
7686214

July 12, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE
RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS
OF:

APPLICATION NUMBER: 10/869,200
FILING DATE: June 16, 2004
PATENT NUMBER: 7149867
ISSUE DATE: December 12, 2006

UNITED STATES DEPARTMENT OF COiVIMERCE 

United Stntcs Pntcnt nnd Trndcmnrk Office 

Certified by 

Under Secretary of Commerce 
for Intellectual Property 
and Director of the United States 
Patent and Trademark Office 

Petitioners Amazon 
Ex. 1010, p. 1 of 399



PTO/SB/05 (04-04) 
Approved for use throuoh 07/31/2006 

C UTILITY Attorney Docket No. SRC028 
~ 
"'t PATENT APPLICATION First Inventor Daniel Poznanovic et al. - TRANSMITTAL C Title SYSTEM AND METHOD OF ENHANCING 

(Only for new nonprovlslonal applications under EFFICIENCY AND UTILIZATION OF 0 
37 CFR 1.53(b)) MEMORY BANDWIDTH IN ..... 0 

RECONFIGURABLE HARDWARE °:o -~-
Express Mail Label No. EV331755319US 

·o, 
:::::> co 

Commissioner for Patents v~ 
APPLICATION ELEMENTS P.O. Box 1450 ~o 

Alexandria, VA 22313-1450 (0 T"'" 
T-

1. ~ Fee Transmittal Form 6. 0 Application Data Sheet. (See 37 CFR 1. 76 
(submit an original and a duplicate for fee processing) 

2. 0 Applicant claims small entity status. 7. 0 CD-ROM or CD-R in duplicate, large table 
See 37 CFR 1.27 or Computer Program (Appendix) 

3. ~ Specification [ total pages _26_ l 8. Nucleotide and/or Amino Acid Sequence Submission 
(preferred Arrangement set forth below) (if applicable, all necessary) 
- Descriptive title of the Invention a. 0 Computer Readable Form 

- Cross References to Related Applications b. 0 Specification Sequence Listing on: 
- Statement Regarding Fed sponsored R&D i. 0 CD-ROM or CD-R (2 copies); or 
- Reference to sequence listing, a table, or a ii. 0 paper computer program listing appendix 
- Background of the Invention C. 0 Statements verifying identity of above copies 
- Brief Summary of the Invention ACCOMPANYING APPLICATION PARTS 
- Brief Description of the Drawings 9. ~ Assignment Papers (coversheeUdocument(s)) 

- Detailed Description 10. 0 37 CFR. 3.73(b) Statement ~ Power of 
- Claim(s) (when there is an assignee) Attorney 
- Abstract of the Disclosure 11. 0 English Translation Document 

4. ~ Drawing(s) [ total sheets 12 l 12. 0 IDS & Form PTO/SB/OBA D Copies of IDS 

5. ~ Oath or Declaration [ total pages _3_ l 
Citations 

13. 0 Preliminary Amendment 
a. ~ Newly executed (original or copy) 14. ~ Return Receipt Postcard (MPEP 503) 
b. 0 Copy from prior appl. (37 C.F.R. § 1.63(d)) 

15. 0 Certified Copy of Priority Document(s) (for continuation/divisional with Box 18 completed) 
i. 0DELETION OF INVENTOR(S) 16. 0 Nonpublication Request Under 35 USC 

Signed statement attached deleting 122(b)(2)(B)(i) .Applicant must attach form PTO/SB/35 
inventor(s) named in prior application, 

17. ~ Other: Certificate of Mailini:1 by Express Mail see 37 C.F.R. §§ 1.63(d)(2) and1 .33(b). 

18. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a 
preliminary amendment, or In an Application Data Sheet under 37 CFR 1.76: 

D Continuation D Divisional D Continuation-in-part (CIP) of prior application No.: I 

Prior application information: Examiner: Group/Art Unit: 

FOR CONTINUATION OR DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box Sb. is considered a part of 
the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been · 
inadvertentlv omitted form the submitted application oarts. 

