*™ fowey [F7]x% 8
S 2 gL
' A []
52 t |22
slojelauan)
ssalppy

+

.

a|i4 1318169y weansg

v $

Jlun uonnNoexg Wweans

Scalar
Processor

e

188N

lUM UoNoaX3 Weans

108592014 Wealns

Figure 2: Block diagram of a streaming processor

Petitioners Amazon
Ex. 1010, p. 126 of 399

Parameter f(N) N=4,096 | N=16,384 | Units
Memory Capacity 2x 10°N | 2.8 x 10" | 3.3 x 10" | Bytes
Local Memory BW 3.8 x 101T°N | 1.6 x 10" | 6.3 x 10" | Bytes/sec
Global Memory BW 3.8x10°N [1.6 x 107 | 6.3 x 107 | Bytes/sec
Global Memory Accesses | 4.8 x 10°N | 2.0 x 10™ | 7.9 x 10** | GUPS
Peak Arithmetic 6.4 x 101N | 2.6 x 10™ | 1.0 x 10" | FLOPS
Processor Chips N 4,096 16,384

Memory Chips 16N 6.6 x 107 | 2.6 x 10°

Boards N/16 256 1,024

Cabinets N/1,024 4 16

Power (est) 50N 2.0x10° | 8.2 x 10° | Watts
Parts Cost (est) 1x10°N 4x10° | 1.6 x 10" | 2001 Dollars

Table 1: Properties of proposed streaming supercomputer as a function of the number of nodes N, and
for N =4,096 and N =16,384

2.2 Streaming Processor

Figure 2 shows a high-level view of the processor chip that provides the arithmetic capability of the
streaming supercomputer. The core of the processor is a stream execution unit containing 64 64-bit
floating-point units®. The stream execution unit also contains 4,096 64-bit local registers, 32 on each
input of each arithmetic unit, and 8,192 64-bit scratch-pad registers for holding intermediate results of
arithmetic kernels. The stream execution units read and write streams from a 32K word stream register
file that stages stream data to and from memory. The stream execution unit is controlled by stream-
operate instructions each of which causes a small subroutine to be executed on each element of the input
streams to generate each element of the output streams.

A pair of address generators execute stream load and store instructions to transfer streams between
the stream register file and the memory system. The local portion of the memory system is contained
on the processor chip. This consists of the DRAM controllers, a network interface, and a cache memory
(size to be determined). We plan to make the cache partitionable so some of this on-chip memory space
can be used as an explicitly addressed staging memory.

The stream processor exploits a bandwidth hierarchy to efficiently keep such a large number of
arithmetic units supplied with data and productively occupied. The levels of the hierarchy are listed
in Table 2. For each level of the hierarchy, the table shows both the bandwidth in words/sec and the
number of arithmetic operations per word of bandwidth at that level. The 64 arithmetic units in the
stream execution unit each consume three 64-bit words of bandwidth each 1lns cycle for an aggregate
per node bandwidth of 1.9 x 10! 64-bit words/sec. The locality exposed by casting applications into
kernels keeps most of this bandwidth local, so it can be provided inexpensively out of the local registers
with the write bandwidth traversing small per-cluster switches. At the next level, the stream register
file provides sufficient global register bandwidth so that one word can be read from each of these levels
for every two arithmetic operations. Producer/consumer locality exposed within the stream model
is exploited to capture most of inter-kernel bandwidth at this level. There are then three levels to the
memory system, with the on-chip memory (staging memory and cache), local DRAM, and global DRAM
providing progressively lower amounts of bandwidth.

Across the entire machine, this bandwidth hierarchy spans over two orders of magnitude. Experience
with stream architectures on signal- and image-processing applications gives us confidence that the
intra-kernel locality and inter-kernel producer-consumer locality will provide sufficient localization of

2By convention, lower case ‘b’ denotes ‘bits’ while upper case ‘B’ denotes Bytes.

3This board may also hold a number of network chips depending on whether the network is folded into the processor
chips or not

4These are tentatively arranged as 16 clusters of two adders, two multipliers, and one divide square-root unit each -
actually 80 units - but this is subject to change.

Petitioners Amazon
Ex. 1010, p. 127 of 399

Level of hierarchy | BW (Words/s) | (ops/Word)
Local registers 1.9 x 101 0.33
Stream registers 3.2 x 100 2
On-chip memory 8.0 x 107 8
Local DRAM 4.8 x 107 13
Global DRAM 4.8 x 10° 133

Table 2: Bandwidth hierarchy of a streaming supercomputer. Per-processor bandwidth at each level of
the hierarchy. :

data movement to match many important problems to this hierarchy.
A scalar execution unit executes scalar instructions and dispatches stream instructions to the stream
processor and address generators. We plan to leverage an off-the-shelf core for this processor.

2.3 Memory system and network

The streaming supercomputer provides high-bandwidth access at single word granularity across a flat
global address space that covers the entire memory of the machine. Memory is accessed via scalar load
and store instructions and via stream load and store instructions. Stream load and store instructions
hide latency by issuing a stream of memory operations with a single instruction. Each node’s memory is
implemented as 16 future DRAM chips with a bandwidth of 2.4GB/s each®. Memory on remote nodes
is accessed via a high-bandwidth interconnection network.

To isolate processes running on the machine without causing performance issues historically associ-
ated with TLBs, all memory accesses are translated via a set of eight segment registers. Each segment
register specifies the segment length, the subset of nodes over which the segment is mapped (to support
space sharing), whether the segment is writeable, the interleave factor for the segment, and the caching
options for that segment. Segments are restricted to be aligned in a manner that facilitates fast address
formation.

The network employs a hierarchical topology, uses high-speed (5Gb/s per signal) signaling to give
high global bandwidth and uses flit-reservation flow control to minimize memory latency. The network
organization, sketched in Figure 1, matches the physical packaging hierarchy of the machine. The
network is composed of channels connected by routers. Each channel consists of eight 5Gb/s differential
signals giving it a raw bandwidth of 40Gb/s®. Messages are switched between channels by routers. There
are four routers on each circuit card. Corresponding routers are connected together across the circuit
cards to form four completely independent routing planes.

Each router connects to 28 bidirectional channels (eight signal pairs in each direction). Sixteen of the
channels are local channels, eight of the channels are backplane channels, and the remaining four channels
are global channels. One local channel is connected to each of the sixteen streaming processors on the
circuit card. Processors on a circuit card can communicate directly with one another by traversing one
router and two local channels and, using all four planes, have a raw bandwidth of 20GB/s over each of
these connections. This permits processors to access the memory of other processors on the same circuit
card with half the bandwidth that they can access their own memory. The local channels of the 64 circuit
cards in a backplane are connected together in a backplane interconnection network (details remain to
be worked out). This permits all nodes in a cabinet to sustain a usable bandwidth of 10GB/s each to
random locations in the cabinet. Finally, the global channels are converted on the backplane to ribbon
fibers and connected in a global interconnection network that permits all nodes in a system to sustain
4GB/s of global memory bandwidth each. Table 3 summarizes how this network tapers bandwidth as
more distant memory is referenced.

5Rambus’ roadmap indicates that DRDRAM chips will have this bandwidth in the appropriate timeframe.
6The usable bandwidth will be substantially less than this due to address and control overhead.

Petitioners Amazon
Ex. 1010, p. 128 0of 399

[Level Size (Bytes) | Bandwidth (Bytes/s)
Node 2.0 x 107 3.8 x 101
Circuit Card 3.2 x 10" 2.0 x 107
Backplane 2.0 x 10*° 1.0 x 10%0
System (16 backplanes) 3.3 x 1018 4.0 x 107

Table 3: Memory bandwidth vs. accessible memory size

To simplify the task of coordinating operation between the nodes, the network and memory system
incorporate a set of synchronization mechanisms. Presence tags can be allocated for each record in
memory to synchronize producers and consumers of data. The producing store (scalar or strecam) sets
the tag to a present state, a consuming load (scalar or stream) blocks until the tag is in this state.
Atomic remote operations including fetch and (integer) add or compare and swap are also implemented
by the memory controllers to permit common synchronization constructs to be implemented without
traversing the network multiple times. More complex remote operations can be implemented using
a memory-mapped message send that is received by a message handling thread on the remote scalar
processor.

2.4 Input/Output and Mass Storage

1/O and mass storage are attached to the machine via four 12-wide (30Gb/s) infiniband I1/O channels
on each processor card. Off-the shelf disk arrays, network interfaces, and user input and output are
expected to be available to interface with the infiniband network.

3 Programming Models

As mentioned previously, the streaming supercomputer achieves high performance because of two key
ideas: data parallelism and arithmetic intensity. A streaming computation involves passing the records
of streams through a network of kernels. For the problems we envision there are 10% to 100 records
(and potentially even more) providing large amounts of data parallelism. All calculation within a kernel
are local to a processor as are streams that are passed between a pipeline of related kernels. This
locality maps well to the bandwidth hierarchy of a streaming computer. Finally, data dependencies
are explicitly managed through stream buffers. This prevents read-write hazards and allows data to be
efficiently moved throughout the system.

A key challenge is to develop a programming environment for the streaming supercomputer. This
programming environment should naturally reflect the capabilities of the machine, so programmers are
encouraged to program in an efficient way. Thus, the programming environment must expose parallelism
and make data dependencies explicit. It also must encourage local calculations with high compute to
memory ratios.

Since a significant investment will need to be made in recoding algorithms for such computers, the
programming environment must be carefully designed to be portable and to run on future hardware of
this type. Low-level machine parameters that are expected to change over time should be hidden from
the programmers and managed by the compiler.

Compiler technology is critical to the success of the programming environment. However, the compiler
technology that is needed is quite different than the existing focus of parallel compiler research. The
goal of our compiler is not to discover parallelism hidden in sequential codes. This has proved to
be a difficult task in the past and limits the ultimate scalability of the system. We will assume the
programming environment makes parallelism explicit. The goal of our compiler is to map the calculation
onto the machine in the most efficient way. This is more in the spirit of code generation, a problem that
has proved tractable.

To support the streaming supercomputer we envision a three-level system.

Petitioners Amazon
Ex. 1010, p. 129 of 399

1. A low-level language close to the virtual machine that manages platform specific resource con-
straints. This low-level system would be analogous to UPC or StreaMIT.

2. A mid-level progamming language that supports data parallel calculations. This level would be
analogous to the Connection Machine programming environment C*.

3. Finally, we envision a high-level, domain-specific set of languages that make it easy to support the
development of specific applications. This would be analogous to the Stanford real-time shading
language for programming photorealistic rendering effects.

All these languages would be based on C. There would be a single low-level and mid-level language. A
metacompiler (or an extendable source-to-source compiler) would convert the mid-level to the low-level.
We envision multiple high-level domain-specific languages. The same metacompiler infrastructure would
be used to translate these domain-specific languages to the mid-level language.

In the following subsections we describe the properties of each of these languages in more detail.

3.1 Low-level language presents an abstract view of the hardware

The goal of the low-level language is to expose the features of future streaming computers to the pro-
grammer. We believe this is an entirely new class of machines that will have a long life-span. Just
like C originally exposed the features of PDP-11 class minicomputers to programmers, our language
exposes the features of streaming computers. However, streaming computers are different than current
microprocessors, and need additional language support.

The design of the low-level language is incorporates ideas from several parallel programming envi-
ronments, most notably the Imagine StreamC and KernelC languages, the CILK run-time environment,
the StreaMIT language, and the Stanford DSP-C and Smart Memories Virtual Machine. Finally, this
language would leverage the current efforts underway to design UPC.

This language is based on the communicating sequential processes (CSP) model of programming,
but enhanced to support streams, thread management and scheduling, and memory placement and data
management. We include with the language the run-time environment, partly just for convenience, but
also because we see a tighter and tighter coupling between the parallel run-time environment and the
hardware architecture.

The language and run-time environment must provide the following capabilities:

e Explicit support for streams.

As in StreaMIT and Stream/Kernel C, streams will be explicitly declared and kernels explicitly
identified. This makes all of the communication in the program explicit and exposes it to the
metacompiler so it can be optimized.

e Support for modern DSP and SIMD instruction sets.

This includes support for fixed point calculation and segmented instruction sets. The language
should be able to express and generate code for current microprocessors such as the Intel Pen-
tium family with SSE, and the AMD Athlon family with 3DNow; and for current programmable
streaming graphics chips such as the NVIDIA GeForce3 with vertex programs.

e Support for threads and synchronization primitives.

The language should also provide control over the scheduling of threads. It should be possible
to express data-affinity; that is, schedule threads after the data has been prefetched or on the
processor which has a local copy of the data. The thread scheduler should also be smart. For
example, the CILK run-time system is designed to perform load-balancing by assigning tasks to
threads and then running those threads.

e Support for memory management and communication primitives.

Qur inspiration for these features are the memory management primitives in UPC. Memory man-
agement includes partitioning between global shared memory and local memory. The language

Petitioners Amazon
Ex. 1010, p. 130 0of 399

should also support different memory consistency models, It should also be possible to explicitly
manage the cache, both by prefetching data and by segmenting the cache into subcaches. The lan-
guage should also support the management of streamn register files and stream buffers. It should
be possible to express strided access, and to coordinate prefetched gathers with the execution of
different kernels. This requires tight coupling between thread execution and data movement.

3.2 Mid-level collection oriented program expresses data parallelism

The goal of the mid-level programming language is to provide support for data parallelism. We believe
almost all the major applications of high-performance computing are data-parallel; in particular, signal
processing, image or media processing, scientific computing and database engines are data parallel.

Although data parallel computations may be (and are) written using a CSP or thread + commu-
nication programming model, we believe it is better to use a data parallel programming model. The
data parallel programming model explicitly exposes parallelism and communication at a high-level. A
metacompiler can than map this program onto a particular machine, relieving the programmer from deal-
ing with particular machine parameters or limitations. This makes these programs significantly more
portable, and hence long-living, encouraging programmers to rewrite their algorithms in this language.

The design of our mid-level data parallel programming environment is based on languages such as C*
(and its Lisp counterpart Lisp*), the Connection Machine programming language. Other features are
derived from signal, array and vector programming languages and libraries such as ZPL and VSIPL, as
well as matlab and APL. Finally, we are motivated to include recent research on high-order functional
languages such as Haskell and Scheme, and collection-oriented languages such as NESL.

The language will have the following features:

e Support for collections of records of various types.

A record may be a primitive type such as a float, or a struct. Programmers will be encouraged to
use records as the basic type. An example of a record might the state variables associated with a
finite element mesh.

Collections represent many records. We propose that there be at least three types of collections:
sets, lists (or streams), and arrays. Sets are meant to capture the idea of an unordered collection.
Certain parallel operations may take advantage of this unordered semantics. Lists or streams
capture the idea of an ordered set. Lists and streams are meant to be processed in order. Finally,
arrays capture the idea of random accessing or indexable calculations. Collections may have fixed
or variable length.

We may also want to support multidimensional arrays and a graph collection that can represent
the connectivity of an arbitrary graph, e.g., a finite-element mesh. Later versions might also allow
collections of collections (as is done in NESL).

e Kernel functions that represent operations on records.

In some sense these kernel functions are the atomic operations in the language. Kernels take one
or more records as input and produce one or more records (or as we will see a set of records)
as output. Kernels represent entirely local calculations. However, unlike the Imagine KernelC
programming model, kernels may contain loops and conditionals. Kernels may also have read-only
or write-only access to global arrays. These arrays arc declared as parameters to to kernel.

e High-level operators that apply kernels to collections.

These operators would include:

MAP: map applies a kernel to each element of a collection. For example, we could apply a
transformation by a matrix to each vertex in a polygon mesh. Map is polymorphic across collection
types, but respects the properties of the collection. For example, mapping a kernel onto an ordered
collection will result in an ordered collection in the same order. However, mapping a kernel onto
an unordered collection allows the order of the result to be different than the order of the input.

10

Petitioners Amazon
Ex. 1010, p. 131 0of 399

REDUCE: reduce applies a kernel to each element of a collection in the process producing a single
result. Examples of reductions include max, sum, any, all, etc. Reduction operations may or may
not be associative or commutative. Programmers are encouraged to use the least strict semantics.
Reduce is often called SCAN or FOLD and corresponds to the Lisp* 3 operator.

EXPAND: expand creates a collection from a single record, or from a collection. For example,
expand could be used by a rasterization kernel to produce a set of fragments from a triangle.

FILTER. filter produces a subset of a collection; the elements of the subset is determined by the
value of a predicate kernel.

SCATTER, GATHER and PERMUTE: these operators rearrange collections.

In time, and as required, additional data parallel operations will be added. However, it has already
been demonstrated that many important scientific applications may be written using these operators.
In the final section on applications, we will discuss our research plan for different application areas.

Taking inspiration from modern functional programming languages such as Haskell, we would like
to formally specify the semantics of these data parallel operators. For example, the expression MAP(
f, MAP(g, ¢)) would be formally equivalent to MAP(f o g, ¢). That is, two consecutive maps
involving f and g is equivalent to a single map of the composition of f and g. The reverse would also be
possible: a complex function could be broken into two separate functions. This formal analysis would be
very powerful. For example, by composing two functions we increase the arithmetic intensity, since both
functions are executed although only a single read is performed. Formally breaking apart functions is also
useful. Some implementations may want to break functions with global references into separate kernels
with an intervening gather (as, for example, required by the Imagine architecture). Splitting functions
might be useful for load balancing. Splitting functions creates more tasks, or potentially more uniform-
sized tasks, which could be useful on future fine-grained, massively parallel machines. Reasoning about
arithmetic intensity as machines evolve over time is one of the major research challenges for streaming
computers,

One natural question is whether the mid-level and the low-level languages could be merged. Although
that is possible, we prefer our proposed design because it allows us to leverage commodity compiler
infrastructure. In particular, the low-level language is entirely responsible for code generation and of
the additional capabilities that we need could be added through run-time libraries, as is traditionally
done with dynamic memory management and threads libraries. In fact, it should be easy to develop
a low-level language for existing machines, and hence most of our efforts would be on the mid-level
language.

3.3 Domain-specific high-level languages map applications to collections

Finally, we envision building several high-level domain-specific languages for important application areas.
These high-level languages will expose the capabilities of the streaming supercomputer to application
programmers in an easy-to-use way, thus encouraging the adoption of the technology. We describe
candidate areas for domain-specific languages in the section on applications.

Domain-specific languages have a long history in computer science. Qur goal of providing this layer is
motivated by the shading language that we have recently developed for programmable graphics hardware
such as the NVIDIA GeForce3d or the ATI Radeon 8500. Shading languages have been developed by
graphics researchers to describe the appearance of different objects, materials and environments. Shading
languages have built-in functions for common operations, for example, to compute the light reflection
from a matte surface using Lambert’s Law. They also provide data types unique to that application, for
example, vertices, fragments and textures.

Our shading language compiler maps this language onto the data parallel programming model. In
terms of the primitives described in the last section, the compiler produces three kernels. A kernel
to applied to each primitive, a kernel to be applied to each vertex, and a kernel to be applied to each
fragment. The resulting data-parallel calculation is then the sequential execution of three MAPS, one for
each collection. (Note in this case programmable graphics hardware handles antomatically the conversion

11

Petitioners Amazon
Ex. 1010, p. 132 of 399

of one type of record to the other. However, in our new systemn, these conversions conld be handled by
the EXPAND operator.)

Besides providing a high-level programming environment for applications, we believe domain-specific
languages will lead to very efficient implementations. For example, many applications require solving
linear systems of equations. However, the types of matrices generated by the application varies. In some
cases, asynchronous iteration may be used to solve for the unknowns. These leads to an efficient parallel
algorithm since updates may occur out of order. Another advantage of application specific languages is
that certain sections of code may be difficult to parallelize. By encapsulating them in highly optimized,
built-in functions or libraries, these difficulties may be avoided. An example of this is in the shading
language; execution paths that involve complex data dependencies such as clipping and rasterization are
handled by built-in functions that use specially designed algorithms (and, in the case of graphics chips,
hardware).

3.4 Metacompilation

A critical enabling component of the programming environment is the metacompiler. The metacompiler
is an extensible compiler infrastructure that performs source to source translation. The same metacom-
piler will be used to map the high-level language to the mid-level as well as map the mid-level to the
low-level language.

The metacompiler performs source-to-source translations. The first stage of the metacompiler is to
read in the source language and build a suitable intermediate form. The last step is to translate the
intermediate form back into the source language. The core of the metacompiler is extendible methods
for analyzing and manipulating the intermediate form. In order to do this, we will build a program
transformation language. This language will make it easy to match source patterns in the input, and
to rewrite that part of the code. This part of the system will be based on the existing metacompiler
framework developed by Dawson Engler as part of his research on for checking programs.

The most interesting metacompiler will be the one that transforms from the mid-level language to the
low-level langauge. This compiler will also read in a machine description file. This machine description
file will include key parameters of the machines, in particular, the computational and communication
resources available in the machine (similar to the table presented in previous sections). The size of
different parts of the memory hierarchy will also be available. The metacompiler will perform similar
analysis to that performed by the Imagine StreamC compiler. It will allocate memory for collections,
it will break up collections into smaller chunks to take advantage of producer-consumer locality, it will
schedule data transfers from global memory to local stream register files, and it will schedule kernels
when the data is available.

However, unlike the Imagine StreamC compiler this compiler will be retargetable. By changing the
machine configuration file, future variants of our architecture can be used. It will also be possible to
use our programming environment on current clusters and shared memory multiprocessors. Since even
conventional shared memory and message-passing multiprocessors benefit from regular access patterns
and locality, our system should run efficiently on these machines. That is, the resources of these machines
would still be used efficiently, even though such machines would be much less cost-effective than our
streaming supercomputer architecture. The ability to use existing machines as platforms will allow us
to begin development of the programming environment before the architecture is complete.

4 Applications

In previous work, we have demonstrated that streaming architectures perforin extremely well on me-
dia applications, include signal processing, image processing and graphics. The Imagine architecture
yields an order of magnitude performance increase over conventional processors [?]. Even complex al-
gorithms such as MPEG encoding, depth extraction through correlation, and the conventional graphics
pipeline can be mapped onto streaming architectures. Graphics is a particular success story. Last
year several vendors have introduced programmable graphics processors that resemble special-purpose
stream processors. These graphics processors have created a major new generation of graphics chips

12

Petitioners Amazon
Ex. 1010, p. 133 0of 399

with new capabilities. However, since these special-purpose streaming processors are not as general as
our streaming computer, there is great interest in industry in more general streaming processor designs.

A major goal of this project is to extend our application domain from media processing to scientific
computing. We will explore three major classes of scientific computing problems in roughly increasing
degree of difficulty (that is, difficulty for efficient adaption into the streaming pipeline): Monte Carlo
(MC) algorithms, ordinary differential equations (ODE), and partial differential equations (PDE). Nu-
merical techniques for these types of problems underlie many important application areas. For example,
Monte Carlo algorithms are regularly used in radiation transport and solid state physics, ODEs are used
in molecular dynamies, astrophysics and rigid body dynamics, and PDEs are necessary in mechanical
and structural design as well as fluid flow. Since simulating complex multi-physics processes is a major
goal of the ASCI University Program, we are particularly interested in multi-physics applications, such
as turbomachinary simulation which couples combustion with Auid flow and compressor turbine motion.

Some of these applications are embarassingly parallel, and we expect it will be easy to map them
onto streaming computers, In fact, embarassingly parallel applications run well on current clusters,
since they involve very little communication. However, even in these cases it is worthwhile to map them
onto the stream programming model, since this will allow these applications to be run on much more
cost-effective and scalable machines.

Other applications are more challenging to map onto parallel computers. These typically involve
extensive global communication. These applications do not run well on existing clusters because of their
limited global memory bandwidth. OQur hypothesis is that they will run much better on the streaming
computer because of its high-bandwidth interconnection network and memory system. However, these
algorithms will need to be carefully mapped onto the stream programming model, and this will involve
close interaction with colleagues in scientific computing. Successfully mapping any of these applications
onto the streaming supercomputer could potentially open up whole new areas of computational science.

4.1 Monte-Carlo Radiation Transport

The simplest scientific computing problem that we will tackle is Monte Carlo integration, in particular,
Monte Carlo simulation of transport equations. The key application of this technique is radiation
transport, which is important in heat transfer and the design of nuclear devices. Monte Carlo of course
has many other applications; for example, Markov Chain Monte Carlo or the Metropolis Algorithm is
widely user in Bayesian inference, which is a major method used in statistical computing and artificial
intelligence.

The basic Monte Carlo algorithm is particle tracing. Particles are created in certain states according
to a source distribution functions. These particles make transitions to other states using a scattering
distribution function. Finally, particles are terminated according to absorption distribution function.
In classic Monte Carlo, each particle or sample is independent of the others and thus the algorithm is
casily parallelized. Further, the inner loops involve generating random variables according to probability
distribution functions. Although in toy problems these distribution functions are simple (e.g. uniform),
in physical simulation they can be quite complex. Thus, not only are the calculations local, but they
have high arithmetic intensity.

Monte Carlo is complicated if the model cannot be replicated. For example, when doing radiative
transport in complex geometries, the geometric database may be very large and not easily replicated.
Also, the interactions of particles with the database is not localized, since particles may be in different
parts of the environment. In related work, we have shown how ray tracing may be mapped onto a
streaming architecture. The key idea is to formulate the problem of finding a ray-surface intersection as
a streaming calculation. Thus, we believe even in this case, we will be able to map radiation transport
onto a streaming computer.

4.2 Ordinary Differential Equations

A more complicated problem is the solution of ordinary differential equations, in particular, coupled dif-
ferential equations. Classic applications of these techniques include molecular dynamics and astrophysics,

13

Petitioners Amazon
Ex. 1010, p. 134 0of 399

or N-body problems, which involve pairwise forces between particles. Other applications include chem-
ical kinetics which involves solving chemical rate equations for the concentrations of different species.
Another example is rigid body dynamics of articulated figures, or robotics.

As a first example consider chemical reactions as might take place in combustion. Sometimes an
overall time step is determined in order to gurantee stability and accuracy, but many times Godonuv (or
Strang) time splitting is used to separate the chemical kinetics update from the fluid dynamics. While the
fluid dynamics is "frozen”, one has to solve a possibly stiff system of coupled ode’s in each element of the
computational mesh. One can easily have tens of species and hundreds of governing reactions, but these
are usually simplified as much as possible employing a reduced chemical mechanism in order to defray
the computational cost. These reduced mechanisms can be based on asymptotic theory or experiments
and are currently an area of active research (notable methods include using reduced manifolds [Maas
and Pope]), especially since they are not generally robust and many times need to be adjusted on a case
by case basis. These type of computations are ideal for a streaming computer where one thrives with the
ful] reaction mechanism with a high arithmetic cost per node. Hopefully, our new design will alleviate
some of the need for reduced mechanisms allowing full mechanisms to be employed more often.

Another important example is solving equations of motion of large particle systems. This can be
done in linear time using the fast multipole method developed by Greengard and Rocklin. The idea of
this method is to approximate the field in a cell with a k-term multipole expansion. The field is then
propagated up a hierarchy by translating and scaling the coefficients of the expansion. Computationally,
this is a linear transformation on the coefficients and may be performed by a matrix-vector multiply.
This field is pulled up the hierarchy in this way, and then pushed back down to the leaves. Again,
this calculation may be easily mapped onto a streaming computer, and in fact has been efficiently
implemented on the connection machine and other data parallel machines.

As a final example, in molecular dynamics a simpler method is often used. Since molecular forces fall
off faster than 1/r?, it is typical to only compute forces amongst some small set of neighbors. Streams
would need to access their neighbors with a GATHER, and then compute forces. But again, since these
force terms are reasonably complicated, this would have high arithmetic intensity. Of course, there are
still many details to work out, such as how to update the spatial data structure as particles move,

Problems of this type would benefit from high-level languages. In particular, Sussman and Wisdom
have recently developed a high-level language based on Scheme for classical mechanics. They are able to
specify the Lagrangian of a system from that declaration automatically derive the equations of motion.
They then map the equations of motion onto a set of solvers. A similar approach could be used for
coupled ODEs and highly parallel systems of ODEs. In addition to choosing methods for solving the
ODEs, this new system could automatically parallelize the application.

4.3 Partial Differential Equations

The more complex problem domain we intend to study is methods for solving partial differential equations
including finite volume, finite element and finite difference methods. Example applications include elastic
and inelastic deformations of solids, and fluid flow, and fluid-solid coupling problems similar to those at
the Caltech and Illinois ASCI centers. We further subdivide these techniques into Lagrangian (where
the mesh is attached to a local reference frame moving with the material) and Eulerian (where the
reference frame is global and the material moves between mesh elements). Of course, ALE schemes
(where the mesh has and arbitrary velocity in between the Eulerian and Lagrangian mesh) are also of
interest, especially at interfaces, but we intend to first take the approach of the Caltech ASCI center (and
researchers such as Noh) and couple Eulerian and Lagrangian schemes directly at a fluid solid interface.

There are two major classes initial-value partial differential equations: Hyperbolic and parabolic
equations (here we classify elliptic equations as boundary-value problems). However, for our purposes
we will subdivide the problems into those that are stiff, and those that are not. Stiffness implies that
some part of the problem requires much smaller steps than others in order to guarantee stability, and
that this smaller time step is not needed to obtain the desired accuracy. Practically, this means that in
stiff systems implicit methods are used for efficiency reasons. Implicit methods involve solving a matrix
equation - for example a pressure solver in low Mach number or incompressible flow - and are similar (for

14

Petitioners Amazon
Ex. 1010, p. 135 0of 399

our purposes) to elliptic partial differential equations. If implicit methods are not needed, then explicit
methods, which only require local neighborhood computation, can be used.

Explicit methods may be mapped efficiently onto parallel computers using domain decomposition.
A typical time step in an explicit method requires a small neighborhood around a position in space.
These neighborhoods are required in order to estimate spatial derivatives. So each step involves fetching
information from your neighbors, and then updating your value. In many PDEs, the calculation in-
volved is minimal and only involves a few arithmetic operations. Thus, the communication- to-compute
requirements are large, although this ratio reduces as one applies more complex numerical methods,
e.g. nonlinear limiters to treat discontinuous phenonmena or special algorithms for interface treatment.
But, fortunately, there is an easy solution to this case: domain decomposition. By choosing as the unit.
of computation a region of space, then neighbors need only be communicated at the boundary of the
domain. Since the boundary grows as n? and the interior grows as n® (for 3D problems), the ratio of
communication to bandwidth decreases as larger domains as chosen.

Domain decomposition works well even on clusters, although the domains need to be large. The
downside is that if the domains become too large, than there are fewer independent tasks. As the
number of processors becomes large there may not be enough tasks for each processor, of if there is
variability in the amount of work between tasks, load balancing problems may arise. Choosing the right
domain size is a well-studied problem, and we again note that the situation improves when using more
complex algorthims, e.g. those that are higher order accurate or those needed for the treatment of
interfaces and discontinuities. We should be able to use these algorithms for the streaming computer.
Again, this could be done by the compiler of a higher-level language.

Methods that involve implicit techniques are more complex. Fundamentally they involve solving
linear systems of equations at each time step. This linear system of equations is usually sparse, which
means that it can have a very irregular memory access pattern. A typical method involves first applying
a preconditioner to the matrix and then using an iterative algorithm such as the conjugate gradient
algorithm. In some cases, e.g., incompressible fluid flow, this matrix solve is the most expensive part of
the calculation, consuming as much as 90% of the CPU time. Another approach to solving the matrix
equation arising from this approach is to use a multigrid algorithm.

Mapping this matrix solve onto a streaming computer is a major research challenge. We should do
much better than traditional clusters and shared memory multicomputers because we have greater global
bandwidth and can tolerate the latency of irregular accesses. However, we believe we can do better. We
will work with the numerical analysts at Stanford to develop new algorithms that map well to streaming
computers. This will probably lead to a family of algorithms, since the algorithm of choice will depend
on the application domain.

5 Research Plan

There are many challenging problems that must be solved to realize our vision of a streaming supercom-
puter. Many architecture issues must be resolved, there are many unknowns in the design of a layered
stream programming system, and methods for most efficiently mapping our target applications to the
stream model remain to be discovered.

To address these problems, we propose a six year research effort that proceeds through phases of
erploration, refinement, and, if the early phases are successful prototyping. The overall program is
illustrated in Figure 3. Our effort has three main threads: architecture, programming systems, and
applications. The threads are tightly coupled with the results of one thread being used by and influencing
the other threads.

During the first two years of the program we focus on solving the fundamental issues involved with
architecture (e.g., network topologies, the interaction of streaming and cache coherence, and control
mechanisms for streaming processors), streaming programming systems (e.g., collection-oriented lan-
guages, optimization methods, and program transformation technology), and applications (e.g., numer-
ical methods that are best suited for streaming, and mapping techniques). At the end of this period we
expect to be able to run simple Monte-Carlo radiation transport and ODE applications, compiled using
our three-layer software system, on our architectural simulator,

15

Petitioners Amazon
Ex. 1010, p. 136 0of 399

: L0A4 i 90A4 b SOAS . 0A3 i £0Ad i 20A4 :
o)9/duoo wajshs { ! apou i wis a|pAo comvz wis 3j9Ao wis yase | _
leA3 uo sddy " uo sddy : 1o 30d 109 w0 300 _ U6 LT _m :
- W 2y 4 f i

:) : ;|

YV V| V., VVV i V | _m
i i " H i 3

, 5 i i i :

_ 1UBLIAdUBLUT 20UBLIOPA _ m it _m h

T i b ‘ §

i : _", f

: ‘”Q 3adv3c0 \/ Lwow) | : :

4 y ¥ n

| Jwawdojanaq uoneoyddy] __. i _ ﬁ

—, T - z ;

, J a i

_W _ Ve U e

}
MH uo suns ; ,
@ = A _ saipmg Buiddeyy weans
z _ﬂ ._ m
uonesaju| |]
t = i it
] ' —~ abenbue — abenbue g
| Vi o ;
| ” V' 304 V' 3a0 ’ ! :
. li _ wawdojaA3q Jeidwod _ ﬂm
3 M_ W“ ”_ pua Bue| - abenbue|
. i ”m | Veq Vuweass Y L¥OW
X i i 5 _ wa)sAs asemijos adAj0joid
3 _.. _._ I
. _vm 4 L | ,n
[uoneniea3 _ !

PR LY

R

f
”Q_Esﬁmq pied ﬁ apou

oads
womay \/
H

uoyeduqey | !
h asea|as @ paoalas w
; Yy V' Jauped lemisnpu) r

| il ubisa,

R S ,___
A s
i oads
; | I]
{
1 __ _

SAIPAIS INOANYOIY

Figure 3: Plan for streaming supercomputer research and development

16

Petitioners Amazon
Ex. 1010, p. 137 of 399

The next 18 months are a refinement period during which feedback from early simulation experiments
will be used to guide the development of the architecture and programming system. During this period,
the architecture will be reduced to a more detailed design and the programming system will be expanded.
Toward the end of this refinement period we plan to make a go/no-go decision as to whether to continue
the streaming supercomputer program into the prototyping phase or not. This decision will be based on
whether our experiments suggest we can meet our cost-performance goals for the system and whether our
architecture and programming system can yield high sustained performance on meaningful applications.

If the decision is made to proceed, an industrial partner will be selected to take on most of the
detailed design, physical design, and fabrication of the streaming supercomputer. At Stanford we will
work with our industrial partner on these hardware tasks. At the same time we will be increasing the
range, size, and sophistication of applications that our programming system can handle. Our goal is to
evolve our system to the point where we can handle the combined turbomachinery/combustion code.

The machine will be brought up in stages: first a single streaming processor node with local memory -
no network, then a 16-processor card, and then systems of increasing size. As we bring up the hardware,
we will integrate our programming system and evaluate the hardware on our application suite. The final
period of the program is devoted to evaluation of the machine to learn what works and what doesn’t
and to discover how streaming supercomputers should be built in the future.

Key personnel
¢ Bill Dally

e Pat Hanrahan
e Ron Fedkiw
o Dawson Engler

[Do we want to add Mendel? Mark?]

References

17

Petitioners Amazon
Ex. 1010, p. 138 0f 399

s Application or Docket Number
PATENT APPLICATION FEE DETERMINATION RECORD 4 20
Effective October 1, 2003 0¥6q o
CLAIMS AS FILED - PART SMALL ENTITY OTHER THAN
(Cotymn 1) {Colymn 2) TYPE [OR SMALL ENTITY
TOTAL CLAIMS 2L o RATE | FEE RATE | -FEE
!
FOR NUMBERFILED | NUMBER EXTRA BASIC FEE| 385.00 | R [BASIC FEE} 770.00
TOTAL CHARGEABLE CLAMS | 9 }j minus 20= |* 2] XS 9= orl xs1- |7 -
I . £
INDEPENDENT CLAIMS i =
L’ minus 3 \. X43= OR X86= %@
' MULTIPLE DEPENDENT CLAIM PRESENT O
+145= OR| +290= -
* |f the difference in column 1 is less than zero, enter “0” in column 2 TOTAL OR TOTAL &Z 5:
CLAIMS AS AMENDED - PART Il ‘ : OTHER THAN
{105 (Column 1) (Column2) (Column3) SMALLENTITY OR SMALL ENTITY
CLAIMS HIGHEST
< REMAINING NUMBER PRESENT ADD!- ADDI- | |
E AFTER PREVIOUSLY EXTRA RATE |TIONAL] - | RATE | TIONAL
Frr AMENDMENT PAID FOR FEE EEE_
= - _
a | Total . ;"‘é Minus - D/'-(‘ AN X$ 9= or| Xs8=
g Independent |- - Ar Minus - L—{ = \ X43: X86<
< [FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM | onl_
+145= OR| +290=
TOTAL TOTAL
ADDIT. FEE OR apoiT FEE
(Column 1) (Column 2) _(Column 3)
CLAIMS HIGHEST
-] REMAINING . NUMBER PRESENT | - ADDI- . ADDI-
E AFTER PREVIOUSLY EXTRA RATE |TIONAL RATE | TIONAL
& AMENDMENT PAID FOR FEE _FEE
= ; 7 :
T - ¥ I - ® .
g olal . Minus X$ 8= OR X$18=
g Independent s Minus e = 3
< X43= orn| Xee=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAM [] :
’ +145= | OR | +290= .
TOTAL - AL
. ADDIT. FEE L JOR oo FEE
(Column 1) (Column2) (Column3) '
N CLAIMS HIGHEST :
o REMAINING NUMBER PRESENT] ADDI- ADDI- §
= AFTER PREVIOUSLY EXTRA RATE [TIONAL RATE | TIONAL
] AMENDMENT PAID FOR FEE : FEE
= :
g Total .) Minus - = . X$ 9= : OR | X8$18=
"'E" indepandent |e Minus e = o 86
< [FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAM [] » OR 2
. . +145= OR | +290=
* I the entry in column 1 is less than the entry in column 2, wiite “0” in column 3. . —"'T . —
** i the "Highest Number Previously Paid For” IN THIS SPACE is less than 20, enter *20.' ADDI:' F':é - |OR ADD;O:&L
== the "Highest Number Previously Paid For* IN THIS SPACE is less than 3, enter -3.° N = "
The "Highest Number Previously Paid For® (Total or Independent) is the highest number: found in the appropriate box in column 1.
e e e el o e e

- FORM PTO-8TS (Rev. 1000 Patert and Tradermarx Oftce, .5, DEPARTMENT OF COMMERCE

Petitioners Amazon
Ex. 1010, p. 139 of 399

ﬁ-es-éous 03:19pm Fron-HOGAN & HARTSON N 361 P.001/003 F-871

PTO/SB/S (08/03)
Approved for uza through 07/31/2008. OMB 06510031
Patent and Tradamark Office; U.S. DEPARTMENT OF COMMERCE

Urdar tho Paperwork Reduction Act of 1885, no parsons 816 réquirsd to rospond to @ collection of information unless # displaye 2 vaiid OMB control Aumber.
Certificate of Transmission under 37 CFR 1.8

Serial No. 10/869,200 RECEIVED
L : . . CENTRAL FAX CENTER

Application of: Daniel Poznanovic, David E. Caliga, and Jeffrey Hammes

Filed: June 16, 2004 ‘ JUN g 5 2005

Art Unit: 2186
Examiner: Thomas, Shane M.
Attorney Docket No. SRC028

For. SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF
MEMORY BANDWIDTH IN RECONFIGURABLE HARDWARE

Confirmation No.: 5929
Customer No.: 252358

| hereby certify that this correspondence is being facsimile transmitted to the United States
Patent and Trademark Office

1. Information Disclosure Statement based on an Intemational Search report.

on b \SUML LS 3

Date No. of Pages
(incl. Coversheet)

to centralized fax number: 703-872-9306

NS

%e

Julie Lange
Typed or printed name of person signing Certificate

Note: Each paper must have its own certificate of transmission, or its certificate must identify
each submitted paper.

Client Reference No. 80404.0033.001 Fax No. 718-448-5922

MOT . ANAAsRT T

PAGE {13 RCVD AT 6672003 518:17 PA Easter Daylight Tine]* SVR-USPTO-EFRF-ft* DNIS:8729306* CSID:* DURATION s} 01-4

Petitioners Amazon
Ex. 1010, p. 140 of 399

U_E;BE:ZUUS 03:19pm From=HOGAN & HARTSON + T-361 P.002/003 F=-871

Attorney Docket No. SRC028
Client/Matter No. 80404.0033.001
Via Facsimile

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Confirmation No.: 5929

Daniel Poznanovic, David E. Caliga, Jeffrey Hammes Examiner: Thomas, Shane M.

Serial No. 10/869,200 Art Unit: 2186

Filed: June 16, 2004 RECEIVED

For: SYSTEM AND METHOD OF ENHANCING CENTRAL FAX CENTER
EFFICIENCY AND UTILIZATION OF MEMORY JUN § & 2005
BANDWIDTH IN RECONFIGURABLE HARDWARE - 08

INFORMATION DISCLOSURE STATEMENT BASED ON AN

INTERNATIONAL SEARCH REPORT
MAIL STOP AMENDMENT
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450
Sir:

Pursuant to 37 C.F.R. § 1.97 the Examiner may wish to consider the references listed
on the attached Form PTO/SB/08A. In submitting these references for the Examiner's
consideration, no representation is made or implied that the references are or are not matenal
to the examination of the application. The Examiner is encouraged to make his or her own
determination of materiality.

Pursuant to 37 C.F.R. § 1.97(c), it is hereby certified that each item in this Information
Disclosure Statement was cited in a communication from a foreign patent cffice (copy
enclosed) in counterpart European application, PCT/US04/19663, mailed 31 MAY 2005, not
more than three months prior to the filing of the statement (37 C.F.R. Section 1.97(e)). No
petition fee is believed required, however, any fees associated with this communication may
be made to Deposit Account No. 50-1123.

Date: 0 $ ”
WilluamJ Kublda F?.eg No. 29,664

HOGAN & HARTSON

One Tabor Center

1200 17th Street, Suite 1500
Denver, Colorado 80202
(719) 448-5909 Tel

(303) 899-7333 Fax

PAGE /3" RCVDYAT 6612005 5:18:17 PM[Easter Daylight Time)* SVR:USPTO-EFXRF-11* DNIS:8729306* CSID:+* DURATION fum-s)01-04

Petitioners Amazon
Ex. 1010, p. 141 of 399

r
95:!!5-2005 03:20pm From-HOGAN & HARTSON + T-381 P.003/003 F-87I

PTOIS
Approved (o7 use through 07/3172006. OMB 0651-0031
Patent gna Tradomark Office; U.S. DEPARTMENT OF COMMERCE

Uncer the Paperworx Roduction Ast 6l 1895, mwww’mﬂln respand o 8 eollaction of irformation unloss it dizy 3 valid OMB conmtrol number.
Substitute for form 144SA/PTO Application Number 10/869,200
Filing Date June 16, 2004
INFORMATION DISCLOSURE First Named Inventor Daniel Poznanovic et al.
STATEMENT BY APPLICANT
Art Unit 2186
(Use as many shcels as necessary) E . N
xaminer Name Thomas, Shane M.
Sheet 1 of 1 Attornay Docket No, SRCO028
U.S. PATENT DOCUMENTS
Examinar Cite Documant No. Publication Data Name of Pgtentee ar Pages, Columms, Lines, Where Relevant
nitials No.' No. — Kind Coge® MM-DD-YYYY Applicant of Cited Doc Passages or Relevant Figures Appear
US-20000084244 A1 05/01/2003 Paulraj Entire Document
US-2003/0046530 A1 03/06822003 Pomanovic
us-
us-
us-
Us-
us-
us-
us-
us-
us-
us-
FOREIGN PATENT DOCUMENTS
] i Forelgn Patent Document Publication Date Name of Patentee or Pages, Columns. Lines Whera i
Emg:;-:r ﬁune iy Code” Ramier® Fana Godo ! NMM-DD-YYYY Applicard of Cited Doe Relevant Pagges or E{amant
EXAMINER DATE
SIGNATURE CONSIDERED
EXAMINER: Initial if reference considered, whether or not citrtion is in mnropnarlce with MPEP 608. Draw line fhrough citation if nol in conformance and not
considerad. Include copy of this form with next o ication to applicant ' Applicant’s unlgue citetion designation numbar {oplional). See Kinds Codes of
USPTO Patert Decuments at wwaw.us, or MPEP 901.04, * Enter Office that issusn the document, by the two-letier eoda (WIPO Standard ST.3), * For
Japanese patant documents, 16 Incetion of ha year of tha reign of the Empenor must precede the sertal number of the patent document. © Kind of docurmnent
by the appropriate symboly as Indicated on the document undar WIPO Standard ST, 18 If possible. 8 Applicantis to placa a check mark here if English
anguage Translation is attached.
This collection of informatien Is required by 37 CFR 1.87 and 1.98. The informalion is required to obtaln or retain a benefit by the public which is to file (and by
the USPTO 1o process) and epplication. Canfidentiality is govermed by 35 U,S.C, 122 end 37 CFR 1.14, This collection is estimated o ke 2 hours to
complete, including gathering, praparing, and submiting the completed application form to the USPTO. Time will vary depending upon the Individual case, Any
comments on the amour af ime you require to complets this form and/or suggestions for reducing this burden, shouid be sent to the Chief information Officer,
U.3, Patent and Tredemark Office, U.S. Department of Commeree, P.O, Box 1450, Alexgndrla, VA 22313-1450. DO NOT SEND FEES OR COMPLETED
FORMS TO THIS ADDRESS. SEND TO: Commissioner for Pstents, P.O. Box 1450, Aloxandria, VA 22313-1450.

PAGE 35 RCVD AT G672003 5:1:7 PHEastem Dayight Time]* SVRUSPTOAEPXRF11* DNIS 72930 CSI0:+* DURATION sy 144

Petitioners Amazon
Ex. 1010, p. 142 of 399

r

06-06-2005 03:250m From-HOGAN & HARTSON + T=362 P.001/013 F-972

PTOISAERS ((803)
Approved foryse through 0773172008 OMB 0851-0031
Parant png Trademerk Office, W.S. DEPARTMENT OFf COMMERCE
Und Paperwork Reguction Act of 1885, no ate e | 1D & collection of nformation it i o valid, OMB

Certificate of Transmission under 37 CFR 1.8

Serial No. 10/869,200 EE@EWED
Application of: Daniel Poznanovic, David E. Caliga, and Jeffrey Hammes @Eﬁﬁ&fb’ﬂ ﬁﬁN?Jsﬁ
Filed: June 16, 2004 JUN 06 2005
Art Unit: 2186

Examiner: Thomas, Shane M.
Attorney Docket No. SRC028

Forr SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF
MEMORY BANDWIDTH IN RECONFIGURABLE HARDWARE

Confirmation No.: 5929
Customer No.: 25235

| hereby certify that this correspondence is being facsimile transmitted to the United States
Patent and Trademark Office

1. Information Disclosure Statement based on an International Search report.

on b \SUML s i3
Date No. of Pages
(incl. Covarsheet)

to centralized fax number: 703-872-9306

(XS
Julie Lange
Typed or printed name of person signing Certificate

Note: Each paper must have its own certificate of transmission, or its certificate must identify
each submitted paper.

Client Reference No. 80404.0033.001 Fax No. 719-448-5922

PAGE 1113 RCVD AT 61612005 5:20:30 PH [Easter Dayliht Tme)* SVR:USPTO-EFXRF-110* DNS:6728006 * (S DURATION (mm-ss):0406

Petitioners Amazon
Ex. 1010, p. 143 of 399

GBfUG-ZE-IUS 03:25pm From=HOGAN & HARTSON + T-362 P.002/013 F-g72

Attorney Docket No. SRC028
Client/Matter No. 80404.0033,001

Via Facsimile
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of. Confirmation No.: 5929

Daniel Poznanovic, David E. Caliga, Jeffrey Hammes Examiner: Thomas, Shane M.

Senrial No. 10/869,200 Art Unit: 2186

Filed: June 16, 2004 EESEWE

For. SYSTEM AND METHOD OF ENHANCING GENTRAL FAX Gﬁhﬁﬂﬁ
EFFICIENCY AND UTILIZATION OF MEMORY jUN 06 mus
BANDWIDTH IN RECONFIGURABLE HARDWARE

INFORMATION DISCLOSURE STATEMENT BASED ON AN
INTERNATIONAL SEARCH REPORT
MAIL STOP AMENDMENT
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450
Sir:

Pursuant to 37 C.F.R. § 1.97 the Examiner may wish to consider the references listed
on the attached Form PTO/SB/08A. In submitting these references for the Examiner’s
consideration, no representation is made or implied that the references are or are not material
to the examination of the application. The Examiner is encouraged to make his or her own
detemmination of materiality.

Pursuant to 37 C.F.R. § 1.97(c), it is hereby certified that each item in this Information
Disclosure Statement was cited in a communication from a foreign patent office (copy
enclosed) in counterpart European application, PCTAUS04/19663, mailed 31 MAY 2005, not
more than three months prior to the filing of the statement (37 C.F.R. Section 1.97(e)). No
petition fee is believed required, however, any fees associated with this communication may
be made to Deposit Account No. 50-1123.