19. CORRESPONDENCEADDRESS 

~ Customer Number 25235 or D Correspondence address below 

Name 

Address 

City State I ZIP 

Country Telephone I Fax 

Name (Print/Type) William_.._ LC.u"'ida 
:--..... ..--l Re~is~ation No. 29,664 

r 

)Jf~ 1~ ~A /._L ( -
~7£xr--l 

(Signature) Date 

- C _) 
-

\ \\CS · 80404/0033 - 68264 v I 

Petitioners Amazon 
Ex. 1010, p. 2 of 399



EXPRESS MAIL NO. EV331755319US 
Attorney Docket No. SRC028 

Client/Matter No. 80404.0033.001 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

In re Application of: 

Daniel Poznanovic, David E. Caliga, 
and Jeffrey Hammes 

Serial No. NEW 

Filed: Herewith 

For: SYSTEM AND METHOD OF 
ENHANCING EFFICIENCY AND 
UTILIZATION OF MEMORY 
BANDWIDTH IN RECONFIGURABLE 
HARDWARE 

CERTIFICATE OF MAILING BY EXPRESS MAIL 

Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Sir: 

1. 
2. 
3. 
4. 
5. 
6. 

The undersigned hereby certifies that the following documents: 
Utility Patent Application Transmittal; 
Fee Transmittal and $928 filing fee; 
Utility Patent Application- 22 pgs. Spec, 3 pgs. Claims, 1 pg. Abstract; 
Executed Declaration for Utility Patent Application; 
12 sheets of drawings; 
Recordation Form Cover Sheet PTO 1595 with Executed 
Assignment and Recording Fee of $40.00; 

'J. Return postcard; and 
8. Certificate of Mailing By Express Mail 
relating to the above application, were deposited as "Express Mail", Mailing Label 
No. EV331755319US, with the United States Postal Service, addressed to Commissioner 
for Patents, P.O. Box 1450, Alexandria, VA 22313-1 50. 

\\ \CS · 80404/0033 · 68264 v I 

One Tabor Center 
1200 17th Street, Suite lpOO 
Denver, Colorado 80202 
(719) 448-5909 Tel 
(303) 899-7333 Fax 

Petitioners Amazon 
Ex. 1010, p. 3 of 399



0 
0) ...... 
0) 
0 
~ 

..... 
FEE TRANSMITTAL 0) 

0, 
0) 

for FY 2004 (!) 

e~e 10/01/2003. Patent fees are subject to annual revision 
Cl) 

-
r=r'.'.j A~licant claims small entity status. See 37 CFR 1.27 

TOTAL AMOUNT OF PAYMENT I($) gss.oo 
METHOD OF PAYMENT (check all that apply) 

181 check O credit card O money order O other O none 
0 Deposit Account 

Deposit 

I 50-1123 I Account 
Number 

Deposit 

I 
Hogan & Hartson L.L.P. 

I Account 
Name 

Toe Director is authorized to: (check all that apply) 
0 Charge fee(s) indicated below 1:8] Credit any overpayments 
1:8] Charge any additional fee(s) or any underpayment of fee(s) 
0 Charge fee(s) indicated below, except for the filing fee to the above-

identified deposit account 

FEE CALCULATION 

1. BASIC FILING FEE 
Large Small Fee Description 

Entity Fee Entity Fee Fee Paid 
($) ($) 

770 385 Utility Filing Fee 770.00 
340 170 Design filing fee 

530 265 Plant filing fee 

770 385 Reissue filing fee 

160 80 Provisional filing fee 

SUBTOTAL (1) I ($) 770.00 

2. EXTRA CLAIM FEES FOR UTILITY AND REISSUE 
Fee from Fee Paid 

Extra Claims below . 
Total Claims 

~w·· Er~r~ lndepende.nt -3"= X 86 = 86.00 
Claims 

Multiple Dependent 

"or number previously paid, if greater; For Reissues, see below 

Large Entity Small Entity Fee Description 
Fee 1$1 Fee($) 