Date: 0 ; =X 9 o o
William J. Kubida, Reg No. 29 664

HOGAN & HARTSON

One Tabor Center

1200 17th Street, Suite 1500
‘Denver, Colorado 80202
(719) 448-5909 Tel

(303) 899-7333 Fax

PAGE 2/13* RCVD AT 6612005 5:23:30 P [Eastem Dayfight Time]* SVR-USPTO-EFYRF-110* DNIS:$729306 * CSID:+* DURATION (mm-5s).04-06

Petitioners Amazon
Ex. 1010, p. 144 of 399

06-06-2005 03:25pm From-HOGAN & HARTSON +

T-362 P.003/013 F-§72

OrSE6/08a(03433)
Approved for usa thvough 07/3172008. OMB 0851.0091

Paart ana Trademark OMcs;, U.S. DEPARTMENT OF COMMVERCE
Mrmwgmw.&md 1995, ”Em“ﬂ' wmwsﬂuﬁnd 'mnon unesa :mﬂsamra OMB gontrel rumber.
Substitute for form 1449A/PTO Application Number - 10/868,200
Filing Date June 16, 2004
INFORMATION DISCLOSURE First Named Inventor Daniel Poznanovic et al.
BY APPLICANT =
STATEMENT At Ut 2186
e ne iy S I aairn Examinar Name Thomas, Shane M.
Sheet 1 of 1 Attorney Docket No. SRC028
U.S. PATENT DOCUMENTS
Baminer | Che Document N, Publicalen Date Name of Patentee or Pages, Columns, Lines, Where Relavant
Initials No.! Ne. — Kind Code® MM-DO-YYYY Agplicant of Gited Doc Passages or Relevant Figures Appear
US-2003/0084244 A1 0500172003 Paulraj Entire Document
US-2002/0046530 A1 D3/0622003 Poznanavic
us- J
us-
us-
us-
us-.
us-
us-
us-
Vs
us-
FOREIGN PATENT DOCUMENTS
) Foraign Patent Document Publication Date Name of Patentee or Pages, Columas. Lines Wnere
i | Nou | comnCow mumenaco® | MWPOVYYY | AppicamtofGiealos | Relvart PRges o Reevont v
EXAMINER DATE
SIGNATURE CONSIDERED

EXAMINER: Inttial if reference considered, whether or not citation is in conformance with MPEP 609, Draw ine through citation if not in conformance and not

cansidered, Includa copy of this form with next communication to applicant, ' Applicant’s unique citation designation number (eptional). ¥ See KInds Codas of

USPTO Patent Dacuments st wrlm or MPEP 901.04. ? Enter Otfics that issued the document, by the twosletter code (WIPO Standard ST.3). * For
serlal number of tha pater *Kind af

Japanesa padent documents, tha Indication of the year of Me reign of the E must p dc the
by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 tf passible. 8 Applicant is 1o place a chegk mark here if Engfish
language Translation Is attached, ¢

This collection of infermation is required by 37 CFR 1.67 and 1.88. The information is required to obtain or retaln a benefit by the pubfic which is to file (and by
the USPTO to process) and application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimsted to take 2 hours to
complete, including gathering, preparing, and submitting the completed epplication form to the USPTO. Time will vary depending upan the ndividual case. Any
commants on the amount of tima you require to compiete this form and/or suggestians for regucing this burden, should be sent 1o the Chief information Officer,
U.B. Petent and Trademark Office, U.S. Depastment of Commerce, P.O. Box 1450, Alexangria, VA 22313-1450. DO NQT SEND FEES OR COMPLETED
FORMS TO THIS ADDRESS. SEND TO: G izl for Patents, P.O, Box 1450, Alexandria, VA 22313-1450.

PAGE 3/13" RCVD AT 61612005 5:23:30 PM [Eastem Dayfight Time * SVR:USPTO-EFXRF-110* DNIS:§729306* CSID:#* DURATION (mm-5s):04-05

Petitioners Amazon
Ex. 1010, p. 145 of 399

06-08-2005 03:25pm Fron-HOGAN & HARTSON + T-362 P.004/013 F-g72

. F! e, = -1: Ar——
W 2 PATENT COOPERATION TREATY :

From the INTERNATIONAL SEARCHING AUTHORITY JUN 2 - 2003
PCT HOGAN & HARTSON LLC

To:
CAROL W. BURTON

‘.‘;%‘3?%% ?MONsuLnL-: 5 NOTIFICATION OF TRANSMITTAL OF

THE INTERNATIONAL SEARCH REPORT AND
DRIDCER O S0 THE WRITTEN OPINION OF THE INTERNATIONAL
SEARCHING AUTHORITY, OR THE DECLARATION

(PCT Rule 44.1)
Date of pailing
caymernyesy 91 MAY 2005
AR R T FOR FURTHER ACTION See paragraphs | and 4 below
Iotermotional application No. [etemational filing date
PCT/USO4/ 19663 (day/monih/yeary 17 June 2004 (17.06.2004)
Applicam

SRC COMPUTERS, INC.

K E The opplicunt is bereby notificd thy the mmml search repon and the writlen opinion of the loternational Searcising Aulhority
have beat lished and are ited

Filing of ammdments nnd statement under Artide 19;
The spplicant is mmtitled, if e 60 wikhes, (0 8mend the elaims of the intemational applieation (=te Rule 46):

Wheu? The tise limit for fling such amendrotms |s normally two manths from the dats of cransmitta) of the mermations|
scarch repon.

Where? Directly to the Intermuional Buretw of WIPO, 34 dhemin == Colombeytes
. 1211 Genava 20, Switzerland, Fecsimile No.: +41 22 740 14 33

For wigre detgiled instructions, ses the notes on the acvompanying sheet.

2 [The opplicant iz hereby entified thot as imerrations] search report will be catoblished and that the declarafion uilr
Anico 17(2) (s) 1o that effeet and the wrinen op of the Int lonal Searching Authority sre trunsmitted horewith,

3. [J wWith regund to the protest apsing paymeat of (sm) additiono! fee(s) onder Ruic 60,2, the applicart i5 noufied thai:

m (he protest logelher with the decition thereon has been transmitled to the Ioternational Bureau topether with the applicar’s.
request 1o forward the wexis of bodh the prowest and the decision theveon 1o the desiznated Offices.

0o derision has been mode yeu og the g the app will be newificd o8 300n as = desision ix made,
4. Roulvdos
Shortly sfter the expiration of 18 monthy (o the priedity daxte, the i j licotlon will be published by the Jreer
Buresu. lftha-mhmuﬂuhm«dwpmponpﬂmmn.-mﬁuumdmlum hl:rl\:luoillnpplﬂnon.oruflhc
pnont;rdalrn,mlrmhmnlmmhmlmmunspmddw}hﬂuml.llndWH.lB speciively, before the letian of the
P for 1 sl ion,
‘Tht wppliceni may =bmil costmens on an informal bagis on the wriiten opinion of the I i Searching Auibarily 10 the

Interasitomal Burcsu. The Intermtional Buresy will send 8 copy of swch commems (o oll desisnated Offices unless @ inlarantional
prelimanary examunation report has been or s to be established. Thess cammens would also be mede uvailoble to the public but na
hefore the expiration of 30 momhs fram the prierity due.

Within 12 moeths from the pricrity dare, but anly in respect of some designated. OfEcts, a d d far § jonad preliminary
examinmion must be filed if the applicant wishes 1o postp mmuhu:kmwmmﬂ!ﬂuumrmmpnum,mu
ﬁnsmomunwulm)olhmmwlimmm within 20 ths from tho priarity date, p the p ibed acts for

eniry inio the netional phose before thoss designated OfTices.
In cespeet of ather detignated Offices, the Gme lmit of 30 mouths (or luer) will apply even if oo damand is filed within 19 momhs.

Seo the Annex to Farm PCT/IB/301 ondl, for dawila chout the applicable time limita, Office by Office. ste the PCT Applicant s Gride.
Valume [1, Nations! Chapters and the WIPO laicrnst site.

Name and mailing addres of the ISAY US MEI M %
Mgl Stop PCT, Aus: ISA/US L s e
Commissicaty for Potems Vincemt Trana
P onias rrginia 223131450
T irginin Telsphoas No, (703)305-9750
5 Fﬁdmil: No. (703) 305-3230 &

Form PCffm (Jomunry m (Sew nores an accompanying sheed)

PAGE 4113 * RCVD AT 6/6/2005 5:23:30 P [Eastemn Dayfight Time] * SVR:USPTO-EFXRF-10* DNIS:8729306 CSID:+* DURATION (mm-5):04-06

Petitioners Amazon
Ex. 1010, p. 146 of 399

06-06-2005 03:26pm From=HOGAN & HARTSON # T-362 P.005/0
‘ = 13 F~g72

PATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT
(PCT Asticle 18 and Rules 43 and 44)

Applicant's or agont's file reference FOR FURTHER ae< Form PCT/ISA/ZI0

SRC028 PCT ACTION s well as, where applicoble; itom § below,

Inernational application No, International filing daw (day/monthryear) | (Earliesy) Priogity Date (day/ntanth/year)
PCT/USO4/ 19663 17 June 2004 (17.06,2004) 18 June 2003 (18.06.2003)

Applicant

SRC COMPUTERS, INC,

This fniermational search report has been prepared by this Intemational Searching Authoritly and Is trapsmilted w the
applicum according ro Article 18. A eopy is being ransmined te the Internatjional Bureau.
This interarional search report consists of & wial of i sheets.

It is also accompanied by a copy of each prior urt documeny cited in this report.

1. Basis of the Repori
a. With regard 10 the language, the ineroational search was earrizd oui on the basis of the internationnl opplication in the
langunge in which it was fited, unless otherwise indicated under this irem.
The internarional search was carried oul on the basie of o translation of the inermational application
Furnished to this Autbority (Rule 23. L(b)).

b‘D With regard w any nucleotide mid/or amine acid sequéince disclosed In the international application, see Box No.
1. : '

Unity of invention is lacking (Sec Box No. 1)

4. ‘With regard 1o the title,

tho text is approved as snbmitted by ths applicant,

the text has been establjshed by this Autheriry to read as follows:

2. g Certain claims were found unsearchulile (Sce Box No. IT)

5. With regard to the sbstract,
the text Is approved s subsmitied by tho spplicans.
the text huss been established, according o Rule 38,2(b), by this Authoriry s it appears in Box No. IV, The

applicant may. witkin ooe month from the dare of mailing of this internationsl scarch report, sobhmit comments
to this Autkoriy. " .

6. With regard to the drawings, '
a e of the drawings © be published with e abstract is Figure No.
'E“ a8 suggested by the applicant.
D as sclected by this Authority, becanse the applicant failed to suggest a figure.
as selecied by this Authoriry, becanse this figure beuter charactetizes the invention,

A i
Form PCT/I5A/210 (first cheet) (Jamury %))

PAGE 513" RCVD AT 61612005 5:23:30 PH [Eastem Dayfight Time] * SVR:USPTO-EFXRF-110* DNIS:8720306° CSID:+* OURATION (mimss):04-06

Petitioners Amazon
Ex. 1010, p. 147 of 399

06-06-2005

03:26pm From=HOGAN & HARTSON

U.S. - 711/137, 213, 170-173; 712115

¥ T-362 P.006/013 F-g72
j fcati 3
INTERNATIONAL SEARCH REPORT Recaionl spioation o
PCT/USD4/ 19663
A CLASSIFICATION OF SUBJIECT MATTER
PC(n : GOSF 01200
Us CL @ 711137, 213
Atcording 10 s} ificatio ot to both pational i 2 and IPC
B. FIELDS SEARCHED
Miniymm ¢ hed (clossification systemn followed by classification symbaiy)

‘Documentstion searched other than micicitm documentalion W the extent that such documeps are inchuded in the fields searched

Please See Conumoation Sheet

Electronic data base consulted during the internations) search (oame of data beso and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Ciwtion of docament, with inditation, where approprinte, of the relcvant passages

Relevant to elaim Na.

x US 2003/0084244 A1 (PAULRAJ) 01 May 2003 (01.05.2003), see cntire Jocument,
A US 2003/0046530 A1 (POZNANOVIC) 06 March 2003 (06.03.2003).

-4

1-24

D Furiber documents are listed in the contmuation of Box C. See patems family wanex.

10

- dpoclal calogories of cited documenms: L & ' afier the i Gling das o7
prorty dase 3nd nok tn conDict wiib tis spplication bur cited 1o
“A” documen delining vhe goaeral slole of the art which is nof considored to vedersland e prictiple of theory undertyiog the invention
be of panicular redevancs
- documen of panieslar relevagce: the sinlped Invantion sanm bo
“E* wartier mpplicalon of puen: pablishad a or fier e iMamational filing comidered novel ef eonnol be considatd m nvolva as inventlve
dpe sicp whep the docgment = 1den alose
*L® documens which may throw douniz on priorly elakm(s) or wiich is elied o il the glaimad invention cno be
10 estabilsh tho pus llenion doe of ansiber cilotion oF eher special rexeon mlﬂ:u‘ lu ‘mvalve o inventive sivp when e docucent Is
{2 spoxified) conidined wilh &pe or mors whes Soch decements, such
combinnd oo being ehviows to o parsan sKilled IR the ot
0" ferring 10 2 oM dlscl; , e, cahibition or other mens
Ll documen: member of the yame pasept family
A Ut § ik prior 10 tha i naanl filing daie but Jaer than the
Asingit: dnis pizimas eI
Dale of the scual completion of the nternationnl scarch Date of meiling of the internacional search repart
28 April 2005 (28,04.2005) 3 1 MAY
Name and ouailing oddress of the 1SA/US Authorized 7 "
Mail Swop PCT. Attn: ISA/US : &
caommiuim?o for Paents Vincent
P.0. Box 14
Alexacdria, Virginia 22313-1450 Telephone No. (703)305-9750
Fecsimile No. (703) 305-3230

Farm PCT/ISA/210 (secand shect) (Jaguary 2004)

PAGE 6/13" RCVD AT 6112005 5:23:30 PM [Eastem Dayfight Time) * SVR:USPTOEF XRF-110* DNIS:$723306* CSID:+* DURATION (mm-ss):04-06

Petitioners Amazon
Ex. 1010, p. 148 of 399

. !15-05-2005 03:26pm From=HOGAN & HARTSON + T-362 P.007/013 F-g72

Iniersatiansl spplication No.
INTERNATIONAL SEARCH REFORT PCT/US04/19663

Continuation of B, FIELDS SEARCHED ltem 3:
EAST

micraprocessor, reconfigurahle

Form PCT/ISAR10 (extro sheet) (Jamary 2004)

PAGE 7113* RCVD AT 61612005 5:23:30 PM [Eastem Dayfight Time]* SVR:USPTO-EFXRF-110* DNS:8720306* CSID:+* DURATION mm-ss]:04-06

Petitioners Amazon
Ex. 1010, p. 149 of 399

06-06-2005 03:26pm From=HOGAN & HARTSON

+ T-362 P.008/013 F-g72
< PATENT COOPERATION TREATY

From the
INTERNATIONAL SEARCEING AUTHORITY

To:

CAROL W. BURTON PCT

HOGAN & HARTSON, LLP -

1200 | 7TH STREET, SUITE 1

WRITTEN OQPINION OF THE
ENVER, CO 80202
Gl INTERNATIONAL SEARCHING AUTHORITY
(PCT Rule 43bis.1)
Date of mailing

| o 31 MAY 2013

Applicant’s of agenr's file reference FOR FURTHER ACTIO!

See paragraph 2 below

SROMS PCT '

Tntermational spplication No. Imernatong filing date (day/moath/year) | Priority date (day/month/year)

PCT/USD4/196583 17 Jume 2004 {17.06.2004) 18 June 2003 (18.06.2003)

IntcroeGonal Paent Classification (TPC) or both national ¢lassilication and IPC

IPC(7): GOGF 012/00 and US Cl.: 711/137, 213
‘Applicon

SRC COMPUTERS, INC.

1. This opirion contins indicstions relating to thz following inems:

Bax No. ! Basis of the opizion

Box No. Il Priarity

Box No. 111 Nor-establishment of opinian with regard to uovelry, inventive step and indastial applicobiliy
Box No.IV Lack of mity of invention

Box No. V Reasoned starcroent wnder Rule 4354y 1(a)i) with regard to novelty, & ive step or industrial
spplicability; cilations and explanations supporting wuch statement

Box Na. VI Certain documenss cited

00 XOOO

Box No, VIl Certain defecis in the imlernational applicadon
[[] Boxto.vin Corin obscrvations s the oternssiona) spplicsiion

2. FURTBER ACTION .
If a demand for intermdonsl preliminary exsmination is made, s opinion will be considered 10 be a wriken opirion of s
Intermntional Prelimimury Examining Authority ("IPEA") excep that this does not apply where the applicant chooses an
Aurthority other than this one 1 be the IPEA and the chosen IPEA has notified the Intermtional Bureau undsr Rule 66. 1505 (b)
thal wrinen opinicns of this Internations) Scarching Authority will not be so considered.

If (s opimion is, us provided above, cunsidered to be u writtm opition of te IPEA, the applicunt is invited to submit to the
1PEA o writien reply logether, where appropriate, With amendmems, before the expiration of 3 mopths from (he dowr of
mailing of Form PCT/ISA/220 or before the capirtion of 22 monha from the prioricy dale, whichever expires lutr,

For furber optioss, sce Form PCT/ISA/220.
3. Far [urther detnils, see notes to Form PCT7I8A/220.

Namne and mailing nddress of the ISA7 US Authorzed DE;I-CH W - Zuer—

Mai) Stop PCT, Autn: ISAUS

Commissicase for Patests Vineen
P.0. Box 1950
AMcxandiin, Vicginie 223 13- 1450 Telephane No, {703)305.9750

Facsimile No.) 305-31230
an!: mﬁn% (cover sheet) (Jamuary 2004)

PAGE §/13* RCVD AT 6812005 5:23:30 PM [Eastem Dayfiht Time)* SVR.USPTO.£FYRF-10° DNIS:8728306* CSID:#* DURATION (mm-5s):04-06

Petitioners Amazon
Ex. 1010, p. 150 of 399

qE-UE-ZUUE 03:26pm From=HOGAN & HARTSON

+ T-362 P.008/013 F-g72

ONOF rmational application No,
INTERNATIONAL SEARCHING AUTHORITY PCT/US04/ 19663

Box No, I Basis of this opinion

it was filed, vpless otherwise indicamed under dhis iem.

1. With regard to the language. this opinion has been esmblished on the basis of the intornatiopal application in the language in which

D This opinion bas been established on the basis of o translation from the arignal language into the following Janpuage .
which is the langunge of a tunslation furnished for the purposee of interpational search (under Rules 12.3 and 23. i(b)).

2. With regard to any suckeotide and/or umino arid sequence dl d i the inwmations) epplicaton and y © the

clafroed inveption, this opinion hns been established on the basis of:
a. type of material
D a sequence listing
[adiegs) related to t sequance listing
b. format of material
[-_-I in writien format

D in compuler readsble form

D ired in mternational spplication as filed.
D filed wpether with the termadonal application in compuier readable form.
[rurnished subscquenily to this Authority for the purposs of search.

the application as filed or does not o beyond the application as filed, as appropriate, were furnjshed.

4. Additional comments:

3.[:] In additon, in the case (hat maore than one version or copy of a sequence listng and/or wbic relating thereto has bown
filed or furnished, the required sterements-that the information in the subsequem or additionad copies is idendeal to that in

Fomn PCT/AISA237(Box No. 1) (Jaruary 2004)

PAGE 3 RCVD AT 2005.:23:30 P [Eastem Deyight Tine] SVR-USPTO-£FXRF10° ON:4725306* CSD:+ DURATION (mmss):0405

Petitioners Amazon
Ex. 1010, p. 151 of 399

-

. \?E-OE—ZUD! 03:27pn From=HOGAN & HARTSON + T-362 P.010/013 F-g72

Internotional eation No.
WRITTEN OPINION OF THE PCTIOS0U Sy

INTERNATIONAL SEARCHING AUTHORITY

Box No. V Rexsoned statement under Rule 43 bis.1(a)() with regard to novelty, inventive step or industrial
applicability; citations and explanatiops supporting such statement

1. Staternent
Novelty (N) Clatms NONE YES
Claims 1-24 NO
Inventive siep (1S} Claims NONE YES
Claims]-24 NQ
Industrial applicability (JA) Claims |-24 YES
Claims NONE NO

2. Citations and explanations:

Plcasc Seec Comtipustion Sheel

Form PCT/ISA/237 (Box No. V) (larmary 2004)

PAGE 10/13* RCVD AT 61672005 5:23:30 PM [Eastern Daylight Time]* SVR:USPTO-EFXRF-110* DNIS:$729306* CSID:4* DURATION (mm-5s):04-05

Petitioners Amazon
Ex. 1010, p. 152 of 399

'(!5-05'2005 03:2Tpm From=HOGAN & HARTSON + T=362 P.011/
- A01/013 F-g72

Imernationnl application No.
WRITTEN OPINION OF THE FEHUERE
INTERNATIONAL SEARCHING AUTHORITY

Supplemental Bex
In case the space in any of the preceding boxes §s not sufficent.

V. 2. Citatlons and tons: ;.
Claims 1-24 Jack novelty under PCT Ardcle 33(2) o3 being apticipared by Paubraj (US Par. 2000/0084244),

As per ¢laim], Paulraj shows a reconfigurable processor in ligure 6 and a first memory (11) baving a first characteriste |
roemery type (lioy size, blocking factor, associativiry, cte.) and a second memory (L2) having o second characteristc memory type
(line size, blocking factar, associativity, efc.). Refer w prragmph 23. Paulraj [oriber tenches a functional unit 102 that executes
applications nsing (e memories L1 and L2 (paragroph 9). As is known in the urt, a eache memory canvroller is often used 10 aoeass
and move data bepazen 0 emory hierarchy, The Examiner Is considaning a data prefeteh unit © be the logle assocaticd with the
moving, and anly the moving, of data between the first and second memaries (L1 and L2) since Paulroj shows n conmecion betwien
e lovels of ¢ache in figure 6. This logic 85 wel as be first and scoond memory types (L1 and L.2) are configued by o program -
sefer W parographs 25-24. The daa prefesch unit as Jefined by the Bxaminer st be canfigued as well by te program when moving
dam since the cache linc size and blocking factor can change, s0 different amounts of data can be eaclanged for the same scoess when
dilTerent progrums sun,

As per ¢laims 2 ond 13, as taught in paragraphs 23 and 29 of Puulraj. o specific cache is present in (he sysiem of Panlraj.
Ruther, un FPGA is utilized u representing 3 caching hicrarchy and is optimized based on e memeary needs of a specific prugram
running ¢a the reconfigurable processar.

As per clabms 3 and 14, Paulraj weaches in patagraph 23 tat o specific cache line size of contiguous data is nol retricved
since (e data line size is optimized bascd on the memory necds of the program when execudag on the reconfigumible processor.
Refer also o paragraph 79,

As per clzim 4, Panlraj 1eaches thar a load/store umil is uted to access the eaches (L1-L3) norder o determine if cache data
upmmmtheend:emnrﬂay{pmgmphéj Sinee the fanctional unit 102 (Ogwre 6) is responsible for accessing the programmabie
memery upit 104, (he Examiner is therefore considering the load/siore unit logic of the programmeble memory unit thst is responsible
for for eccessing the LY snd L2 caches (first und second memnory types) to be a memory controller. 1t can be seen that the memory
controller, as defined by the Bxaminer, cootrols the transfer of dala berween the memory (assuming second manory L2) and the damn
prefetchunit, since the memary coniralier (load/store unit logic) is respopsibie (or retrieving the data from the cache if a hit occurs

(paragroph &).
As per claim 5, asmgumpmg:phl mnmmy(émls.ﬁgml)ugmdycunpledm.mmuprmm
and holiks data 1o be vsed by the mi during program cxecution. The Examiner is considering the process ol wridng dowa

mm&mW&mmmmlmmmm[m-hwﬂmwy).sachu&!ﬂgnw-lu-back
schemme as known ia the axi, © be perfonmed by the data prefetch unit portion of the functional logic as defined above by the
ﬁwmm dam prefetch logic, ax defined above, is rospentible for 4l) of the oransfer of datn inio. out of, and bejwesn the FPGA
memory 1

As per claim 6, (bo Exerminet is regarding a —peglster— in its broadest reasonnble serse and it thus eonsidering ithe inbe u
unit of logic, Therefore, the portion of the functlon logic that is respensible for the movement of daw (8s defined sbove to bu the data
prefetch umil) is being considered by the Examinet as conigining a —Tegistér— partion of the reconfigurable processor since, for

Form PCT/ISA/237 (Supplemeutal Box) (Jambary 2004)

PAGE 11/13* RCVD AT 61612005 5:23:30 PM [Eastern Daylight Time]* SVR:USPTO-EFXRF-110* DNIS:729305 ﬁh:+ *DURATION (mm-5s):04-06

Petitioners Amazon
Ex. 1010, p. 153 0of 399

. 1{5-05-2005 03:2Tpm From=HOGAN & HARTSON + T-362 P.012/0
- ! 13 F-72

Iruernational application No.
WRITTEN OPINION OF THE FERAEoV IR
INTERNATIONAL SEARCHING AUTHORITY

Supplemental Bax
T case the space in any of the preceding boxes is not sufficent

instance, the blocking factor and line size of ibe programenable memery 112 can change, a --registar-- or pargon of the reconfigurmbic
processor aust be sel i arder i indicate the currmet lime size and blocking factor when b given application is being un an ihe
reconfigurable processor al A piven point in tme. Refer 10 pamgraph 23. N

As pet chdm 7, the Examiney s considering the process of --disassembling the data prefcich unit-+ as modifying the daw
prefeteh unit logic of the fucnlion logie 102 every tme the program being executed by e reconfignrable processar changes. It can
be seen thot the das prefetch wnit changes during thess inwerval ¢ since the cache line size, blocking facvor, and associstivirty of the
FPGA changes when optimal for the neoa progrom o be exveuted (refer (o paragraph 23). Thus it can be seen that the dam prefeich
unit logic i -~di bled- when apother program is execuled by the reconfigurable processor of Paulraj.