18 9 Claims in excess of 20 

86 43 Independent claims in excess of 3 

290 145 Multiple dependent claim, if not paid 
86 43 "Reissue independent claims over 

original patent 
18 9 "Reissue claims in excess of 20 and over 

original patent 

SUBTOTAL (2) I ($) 158.00 I 
SUBMITTED BY Comolet"' fif anolicablel 

Name (Print/Typrl'Vil~m ,,• II . ' • /"-l -Signature I XVffe ~~-~ ~~ ]~ 
~ 

\\\CS· 80404/0033 • 68264 vl 

Complete if Known 

Application Number --------
Filing Date Herewith 

First Named Inventor Daniel Poznanovic et al. 

Examiner Name 

Group/ Art Unit 

Attorney Docket No. SRC028 

FEE CALCULATION (continued) 

3. ADDITIONAL FEES 

Large Small 
Entity Entity Fee Description Fee Paid 
Fee($) Fee($) 

130 65 Surcharge - late filing fee or oath 

50 25 Surcharge - late provisional filing fee or 
cover sheet 

130 130 Non-English specification 

2,520 2,520 For filing a request for ex parte 
reexamination 

920' 920' Requesting publication of SIR prior to 
Examiner action 

1,840' 1,840' Requesting publication of SRI after 
Examiner action 

110 55 Extension for reply within first month 

420 210 Extension for reply within second month 

950 475 Extension for reply within third month 

1,480 740 Extension for reply within fourth month 

2,010 1,005 Extension for reply within fifth month 

330 165 Notice of Appeal 

330 165 Filing a brief in support of an appeal 

290 145 Request for oral hearing 

1,510 1;510 Petition to institute a public use 
proceeding 

110 55 Petition to revive - unavoidable 

1,330 665 Petition to revive - unintentional 

1,330 664 Utility issue fee (or reissue) 

480 240 Design issue fee 

640 320 Plant issue fee 

130 130 Petitions to the Commissioner 

50 50 Processing fee under 37 CFR 1.17(q) 

180 180 Submission of Info Disclosure Simi 

40 40 Recording each patent assignment per 40.00 
property (times number of properties) 

770 385 Filing a submission after final rejection (37 
CFR § 1.129(a)) 

770 385 For each additional invention to be 
examined (37 CFR §1 .129(b)) 

770 385 Request for Continued Examination 
900 900 Request for expedited examination of a 

design application 
Other fee (specify) ..................... 
'Reduced by Basic Fling Fee Paid SUBTOTAL (3) I ($) 40.00 I 

I Registration No. 
(Attorney/Agent) I 29,664 Telep~. (719) 448-5900 

Date 
/r. ,A - loeY u 

Petitioners Amazon 
Ex. 1010, p. 4 of 399



.. 

PATENT APPLICATION 
ATTORNEY DOCKET No. SRC028 

Client/Matter No. 80404.0033.001 
Express Mail Label No. EV331755319US 

SYSTEM AND METHOD OF ENHANCING EFFICIENCY 
AND UTILIZATION OF MEMORY BANDWIDTH IN 

RECONFIGURABLE HARDWARE 

1. Related Applications. 

[0001] The present invention claims the benefit of U.S. Provisional Patent 

application Serial No. 60/479,339 filed on June 18, 2003, which is incorporated 

herein by reference in its entirety. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention. 

[0002] The present invention relates, in general, to enhancing the efficiency and 

utilization of memory bandwidth in reconfigurable hardware. More specifically, 

the invention relates to implementing explicit memory hierarchies in 

reconfigurable processors that make efficient use of off-board, on-board, on­

chip storage and available algorithm locality. These explicit memory hierarchies 

avoid many of the tradeoffs and complexities found in the traditional memory 

hierarchies of microprocessors. 