As per claim 8, a3 can be szen thal the FPGA memory 112, that comprises the first and second memories (L) and L2) aod
which is accessed by e dofa prefeteh uakt of te fimetiaml unit 102 as discussed 2bove, Is a ~processor memory=- (part of epu 110).
Therefare, sipce the data pretech wtall can access e L2 cache ac discussed above in the rejection of clamm 1, the data prefetch unit cm
tetrive data from the L2 portion of —procsssor mepory--112,

As per claim 9, as shown ip figure | and tmught io paragmph | of Paulmj, the sysiom 10 is acually u mictoprocesser, which
comins 4 memory conualler 14, The main difference between the prios wt of figure | and the inventioy of Pawlrsj in Ggure 6 iy that
the memiroy hicrarchy is configirable and accessed by a fusntional wait in lieu of a sepirate memory ¢ontrcller logic (paragnph 9).

Therefore, since the memory controller logic for g the cache hi hy s sl ined withia cpu 110 of figure 6, it can be
scen that the cpu 110 is pemally a microprocessar, It follows thid the =-processar memory— 112 is therefore a
~IiC ORI OCESSOT MmOy —.

As per claim 10, since the cpu 1)0 of figure 6 is # reconfigwable processer (able 10 reconligure it memory heirarchy o march
the needs of the application it is currendy nmning), it can be seun that the cpu memory 112 is a geconfigurable processor memary.

As per claim 11, Palra) deplets a reconfigurable hardware system in figaye 6, Panlrgj furtber teaches ip parugraph 26 that
when a particular applicstion is 10 be run by the reconfigruble processor 110, a coptiguratian vector is retricved 10 program he
programmuble memory 112 (fgure 6). As shown in figure 6, the sicp of accesing the configuradion veewmr is executed vatside of the
reconfigurable processor 110. Therelore, the Examiner is considering the memory hat conlaing the configuration veclors o be a—
vommmon memory— und a dais préfewch unit (reconfigwradon vait 106 executing on the reconfigurable processar 110) accessing the
commoN memory in order how t0 program the ¥y 112 (paragragh 29). The dara prefeich unit 106 is —configured—
by an application to be excinod on the sysem 110 sinca when a new application is to be d, the dat prefetch unit is called upon
(ar configured) 10 access the configursdon vector {or the particular spplication.

As per claim 12, the Exnminer is cansidering 8 —memary controller— to be the system porgon uilized when creating & new
conflguration vector far an application. Such a process occurs in figure 5 and wught in panigmghs 23-25 of Paulraj. When u naw
configuraon vestor is ereated by anslizing performance information that has been colleeted for the application, The Exnminer is
thercby considerng the —memory coatoller— to be the element of the reconfigurable hardware system thal is associated with sturing
the pew configuration yecwor into (e common memory so that the veclor can be accessed laler when the same application is run again.

As per claim 15, the Exarminey is considering the reconfiguration module 106 of the reconfigurable processsor 110, as
comprising two distingt dlements: 2 —compumdonal unil— and o —data uecess vmit-. The dara access umt is the element that is
responsible for necessing the configuration vecwmr 28 taught in parzgraph 29 of Paulraj: o in oiber words, te Examiner is considerun
the --diva sccess umit=- 10 be the same a5 e ~memory controler-- defined in dw rejestion of daim 12. The Examiner is Rarther
considermg (he —computational sl of the reonfiguration mottule 106 w be die clement that sets up the programmable pemory
module 104 using tbe confligerstion veelor that was accessed by the -l sccess unit- (paragreph 29).

As pey claim 16, as upht by Pawlrsj In paragraph 29, the —duts accesy unit- supplics e configuration vectar 1o the —
computatioml umnit- in order 1o 38¢ P te programmatle manory 104 as required by (e application 10 e nm on the reconfurnble
processor 110,

As per claim 17, the Examiner js considering a --dua prefeich unit— to be the reconfiguration usit {06 of reconfipurablc
processor 110 (flgure 6). As tanght in paragraph 26 and 29 of Paulraj, the ~dats prefietch unit— accesses « memory in order 10
delermine if a confignration vector is known for a glven spplicartion, and if 50, the vecior is retricved (from the momory). 17 this -
datr- {configuration veetor) is not known then o simulagon i performed with the application In order 1 callect performance
informuetion. The Examiner is considering thee elemeny that executes :nd collects the perfanmance data as being A —compunion:d uait
« and the &dement of Panlrej bt stores the copfiguraen veclor, onte detennined, (0 be o ~data peoess unik- since it stores (he vector
0t the —memtory-- from which it ¢an be lawer rétrieved (step 212 of fgure 5). The —computstional umit—, —datn aecess unit-, and
the --go prefeh ugii— are 2ll ~copfipured— by 3 program (applicatioo) since (1) a new application configures the computwtional unit
porticn of the reconfiguration umit o perform o sinpdation in order lo determine the opiipal memory hisrarchy organizaden: (2) the
oow spplicaion configures the --datn nccess umit— to slore and retricve (Siep 212) ths confipunttion vestor for that particalar
application; and (3) the —daln prefetch unit-- iy configured by (be epplication 10 determins if o configuration file exisis for the
app]imimmdi!w.m}m, fetch anit is configured by the program the proprummable memory 112 in arder o optimize the

2 b y far (ay partienlar gpplicats
g As per claim 18, the —~dama-— (configuration veeir) is wansferred from the
~compuations] wit-- o (e —dats ceess unit— when the configumion unlt bas creaced a so:figumtion vector (step 208 of figure 5).
The —data— is wrinen o the memory --from-~ the
+»¢ata prefeich unit-- sigce the data prefetch unit (reconfiguration unit 106) is te clemen du exccuted the beglnnins of the
configoraton veetor creation process (sep 200 of Ggure 5). Refer to paragraph 26. This tix Exarminer is considering the dots os
beinp, written --frome- the dam prefeich unit.

Form PCT/ISA/237 (Supplomental Box) (Jamiary 2004)

PAGE 12113 * RCVD AT 61612005 5:23:30 PM (Eastern Daylight Time)* SVR:USPTO-EFXRF-110° DNIS:8729305* CSID:# DURATION fmm-ss):04-06

Petitioners Amazon
Ex. 1010, p. 154 of 399

PAGE 131

’

-

-08-06-2005

.

03:2Tom From=HOGAN & HARTSON

T-362 P.013/013 F-pr2

International sgpleation No,
WRITTEN OFINION OF THE P
INTERNATIONAL SEARCHING AUTHORITY ‘

Supplemental Box
In enge the space in any of the preceding boxes is not sulficieat.

A2 per claim 19, as tmgin in paragraph 26, if the configaration vector i koown, the veotor is retrieved (rom the mermary to
the data preferch umit (reconfiguration umit 106). The duta is read directy from the data preferch unit when a request © creatc a
canﬁgwaﬂmmmrbmd:fwnwwhmassmhﬁymGmcetbndmpmfadlumt:sm!dbh!wbcmm“m
creabon process. nedm;sdnmodnmmﬂdmpmﬁmhmumnmﬁgwelupc)mbemﬂ&am e memory by the dala uccess
unii to the computntional Toit wiere il is procassed w produce o configiration vector.

As per claim 20, as stated above, the confipurution vector (—dam--) is creaied by the computadonal upit via acquired
simulstion daa, The configuration vector is te reniant product that is treasferred from the memory to the dats prefect unit when i
is determined i the configuration veclor far the application is available (paragruph 26). Thus +-all— of the dat that is gansfemred is
processed by the computational unit {albeit before th: wansfer oceurs) sinte the dats preferch wmit regoired the eatiro ¢onfiguration
vector in order © set vp the programmablc memory 112.

Ay per claim 21, Prolraj shows in paragraph 26 (o1 an explicil request for the configuratdon vecrar for the current spplication
results in the daa (if it exdsts) selected for the optimal canfipumiton of the programmable memary 112 for that application.

As per claim 22, tho Examimer is nol considering the dma (configuration vesior) to be the size of a complete cache lino since
the daa is used 10 crequo a eache hisynrehy. In otber words, the caches (L1-L3) of the programmable memery 12 we not
programmed when the dana is tronsfurred from the memary 1 the dal prefetch vy, ihercfore, te data be u complete cache
line.

As per claim 23, since the Examiner defmed the portion of the reconfiguration unit that accesses the configuration file (daw)
fropa the memory. the Examiner is defining the Jopic it conmrols the actual trensfer of thut datm o the damn prefeich unit (portion of
the reconfiguradon uait thot execwes the fetch of the configuration vector and then programs the programmable memery 112) 1o be a -
-memory contreller—. Thas the dam secess unit deternines whetber a configurution vector exinis for an spplication and if so. the
m¢mory controller sends (hat dam to e data prefeteh mit,

As per claim 24, The Examiner is considering the el=ment that exscutes and collects the performunce datn &S being 4 «=
camputional unit— and the dlement of Prulraj that stores and regrieves the confimration vesior, once dewrmined, W be & --daza
aceass ugit- sinee it mures the Vector o the --memory— from which it o be later retrieved (siep 212 of Higure §). The

~reompuntonal unit-- ond —data aceess unit ~ are --configred= by a progeam (applicoton) since (1) & pew application canes in the

mﬁpnumdﬂhcmmﬁnnﬂumtpmmofhwmﬁgumﬂnnudtmpdh:mlwmﬂmmmmdmtcdummcuamu

memory hierarchy organization for the spplication and (2) the vow spplication camses the confipuraton of the --duta access unil- ©
smumdmﬂm(sn;?l!)hmﬁgwaumvmhm“mw:ﬁmn. Refer to paragraphs 23.27.

Claims 1-24 meet (ha crileria set out In PCT Asticle 33(4), and thus have industrial spplicability because the satject martter claimed
¢an be pade or ueed in indusey.

Eorm PCT/ISA37 (Suppl al Bax) (Jacuary 2004)

3" RCVD AT 61612005 5:23:30 PM [Eastemn Daylight Time]* SYR:USPTO-EFXRF-110* DNIS:8729305 CSID:#* DURATION mm-5s):04-06

Petitioners Amazon

Ex. 1010, p. 155 0f 399

Ref

L1

L4

LS

L7

L8

LS

L10

L11

L12

L13

L14

L15

L16

L18

L19

L20

L21

L22

L23

Hits

117

143

12

909

10

87

260

1694

449

Search Query

reconfigur$3 adj (processor
micro-processor CPU processor)

reconfigur$3 adj (processor
micro-processor CPU
miCroprocessor)

reconfigur$3 adj (processor
micro-processor CPU
microprocessor) and "711".clas.

reconfigur$3 adj (processor
micro-processor CPU
microprocessor) and prefetch

711/170-173.ccls. and dynamic
near3 logic

Smc.as.

smc.as. and "711".clas.
smc.as. and "712".clas.

(smc and computers) .as. and
"712".clas.

(smc and computers) .as.
(smc and computers).as.

(src and computers).as.
711/170.ccls. and dynamic$4

near3 configur$s
711/170.ccls. and dynamic$4

near3 configur$s with cache
reconfigurable adj processor
"206189".ap.

"5024031".pn.

"869200".ap.

711/170.ccls.

711/170.ccls. and (reconfigur$s
rearrang$4 application adj
specific)

DBs

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

Default
Operator

- OR

OR

OR

OR

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

OR

Plurals

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

Time Stamp
2005/07/06 13:54

2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54

2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005!0?/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54

2005/07/06 13:54

Search History 7/6/05 2:04:08 PM Page 1
C:\Documents and Settings\SThomas\My Documents\EAST\Workspaces\10869200.wsp

Petitioners Amazon
Ex. 1010, p. 156 of 399

L24

L25

L26

L27

L28

L29

L30

L31

L32

L33

L34

L35

L36

L37

L38

L39

L40

L41

L42

102

58

197

276

260

179

43

58

251

16

58

58

711/170.ccls. and matrix
711/170.ccls. and fpga
712/15.ccls.

711/170.ccls. and (application
near2 specific application-specific)

reconfigurable adj processor
L28 and fpga

L29 and memory with
reconfiguring

711/170.ccls. and ((reconfigur$5
rearrang$4) and application adj
specific)

711/170.ccls. and FPGA

711/170.ccls. and reconfig$?
"6779131".pn.
("6779131").URPN.
("5892896" | "6060339" |
"6081463" | "6154851" |
"6204562" | "6363502" |

"6405324" | "6483755" |
"6530005").PN.

direct adj execution adj logic

711/170.ccls. and programmable
adj logic adj blocks

"869200".ap.

711/171-172 ccls. and FPGA
711/170.ccls. and FPGA

711/170.ccls. and FPGA

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

USPAT

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT;
USOCR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

ON

ON

ON
ON
ON
ON
ON

ON

ON
ON
on
ON
ON

ON
ON

ON

ON
ON

ON

2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54 |

2005/07/06 13:54

2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54

2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54

2005/07/06 13:54
2005/07/06 13:54

2005/07/06 13:54

Search History 7/6/05 2:04:08 PM Page 2

C:\Documents and Settings\SThomas\My Documents\EAST\Workspaces\10869200,wsp

Petitioners Amazon
Ex. 1010, p. 157 of 399

L43

L44

L46

L47

L48

L49

L50

L51

L53

L54

LS5

L56

L57

L58

L59

145

L52

88

81

72

402

16

90

39

i3

264

589

325

711/171-172.ccls. and FPGA
711/173.ccls. and FPGA

711/170.ccls. and reprogram$5

711/171-172 ccls. and
(reprogram$5 reconfig$6)

L46 not L45

711/170-172 ccls. and
((configur$5).ti. (configur$6).ab.)

711/170-172 ccls. and
((configur$5).ti. (configur$6).ab.)
and prefetch

711/170-172.ccls. and
((configur$5).ti. (configur$6).ab.)
and bandwidth

711/170-172.ccls. and
((configur$5).ti. (configur$6).ab.)
and vhdl

711/170-172.ccls. and
((configur$5).ti. (configur$6).ab.)
and matrix

711/170-172.ccls. and
((configur$5).ti. (configur$6).ab.)
and parallelism

"6553477".pn.

711/170-173.ccls. and
reconfigurable adj processor

("20030046530" | "5737524" |
"5872919" | "5915104" |
"5953512" | "6000014" |
"6104415" | "6216219" |
"6339819").PN.

reconfigurable adj processor
reconfigurable adj2 processor

L58 not L57

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

-US-PGPUB;

USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;

USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT;
JPO

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
JPO

US-PGPUB;

‘| USPAT;

JPO

US-PGPUB;
USPAT;
JPO

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54
2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

Search History 7/6/05 2:04:08 PM Page 3

C:\Documents and Settings\SThomas\My Documents\EAST\Workspaces\10869200.wsp

Petitioners Amazon
Ex. 1010, p. 158 0of 399

L60
L61
L62
L63
L64
L65

L66

L67

Les
L69
f L70
L71
L72
L73
L74

S63

S64

113

37

15

15

L58 and (“711" "713").clas.

(adaptive adj processor) and
("711" "713").clas.

L61 not L60

"008128".pa.

"008128".ap.

src adj computers

711/117 ccls. and reconfigurable
near3 (memory cache RAM
random adj access adj memory
processor)

711/118.ccls. and reconfigurable
near3 (memory cache RAM
random adj access adj memory
processor)

"859051".ap.
"6678790".pn.
"021492".ap.
"6563746".pn.

("6574682" "5860111").pn.

("6026402" "6633515").pn.
"20030169283" "20030136846"

"20030208658" "20030194458"

711/118.ccls. and reconfigurable
near3 (memory cache RAM
random adj access adj memory
processor)

711/117 ccls. and reconfigurable
near3 (memory cache RAM
random adj access adj memory
processor)

US-PGPUB;
USPAT;
JPO

US-PGPUB;
USPAT;
JPO

US-PGPUB;
USPAT:;
JPO

US-PGPUB;
USPAT;
JPO

US-PGPUB;
USPAT;
JPO

US-PGPUB;
USPAT;
JPO

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

CR
CR
OR
OR
i
OR

OR
OR

OR
OR
OR
OR
OR
OR
OR

OR

OR

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/07/06 13:54

2005/01/03 13:19

2005/01/03 11:58

Search History 7/6/05 2:04:08 PM Page 4

C:\Documents and Settings\SThomas\My Documents\EAST\Workspaces\10869200.wsp

Petitioners Amazon
Ex. 1010, p. 159 of 399

S65

566

567

S68

S69

570

§71

"859051".ap.
"6678790".pn.
"021492".ap.
"6563746".pn.

("6574682" "5860111").pn.
("6026402" "6633515").pn.

"20030169283" "20030136846"
"20030208658" "20030194458"

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

US-PGPUB;
USPAT

OR

OR

OR

OR

"OR

OR

OR

ON

ON

ON

ON

ON

ON

ON

2005/01/03 12:06
2005/01/03 12:29
2005/01/10 07:41
2005/07/05 17:20
2005/07/05 17:21
2005/07/05 17:22

2005/07/05 17:22

Search History 7;(6/05 2:04:08 PM Page 5

C:\Documents and Settings\SThomas\My Documents\EAST\Workspaces\10869200.wsp

Petitioners Amazon
Ex. 1010, p. 160 of 399

Inventor Name Search Result

1of2

http:/fexpoweb1:8002/cgi-bin/expo/Invinfo/invquery.pl?FAM_N...

Inventor Name Search Result

Your Search was:

Last Name = POZNANOVIC
First Name = DANIEL

Day : Wednesday
Date: 7/6/2005
Time: 14:00:10

Inventor Search Completed: No Records to Display.

SR R R L LR TR e EEeTris CEC L L g A}WH'H—‘P}‘ A Y
Applicatiun#! Patent#]Status Date Filed || Title lnventor Name 11
60479339 Not 159 |06/18/2003 [BANDWIDTH EFFICIENCY AND POZNANOVIC, DANIEL
Issued UTILIZATION USING DIRECT
EXECUTION LOGIC
60422722 Not 159 |110/31/2002 ||GENERAL PURPOSE RECONFIGURABLE |POZNANOVIC, DANIEL
Issued COMPUTING HARDWARE AND
SOFTWARE
| 60286979 Not 159 |/04/30/2001 ||DELIVERING ACCELERATION: THE POZNANOVIC, DANIEL
: Issued POTENTIAL FOR INCREASED HPC
o APPLICATION PERFORMANCE USING
RECONFIGURABLE LOGIC
11140718 Not || 020 [05/31/2005 |INTERFACE FOR INTEGRATING POZNANOVIC, DANIEL
Issued RECONFIGURABLE PROCESSORS INTO
A GENERAL PURPOSE COMPUTING
SYSTEM
10869200 Not || 071 [06/16/2004 ||SYSTEM AND METHOD OF ENHANCING |[POZNANOVIC, DANIEL
Issued ' EFFICIENCY AND UTILIZATION OF
MEMORY BANDWIDTH IN
: RECONFIGURABLE HARDWARE
| 10285389 Not || 080 |10/31/2002 [[DEBUGGING AND PERFORMANCE POZNANOVIC, DANIEL
h Issued PROFILING USING
CONTROL-DATAFLOW GRAPH
REPRESENTATIONS WITH
RECONFIGURABLE HARDWARE
EMULATION
10285299 Not || 092 |110/31/2002 ||PROCESS FOR CONVERTING POZNANOVIC, DANIEL
Issued PROGRAMS IN HIGH-LEVEL
PROGRAMMING LANGUAGES TO A
UNIFIED EXECUTABLE FOR HYBRID
COMPUTING PLATFORMS
10285298 Not || 094 |10/31/2002 (|SYSTEM AND METHOD FOR POZNANOVIC, DANIEL I
Issued PARTITIONING CONTROL-DATAFLOW
GRAPH REPRESENTATIONS
10278345 Not || 041 [10/23/2002 ||SYSTEM AND METHOD FOR EXPLICT [[POZNANOVIC, DANIEL
Issued COMMUNICATION OF MESSAGES
BETWEEN PROCESSES RUNNING ON
DIFFERENT NODES IN A CLUSTERED
: MULTIPROCESSOR SYSTEM
| 10011835 Not [071 (12/05/2001 ||INTERFACE FOR INTEGRATING POZNANOVIC, DANIEL
: [ssued RECONFIGURABLE PROCESSORS INTO
'||A GENERAL PURPOSE COMPUTING
SYSTEM

7/6/05 1:59 PM

Petitioners Amazon
Ex. 1010, p. 161 of 399

Inventor Name Seéarch Result

1ofl

&

LI

http://expoweb1:8002/cgi-bin/expo/Invinfo/invquery.pl?FAM_N...

PALM INTRANET

Inventor Name Search Result
Your Search was:

Last Name = CALIGA
First Name = DAVID

Day : Wednesday
Date: 7/6/2005
Time: 14:00:25

R

Applicaﬁon#i Patent# |Status|| Date Filed |[Title lnventur ame I
60479339 Not 159 |l06/18/2003 |BANDWIDTH EFFICIENCY AND CALIGA, DAVIDE.
Issued UTILIZATION USING DIRECT
EXECUTION LOGIC
60422722 Not 159 |{10/31/2002 ||GENERAL PURPOSE RECONFIGURABLE [ICALIGA, DAVID E.
Issued COMPUTING HARDWARE AND
SOFTWARE
10869200 | Not [[071 [[06/16/2004 |[SYSTEM AND METHOD OF ENHANCING |[CALIGA, DAVID E.
Issued EFFICIENCY AND UTILIZATION OF
MEMORY BANDWIDTH IN
RECONFIGURABLE HARDWARE
10285318 Not 030 |10/31/2002 [[MULTI-ADAPTIVE PROCESSING CALIGA, DAVID E.
Issued SYSTEMS AND TECHNIQUES FOR
ENHANCING PARALLELISM AND
PERFORMANCE OF COMPUTATIONAL
FUNCTIONS
10278345 Not 041 |{110/23/2002 ||SYSTEM AND METHOD FOR EXPLICT CALIGA, DAVID
Issued COMMUNICATION OF MESSAGES
BETWEEN PROCESSES RUNNING ON
DIFFERENT NODES IN A CLUSTERED
MULTIPROCESSOR SYSTEM

Inventor Search Completed: No Records to Display.

Last Name

First Name

Search Another: Inventor CaliGaA

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

APAVID, s

7/6/05 1:59 PM

Petitioners Amazon
Ex. 1010, p. 162 of 399

Inventor Name Search Result http://expoweb1:8002/cgi-bin/expo/InvInfo/invquery. pl?FAM_N...

lofl

Day : Wednesday

PALM INTRANET Tine 140034

Inventor Name Search Result
Your Search was:

Last Name = HAMMES
First Name = JEFFREY

O M A P TR P e e, b W L e e SRy o P B P B e
Application#] Patent# |Status|| Date Filed ||Title Inventor Name 10
60479339 |[Not | 159 [[06/18/2003 [|[BANDWIDTH EFFICIENCY AND HAMMES, JEFFREY
Issued UTILIZATION USING DIRECT :
EXECUTION LOGIC |
60422722 Not 159 |(|10/31/2002 ||GENERAL PURPOSE RECONFIGURABLE ||HAMMES, JEFFREY
Issued COMPUTING HARDWARE AND
SOFTWARE
10869200 | Not [[071 [[06/16/2004 |[SYSTEM AND METHOD OF ENHANCING [HAMMES, JEFFREY -
Issued EFFICIENCY AND UTILIZATION OF
MEMORY BANDWIDTH IN
3 RECONFIGURABLE HARDWARE
10345082 Not 030 (|01/14/2003 |[MAP COMPILER PIPELINED LOOP HAMMES, JEFFREY
Issued STRUCTURE
10285401 Not 094 |{10/31/2002 ||[EFFICIENCY OF RECONFIGURABLE HAMMES, JEFFREY
Issued HARDWARE
10285399 || Not [[061 [[10/31/2002 [[SYSTEM AND METHOD FOR HAMMES, JEFFREY
Issued CONVERTING CONTROL FLOW GRAPH
REPRESENTATIONS TO
CONTROL-DATAFLOW GRAPH
E REPRESENTATIONS
| 10285389 Not 080 [|10/31/2002 ||DEBUGGING AND PERFORMANCE HAMMES, JEFFREY
Issued PROFILING USING
CONTROL-DATAFLOW GRAPH
REPRESENTATIONS WITH
RECONFIGURABLE HARDWARE
: EMULATION
1 10285299 Not 092 |(110/31/2002 ||PROCESS FOR CONVERTING HAMMES, JEFFREY
I[ssued PROGRAMS IN HIGH-LEVEL
PROGRAMMING LANGUAGES TO A
UNIFIED EXECUTABLE FOR HYBRID
COMPUTING PLATFORMS
| 10285298 Not 094 |{10/31/2002 ||SYSTEM AND METHOD FOR HAMMES, JEFFREY
Issued PARTITIONING CONTROL-DATAFLOW 1
GRAPH REPRESENTATIONS
P = R

Inventor Search Completed: No Records to Display.