2. Relevant Background . 

. [0003] Over the past 30 years, microprocessors have enjoyed annual 

performance gains averaging about 50% per year. Most of the gains can be 

attributed to higher processor clock speeds, more memory bandwidth and 

increasing utilization of instruction level parallelism (ILP) at execution time. 

[0004] As microprocessors and other dense logic devices (DLDs) consume 

data at ever-increasing rates it becomes more of a challenge to design memory 

hierarchies that can keep up. Two measures of the gap between the 

microprocessor and memory hierarchy are bandwidth efficiency and bandwidth 

\\\CS - 80404/0033 - 68254 v2 1 

Petitioners Amazon 
Ex. 1010, p. 5 of 399



utilization. Bandwidth efficiency refers to the ability to exploit available locality 

in a program or algorithm. In the ideal situation, when there is maximum 

bandwidth efficiency, all available locality is utilized. Bandwidth utilization refers 

to the amount of memory bandwidth that is utilized during a calculation. 

Maximum bandwidth utilization occurs when all available memory bandwidth is 

utilized. 

[0005] Potential performance gains from using a faster microprocessor can be 

reduced or even negated by a corresponding drop in bandwidth efficiency and 

bandwidth utilization. Thus, there has been significant effort spent on the 

development of memory hierarchies that can maintain high bandwidth efficiency 

and utilization with faster microprocessors. 

[0006] One approach to improving bandwidth efficiency and utilization in 

memory hierarchies has been to develop ever more powerful processor 

caches. These caches are high-speed memories (typically SRAM) in close 

proximity to the microprocessor that try to keep copies of instructions and data 

the microprocessor may soon need. The microprocessor can store and retrieve 

data from the cache at a much higher rate than from a slower, more distant 

main memory. 

[0007] In designing cache memories, there are a number of considerations to 

take into account. One consideration is the width of the cache line. Caches 

are arranged in lines to help hide memory latency and exploit spatial locality. 

When a load suffers a cache miss, a new cache line is loaded from main 

memory into the cache. The assumption is that a program being executed by 

the microprocessor has a high degree of spatial locality, making it likely that 

other memory locations in the cache line will also be required. 

[0008] For programs with a high degree of spatial locality (e.g., stride-one 

access), wide cache lines are more efficient since they reduce the number of 

times a processor has to suffer the latency of a memory access. However, for 

programs with lower levels of spatial locality, or random access, narrow lines 

\\\CS - 80404/0033 - 68254 v2 -2-

Petitioners Amazon 
Ex. 1010, p. 6 of 399



are best as they reduce the wasted bandwidth from the unused neighbors in 

the cache line. Caches designed with wide cache lines perform well with 

programs that have a high degree of spatial locality, but generally have poor 

gather/scatter performance. Likewise, caches with short cache lines have good 

gather/scatter performance, but loose efficiency executing programs with high 

spatial locality because of the additional runs to the main memory. 

[0009] Another consideration in cache design is cache associativity, which 

refers to the mapping between locations in main memory and cache sectors. 

At one extreme of cache associativity is a direct-mapped cache, while at 

another extreme is a fully associative ca_che. In a direct mapped-cache, a 

specific memory location can be mapped to only a single cache line. Direct­

mapped caches have the advantage of being fast and easy to construct in 

logic. The disadvantage is that they suffer the maximum number of cache 

conflicts. At the other extreme, a fully associative cache allows a specific 

location in memory to be mapped to any cache line. Fully associative caches 

tend to be slower and more complex due to the large amount of comparison 

logic they need, but suffer no cache conflict misses. Oftentimes, caches fall 

between the extremes of direct-mapped and fully associative caches. A design 

point between the extremes is a k-set associative cache, where each memory 

location can map to k cache sectors. These caches generally have less 

overhead than fully associative caches, and reduce cache conflicts by 

increasing the value of k. 

[001 OJ Another consideration in cache design is how cache lines are replaced 

due to a capacity or conflict miss. In a direct-mapped cache, there is only one 

possible cache line that can be replaced due to a miss. However, in caches 

with higher levels of associativity, cache lines can be replaced in more that one 

way. The way the cache lines are replaced is referred to as the replaceme_nt 

policy. 

\\\CS • 80404/0033 - 68254 v2 -3-

Petitioners Amazon 
Ex. 1010, p. 7 of 399



[0011] Options for the replacement policy include least recently used {LRU), 

random replacement, and first in-first out {FIFO). LRU is used in the majority 

of circumstances where the temporal locality set is smaller than the cache size, 

but it is normally more expensive to build in hardware than a random 

replacement cache. An LRU policy can also quickly degrade depending on the 

working set size. For example, consider an iterative application with a matrix 

size of N bytes running through a LRU cache of size M bytes. If N is less than 

M, then the policy has the desired behavior of 100% cache hits, however, if N is 

only slightly larger than M, the LRU policy results in 0% cache hits as lines are 

removed just as they are needed. 

[0012] Another consideration is deciding on a write policy for the cache. Write­

through caches send data through the cache hierarchy to main memory. This 

policy reduces cache coherency issues for multiple processor systems and is 

best suited for data that will not be re-read by the processor in the immediate 

future. In contrast, write-back caches place a copy of the data in the cache, but 

does not immediately update main memory. This type of caching works best 

when a data just written to the cache is quickly requested again by the 

processor. 

[0013] In addition to write-through and write-~ack caches, another kind of write 

policy is implemented in a write-allocate cache where a cache line is allocated 

on a write that misses in cache. Write-allocate caches improve performance 

when the microprocessor exhibits a lot of write followed by read behavior. 

However, when writes are not subsequently read, a write-allocate cache has a 

number of disadvantages: When a cache line is allocated, it is necessary to 

read the remaining values from main memory to complete the cache line. This 

adds unnecessary memory read traffic during store operations. Also, when the 

data is not read again, potentially useful data in the cache is displaced by the 

unused data. 

\\\CS - 80404/0033 - 68254 v2 -4-

Petitioners Amazon 
Ex. 1010, p. 8 of 399



[0014] Another consideration is made between the size and the speed of the 

cache: small caches are typically much faster than larger caches, but store 

less data and fewer instructions. Less data means a greater chance the cache 

will not have data the microprocessor is requesting (i.e., a cache miss) which 

can slow everything down while the data is being retrieved from the main 

memory. 

[0015] Newer cache designs reduce the frequency of cache misses by trying to 

predict in advance the data that the microprocessor will request. An example of 

this type of cache is one that supports speculative execution and branch 

prediction. Speculative execution allows instructions that likely will be executed 

to start early based on branch prediction. Results are stored in a cache called 

a reorder buffer and retired if the branch was correctly predicted. Of course, 

when mis-predictions occur instruction and data bandwidth are wasted. 

[0016] There are additional considerations and tradeoffs in cache design, but it 

should be apparent from the considerations described hereinbefore that it is 

very difficult to design a single cache structure that is optimized for many 

different programs. This makes cache design particularly challenging for a 

multipurpose microprocessor that executes a wide variety of programs. Cache 

designers try to derive the program behavior of "average" program constructed 

from several actual programs that run on the microprocessor. The cache is 

optimized for the average program, but no actual program behaves exactly like 

the average program. As a result, the designed cache ends up being sub­

optimal for nearly every program actually executed by the microprocessor. 

Thus, there is a need for memory hierarchies that have data storage and 

retrieval characteristics that are optimized for actual programs executed by a 

processor. 

[0017] Designers trying to develop ever more efficient caches optimized for a 

variety of actual programs also face another problem: as caches add additional 

features, the overhead needed to implement the added features also grows. 