Last Name First Name
Search Another: Inventor HAMMES UEFFREY

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

7/6/05 1:59 PM

Petitioners Amazon
Ex. 1010, p. 163 0of 399

UNITED STATES PATENT AND TRADEMARK OFFICE A

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alulndna. Vlrglml 22313-1450

[APPLICATION NO. | FILING DATE] FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. 1 CONFIRMATION No.—|
10/869,200 06/16/2004 Daniel Poznanovic SRC028 5929
25235 7590 07/12/2005 [EXAMINER |
HOGAN & HARTSON LLP THOMAS, SHANE M
ONE TABOR CENTER, SUITE 1500
1200 SEVENTEENTH ST | ART UNIT | rapernumser |

DENVER, CO 80202 2186

DATE MAILED: 07/12/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Petitioners Amazon
Ex. 1010, p. 164 of 399

A
x Application No. Applicant(s)

10/869,200 POZNANOVIC ET AL.
Office Action Summary Examiner Art Unit
Shane M. Thomas 2186

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1,136(a). In no event, however, may a reply be llmely filed
after SIX (6) MONTHS from the mailing date of this communication. "
- Ifthe period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely. -1
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX () MONTHS from the mailing date of this communlcalur-m
- Failure to reply wilhin the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). ;
Any reply received by the Office later than three months after the mailing date of this communication, even if limely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)B] Responsive to communication(s) filed on 11 April 2005.
2a)[X] This action is FINAL. 2b)[] This action is non-final.
3)J Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)J Claim(s) 1-24 is/are pending in the application. .

4a) Of the above claim(s) is/are withdrawn from consideration.
5)] Claim(s) is/are allowed.
6)X Claim(s) 1-24 is/are rejected.
7)J Claim(s) ____ isfare objected to.

8)] Claim(s) are s ject to restriction and/or election requirement.

W

Application Papers

9)[[] The specification is objected to by the Examiner.
10)[<] The drawing(s) filed on 71 April 2005 is/are: a)fX] accepted or b)[_] objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11)[] The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)[] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)(J Al b)[J Some * c)[T] None of:
1.[J Certified copies of the priority documents have been received.
2.[] Certified copies of the priority documents have been received in Application No.
3.[J Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)). XN
* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)
1) B4 Notice of References Cited (PTO-892) 4) |:] Interview Summary (PTO-413)
2) [Notice of Draftsperson’s Patent Drawing Review (PT0-948) Paper No(s)/Mail Date.
3) X information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) 5) [] Notice of Informal Patent Application (PTO-152)
Paper No(s)/Mail Date 4/11/05 & 6/6/05. 6)] other:
U.S. Patent and Trademark Office
PTOL-326 (Rev. 1-04) Office Action Summary Part of Paper No./Mail Date 07052005

Petitioners Amazon
Ex. 1010, p. 165 of 399

Application/Control Number: 10/869,200 Page 2
Art Unit: 2186

DETAILED ACTION

This Office action is responsive to the amendment filed 4/11/2005.
All previously outstanding objections and rejections to the Applicant’s disclosure and

claims not contained in this Action have been respectfully withdrawn by the Examiner hereto.

Infarmdtion Disclosure Statement
The information disclosure statement (IDS) submitted on 4/11/2005 has NOT been
considered by the Examiner as the Application Number field on the Form 1449 reflects
application number 10/809,200. |
The information disclosure statement (IDS) submitted on 6/6/2005 was filed after the
mailing date of the non-final Office action on 1/14/2005. The submission is in compliance with
the provisions of 37 CFR 1.97. Accordingly, the information disclosure statement is being

considered by the examiner,

Response to Amendment
The rejections of claims 1,3,8, and 14 have been modified to reflect the amendments to

the respective claims.

Petitioners Amazon
Ex. 1010, p. 166 of 399

Application/Control Number: 10/869,200 Pagej
Art Unit: 2186

Response to Arguments

Applicant's arguments filed 4/11/2005 have been fully considered but they are not
persuasive.

Claims 2,3,13, and 14 remain rejected under 35 U.S.C. 112, ﬁrstl paragraph. While the
Applicant’s response on page 8 has verified the Examiner’s assumption regarding the claim
limitations of claims 2,3,13, and 14, no correction or amendment has been executed by the
Applicant to overcome the rejection. The Applicant’s specification does not disclose that a
reco.nﬁgurable processor cannot have a cache nor a cache line-sized unit of contiguous data. As
such the Examiner has maintained the rejections.

As per the Applicant’s arguments regarding claim 1, the Applicant states on page 9 of the
Response that Paulraj shows a reconfigurable cache but not a reconfigurable processor. The
Examiner disagrees. While the caching system 112 (figure 6) of Paulraj ils configurable (step
214, figure 5), it is also shown as being an element of CPU 110. Therefore since, the cache 112
is reconfigurable, it is justified that the processor 110, itself, is also reconfigurable as the
reconfiguration of the FPGA module 112 occurs within the processor. As such, the CPU 110 can
be construed as a --reconfigurable-- processor.

As per the Applicant’s arguments regarding claim 11, the Examiner has shown in above
in the discussion of claim 1 that Paulraj teaches a reconfigurable processor as claimed by the
Applicant.

As per the Applicant’s arguments regarding claim 17, the Examiner has shown above in
the discussion of claim 1 that Paulraj teaches a reconfigurable processor as claimed by the

Applicant. Further, the data prefetch unit, as defined in the rejection by the Examiner, is the

Petitioners Amazon
Ex. 1010, p. 167 of 399

Application/Control Number: 10/869,200 Page 4
Art Unit: 2186

portion of the reconfiguration unit that accesses the memory; the memory stores a vector
corresponding to an optimal configuration for a particular application program (§26). Data is
transferred between the memory and the data prefetch unit in a reconfigurable processor since
the reconfiguration unit 106 can be part of a reconfigurable processor 100 as shown in figure 4
(122).

As per the Applicant’s arguments regarding claim 24, the Examiner has modified the
rejection to better explain how the prior art reference of Paulraj teaches the limitations of claim

24,

Claim Rejections - 35 USC § 112
The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making
and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it
pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode
contemplated by the inventor of carrying out his invention.

Claims 2,3,13, and 14 are rejected under 35 U.S.C. 112, first paragraph, as failing to
comply with the written description requirement. The claims contains subject matter which was
not described in the specification in such a way as to reasonably convey to one skilled in the
relevant art that the inventor(s), at the time the application was filed, had possession of the
claimed invention.

As per claims 2 and 13, the Applicant’;.s disclosure does not explicitly mention that the
reconfigurable processors cannot have a cache. "I'he disclosure mentions in the Background
section, and specifically in paragraphs 16-17, the drawbacks of having a hard-wired cache in a

system; however, the Detailed Description does not explicitly state that the reconfigurable

Petitioners Amazon
Ex. 1010, p. 168 0of 399

Application/Control Number: 10/869,200 Page 5
Art Unit: 2186

processor as taught by the Applicant cannot contain a cache. It appears to the Examiner that no
specific (hard-wired) cache memory is included in the reconfigurable processor as taught in the
disclosure; rather an on-board memory and user-logic can be configured based on a program
(paragraph 52). Therefore, for the purposes of examination, the Examiner shail interpret the
claim such that the reconfigurable processor of claim 1 does not contain a hard-wired (specific)
- cache.

As per claims 3 and 14, it follows from the rejection for claims 2 and 13, that since
Applicant’s disclosure does not explicitly state that a reconfigurable processor cannot have a
cache, the disclose further does not explicitly teach that the reconfigurable processor cannot have
a cache line-sized unit of contiguous data. For the purposes of examination and based on the
discussion of claim 2 above, the Examiner shall interpret the limitation of claim 3 such that the
reconfigurable processor of claim 1 does not have a hard-wired (specific) cache line-sized unit of

contiguous data being retrieved from the second memory.

Petitioners Amazon
Ex. 1010, p. 169 of 399

Application/Control Number: 10/869,200 Page 6
Art Unit: 2186

Claim Rejections - 35 USC § 102
The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed
in the United States before the invention by the applicant for patent or (2) a patent granted on an application for
patent by another filed in the United States before the invention by the applicant for patent, except that an
mternational application filed under the treaty defined in section 351(a) shall have the effects for purposes of this
subsection of an application filed in the United States only if the international application designated the United
States and was published under Article 21(2) of such treaty in the English language.

Claims 1-24 are rejected under 35 U.S.C. 102(e) as being anticipated -by Paulraj (U.S.
Patent Application Publication No. 2003/0084244).

As per claim 1, Paulraj shows a reconfigurable processor in figure 6 and a first memory
(L1) having a first characteristc memory utilization and a second memory (LZj having a second
characteristic memory utilization. It is well known in the art that L1 caches have a higher
utilziation rate than a lower-level cache such as L2. Paulraj teaches in {|1 that upon a command
from a processor, a search for the requested data is begines with the highest level cache (L1) and
[if a miss occurs] continues next to the next level cache (L2). Thus it is inherent that the memory
utilziation characteristc of the L1 cache of the reconfigurable processor 110 in figure 6 is greater
than the memory utilziation characteristic of the L2 cache (and likewise for the L3 cache) as the
L2 cache would only be utilzied when a miss to the L1 cache occurred. In other words, the
reconfigurable processor ahways utilizes the L1 cache for a memory access and the only utilzies
the L2 cache for requested data when the data is not in the L1 cache. Therefore, the cache

utilziation characteristics of the --first memory-- and the --second memory-- are different.

Petitioners Amazon
Ex. 1010, p. 170 of 399

Application/Control Number: 10/869,200 Page 7
Art Unit: 2186

Paulraj further teaches a functional unit 102 that executes applications using the
memories L1 and L2 (paragraph 9). As is known in the art, a cache memory controller is often
used to access and move data between a memory hierarchy. The Examiner is considering a data
prefetch unit to be the logic assocatied with the moving, and only the moving, of data between
the first and second memories (L1 and L2) since Paulraj shows a connection between the levels
of cache in figure 6. This logic as well as the first and second memory types (L1 and L2) are
configued by a program — refer to paragraphs 23-24. The data prefetch unit as defined by the
Examiner must be configued as well by the program when moving data since the cache line size
and blocking factor can change, so different amounts of data can be exchanged for the same
access when different programs run.

As per claims 2 and 13, as taught in paragraphs 23 and 29 of Paulraj, no specific cache is
present in the system of Paulraj. Rather, an FPGA is utilized as representing a caching hierarchy
and is optimized based on the memory needs of a specific program running on the reconfigurable
processor.

As per claims 3 and 14, Paulraj teaches in paragraph 23 that a specific [cache] line size of
contiguous data is not retrieved since the data line size is optimized based on the memory needs
of the program when executing on the reconfigurable processor. Refer also to paragraph 29.
Further, it is therefore inherent that the second memory have a charactersitic line size since
Paulraj teaches in f22-23 that a best line size for the memory arrangement for a particular
program is determined and utilzied when that program is run. For example, a line-size

characteristic would be ultized when transferring data from the L2 cache to the L1 cache.

Petitioners Amazon
Ex. 1010, p. 171 of 399

Application/Control Number: 10/869,200 Page 8
Art Unit: 2186

As per claim 4, Paulraj teaches that a load/store unit is used to access the caches (L1-L3)
in order to determine if cache data is present in the cache hierarchy (paragraph 6). Since the
functional unit 102 (figure 6) is responsible for accessing the programmable memory unit 104,
the Exéminer is therefore considering the load/store unit logic of the programmable memory unit
that is responsible for for accessing the L1 and L2 caches (first and second memory types) to be
a memory controller. It can be seen that the memory controller, as defined by the Examiner,
controls the transfer of data between the memory (assuming second memory L2) and the data
prefetch unit, since the memory controller (load/store unit logic) is responsible for retrieving the
data from the cache if a hit occurs (paragraph 4).

As per claim 5, as taught in paragraph 1, an external memory (element 18, figure 1) is
generaly coupled to a microprocessor and holds data to be used by the microcontroller during
program execution. The Examiner is considering the process of writing data back to the external
memory from the FPGA memory 104 containing the caches (on-board memory), such as during
a write-back scheme as known in the art, to be performed by the data prefetch unit portion of the
functional logic as defined above by the Examiner. The data prefetch logic, as defined above, is
responsible for all of the transfer of data into, out of, and between the FPGA memory 104.

As per claim 6, the Examiner is regarding a --register-- in its broadest reasonable sense
and it thus considering it be to be a unit of logic. Therefore, the portion of the function logic that
is responsible for the movement of data (as defined above to be the data prefetch unit) is being
considered by the Examiner as containing a --register-- portion of the reconfigurable processor
since, for instance, the blocking factor and line size of the programmable memory 112 can

change, a --register-- or portion of the reconfigurable processor must be set in order to indicate

Petitioners Amazon
Ex. 1010, p. 172 of 399

Application/Control Number: 10/869,200 Page 9
Art Unit: 2186

the currnet line size and blocking factor when a given application is being run on the
reconfigurable processor at a given point in time. Refer to paragraph 23.

As per claim 7, the Examiﬁer is considering the process of --disassembling the data
prefetch unit-- as modifying the data prefetch unit logic of the fucntion logic 102 every time the
program being executed by the reconfigurable processor changes. It can be seen that the data
prefetch unit changes during these intervals since the cache line size, blocking factor, and
associativity of the FPGA chaﬁges when optimal for the next program to be executed (refer to
paragraph 23). Thus it can be seen that the data prefetch unit logic is --disassembled-- when
another program is executed by the reconfigurable processor of Paulraj.

As per claim 8, as can be seen that the FPGA memory 112, that comprises the first and
second memories (L1 and L2) and which is accessed by the data prefetch unit of the functional
unit 102 as discussed above, is a --processor memory-- (part of cpu 110). It can also be seen that
the --second memory-- (L2) is also a --processor memory-- since it is contained within
reconfigurable processor 110. Therefore, since the data pretech unit can access the L2 cache as
discussed above in the rejection of claim 1, the data prefetch unit can retrive data from the L2
portion of --processor memory--112.

As per claim 9, as shown in figure 1 and taught in paragraph 1 of Paulraj, the system 10
is actually a microprocessor, which contains a memory controller 14. The main difference
between. the prior art of figure 1 and the invention of Paulraj in figure 6 is that the memroy
hierarchy is configurable and accessed by a fucntional unit in lieu of a separate memory

controller logic (paragraph 9). Therefore, since the memory controller logic for accessing the

Petitioners Amazon
Ex. 1010, p. 173 of 399

Application/Control Number: 10/869,200 Page 10
Art Unit: 2186

cache hierarchy is still cont;ined within cpu 110 of figure 6, it can be seen that the cpu 110 is
actually a microprocessor. It follows that the --pfocessor memory-- 112 is therefore a
--MiCroprocessor memory--.

As per claim 10, since the cpu 110 of figure 6 is a reconfigurable processer (able to
reconfigure its memory heirarchy to match the needs of the application it is currently running), it
can be seen that the cpu memory 112 isa reconfigurable processor memory.

As per claim 11, Paulraj depicts a reconfigurable hardware system in figure 6. Paulraj
further teaches in paragraph 26 that when a particular application is to be run by the
reconfigrable processor 110, a configuration vector is retrieved to program the programmable
memory 112 (figure 6). As shown in figure 6, the step of accesing the configuration vector is
executed outside of the reconfigurable processor 110. Therefore, the Examiner is considering
the memory that contains the configuration vectors to be a--common memory-- and a data
prefetch unit (reconfiguration unit 106 executing on the reconfigurable processor 110) accessing
the common memory in order to determine how to program the memory 112 (paragraph 29).
The data prefetch unit 106 is --configured-- by. an application to be excuted on the sysem 110
since when a new application is to be executed, the data prefetch unit is called upon (or
configured) to access the configuration vector for the particular application.

As per claim 12, the Examiner is considering a --memory controller-- to be the system
portion utilized when creating a new configuration vector for an application. Such a process
occurs in figure 5 and taught in paragraghs 23-25 of Paulraj. When a new configuration vector is
created by analizing performance information that has been collected for the application. The

Examiner is thereby considering the --memory controller-- to be the element of the

Petitioners Amazon
Ex. 1010, p. 174 of 399

Application/Control Number: 10/869,200 Page 11
Art Unit: 2186

reconfigurable hardware system that is associated with storing the new configuration vector into
the common memory so that the vector can be accessed later when the same application is run
again.

As per claim 15, the Examiner is considering the reconfiguration module 106 of the
reconfigurable processsor 110, as comprising two distinct elements: a --computational unit-- and
a --data access unit--. The data access unit is the element that is responsible for accessing the |
configuration vector as taught in paragraph 29 of Paulraj; or in other words, the Examiner is
considering the --data access unit-- to be the same as the --memory controler-- defined in the
rejection of claim 12. The Examiner is further considering the --computational unit-- of the
rconfiguration module 106 to be the element that sets up the programmable memory module 104
_usiné the configuration vector that was accessed by the --data access unit-- (paragraph 29).

As per claim 16, as taught by Paulraj in pgragraph 29, the --data access unit-- supplies the
configuration vector to the --computational unit-- in order to set up the programmable memory
104 as required by the application to be run on the reconfurable processor 110.

As per claim 17, the Examiner is considering a --data prefetch unit-- to be the
reconfiguration unit 106 of reconfigurable processor 110 (figure 6). As taught in paragraph 26
and 29 of Paulraj, the --data prefetch unit-- accesses a memory in order to determine if a
configuration vector is known for a given application, and if so, the vector is retrieved (from the
memory). If this --data-- (configuration vector) is not known then a simulation is performed with
the applrication in order to collect performance information. The Examiner is considering the
element that executes and collects the performance data as being a --computational unit-- and the

element of Paulraj that stores the configuration vector, once determined, to be a --data access

Petitioners Amazon
Ex. 1010, p. 175 of 399

Application/Control Number: 10/869,200 Page 12
Art Unit: 2186 g

unit-- since it stores the vector into the --memory-- from which it can be later retrieved (step 212
of figure 5). The --computational unit--, --data access unit--, and the --data prefetch unit-- are all
--configured-- by a program (application) since (1) a new application configures the
computational unit portion of the reconfiguration unit to perform a simulation in order to
determine the optimal memory hierarchy organization; (25 the new application configures the --
data access unit-- to store and retrieve (step 212) the configuration vector for that particular
application; and (3) the --data prefetch unit-- is configured by the application to detlermi'ne ifa
configuration file exists for the application and if so, the data prefetch unit is configured by the
program the programmable memory 112 in order to optimize the programmable memory for that
particular application.

As per claim 18, the --data-- (configuration vector) is transferred from the
--computational unit-- to the --data access unit-- when the configuration unit has created a
configuration vector (step 208 of figure 5). The --data-- is written to the memory --from-- the
--data prefetch unit-- since the data prefetch unit (reconfiguration unit 106) is the element that
executed the beginning of the configuration vector creation process (step 200 of figure 5). Refer
to paragraph 26. Thus the Examiner is considering the data as being written --from-- the data
prefetch unit.

As per claim 19, as taught in paragraph 26, if the configuration vector is known, the
vector is retrieved from the memory to the data prefetch unit (reconfiguration unit 106). The
data is read directly from the data prefetch unit when a request to create a configuration vector is
made for a new application as shown in figure 6 since the data prefetch unit is responsible for

being the vector creation process. The data is directed from the data prefetch unit (reconfigure

Petitioners Amazon
Ex. 1010, p. 176 of 399

Application/Control Number: 10/869,200 Page 13
Art Unit: 2186

logic) to be read from the memory by the data access unit to the computational unit where it'is
processed to produce a configuration vector.

As per claim 20, as stated above, the configuration vector (--data--) is created by the
computational unit via acquired simulation data. The configuration vector is the resultant
produé‘t that is transferred from the memory to the data prefect unit when it is determined that the
configuration vector for the application is available (paragraph 26). Thus --all-- of the data that
is transferred is processed by the computational unit (albeit before the transfer occurs) since the
data prefetch unit required the entire configuration vector in order to set up the programmable
memory 112,

As per claim 21, Paulraj shows in paragraph 26 that an explicit request for the
configuration vector for the current application results in the data (if it exists) selected for the
optimal configuration of the programmable memory 112 for that application.

As per claim 22, the Examiner is not considering the data (configuration vector) to be the
size of a complete cache line since the data is used to create a cache hierarchy. In other words,
the caches (L1-L3) of the programmable memory 112 are not programmed when the data is
transferred from the memory to the data prefetch unit; therefore, the data cannot be a complete
" cache line.

As per claim 23, since the Examiner defined the portion of the reconfiguration unit that
accesses t.he configuration file (data) from the memo;y, the Examiner is defining the logic that
controls the actual transfer of that data to the data prefetch unit (portion of the reconfiguration
unit that executes the fetch of the configuration vector and then programs the programmable

memory 112) to be a --memory controller--. Thus the data access unit determines whether a

Petitioners Amazon
Ex. 1010, p. 177 of 399

Application/Control Number: 10/869,200 Page 14
Art Unit: 2186

configuration vector exists for an application and if so, the memory controller sends that data to
the data prefetch unit.

As per claim 24, Paulraj shows a reconfigurable processor in figure 6 that comprises a
computation unit 110 and a data access unit (elements 120 and 114, which comprise the
reconfiguration unit 106 of figure 4 - 128). In figure 6, the data access uni-t can be seen as being
coupled to the computational unit. The data access unit retrieves data (configuration vector)
from a memory internal to the data access unit (i.e. reconfiguration unit) and supplies the data to
the computation unit in the form of modifications to the cache FPGA module 112. Refer to §23.

The computation unit is configured by the program (application) that is to be executed on
it by the run-time profile thét is created and stored by the reconfiguration unit (22), thereby
creating the optimal configuration of the different caches. The data access unit (specifically the
memory portion used to store configuration profiles for the different application programs) is
configured by the program that is to run on the reconfigurable processor.. When a new program
is to be run, [as a result] the program c(-mﬁgures the reconfiguration unit to collect statistics
regarding the memory usages (caches L1, L2, and L3) of the program and a configuration vector
is associated with tfie respective program and stored in the reconfiguration unit. Refer to {{23-
24. When a program is known, the program [as a result] configures the data access unit
(reconfiguration unit) to retrieve the associated configuration vector and apply it to the FPGA

memory of the reconfigurable processor (29).

Petitioners Amazon
Ex. 1010, p. 178 of 399

Application/Control Number: 10/869,200 . Page 15
Art Unit: 2186

Conclusion

The prior art made of record and not relied upon is considered pertinent to applicant's
disclosure.

Magoshi (U.S. Patent Application Publication No. 2003/0208658) teaches the memory
utilization characteristics of an L1 and an L2 cache in figure 2. As shown, the L1 cache is
always accessed (high memory utilization) upon an access request from a processor and the L2
cache is only accessed (lower memory utilization) when a miss occurs with respect to the L1
cache. |

Any ihquiry concerning this communication or earlier communications from the
examiner should be directed to Shane M. Thomas \x;hose telephone number is (571) 272-4188.
The examiner can normally be reached on M-F 8:30 - 5:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s
supervisor, Matt M. Kim can be reached on (571) 272-4182. The fax phone number for the
organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent
Application Information Retrieval (PAIR) system. Status information for published applications
may be obtained from either Private PAIR or Public PAIR. Status information for unpublished
applications is available through Private PAIR only. For more information about the PAIR
system, see http:ﬂpair—direét.u5pto. gov. Should you have questions on access to the Private PAIR
system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

[y (i~
W HONG CHONG KiM
Shane M. Thomas PRIMARY EXAMINER

Petitioners Amazon
Ex. 1010, p. 179 of 399

PTO/SB/08a(08/03)
Approved for use through 07/31/2006, OMB 0651-003%
Patant and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paparwork Reduclion Act of 1995, 00 persons are roquired 1o r 10 & calloction of informatien unloss it displays o valid. OMB contre! number.
ute for form 1449A/PTO Application Number 10/809,200
Filing Date June 16, 2004
INFORMATION DISCLOSURE First Named Inventor | Daniel Poznanovic et al.
STATEMENT BY APPLICANT -
Art Unit 2186
(Use as many sheels as necessary) Examiner Name Thomas, Shane M.
ls"‘e"“ 1 of 9 Attorney Docket No. SRC028
U.S. PATENT DOCUMENTS
Examiner Cite Document No. Publication Date Name of Patentee or Pages, Columns, Lines, Where Relevant
Initials No.! No. - Kind Code’ MM-DD-YYYY Applicant of Cited Doc Passages or Relevant Figures Appear

US-6.078 152 Hupgenthal-obah

UEH34TA0 061424200+ -Huppenthat-et at——

U5-6739096% Bl S ——

HE-6-554796 B8/482800—TParks

us-

us-

us-

Us-

us-

us-

us-

us-

FOREIGN PATENT DOCUMENTS
Foreign Patent Document Publication Date Name of Patentee or Pages, Columns. Lines Where
H-E.ﬁurtiel&er &23 Country Code? Numbor' Kind Codo * MM-DD-YYYY Applicant of Cited Doc Relevantﬁl’zf::q:s malf{elevant i
)

- A/

EXAMINER ' DATE
SIGNATURE %“M/ CONSIDERED "7:/ /Iﬁ' il

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 808. Draw line through citation if not in conformance and not
considered. Include copy of this form with next communication to applicant. * Applicant's unique citation designation number (optional). * See Kinds Codes of
USPTO Patent Documents at www.uspto gov or MPEP 801.04. ? Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ‘For
Japanese palent documents, the indication of the year of the reign of the Emperor must preceda the serial number of the patent document. ° Kind of document
by the appropriate symbols as indicated on the document under WIPQ Standard ST. 16 if possible. 8 Applicant is to place a chack mark here if English
language Translation is attached.

This ion of jon is by 37 CFR 1.97 and 1,98, The information is required to obtain or retain a benefit by the public which Is 1o file (and by
the USPTO to process) and application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection Is estimated to take 2 hours to
complete, Including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any
comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent lo the Chief Information Officer,
U.S. Patent and Trademark Offica, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED
FORMS TO THIS ADDRESS. SEND TO: C lssl for P; P.0. Box 1450, Alexandria, VA 22313-1450.

WBO - 80404/0033 - 177661 vi

Petitioners Amazon
Ex. 1010, p. 180 of 399

PTO/SB/0Ba(08/03)
Approved for use through 07/31/2008. OMB D851-0031
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Fam Reduction Ad of 1855, no persens mmnﬂ “"ﬂ to & collection of infermation unless it diﬂn:l a valid. OMB control number.

Substitute for form 1449A/IPTO Application Number 10/809,200
Filing Date June 16, 2004
INFORMATION DISCLOSURE First Named Inventor Daniel Poznanovic et al.
STATEMENT BY APPLICANT -
Art Unit 2186
(uaxmuny mhoniy 1 nocsasary/ Examiner Name Thomas, Shane M.
Sheet 2 of 2 Attorney Docket No. SRCO028

NON PATENT LITERATURE DOCUMENTS

Examiner Cite Include name of the author (in CAPITAL LETTERS), litle of the article (when apprupnate] title of the item (book, j 1
Initials® No.! magazine, joumal, serial, symposium, catalog, elc.), date, page(s), volu i ber(s) publisher, city and/or
country where published

/]

5 Vi

EXAMINER DATE

SIGNATURE Mz%/’ CONSIDERED .?—/ /1% > Gl
EXAMINER: Initlal if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not
considered. Include copy of this form with next communication to applicant.

! Applicant's unique citation designation number (optional). * Applicant is to place a check mark here if English language Translation is attached. This collection
of Information Is required by 37 CFR 1.97 and 1.98. The information is required fo oblain or retain a benefit by the public which is to file (and by the USPTOQ to
process) and application. Confidentiality Is governed by 35 U.5.C. 122 and 37 CFR 1.14. This collection Is estimated to take 2 hours to complete, including
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the
amount of time you require to complete this form andior suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissloner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

WBO - B0404/0033 - 177681 vi

Petitioners Amazon
Ex. 1010, p. 181 of 399

03:20pm From-HOGAN & HARTSON + T-361 P.003/003

’
ES:BE-EUUE E-971

PTO/S BAIG(0B/03)
Approvest (¢ w06 Urough 0773172006, OMB 06510004
Tradomark Ofice; U.S. OEPARTMENT OF COMMERCE

Pglam ana
Undier the P Raducion Azt of 1888, no o) gired to e w.m.dww
Substitute for form 1449APTO Application Number 10/869,200
Filing Date -June 16, 2004
INFORMATION DISCLOSURE First Named Inventor Daniel Poznanovic et al.
STATEMENT BY APPLICANT
Art Unit 2186
e Examiner Name Thomas, Shane M.
Sheat 1 of 1 Attomay Docket No. SRC028
U.S. PATENT DOCUMENTS
Examingr Cite Documant No. Publication Data Name or Poges, Columns, Lines, Where Relovant
titials No.' No. — Kind Coge? MM-DD-YYYY Appilcant of Cited Do Passages or Relevant Figures Agpear
ﬁu" U$-2003/0084244 A 05/01/2009 Pauire] Entire Document
S| US-2000/0045530 A1 03872009 Paznanovic
us-
us-
us-
us-
us-
US' .
us-
us-
us-
us-
FOREIGN PATENT DOCUMENTS
; i Foreign Patem Documant Publicoon Dste | Name of Patantae of Fages, Comns. Lines Whers |
Exa Ehrq S e TR MM-DD-YYYY Applicant of Cited Dot saag ar
EXAMINER DATE
SIGNATURE @ CONSIDERED 3"/5 A}S’
EXAMINER: Initial if ref d, wheth amdmomsmunmﬂh%mmmmmnmunmmmmm
wmmmmmmmwmummm ! Applicant’s unique citstion designation numbar (optional). 2 Seenmscodud
USPTO Patert Gocuments a1y uspto qoy or MPEP 901.04, * EAter Offiee that ssued e document. by the two-ettar coda (WIPO Standard ST.5). *
Japalnmpmamummm mlmdmwmdmawum must the sera of the € Kind of ¢
by the approp ymbols a3 d on the dooument undar WIPO Standard ST, 18 1f pogsiyle. 6 Applicant i to place B check mark here H English
language Trenalation is attached.
This collocBon of informaten 13 required by 37 CFR 1,07 and 1.88. Tha Infarmation is requited to adtaln of retaln & benefi by the public which is to file (and by
the USPTO 10 process) and application. Canfidantiafly Is govemned by 35 U.S.C. 122 and 37 CFR 1.14._ This collection is extimated to take 2 hours to
and submiting the completed application form to the USPTO. Time will vary depending upon the Indivicual case, Any
mhmmemmwm!w require to complets this form and/or sLggestons for reducing this Bwden, should be sant to the the Chief information Officer,
U.S, Patent ang Trademark Office, U.S. Department of Commeree, P.O, Box 1450, Alexpndris, VA 223913-1450. DO NOT SEMD FEES OR COMPLETED
FORMS TO THIS ADDRESS. SEND TO: Commissianer for Patentn, .0, Box 1450, Alaxandria, VA 22313-1450.

PAGE 15" REVDAT 6162005 5:18:17 PM [Eastern Dayfight Time)* SVR:USPTO-EFXRF-4/* DNIS:8726305" CSID:4* DURATION (mm-5s):01:04

Petitioners Amazon

Ex. 1010, p. 182 of 399

Notice of References Cited

Application/Control No.

Applicant(s)/Patent Under
Reexamination

058200 POZNANOVIC ET AL.
Examiner Art Unit
Shane M. Thomas 2186 Page 1 of 1

U.S. PATENT DOCUMENTS

ol Caunix?;ogoﬂ:-iﬁmr::fz:; Code Mqur'\?W Name Classification
A | US-2003/0208658 11-2003 Magoshi, Hidetaka 711122
B | US-
c | Us-
D | US-
E | US-
F | US-
G | US-
H | US-
| | Us-
J | Us-
K | US-
L | US-
M | US-

FOREIGN PATENT DOCUMENTS

* Countr?‘g;:dti‘?mrigﬂz :; Code MM[3$$YY Country Name Classification
N
(o]
P
Q
R
S
T

NON-PATENT DOCUMENTS

* Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
u
v
w
x

*A copy of this reference is nol being furnished with this Office action. (See MPEP § 707.05(a).)

Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

U.S. Patent and Trademnark Office
PTO-892 (Rev. 01-2001)

Notice of References Cited

Part of Paper No. 07052005

Petitioners Amazon
Ex. 1010, p. 183 0of 399

Application/Control No. Applicant(s)/Patent under
Search Notes Reexamination
10/869,200 POZNANOVIC ET AL.
Examiner Art Unit
Shane M. Thomas 2186
SEARCH NOTES
SEARCHED (INCLUDING SEARCH STRATEGY)
Class Subclass Date Examiner DATE EXMR
711 170173 716/2005
M/ Updated East Search 7/6/2005 f}w/
712 15 7/6/2005 fn/
Inventor Name Search 71612005 W-‘

INTERFERENCE SEARCHED

Class Subclass Date Examiner

U.S. Patent and Trademark Office

Part of Paper No. 07052005

Petitioners Amazon
Ex. 1010, p. 184 of 399

Index of Claims

Application No.,

Applicant(s)

10/869,200 POZNANOVIC ET AL.
l |”| | Examiner Art Unit
Shane M. Thomas 2186
: (Through numeral
¥ | Rejected Cancelled) n| Non-Elected Appeal
=| Allowed Restricted || Interference Objected
Claim Date Claim Date Claim Date
- @ -_ o - m
25|53 |5 gl s
il ~|3 =15
IHEIE 51 101
2 [V 52 102
3 | v 53 103
4 [V 54 104
5 ||V 55 105
AEIE 56 106
7 [+ 57 107
EREIE 58 108
9 [V 59 108
10 | ¥+ 60 110
11)V 61 111
12]V] 62 112
13 |V]+ 63 113
14 | V|V 64 114
15 [+ |+ 65 115
16 | V|V 66 116
17 [V 67 117
18 | V| 68 118
19 |V 69 118
20 [¥ |V 70 120
21 [V T 121
22 |V 72 122
23 | V]|V 73 123
24 [V|V 74 124
25 75 125
26 76 126
27 77 127
28 78 128
29 79 129
30 80 130
3 81 131
32 82 132
33 83 133
34 84 134
35 85 135
36 86 136
37 87 137
38 88 138
39 89 139
40 90 140
41 91 141
42 92 142
43 93 143
e 94 144
45 95 145
46 96 146
47 97 147
48 S8 148
49 89 148
50 100 150

U.S. Patent and Trademark Office

Part of Paper No. 07052005

Petitioners Amazon
Ex. 1010, p. 185 0of 399

1ofl

UNITED STAaTES PAaTENT AND TRADEMARK OFFICE

http://neo:8000/PrexServiet/PrexAction

BIBDATASHEET

Bib Data Sheet

UNITED STATES DEPARTMENT OF COMMERCE

United Stantes Patent and Trademark Office
RMM:ES%ISSW)NKR FOR PATENTS

Weew. gt

dria, Vieginia 223111450
oV

CONFIRMATION NO. 5929

FILING DATE

SERIAL NUMBER 06/16/2004 CLASS
10/869,200) 711

RULE

GROUP ART UNIT
2186

ATTORNEY DOCKET

NO.
SRCO28

IAPPLICANTS

Daniel Poznanovic, Colorade Springs, CO;

David E. Caliga, Colorado Springs, CO;
Jeffrey Hammes, Colorado Springs, CO;

“* CONTINUING DATA
This appln claims benefit of 60/479,339 06/18/2003

Yes s
ol FORE'GN APPLECA‘I“'ONS v e e ol e ek e e e e
None

IF REQUIRED, FOREIGN FILING LICENSE GRANTED
** 08/04/2004

Foreign Priority claimed a yes (= no
35 USC 1189 (a-d) conditions met D yes b=tpo a Met after Allowance

i COUNTRY
il MknmadgedExaminer‘s Signature Initials co

STATE OR

SHEETS

DRAWING
12

TOTAL

CLAIMS
24

INDEPENDENT

CLAIMS
4

ADDRESS

25235

HOGAN & HARTSON LLP

ONE TABOR CENTER, SUITE 1500
1200 SEVENTEENTH ST

DENVER , CO

80202

TITLE

FILING FEE |FEES: Authority has been given in Paper
No. to charge/credit DEPOSIT ACCOUNT
RECEIVED [No. for following:

928

Systern and method of enhancing efficiency and utilization of memory bandwidth in reconfigurable hardware

||:] All Fees

U 1.16 Fees (

Filing)

Q147 Fees (Processing Ext. of time)

O 1.18 Fees (Issue)

O other

|

U Credit ||

7/6/05 2:18 PM

Petitioners Amazon

Ex. 1010, p. 186 0of 399

08426~95 01:55pm From~HOGAN&HARTSON

T20 406 5302 T-835 P.001/008 F-025
RECEIVED
CENTRAL FAX GENTER
FTO/SRIS (0803)
AUG 2 ﬁ 2005 mmwrméﬁ“ﬁ' S _ﬂ’ﬁ”ﬁ“&'c?r" gg&l‘éﬁé

\g, QMB control numbar,

Certificate of Transmission under 37 CFR 1.8

Serial No. 10/869,200

Application of: Daniel Poznanovic, David E. Caliga, and Jeffrey Hammes
Filed: June 16, 2004

Art Unit: 2186

Examiner: Thomas, Shane M.

Attorney Docket No. SRC028

For: SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF
MEMORY BANDWIDTH IN RECONFIGURABLE HARDWARE

Confirmation No.:
Customer No.: 25235

| hereby cértify that this correspondence with the following documents are being
facsimile transmitted to the United States Patent and Trademark Office:

1. Amendment and Response after Final (8 Pages)
2. Certificate of Transmission under 37 CFR 1.8 (1 page)

on __8[2l]0S” 5

Date No. of Pages
(incl. Coversheet)

to centralized fax number: 571.273.8300

LR Gmins

Signature

Joan C. Schubert
Typed or printed name of person signing Certificate

Note: Each paper must have its own certificate of transmission, or its certificate must
identify each submitted paper.

Client Matter No.: 80404.0033.001

TWBO - 30404m033 - 180504 v1

PAGE 19" RCVD AT 812612005 3:56:19 P [Eastern Dayfight Time)* SVR:USPTO-EFXRF 6130 DNIS:2738300* CSID:7204085302 * DURATION fmm-):0152

Petitioners Amazon
Ex. 1010, p. 187 of 399

. 08-26-05 01:55pm From-HOGANGHARTSON

RECEIVED
CENTRAL FAX CENTER

AUG 2 6 2005 Client Matter No. 80404.0033.001
Express Mail No.: Via Facsimile

720 406 6302 T-835 P.002/008 F-B26

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Serial No. 10/869,200 . ‘Confirmation No.: 5929

Application of: Daniel Poznanovic, et al. Customer No.: 25235

Filed: June 16, 2004 EXPEDITED

Art Unit: 2186 PROCEDURE UNDER
M 37 C.F.R. 1.116
Examiner: Thomas, Shane M.
Attorney Docket No. SRC028

For: SYSTEM AND METHOD OF
ENHANCING EFFICIENCY AND
UTILIZATION OF MEMORY BANDWIDTH IN
RECONFIGURABLE HARDWARE

AMEND T AND RESPONSE PURSUANT TO OFFICE ACTIO
DATED JULY 12, 2005

MAIL STOP AF
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Sir:
In response to the office communication mailed July 12, 2005 please
amend the above-identified application as follows:

Amendments to the Claims are reflected in the listing of claims which
begins on page 2 of this paper.

Remarks/Arguments begin on page 6 of this paper.

WBD - 80404003 - 150804 vi

PAGE 23" RCVD AT 826005 3:55:19 PH[Eastem Dayfight Time] SVR.USPTO-EFYRF 4130 DNS:2738300* CSID:7204065302° DURATION (mmvss):0142

Petitioners Amazon
Ex. 1010, p. 188 of 399

. 08-26-05 01:55pm From-HOGANKHARTSON 720 406 5302 T-835 P.003/008 F-925

Appl. No: 10/868,200 .
Amdt. Dated Augusi 26, 20056
Reply to Office action of July 12, 2005

Amendments fo the Claims:
This listing of claims will replace all prior versions and listings of claims in
the application:.

Listing of Claims:

1 (Currently Amended) A reconfigurable processor that instantiates
an algorithm as hardware comprising:

a first memory having a first characteristic memory bandwidth and/or
memory utilization; and

a data prefetch unit coupled to the first memory, wherein the data prefetch
unit retrieves data from a second memeory of second characteristic memory
bandwidth and/or memory utilization and place the retrieved data in the first
memory and wherein at least the first memory and data prefetch unit are
configured by a program.

2. (Cancelled)
3. (Cancelled)

4. (Previously Presented) The reconfigurable processor of claim 1,
wherein the data prefetch unit is coupled to a memory controlier that controls the
transfer of the data between the second memory and the data prefetch unit.

5. (Previously Presented) The reconfigurable processer of claim 1,
wherein the data prefstch unit receives processed data from on-processor
memory and writes the processed data {o an external off-processor memory.

6. .(Original) The reconfigurable processor of claim 1, wherein the
data prefetch unit comprises at least one register from the reconfigurable
processor.

7. (Original) The reconfigurable processor of ¢laim 1, wherein the

data prefetch unit is disassembled when another program is executed on the
reconfigurable processor.

B0 - Bo404m033 - 180604 vt

PAGE 319" RCVD AT 8/26/2005 3:56:19 PM [Easten Daylight Time] * SVR:USPTO-EFXRF-£/30* DNIS:2738300 * CSID:7204085302* DURATION (mm-ss):01452

Petitioners Amazon
Ex. 1010, p. 189 of 399

. 08-26-05 01:55pm From-HOGAN&HARTSON

720 405 5302 T-835 P.OD4/008 F-92
Appi. No: 10/869,200
Amdt. Dated August 26, 2006
Reply to Office at:tiu_n of July 12, 2005
8. (Previously Presented) The reconfigurable processor of claim 1

wherein said second memory comprises a processor memory and said data
prefetch unit is operative to retrieve data from the processor memory.

8. (Original) The reconfigurable processor of claim 8 wherein said
processor memory is @ microprocessor memory.

10. (Original) The reconfigurable processor of claim 8 wherein said
processor memory is a reconfigurable processor memory.

11. (Currently Amended) - A reconfigurable bhardware system,
comprising:

a common memory; and

one or more reconfigurable processors_that can instantiate an algorithm
as hardware coupled to the common memory, wherein at least one of the
reconfigurable processors includes a data prefetch unit to read and write data
between the data prefetch unit and the common memory, and wherein the data
prefetch unit is configured by a program executed on the system.

12. (Original) The reconfigurable hardware system of claim 11.'
comprising a memory controller coupled to the common memory and the data
prefetch unit.

13. (Cancelled)
14. (Cancelled)

15. (Previously Presented) The reconfigurable hardware system of
claim 11, wherein the at least one of the reconfigurable processors also includes
a computational unit coupled to a data access unit.

16. (Original) The reconfigurable hardware system of claim 15,
wherein the computational unit is supplied the data by the data access unit.

17. (Previously Presented) A method of transferring data comprising:
3

MED - 4040033 - 1506048 v1

PAGE 4/9* RCVD AT 8/26/2005 3:56:19 PM [Eastem Dayfight Time] * SVR:USPTO-EFXRF 6130 DNIS: 2738300 CSID:7204065302* DURATION (mm-ss):0152

Petitioners Amazon
Ex. 1010, p. 190 of 399

08-26-05 01:55pm From=HOGANZHARTSON

720 406 5302 T-835 P.005/008 F-g26

Appl, No: 10/869,200
Amdt. Dated August 26, 2005
Reply to Office action of July 12, 2005

transferring data between a memory and a data prefetch unit in a
reconfigurable processor; and

transferring the data between a computational unit and a data access unit,
wherein the computational unit and the data access unit, and the data prefetch
unit are configured by a program.

18. (Original) The method of claim 17, wherein the data is written to
the memory, said method comprising: '

transfefring the data from the computational unit to the data access unk;
and

writing the data to the memory from the data prefetch unit.

19. (Previously Presented) The method of claim 17, wherein the data
is read from the memaeory, said method comprising:

transferring the data from the memory to the data prefetch unit; and

reading the data directly from the data prefetch unit to the computational
unit through the data access unit.

20. (Orginal) The method of claim 19, wherein all the data transferred

from the memory to the data prefetch unit is processed by the computational
unit.

21. (Orginal) The method of claim 19, wherein the data is selected by
the data prefetch unit based on an explicit request from the computational unit.

22. (Original) The method of claim 17, wherein the data transferred
between the memory and the data prefetch unit is not a complete cache line,

23. (Original) The method of claim 17, wherein a memory controller
coupled to the memory and the data prefetch unit, controls the transfer of the
data between the memory and the data prefetch unit. '

24. (Currently Amended) A reconfigurable processor comprising:
a computational unit; and

WEQ - 804DLT033 - 1BDE0Y w1

PAGE 519* RCVD AT 812612005 3:56:19 P [Eastern Dayfight Time] * SYR:USPTO-EFXRF-&/30° DNIS:2738300 CSID:7204065302 * DURATION (mm-ss).0152

Petitioners Amazon
Ex. 1010, p. 191 of 399

. 0B=-26-p5 01:55pm From-HOGANZHARTSON

720 406 5302 T-835 P.006/008 F-g25

Appl. No: 10/869,200
Amdt. Dated August 26, 2005
Reply ta Office action of July 12, 20056

a data access unit coupled to the computational unit, wherein'the data
access unit retrieves data from memory and supplies the data to the
computational unit, and wherein the computational unit and the data access unit
are configured by a program _to instantiate an algorithm as hardware.

Wa0 - B0404/0013 - 180604 v)

PAGE §3* RCVD AT 8262005 3:56:19 PM [Easten DayﬁgntTfme]‘SVR:USPTU-EFXHF-GEO‘DMS:ZTMR'csm:rzm&sm‘DURAHOH(mmss]'M'&Z

Petitioners Amazon
Ex. 1010, p. 192 of 399

08-26=05 01:56pm From=HOGAN&HARTSON

720 406 5302 T-835 P.00T/008 F-p2g

Appl. No: 10/869,200
Amdt. Dated August 26, 2005
Reply 10 Office action of July 12, 2005

REMARKS/ARGUMENTS .
Claims 1, 4-12 and 15-24 remain in the application. Claims 2, 3, 13 and

14 are cancelled. Claims 1, 11 and 24 are amended to more distinctly describe
the subject matter of the invention.

A. Rejections under 35 U.S.C. 112.
The cancellation of claims 2, 3, 13, 14 renders the rejection under 36

U.S.C. 112 moot. However, the concept of a configurable processor that does

not have a cache is believed to be supported by the claims themselves, and the
subject matter of these claims is not waived.

B. Rejections under 35 U.S.C, 102.
Claims 1-24 were rejected under 35 U.S.C. 102 based upon Paulraj. This

rejection is respectfully traversed.

Claim 1 is amended to adopt language from the definition of
“reconfigurable processor” appearing in paragraph 39 of the specification as
filed. This amendment is not believed to raise any new issues nor require further
search because this meaning of reconfigurable processor is consistent with the
application as filed and consistent with the definition of that term asserted in prior
remarks submitted on April 11, 2005.

As amended, independent claim 1 calls for a reconfigurable processor
that instantiates an algorithm as hardware. Although the reference show a
reconfigurable cache, Paulraj does not show or suggest a reconfigurable
processor that instantiates an algorithm as hardware. Moreover, nothing in
Paulraj would suggest the rather significant changes required to replace the CPU

with a reconfigurable processor that can instaptiate ap algorithm as hardware.
For at least these reasons claim 1 is not anticipated nor made obvious by
Paulraj.

Claims 2-10 that depend from claim 1 are allowable over Paulraj for at

least the same reasons as claim 1 as well as the limitations that are presented in
those claims.

WA - B04DM0033 - 180604 vi
'

PAGE 7/9* RCVD AT 812612005 3:56:19 P [Eastem Dayfight Time] * SVR:USPTO-EFXRF 4730 DNIS:2738300 CSID:7204065302* DURATION (mm-ss):01.62

Petitioners Amazon
Ex. 1010, p. 193 of 399

. 0B-26-05 01:56pm FIOJE-HDG.ANIMRTSM

720 406 5302 T-835 P.008/008 F-g2g

Appl. No: 10/869,200
Amdt. Dated August 26, 2005
Reply to Office action of July 12, 2005

Claim 11 calls for a reconfigurable hardware system comprising one or
more reconfigurable processors that can instantiate an algonthm as hardware.
As noted above with respect to claim 1, Paulraj does not show or suggest even
one reconfigurable processor that can instantiate an algorithm as hardware. For
at least these reasons claim 11 and claims 12-16 that depend from claim 11 are
believed to be allowable over Paulraj.