\\\CS • 80404/0033 - 68254 v2 -5-

Petitioners Amazon 
Ex. 1010, p. 9 of 399



Caches today have so much overhead that microprocessor performance may 

be reaching a point of diminishing returns as the overhead starts to cut into 

performance. In the Intel Pentium Ill proc~ssor for example, more than half of 

the 10 million transistors are dedicated to instruction cache, branch prediction, 

out-of-order execution and supers'calar logic. The situation has prompted 

predictions that as microprocessors grow to a billion transistors per chip, 

performance increases will drop to about 20% per year. Such a prediction, if 

borne out, could have a significant impact on technology growth and the 

computer business. 

[0018) Thus, there is a growing need to develop improved memory hierarchies 

that limit the overhead of a memory hierarchy without also reducing bandwidth 

efficiency and utilization. 

SUMMARY OF THE INVENTION 

[0019]Accordingly, an embodiment of the invention includes a reconfigurable 

processor that includes a computational unit and a data access unit coupled to 

the computational unit, where the data access unit retrieves data from an on­

processor memory and supplies the data to the computational unit, and where 

the computational unit and the data access unit are configured by a program. 

[0020) The present invention also involves a reconfigurable processor that 

includes a first memory of a first type and a data prefetch unit coupled to the 

memory, where the data prefetch unit retrieves data from a second memory of 

a second type different from the first type, and the first and second memory 

types and the data prefetch unit are configured by a program. 

[0021) Another embodiment of the invention includes a reconfigurable 

hardware system that includes a common memory, also referred to as external 

memory, and one or more reconfigurable processors coupled to the common 

memory, where at least one of the reconfigurable processors includes a data 

prefetch unit to read and write data between the unit and the common memory, 

\\\CS • 80404/0033 - 68254 v2 -6-

Petitioners Amazon 
Ex. 1010, p. 10 of 399



and where the data prefetch unit is configured by a program executed on the 

system. 

(0022] Another embodiment of the invention includes a method of transferring 

data that includes transferring data between a memory and a data prefetch unit 

in a reconfigurable processor, transferring data between the prefetch unit and a 

data access unit, and transferring the data between a computational unit and 

the data access unit, where the computational unit, data access unit and the 

data prefetch unit are configured by a program. 

(0023] Additional embodiments of the invention are set forth in part in the 

description that follows, and in part will become apparent to those skilled in the 

art upon examination of the following specification, or may be learned by the 

practice of the invention. The advantages of the invention may be realized and 

attained by means of the instrumentalities, combinations, compositions, and 

methods particularly pointed out in the appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

(0024] Figure 1 shows a reconfigurable processor in which the present . 

invention may be implemented; 

(0025] Figure 2 shows computational logic as might be loaded into a 

reconfigurable processor; 

(0026] Figure 3 shows a reconfigurable processor as in Figure 1, but with the 

additipn of data access units; 

(0027] Figure 4 shows a reconfigurable processor as in Figure 3, but with the 

addition of data prefetch units; 

(0028] Figure 5 shows reconfigurable processor with the inclusion of external 

memory; 

\\\CS - 80404/0033 - 68254 v2 -7-

Petitioners Amazon 
Ex. 1010, p. 11 of 399



[0029] Figure 6 shows reconfigurable processors with external memory and 

with an intelligent memory controller; 

[0030] Figure 7 shows a reconfigurable processor having a combination of 

data prefetch units and data access units feeding computational logic; 

[0031] Figure 8 shows the bandwidth efficiency and utilization gains obtained 

when utilizing a data prefetch unit and an intelligent memory controller to 

perform strided memory references; 

[0032] Figure 9A and Figure 98 show the bandwidth efficiency and utilization 

gains obtained when utilizing a data prefetch unit and an intelligent memory 

controller to perform subset memory references in X-Y plane; 

[0033] Figure 1 OA and Figure 1 OB show the bandwidth efficiency and utilization 

gains obtained when utilizing a data prefetch unit and an intelligent memory 

controller to perform subset memory references in X-Z plane; 

[0034] Figure 11A and Figure 11 B show the bandwidth efficiency and utilization 

gains obtained when utilizing a data prefetch unit and an intelligent memory 

controller to perform subset memory references in Y-Z plane; 