Independent claim 17 calls for, among other things, transferring data
between a memory and a data prefetch unit in a reconfigurable processor.
Paulraj does not show or suggest a data prefetch unit, nor does Paulraj suggest
transferring data between a memory and a data prefetch unit in a recaonfigurable
processor. The cited portions of Paulraj deal with retrieving a configuration
vector but do not use the work “data prefetch unit” or or describe any functional
unit that operates in the same way as a daita prefetch unit. Moreover, even if the
broad construction set out in the Office action is applied, Paulraj does not
suggest configuring the computational unit, data access unit and the data
prefetch unit by a program. Paulraj simply cannot suggest this configurability
because the computational unit in Paulraj is not configurable. For at least these

reasons claim 17 and claims 18-23 that depend from claim 17 are allowable over
Paulraj.

Claim 24 as amended is believed to clarify that the term “configured” as
used in the claims refers to configuration that allows the configured device to
instantiate an algorithm as hardware. Loading a software program into a general
purpose computational device such as shown in Paulraj does not result in the
instantiation of an algorithm as hardware. Accordingly, claim 24 is believed to
be allowable over the relied on reference.

C. Conclusion.

In view of all of the above, the ¢laims are now believed to be allowable
and the case In condition for allowance which action Is respectfully requested.
Should the Examiner be of the opinion that a telephone conference would

l TME0 - A040ADOIY - THOADS v

PAGE §1" 5: '
RCVDAT 2672005 3:56:19PW Eatem Dawgnmmepsvmusprwmmo=nms:2zmau-csrn:nmussm'numoum)-omz

Petitioners Amazon
Ex. 1010, p. 194 of 399

PAGE 0"

i ﬂR-EF"DS 01:56pm From-HOGANEHARTSON

720 406 5302 T-835 P.006/008 F-g2g

App!, No: 10/869,200
Amdt Dated August 26, 2005
Reply to Office action of July 12, 2005

expedite the prosecution of this case, the Examiner is requested to contact
Applicants' attorney at the telephone number listed below,

Any fee deficiency associated with this submittal may be charged to
Deposit Account No. 50-1123.

Respectfully submitted,

Auqust 005

Stuart T. Langley, Refg. No.{33,940
Hogan & Hartson e
One Tabor Center
1200 17th Street, Suite 1500
Denver, Colorado 80202
(720) 406-5335 Tel

(303) 899-7333 Fax

WO - 04040033 - 180604 w1

RCVD AT 812612005 3:56:19 P [Eastem Dayfight Time] * SVR:USPTO-EFXRF 4130 * DS:2738300°* CSID:7204065302 * DURATION (mm-5s):0152

Petitioners Amazon
Ex. 1010, p. 195 of 399

- ; _ Applicatron orDocket Number
PATENT APPLICATION FEE DETERMINATION RECORD
Effective October 1, 2003 loséq Wo
CLAIMS AS FILED - PART I SMALL ENTITY OTHER THAN
{Cotumn 11 {Coumn2y _ TYPE [OR SMALL ENTITY
r TOTAL CLAIMS 2 L ' RATE | FEE RATE | -FEE
' NUMBERFILED |- NUMBER EXTRA sasic Fee| 385.00 | o [sasic Feef 770.00
TOTAL CHARGEABLE CLAIMS [{ ies20s | L XS 9= or| xs8: | 72
INDEPENDENT CLAIMS “ minusJ = 4‘ X43= lon XB6= %@
MULTIPLE DEPENDENT CLAIM PRESENT) 0
+145z OR| +290= | —
I l.ha difference in column 1 s less than zero. enter “0” in column 2 TOTAL OR TOTAL qv‘(
. CLAIMS AS AMENDED - PARTlI . OTHER THAN
K4(0< {Column 1) {Column 2) _(Column 3 SMALLENTITY OR SMALL ENTITY
: .. 2 i e oo
MAINI .
= Eu-'ren mﬂ&lgemv P:fﬂs::" RATE {TIONAL] - | RATE | TIONAL
rrt AMENDMENT PAID FOR FEE FEE
§ Total o Y Minus - Ut K XS e OR| Xs18s
ppjiiwetent |- CAf JMam | A =\ X432 or| xse=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAM []
+145a OR +290=
TOTAL T TOTAL
: * ADDIT. FEE b JOR apOr FEE
{Column 1) (Column 2) (Column 3)
- v — ST s .
REMAINING NUMBER 4 » i =
4 AFTER PREVIOUSLY Pg,sﬂsgﬂ RATE [TIONAL RATE | TIONAL
g AMENDMENT PAID FOR FEE FEE
g Total ‘ . ?__0 - |Minus - 1 i s~ X$ 9a oR X$18=
= Independgenmt |- q Minus - \.1 . — Xa3s o
< |FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM [] -
’ +145= OR | +290= ,
TOTAL OR . AL
umn 1) ‘mmr]_“‘z (Column3) ‘
ol REMAINING NUMBER | PRESENT 5 ADDI- | ADDi- §.
'z' AFTER PREVIOUSLY EXTRA RATE [TIONAL RATE | TIONAL
@ AMENDMENT PAID FOR FEE | - FEE_|
2= AT w00 Koo = X3 9= or | xs18= :
w . Minus) -
Z — I X43= on| xss=
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM
: ; +145= OR | +280=
* Hthe in calumn 1 B less than i columin 2. wiite 0" in columa 3. . w 1y
~ummw;mauh;::!;}msmczhmma emer "20." mom -JOR m"’,&m

=1 the “Highes! Numbet Previously Paid For® IN THIS SPACE ks less than J, enter *3.°
The “Highest Mumbes m’mh'nuuwsuwwmmmwnmhm1

T nu_____us DEPARTMENT OF COMMERCE

- FORM PTOSTS Mav. 1000

Petitioners Amazon
Ex. 1010, p. 196 of 399

2

- —_—
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS
P.0. Bo;

x 1450
Alexandria, Virginia 22313-1450

UnITED STATES PATENT AND TRADEMARK OFFICE

WWW.USPLD GOV

[appLicaTION NO. FILING DATE | FIRST NAMED INVENTOR [ATrorNEY DOCKETNO. | ConFIRMATIONNO.]
10/869,200 06/16/2004 Daniel Poznanovic SRC028 5929
25235 7590 09/01/2005 | EXAMINER |
HOGAN & HARTSON LLP THOMAS, SHANE M
ONE TABOR CENTER, SUITE 1500
1200 SEVENTEENTH ST | ART UNIT] PAPERNUMBER |

DENVER, CO 80202 2186

DATE MAILED: 09/01/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Petitioners Amazon
Ex. 1010, p. 197 of 399

! Application No. Applicant(s)
Advisory Action 10/869,200 POZNANOVIC ET AL.
Before the Filing of an Appeal Brief Exanminer Art Unit
Shane M. Thomas 2186

--The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

THE REPLY FILED 286 August 2005 FAILS TO PLACE THIS APPLICATION IN CONDITION FOR ALLOWANCE.

1. (X] The reply was filed after a final rejection, but prior to or on the same day as filing a Notice of Appeal. To avoid abandonment of
this application, applicant must timely file one of the following replies: (1) an amendment, affidavit, or other evidence, which
places the application in condition for allowance; (2) a Notice of Appeal (with appeal fee) in compliance with 37 CFR 41.31; or
(3) a Request for Continued Examination (RCE) in compliance with 37 CFR 1.114. The reply must be filed within one of the
following time periods:

a) B4 The period for reply expires 3 months from the mailing date of the final rejection. _
b) [:I The period for reply expires on: (1) the mailing date of this Advisory Action, or (2) the date set forth in the final rejection, whichever is later. In no
event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of the final rejection.

Examiner Note: If box 1 is checked, check either box (a) or {b). ONLY CHECK BOX (b) WHEN THE FIRST REPLY WAS FILED WITHIN TWO
MONTHS OF THE FINAL REJECTION. See MPEP 706.07(f).
Extensions of time may be obtained under 37 CFR 1.136(a). The date on which the petition under 37 CFR 1.136(a) and the appropriate extension fee have
been filed is the date for purposes of determining the period of extension and the corresponding amount of the fee. The appropriate extension fee under 37
CFR 1.17(a) is calculated from: (1) the expiration date of the shortened statutory period for reply originally set in the final Office action; or (2) as set forth in (b)
above, if checked. Any reply received by the Office later than three months after the mailing date of the final rejection, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

NOTICE OF APPEAL

2. []The Notice of Appeal was filed on . A briefin compliance with 37 CFR 41,37 must be filed within two months of the date
of filing the Notice of Appeal (37 CFR 41.37(a)), or any extension thereof (37 CFR 41.37(e)), to avoid dismissal of the appeal.
Since a Notice of Appeal has been filed, any reply must be filed within the time period set forth in 37 CFR 41.37(a).

AMENDMENTS

3. X The proposed amendment(s) filed after a final rejection, but prior to the date of filing a brief, will not be entered because

(a)B4 They raise new issues that would require further consideration and/or search (see NOTE below),

(b)[[] They raise the issue of new matter (see NOTE below);

(¢)[J They are not deemed to place the application in better form for appeal by materially reducing or simplifying the issues for
appeal; and/or

(d)[J They present additional claims without canceling a corresponding number of finally rejected claims.
NOTE: See Continuation Sheet. (See 37 CFR 1.116 and 41.33(a)).

4. [} The amendments are not in compliance with 37 CFR 1.121. See attached Notice of Non-Compliant Amendment (PTOL-324).

5. [Applicant's reply has overcome the following rejection(s):

6. Newly proposed or amended claim(s) would be allowable if submitted in a separate, timely filed amendment canceling
the non-allowable claim(s).

7.0 For purposes of appeal, the proposed amendment(s): a) B will not be entered, or b) (] will be entered and an explanation of
how the new or amended claims would be rejected is provided below or appended.

The status of the claim(s) is (or will be) as follows:
Claim(s) allowed:

Claim(s) objected to:

Claim(s) rejected: 1-24.

Claim(s) withdrawn from consideration:

AFFIDAVIT OR OTHER EVIDENCE

8. [The affidavit or other evidence filed after a final action, but before or on the date of filing a Notice of Appeal will not be entered
because applicant failed to provide a showing of good and sufficient reasons why the affidavit or other evidence is necessary
and was not earlier presented. See 37 CFR 1.116(e).

9. [0 The affidavit or other evidence filed after the date of filing a Notice of Appeal, but prior to the date of filing a brief, will not be
entered because the affidavit or other evidence failed to overcome all rejections under appeal and/or appellant fails to provide a
showing a good and sufficient reasons why it is necessary and was not earlier presented. See 37 CFR 41.33(d)(1).

10. (] The affidavit or other evidence is entered. An explanation of the status of the claims after entry is below or attached.

REQUEST FOR RECONSIDERATION/OTHER

11. [0 The request for reconsideration has been considered but does NOT place the application in condition for allowance because:

12. [] Note the attached Information Disclosure Statement(s). (PTO/SB/08 or PTO-1448) Paper No(s).
13. (J Other: .

U.S. Patent and Trademark Office
PTOL-303 (Rev. 7-05) Advisory Action Before the Filing of an Appeal Brief Part of Paper No. 08302005

Petitioners Amazon
Ex. 1010, p. 198 of 399

Continuation Sheet (PTOL-303) Application No.

Continuation of 3. NOTE: The amendment to the claims has changed the scope of independent claims 1,11, and 24, and as such,
further search and consideration are required.

I -
%—\ Pﬁmm

Petitioners Amazon
Ex. 1010, p. 199 of 399

. 08-26-05 01:56pn From-HOGANSHARTSON

- RECEIVED
CENTRAL FAX CENTER -

720 406 6302 T-835 P.002/008 F-826

AUG 2 6 2005 Client Matter No. 80404.0033.001
Express Mail No.: Via Facsimile

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Serlal No. 10/868,200 _ "Confirmation No.: 5929
Application of: Daniel Poznanovic, et al. Customer No.: 25235

Filed: June 16, 2004 EXPEDITED

Art Unit: 2186 PROCEDURE UNDER
. 37 C.F.R. 1.116

Examiner: Thomas, Shane M. :

Attomey Docket No. SRC028

For. SYSTEM AND METHQOD OF
ENHANCING EFFICIENCY AND
UTILIZATION OF MEMORY BANDWIDTH IN
RECONFIGURABLE HARDWARE.

M L2 ' AMENDMENT AND RESPONSE PURSUANT TO OFFICE ACTION
Dn © ' DATED JULY 12, 2005
*_L # MAIL STOP AF
t(l.)" - Commissioner for Patents
. P.O. Box 1450
57”(— S /3 | /oS‘ Alexandria, VA 22313-1450
Sir:

In response to the office communication mailed July 12, 2005 please
amend the above-identified application as follows:

Amendments to the Claims are reflected in the listing of claims which
begins on page 2 of this paper.

Remarks/Arguments begin on page 6 of this paper.

WBD - 60404003 = 150804 vi

PAGE 213 RCVD AT &126/2005 3:56:19 PH [Eastem Dayfght Time]* SVR.USPTO-EFXRF 430 DIS:273%300 * CSID:T204085302* DURATION (mm-ss):0142

Petitioners Amazon
Ex. 1010, p. 200 of 399

Application No.

Applicant(s)

Index of Claims
10/869,200 POZNANOVIC ET AL.
Examiner Art Unit
Shane M. Thomas 2186
. {Through numeral)
¥ | Rejected Cancelled N Non-Elected Appeal
=| Allowed + Restricted | | Interference Objected
Claim Date Claim Date Claim Date
- 0 (ol — ® -]
< R o o
[BEIEIE 51 101
2 |[NIV]Y 52 102
3 IVINIY 53 103
4 |V|V[V 54 104
5 |ViV|V 55 105
[EEIEIE 56 106
r &l i I i 57 107
8 [V[V]V 58 108
9 | V[V]V 59 109
10 [V]V]V 60 110
1 [V]V Y 61 111
12 [V[V]V 62 112
13 [V[V]Y 63 113
14 [V]|V]¥ 64 114
15 [V[V]V 65 115
16 (V]|V]¥ 66 116
17 | V|V 67 117
18 V|V Y 68 118
18 [V[V] Y 69 119
20 [V[V]Y 70 120
21 [V 7 121
22 [V([V] Y 72 122
23 [V ([V] Y 73 123
24 [V[V]V 74 124
25 75 125
26 76 126
27 77 127
28 78 128
29 79 129
30 80 130
31 81 131
32 82 132
33 83 133
34 84 134
35 85 135
36 86 136
37 87 137
38 88 138
39 89 138
40 90 140
M N 141
42 92 142
43 93 143
44 94 144
45 95 145
46 96 146
47 97 147
48 98 148
49 99 149
50 100 150

U.S. Patent and Trademark Office

Part of Paper No. 08302005

Petitioners Amazon
Ex. 1010, p. 201 of 399

. 04. 7 -0

PTRISBIA0 (08103))/
Approved for use through 07/31/20067 OMB 0651-0031
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paparwork Reduction .Ag of 1985, na persons are required lo respond to a collection of information unless it displays a valid. OMB control number,
REQUEST Application Number 10/869,200
FOR Filing Date June 16, 2004
CONTINUED EXAMINATION (RCE) First Named Inventor Daniel Poznanovic, et al.
TRANSMITTAL Group Art Unit 2186
Address to:
Mail Stop RCE Examiner Name THOMAS, Shane M.
Commissioner for Patents
P.O. Box 1450 Attorney Docket Number SRC028
Alexandria, VA 22313-1450

This is a Request for Conhnued Examination (RCE) under 37 C.F.R. 1.114 of the above-identified application.
Request! for Continued E: (RCE) pi under 37 CFR 1.114 does nol apply to eny ulilily or plan! application filed prior fo June 8, 1985, or lo any design applicalion,
See Instruction Sheet for RCEs (not to be submitied to the USPTO) on page 2.

1. [Submission required under 37 C.F.R. 1.114] Note: If the RCE is proper, any previously filed unentered amendments and

amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs otherwise. If
applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of
such amendment(s).

a. [X Previously submitted. If a final Office Action is outstanding, any amendments filed after the final Office Action may
be considered as a submission even if this box is not checked.

i. [0 Consider the arguments in the Appeal Brief or Reply Brief previously filed on

i. [J Other

b. [Enclosed
i. [0 Amendment/Reply ii. [J Information Disclosure Statement (IDS)
ii. [Affidavit(s)/Declaration(s) iv. [J Other

2. [Miscellaneous

a. [J Suspension of action on the above-identified application is requested under 37 C.F.R. 1.103(c) for a period of
months. (Period of suspension shall not exceed 3 months; Fee under 37 C.F.R. 1.17(i) required)

b. [0 Other
3. The RCE fee under 37 C.F.R. 1.17(e) is required by 37 C.F.R. 1.114 when the RCE is filed.

a. The Director is hereby authorized to charge the following fees, or credit any overpayments, to
Deposit Account No. 50-1123

i. [0 RCE fee required under 37 C.F.R 1.17(e)
i. [Extension of time fee (37 C.F.R 1.136 and 1.17)
ii. BJ Other: Charge any additional fees or credit any overpayments for this filing

b. [Check in the amount of $790.00 enclosed
¢. [J Payment by credit card (Form PTO-2038 enclosed)

WARNING: Information on this form may become public. Credit card information should not be included on
this form. Provide credit card information and authorization on PTO-2038.

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED
Name (Print/Type) Slu/a,:tJ | LanQIey g I Registration No. (attemeysageny) | 33,940

Signature ﬁ]/v_) \{ z O‘V\Jk/\ Date | September 12, 2005

CERTIFICATE OF MAILING OR TRANSMISSION

| hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage in an envelope addressed to: Mail
Stop RCE, Commissioner For Patents, P.O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to the U.S. Patent and Trademark Office on
the date shown below.

Name (Print/Type) Stu };tT Lwy

Signature &'\‘n /{/\)\\ LO\ / _\ LDate | September 12, 2005

09/14/2005 EFLORES 00000053 10863200
01 FC:1801 790.00 QP

Petitioners Amazon
Ex. 1010, p. 202 of 399

EXPRESS MAIL NO. EV544475732US
Client/Matter No. 80404.0033.001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Serial No. 10/8689,200 Art Unit: 2186
Application of: Daniel Poznanovic, et al. Confirmation No.: 5929
Filed: June 16, 2004 Customer No.: 25235

Examiner: THOMAS, Shane M.
Attorney Docket No. SRC028
For: SYSTEM AND METHOD OF ENHANCING

EFFICIENCY AND UTILIZATION OF MEMORY
BANDWIDTH IN RECONFIGURABLE HARDWARE

CERTIFICATE OF MAILING BY EXPRESS MAIL

MAIL STOP RCE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Sir:
The undersigned hereby certifies that the following documents:

Request for Continued Examination;
Check in the amount of $790.00;
Certificate of Mailing by Express Mail; and
Return Receipt Postcard

relating to the above application, were deposited as "Express Mail", Mailing Label No. EV544475732US
with the United States Postal Service, addressed to Commissioner for Patents, P.O. Box 1450,

Alexandria, VA 22313-1450. \
Hlaloe DT

Date Maj
Ao Moty
Date : Stuarf T. Langley, Reg7Ne. 33940

HOGAN & HARTSON L
One Tabor Center

1200 17th Street, Suite 1500
Denver, Colorado 80202
(720) 406-5335 Tel

(303) 899-7333 Fax

Petitioners Amazon
Ex. 1010, p. 203 of 399

Default

Ref Hits | Search Query DBs Plurals | Time Stamp
Operator
L1 2876 | 711/170-173.ccls. US-PGPUB; | OR ON 2005/10/15 14:30
USPAT
L2 30 | 1 and reconfigurable near3 US-PGPUB; | OR ON 2005/10/15 14:31
(processor multiprocessor cache USPAT
CPU (processing adj unit))
S15 733 | ((configurable reconfigurable US-PGPUB; | OR ON 2005/10/15 09:38
2 “re-configurable") adj (processor USPAT
(processing adj unit) CPU
microprocessor "micro-processor”
cache))
‘S15 270 | S152 and fpga US-PGPUB; | OR ON 2005/10/15 09:38
3 | UsPAT :
S15 11 | $153 and "711".clas. US-PGPUB; | OR ON 2005/10/15 09:52
4 USPAT
S15 20 | direct adj execut$3 adj logic US-PGPUB; | OR ON 2005/10/15 09:55
) USPAT .
S15 16 | memory adj algorithm adj processor | US-PGPUB; | OR ON 2005/10/15 11:03
6 USPAT
S15 6 | "869200".ap. US-PGPUB; | OR ON 2005/10/15 14:30
7 USPAT
Search History 10/15/2005 2:32:00 PM Page 1

C:\Documents and Settings\sthomas\My Documents\EAST\Workspaces\10869200.wsp

Petitioners Amazon
Ex. 1010, p. 204 of 399

%

UNITED STATES PATENT AND TRADEMARK QFFICE

UNITED STATES DEPARTMENT OF COM;‘IERCE

-United States Patent and Trademark Office
Address; COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
WWW.LSPLD. g OV
| APPLICATION NO.] FILING DATE I FIRST NAMED INVENTOR] ATTORNEY DOCKET NO. l CONFIRMATION NO. |
10/869,200 06/16/2004 Daniel Poznanovic SRCO28 5929
25235 7590 10/19/2005 ' [EXAMINER |
HOGAN & HARTSON LLP THOMAS, SHANE M
ONE TABOR CENTER, SUITE 1500
1200 SEVENTEENTH ST [ART UNIT PAPER NUMBER |
DENVER, CO 80202 2186

DATE MAILED: 10/19/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Petitioners Amazon
Ex. 1010, p. 205 of 399

Application No. Applicant(s)

10/869,200 POZNANOVIC ET AL.
Office Action Summary B Ar Unit

Shane M. Thomas 2186

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely fi Ied

after SIX () MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if tlmely filed, may reduce any

earned patent lerm adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 12 September 2005.
2a){_] This action is FINAL. 2b){X] This action is non-final.
3)[] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 0.G. 213.

Disposition of Claims ’
4)X Claim(s) 1,4-12 and 15-24 is/are pending in the application.
4a) Of the above claim(s) ___is/are withdrawn from consideration.
5[] Claim(s) is/are allowed.
6)J Claim(s) 1.4-12 and 15-24 is/are rejected.
7)] Claim(s) _____is/are objected to.
8)[] Claim(s) ____ are subject to restriction and/or election requirement.

Application Papers

9)[] The specification is objected to by the Examiner.
10)[] The drawing(s) filed on is/are: a)[_] accepted or b)[] objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11)[] The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)[] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)JAIl b)[]Some * c)[_] None of:
1.0 Certified copies of the priority documents have been received.
2.[] Certified copies of the priority documents have been received in Application No.
3.[J Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)
1) |:] Notice of References Cited (PTO-892) 4) I:] Interview Summary (PTO-413)
2) [[] Notice of Draftsperson's Patent Drawing Review (PTO-948) Paper No(s)/Mail Date. ____
3) (] Information Disclosure Statemenl(s) (PTO-1449 or PTO/SB/08) 5) [] Notice of Informal Patent Application (PTO-152)
Paper No(s)/Mail Date . 6) [] Other:
U.S. Palent and Trademark Offica
PTOL-326 (Rev. 7-05) Office Action Summary Part of Paper No./Mail Date 10152005

Petitioners Amazon
Ex. 1010, p. 206 of 399

Application/Control Number: 10/869,200 Page 2
Art Unit: 2186

DETAILED ACTION

This Office action is responsive to the amendment filed 8/26/2005. Claims 1,11, and 24.
have been amended; claims 2,3,13, and 14 have been canceled. Claims 1,4-12, and 15-24 are

pending.

Continued Examination Undér 37CFR1.114
A request for continued examination under 37 CFR 1.114, including the fee set forth in
37 CFR 1.17(e), was filed in this application Iafter final rejection on 9/12/2005. Since this
application is eligible for co.ntinued examination under 37 CFR 1.1 14, and the fee set forth in 37
CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn
pursuant to 37 CFR 1.114. Applicant's submission filed on 8/26/2005 has been entered.
All previously outstanding objections and rejections to the Applicant’s disclosure and

claims not contained in this Action have been respectfully withdrawn by the Examiner hereto.

Response to Amendment
The rejections of claims 1,11,17, and 24 have been modified to reflect the amendments

and/or Applicant’s arguments to the respective claims.

Petitioners Amazon
Ex. 1010, p. 207 of 399

Application/Control Number: 10/869,200 Page 3
Art Unit: 2186

Response to Arguments

Applicant's arguments filed 8/26/2005 have been fully considered but they are not
persuasive for the following reasons. . -

Applicant argues on page 6 of the response that the prior art reference of Paulraj “does
not show or suggesf a reconfigurable processor that instantiates an algorithm as hardware.” The
Examiner respectfully traverses. Paulraj teaches in the abstract for one, that the system described
determines “an optimal configuration of memory for a particular application.” The Applicant
teaches in 455 of the originally filed disclosure that “any computer program [i.e. application] is a
collection of algorithms.” Therefore it can be seen that since the processor 100 of Paulraj can
reconfigure the memory 104 based on the application (or computer program) that is to execute
on the processor, that so to can the reconfigurable processor system of Paulraj “instantiate an
algorithm (i.e. an application) as hardware (i.e. the FPGA module 104 that is used as a cache

‘ memory).”

As per the Applicant’s arguments regarding claim 11, the Examiner has shown in above
in the discussion of claim 1 that Paulraj teachés a reconfigurable processor 100, as claimed by
the Applicant, that instantiates an algorithm as hardware.

As per the Applicant’s arguments regarding claim 17 on page 7, the Applicant argues that
the prior art reference of Paulraj “does not show or suggest a data prefetch unit, nor suggest
transferring data between a memory and a data prefetch unit in a reconfigurable processor. As
explained in the Examine;’s previous rejection of claim 17, the Examiner is considering the
reconfiguration upit 10§ of Paulraj to be a --data prefetch unit-- since Paulraj teaches that the unit

106 prefetches a configuration vector (i.e. retrieves data from an inherent and non-shown

Petitioners Amazon
Ex. 1010, p. 208 of 399

Application/Control Number: 10/869,200 ' Page 4
Art Unit: 2186

memory) and sets up a programmable memory module 104 (i.e. cache) before executing the
application relating to the configuration vector (refer to 24 and 929). Figure 4 of Paulraj clearly
shows the --data prefetch unit-- 106 being in a reconfigurable processor 100. Although the cited
reference does not explicitly use the phrase “data prefetch unit,” and may or may not perform all
of the functionality of a “data prefetch unit,” as discussed in the Applicants disclosure, the
reconfiguration unit 106 performs the claimed functionality of the “data prefetch unit” as
discussed above (i.e. merely transferring data between a memory in a reconfigurable processor).
Further, tﬁe Applicaht argues regarding claim 17 that “Paulraj does not suggest
configuring the computational unit, data access unit, and the data prefetch unilt by a program.
Paulraj simply cannot suggest this configurability because the computational unit in Paulraj is
not configurable.” The Examiner respectfully traverses. All of the computational, data access,
and data prefetch units are c;')nﬁgured by a program, as immediately discussed. As defined by
~the Examiner, the “computational unit™ of Paulraj is being considered to be the element of the -
system of Paulraj that executes and collects the performance data regarding how a specific
application utilizes memory in order to determine an optimal memory configuration as discusses
in §27. Figure 5 of Paulraj shows a method for creating a configuration vector by using the
--computational unit-- in steps 204-206. The E#aminer is considering the inherent program that
is being executed in order to perform the steps of figure 5 to be the program that configures the
computational unit. Therefore, it can be seen that Paulraj does suggest configuring the
computational unit by a program. The program of figure S configures the computational unit to
collect déta for a specific application’s memory usage statistics in order to create a configuration

vector that allows the system of Paulraj to optimally reconfigure the programmable memory

Petitioners Amazon
Ex. 1010, p. 209 of 399

Application/Control Number: 10/869,200 Page 5
Art Unit: 2186

module 104. Thus the computational unit can be configured to collect memory usage statistics
for a plurality of applications that are to be executed by the reconfigurable prlocessor 100 of
Paulraj (23).

The same reasoning applies to the data access and data prefetch units. The program that
is executing the steps of figure 5 (i.e. running on the Sys'tem of Paulraj that implements the
method) configures the data access unit to retrieve/store a configuration vector (step 212) based
on if a new configuration vector had to b_e created and furtherl configures the data prefetch unit to
search for a configuration vector and retrieve that vector if found (steps 200 and 212).

As per the Applicant’s arguments regarding claim 24 “that loading a software program
into a general purpose computational device such as shown in Paulraj does not result in the
instantiation of an glgorithm as hardware.” The E%aminer respectfully traverses. Once the
software program has been loaded into the computational unit, a variety of simulations are
performed and memory usage statistics are gathered by the computational unit in order to create
a conﬁguratioh vector as taught in §23-24. This vector allows the programmable memory
.modu!e 104 of Paulraj to be reconfigured to the most optimal memory configuration for that
specific software program (f26). As discussed supra, a software program or application is a
collection of “algorithms”; therefore, the configuration vector for a particular software program
allows the system of Paulraj to instantiate a software program as hardware since the
configuration vector represents optimal configuration of the hardware (programmable memory

module 104 - element 112 of figure 6).

Petitioners Amazon
Ex. 1010, p. 210 of 399

Application/Control Number: 10/869,200 Page 6
Art Unit: 2186

Claim Rejections - 35 USC § 102
The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed
in the United States before the invention by the applicant for patent or (2) a patent granted on an application for
patent by another filed in the United States before the invention by the applicant for patent, except that an
international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this
subsection of an application filed in the United States only if the international application designated the United
States and was published under Article 21(2) of such treaty in the English language.

Claims 1-24 are rejected under 35 U.S.C. 102(e) as being anticipated by Paulraj (U.S.
Patent Application Publication No. 2003/0084244).

As per claim 1, Paulraj shows a reconfigurable processor in figure 6 and a first memory
(L1) having a first characteristc memory utilization and a second memory (L2) having a second
characteristic memory utilization. It is well known in the art that L1 caches have a higher
utilzialidn rate than a lower-level caci‘nﬁ such as L2. Paulraj teaches in |1 that upon a command
from a processor, a search for the requested data is begines with the highest ievel cache (L1) and
[if a miss occurs] continues next to the next level cache (L2). Thus it is inherent that the memory
utilziation characteristc of the L1 cache of the reconfigurable processor 110 in ﬁguré 6 is greater
than the memory utilziation characteristic of the L2 cache (and likewise for the L3 cache) as the
L2 cache would only be utilzied when a miss to the L1 cache occurred. In other words, the
reconfigurable processor always utilizes the L1 cache for a memory access and the only utilzies
the L2 cache for requested data when the data is not in the L1 cache. Therefore, the cache

utilziation characteristics of the --first memory-- and the --second memory-- are different.

Petitioners Amazon
Ex. 1010, p. 211 of 399

Application/Control Number: 10/869,200 Page 7
Art Unit: 2186

Paulraj further teach.es a functional unit 102 that executes applications using the
memories L1 and L2 (paragraph 9). As is known in the art, a cache memory controller is often
used to‘access and move. data between a memory hierarchy. The Examiner is considering a data
prefetch unit to be the logic assocatied with the moving, and only the moving, of data between
the first and second memories (L1 and L.2) since Paulraj shows a connection between the levels
of cache in figure 6. This logic as well as the first and second memory types (L1 and L2) are
configued by a program — refer to paragraphs 23-24. The data prefetch unit as defined by the
Examiner must be configued as well by the program when moving data since the cache line size
and blocking factor can change, so different amounts of data can be exchanged for the same
access when different programs run.

The reconfigurable processor of Paulraj has the ability to collect memory usage statistics
for a particular application and based on those statistics, create a configuration vector as taught in
1923-24. This vector allows the programmable memory module 104 of Paulraj to be
reconfigured to the most optimal memory configuration for that specific software program (426).
As defined by the Applicant in Y55 of the originally filed specification, a software program or
application is a collection of “algorithms”; therefore, the configuration vector for a particular
software program allows the system of Paulraj to instantiate a software program as hardware
since the configuration vector represents optimal configuration of the hardware (programable
memory module 104 - element 112 of figure 6).

As per claims 2 and 13, as taught in paragraphs 23 and 29 of Paulraj, no specific cache is

present in the system of Paulraj. Rather, an FPGA is utilized as representing a caching hierarchy

Petitioners Amazon
Ex. 1010, p. 212 of 399

Application/Control Number: 10/869,200 Page 8
Art Unit: 2186

and is optimized based on the memory needs of a specific program running on the reconfigurable
processor..

As per claims 3 and 14, Paulraj teache;s in pz;ragraph 23 that a specific [cache] line size of
contiguous data is not retrieved since the data line size is optimized.based on the memory needs
of the program when executing on the reconfigurable processor. Refer also to paragraph 29.
Further, it is therefore inherent that the second memory have a charactersitic line size since
Paulraj teaches in §§22-23 that a best line size for the memory arrangement for a p.anicular
program is determined and utilzied when that program is run. For example, a line-size
characteristic would be ultized when transferring data from the L2 cache to the L1 cache.

As per claim 4, Paulraj teaches that a load/store unit is used to access the caches (L.1-L3)
in order to deiermine if cache data is present in the cache hierarchy (paragraph 6). Since the
functional unit 102 (figure 6) is responsible for accessing the programmable memory unit 104,
the Examiner is therefore considering the load/store unit logic of the programmable memory unit
that is responsible for for accessing the L1 and L2 caches (first and second memory types) to be
a memory controller. It can be seen that the memory controller, as defined by the Examiner,
controls the transfer of data between the memory (assuming second memory L2) and the data
prefetch unit, since the memory controller (load/store unit logic) is responsible for retrieving the
data from the cache if a hit occurs (paragraph 4).

As per claim 3, as taught in paragraph 1, an external memory (element 18, figure 1) is
generaly coupled to a microprocessor and holds data to be used by the microcomlroller during
program execution. The Examiner is considering the process of writing data back to the external

memory from the FPGA memory 104 containing the caches (on-board memory), such as during

Petitioners Amazon
Ex. 1010, p. 213 of 399

Application/Control Number: 10/869,200 Page 9
Art Unit: 2186

a write-back scheme as known in the art, to be performed by the data prefetch unit portion of the
functional logic as defined above by the Examiner. The data prefetch logic, as defined above, is
respbnsible for é.ll of the transfer of data into, out of, and between the FPGA memory 104.

As per claim 6, the Examiner is regarding a --register-- in its broadest reasonable sense
and it thus considering it be to be a unit of logic. Therefore, the portion of the function logic that
is responsible for the movement of data (as defined above to be the data prefetch unit) is being
considered by the Examiner as containing a --register-- portion of the reconfigurable processor
since, for instance, the blocking factor and line size of the programmable memory 112 can
change, a --register-- or portion of the reconfigurable processor must be set in order to indicate

_the currnet line size and blocking factor when a given application is being run on the
recoﬁﬁgurable processor at a given point in time. Refer to paragraph 23.

As per claim 7, the Examiner is considering the process of --disassembling the data
prefetch unit-- as modifying the data prefetch unit logic of the fucntion logic 102 every time the
program being executed by the reconfigurable processor changes. It can be seen that the data
prefetch unit changes during these intervals since the cache line size, blocking factor, and
associativity of the FPGA changes when optimal for the néxt program to be executed (refer-td
paragraph 23). Thus it can be seen that the data prefetch unit logic is --disassembled-- when
another program is executed by the reconfigurable processor of Paulraj.

As per claim 8, as can be seen that the FPGA memory 112, that comprises the first and
second memories (L1 and L2) and which is accessed by the data prefetch unit of the functional
unit 102 as discussed above, is a --pro‘cessor memory-- (part of cpu 110). It can also be seen that -

the --second memory-- (L2) is also a --processor memory-- since it is contained within

Petitioners Amazon
Ex. 1010, p. 214 of 399

~ Application/Control Number: 10/869,200 ' - Page 10
Art Unit: 2186

recénﬁ gurable processor 110. Therefore, since the data pretech unit can access the L2 cache as
discussed above in the rejection of claim 1, the data prefetch unit can retrive data from the L2
portion of --processor memory--112.

As per claim 9, as shown in figure 1 and taught in paragraph 1 of Paulraj, the system 10
is actually a microi)rocessor, which contains a memory controller 14. The main difference
between the prior art of figure 1 and the invention of Paulraj in figure 6 is that the memroy
hierarchy is configurable and accessed by a fucntional unit in lieu of a separate memory
controller logic (paragraph 9). Therefore, since the memory controller logic for accessing the
cache hierarchy is still contained within cpu 110 of figure 6, it can be seen that the cph 110 is
actually a microprocessor. It follows that the --processor memory-- 112 is therefore a
'--micmprocessor memory--.

As per claim 10, since the cpu 110 of figure 6 is a reconfigurable proccss;er (able to
reconfigure its memory heirarchy to match the needs of the application it is currently running), it
can be seen that the cpu memory 112 is a reconfigurable processor memory.

As per claim 11, Paulraj depicts a reconfigurable hardware system in figure 6. Paulraj
further teaches in paragraph 26 that when a particular application is to be run by the
reconfigrable processor 110, a configuration vector is retrieved to program the programmable
memory 112 (figure 6). As shown in figure 6, the step of accesing the conﬁguratioﬁ vector is
executed outside of the reconfigurable processor 110. Therefore, the Examiner is considering
the memory that contains the configuration vectors to be a--common memory-- and a data
prefetch unit (reconfiguration unit 106 executing on the reconfigurable processor 110) accessing

the common memory in order to determine how to program the memory 112 (paragraph 29).

Petitioners Amazon
Ex. 1010, p. 215 of 399

Application/Control Number: 10/869,200 Page 11
Art Unit: 2186

The data prefetch unit -106 is --configured-- by an application to be excuted on the sysem 110
since when a new application is to be executed, the data prefetch upit is called upon (or
configured) to access the configuration vector for the particular application.

The reconfigurable processor of Paulraj has the ability to collect memory usage statistics
for a particular application and based on those statistics, create a configuration vector as taught in
9923-24. This vector allows the programmable memory module 104 of Paulraj to be
reconfigured to the most optimal memory configuration for that specific software program (ﬂ26).
As defined by the Applicant in §55 of the originally filed specification, a software program or
appl.ication is a collection of “algorithms”; therefore, the configuration vector for a particular
software program allows the system of Paulraj to instantiate a software program as hardware
since the configuration vector represents optimal configuration of the hardware (programmable
memory module 104 - element 112 of figure 6).

As per claim 12, the Examiner is considering a --memory controller-- to be the system
portion utilized when creating a new configuration vector for an application. Such a process
occurs in figure 5 and taught in paragraghs 23-25 of Paulraj. When a new configuration vector is
created by analizing performance information that has been collected for the application. The
Exarﬁiner is thereby considering the --memory controller-- to be the element of the
reconfigurable hardware system that is associated with storing the new configuration vector into
the common memory so that the vector can be accessed later when the same application is run
again.

As per claim 15, the Examiner is considering the reconfiguration module 106 of the -

reconfigurable processsor 110, as comprising two distinct elements: a --computational unit-- and

Petitioners Amazon
Ex. 1010, p. 216 of 399

Application/Control Number: 10/869,200 Page 12
Art Unit: 2186

a --data access unit--. The data access unit is the element that is responsible for accessing the
configuration vector as taught in paragraph 29 of Paulraj; or in other words, the Examiner is
considering the --data access unit-- to be the same as the --memory controler-- defined in the
rejection of claim 12. The Examiner is further considering the --computational unit-- of the
rconfiguration module 106 to be the element that sets up the programmable memory module 104
using the configuration vector that was accessed by the --data access unit-- (paragraph 29).

As per claim 16, as taught by Paulraj in paragraph 29, the --data access unit-- supplies the
configuration vector to the --computational unit-- in order to set up the programmable memory
104 as required by the application to be run o.n the reconfurable processor 110.

As per claim 17, the Examiner is considering a --data prefetch unit-- to be the
reconfiguration unit 106 of reconfigurable processor 110 (figure 6). As taught in pa_ragraph 26
and 29 of Paulraj, the --data prefetch unit-- accesses a memory in order to determine if a
configuration vector is known for a given application, and if so, the vector is retrieved (from the
memory). If this --data-- (configuration vector) is not known then a simulation is performed with
the application in order to collect performance information. The Examiner is considering the
element that executes and collects the performance data as being a --computational unit-- and the
element of Paulraj that stores the configuration vector, once determined, to be a --data access
unit-- since it stores the vector into the --memory-- from which it can be later retrieved (step 212
of figure 5).

All of the computational, data access, and data prefetch units are configured by a
program, as immediately discussed. As defined by the Examiﬁer, the “computational unit” of

Paulraj is being considered to be the element of the system of Paulraj that executes and collects

Petitioners Amazon
Ex. 1010, p. 217 of 399

Application/Control Number: 10/869,200 . Page 13
Art Unit: 2186

the performance data regarding how a specific application utilizes memory in order to determine
an optimal memory configuration as discusses in §27. Figure 5 of Paulraj shows a method for
creating a configuration vector by using the --computational unit-- in steps 204-206. The
Examiner is considering the inherent program that is being executed in order to perform the
steps of figure 5 to be the program that configures the computational unit. Therefore, it can be
seen that Paulraj suggests configuring the computational unit by a program. The program of
figure 5 configures the computational unit to collect data for a specific application’s memory
'usage statistics in order to create a configuration vector that allows the system of Paulraj to
optimally reconfigure the programmable memory module 104. Thus the computational unit can
be configured to collect memory usage statistics for a plurality of applications that are to be
executed by the reconfigurable processor 1.00 of Paulraj (23).

The same reasoning applies to the data access and data prefetch units. The program that
is executing the steps of figure 5 (i.e. running on the system of Paulraj that implements the
method) configures the data access unit to retrieve/store a configuration vector (step 212) based
on if a new configuration vector had to be created and further configures the data prefetch unit to

search for a configuration vector and retrieve that vector if found (steps 200 and 212).

As per claim 18, the --data-- (configuration vector) is transferred from the
--computational unit-- to the --data access unit-- when the configuration unit has created a
configuration vector (step 208 of figure 5). The --data-- is written to the memory --from-- the
--data prefetch unit-- since the data prefetch unit (reconfiguration unit 106) is the element that

executed the beginning of the configuration vector creation process (step 200 of figure 5). Refer

Petitioners Amazon
Ex. 1010, p. 218 of 399

Application/Control Number: 10/869,200 Page 14
Art Unit: 2186 |

to paragraph 26. Thus the Examiner is considering the data as being written --from-- the data
prefetch unit.

As per claim 19, as taught in paragraph 26, if the configuration vector is known, the
vector s retrieved from the memory to the data prefetch unit (reconfiguration unit 106). The
data is read directly from the data prefetch unit when a request to create a configuration vector is
made for a new application as shown in figure 6 since the data prefetch unit is responsible for
being the vector creation process. The data is directed from the data prefetch unit (reconfigure
logic) to be read from the memory by the data access unit to the computational unit where it is
processed to produce a configuration vector.

As per claim 20, as stated above, the configuration vector (--data--) is created by the
computational unit via acquired simulation data. The configuration vector is the resultant
product that is transferred from the memory to the data prefect unit when it is determined that the
configuration vector for the application is available (paragraph 26). Thus --all-- of the data that
is transferred is processed by the computational unit (albeit before the transfer occurs) s'm;:e the
data prefetch unit required the entire configuration vector in order to set up the programmable
memory 112,

As per claim 21, Paulraj shows in paragraph 26 that an explicit request for the
configuration vector for the current application results in the data (if it exists) selected for the
optimal configuration of the programmable memory 112 for that application.

‘ As per claim 22, the Examiner is not considering the data (configuration vector) to be the
size of a complete cache line since the data is used to create a cache hierarchy. In other words,

the caches (L1-L3) of the programmable memory 112 are not programmed when the data is -

Petitioners Amazon
Ex. 1010, p. 219 of 399

Application/Control Number: 10/869,200 Page 15
Art Unit: 2186

transferred from the memory to the data prefetch unit; therefore, the data cannot be a complete
cache line.

As per claim 23, since the Examiner defined the portion of the reconfiguration unit that
accesses the configuration file (data) from the memory, the Examiner is defining the logic that
controls the actual transfer of that data to the data prefetch unit (portion of the reconfiguration
unit that executes the fetch of the configuration vector and then programs the programmable
memory 112) to be a --memory controller--. Thus the data access unit determines whether a
configuration vector exists for an application and if so, the memory controller sends that data to
the data prefetch unit. -

As per claim 24, Paulraj shows a reconfigurable processor in figure 6 that comprises a
computation unit 110 and a data access unit (elements 120 and 114, which comprise the
reconfiguration unit 106 of figure 4 - §28). In figure 6, the data access unit can be seen as being
cloupied to the computational unit. The data access unit retrieves data (configuration vector)
from a memory internal to the data access unit (ie. reconﬁgurétion unit) and supplies the data to
the computation unit in the form of modifications to the cache FPGA module 112, Refer to §23.

| The Examiner is considering the inherent program that is being executed in order to
perform the steps of figure 5 to be the program that configures the computational unit.
Therefore, it cﬁn.be seen that Paulraj suggests configuring the computational unit by a program.
The program of figure 5 configures the computational unit to collect data for a specific
application’s memory usage statistics in order to create a configuration vector that allows the

system of Paulraj to optimally reconfigure the programmable memory module 104. Thus the

Petitioners Amazon
Ex. 1010, p. 220 of 399

Application/Control Number: 10/869,200 Page 16
Art Unit: 2186

computational unit can be configured to collect memory usage statistics for a plurality of
applications that are to be executed by the reconfigurable processor 100 of Paulraj (Y23).

The data access unit (speciﬁcally the memory ponipn used to store configuration profiles
for the different application programs) is configured by the program that is responsible for
running the method of figure 5 of Paulraj as discussed supra. When a new application is to be
run, [as a result] the program performs the steps 204-206 to configure the reconfiguration unit to
collect statistics regarding the memory usages (caches L1, L2, and L3) of the application and a
configuration vector is associated with the respective aﬁplication and stored in the
reconfiguration unit. Refer to §§23-24. When an application is known, the program executing
the method of figure 5 [as a result] configures the data access unit (reconfiguration unit) to
retrieve the associated configuration vector and apply it to the FPGA memory of the
reconfigurable processor (§29).

In other words, once the software program has been loaded into the computational unit, a
variety of simulations are performed and memory usage statistics are gathered by the
computational unit in order to create a configuration vector as taught in §§23-24. This vector
allows the programmable memory module 104 of Paulraj to be reconfigured to the most optimal
memory configuration for that specific software program (§26). As discussed supra, a software
program or application is a collection of “algorithms”; therefore, the conﬁgur_ation vector for a
pgrticular software program allows the system of Paulraj to instantiate a software program as
hardware since the configuration vector represents optimal configuration of the hardware

(programmable memory module 104 - element 112 of figure 6).

Petitioners Amazon
Ex. 1010, p. 221 of 399

Application/Control Number: 10/869,200 Page 17
Art Unit: 2186

Conclusion

Any inquiry concerning this communication or earlier communications from the
éxaminer should be directed to Shane M. Thomas whose telephone number is (571) 272-4188.
The examiner can normally be reached on M-F 8:30 - 5:30.

If attempts to reach the examiner by telephone are unsuccessful, the e.xaminer’s
supervisor, Matt M. Kim can be reached on (571) 272-4182. The fax phone number for the
organization where this application or proceeding is assigned is 571-273-8300

Information regarding the status of an application may be obtained from the Patenf
Application Information Retrieval (PAIR) system. Status information for published applications
may be obtained from either Private PAIR or Public PAIR. Status inforﬁation for unpublished |
applications is available through Private PAIR only. For more information about the PAIR
system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR
system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

om— gl

Sh M. Th _ HONG CHONG Kl
e . PRIMARY EXAMINEF

Petitioners Amazon
Ex. 1010, p. 222 of 399

Index of Claims

Application No.

Applicant(s)

10/869,200 POZNANOQVIC ET AL.
Examiner Art Unit
Shane M. Thomas 2186
; (Through numeral)
J | Rejected Caricollod n| Non-Elected Appeal
=| Allowed + Restricted I | Interference Objected
Claim Date Claim Date Claim Date
- | = o 1= _|=
YN HE g5 gl 5
ic 5 ==\ ic 5 i 5
M EIEIE 51 101
F= bk 52 102
2|V 53 103
4 [V 54 104
5 [V[V]V 55 105
6 [V]|V]Y 56 106
7 [Y]V 57 107
8 [J]|V]Y 58 108
g [J]J]Y 59 109
10 [V[V 60 110
11 [V]V]Y 61 111
[IFAEIEIE 62 112
(V] 63 113
a4 | V]V 64 114
15 [Y|V [V 65 115
EIEIE 66 116
17 [V 67 117
18 [V]|V 68 118
19 [V[V Y 69 119
20 [V ¥ 70 120
21 [V]V]V 71 121
22 |V Y 72 122
23 [V]V 73 123
24 [V][A]Y 74 124
25 75 125
26 76 126
27 7 127
28 78 128
29 79 129
30 80 130
3 81 131
32 82 132
33 83 133
34 84 134
35 85 135
36 86 136
37 87 137
38 88 138
39 89 139
40 S0 140
41 91 141
42 92 142
43 93 143
44 94 144
45 95 145
46 96 146
47 97 147
48 98 148
49 99 149
50 100 150

U.S. Patent and Trademark Office

Part of Paper No. 10152005

Petitioners Amazon
Ex. 1010, p. 223 of 399

Search Notes

10/869,200 POZNANOVIC ET AL.
Examiner Art Unit
Shane M. Thomas 2186

Application/Control No.

Applicant(s)/Patent under
Reexamination

SEARCHED

" Class Subclass Date

Examiner

SEARCH NOTES :
(INCLUDING SEARCH STRATEGY)

DATE EXMR
Updated East Search 10/15/2005 SMT
7111170-173 (le;(i search only - see 10/15/2005 SMT

INTERFERENCE SEARCHED

Class Subclass Date Examiner

search printout)

U.S. Patent and Trademark Office

Part of Paper No. 10152005

Petitioners Amazon
Ex. 1010, p. 224 of 399