[0035] Figure 12A and Figure 128 show the bandwidth efficiency and utilization 

gains obtained when utilizing a data prefetch unit and an intelligent memory 

controller to perform subset memory references in a mini-cube; 

[0036] Figure 13 shows the bandwidth efficiency and utilization gains obtained 

when utilizing a data prefetch unit and an intelligent memory controller to 

perform indirect memory references; 

[0037] Figure 14 shows the bandwidth efficiency and utilization gains obtained 

when utilizing a data prefetch unit and an intelligent memory controller to 

perform strided memory reference together with computation. 

\\\CS • 80404/0033 • 68254 v2 -8-

Petitioners Amazon 
Ex. 1010, p. 12 of 399



DETAILED DESCRIPTION 

1. Definitions: 

[0038) Direct execution logic (DEL) - is an assemblage of dynamically 

reconfigurable functional elements that enables a program to establish an 

optimized interconnection among selected functional units in order to 

implement a desired computational, data prefetch and/or data access 

functionality for maximizing the parallelism inherent in the particular code. 

[0039) Reconfigurable Processor - is a computing device that contains 

reconfigurable components such as FPGAs and can, through reconfiguration, 

instantiate an algorithm as hardware. 

[0040) Reconfigurable Logic - is composed of an interconnection of 

functional units, control, and storage that implements an algorithm and can be 

loaded into a Reconfigurable Processor. 

[0041) Functional Unit - is a set of logic that performs a specific operation. 

The operation may for example be arithmetic, logical, control, or data 

movement. Functional units are used as building blocks of reconfigurable logic. 

[0042) Macro - is another name for a functional unit. 

[0043) Memory Hierarchy - is a collection of memories 

[0044) Data prefetch Unit - is a functional unit that moves data between 

members of a memory hierarchy. The movement may be as simple as a copy, 

or as complex as an indirect indexed strided copy into a unit stride memory. 

[0045] Data access Unit - is a functional unit that accesses a component of a 

memory hierarchy, and delivers data directly to computational logic. 

\\\CS • 80404/0033 • 68254 v2 -9-

Petitioners Amazon 
Ex. 1010, p. 13 of 399



[0046] Intelligent Memory Control Unit- is a control unit that has the ability to 

select data from its storage according to a variety of algorithms that can be 

selected by a data requester, such as a data prefetch unit. 

[0047] Bandwidth Efficiency - is defined as the percentage of contributory 

data transferred between two points. Contributory data is data that actually 

participates in the recipients processing. 

[0048] Bandwidth Utilization - is defined as the percentage of maximum 

bandwidth between two points that is actually used to pass contributory data. 

2. Description 

[0049] A reconfigurable processor (RP) 100 implements direct executable logic 

(DEL) to perform computation, as well a memory hierarchy for maintaining input 

data and computational results. DEL is an assemblage of dynamically 

reconfigurable functional elements that enables a program to establish an 

optimized interconnection among selected functional units in order to 

implement a desired computational, data prefetch and/or data access 

functionality for maximizing the parallelism inherent in the particular code. The 

term DEL may also be used to refer to the set of constructs such as code, 

data, configuration variables, and the like that can be loaded into RP 100 to 

cause RP 100 to implement a particular assemblage of functional elements. 

[0050] Figure 1 presents an RP 100, which may be implemented using field 

programmable gate arrays (FPGAs) or other reconfigurable logic devices, that 

can be configured and reconfigured to contain functional units and 

interconnecting circuits, and a memory hierarchy comprising on-board memory 

banks 104, on-chip block RAM 106, registers wires, and a connection 108 to 

external memory. On-chip reconfigurable components 102 create memory 

structures such as registers, FIFOs, wires and arrays using block RAM. Dual­

ported memory 106 is shared between on-chip reconfigurable components 102. 

The reconfigurable processor 100 also implements user-defined computational 

\\\CS - 80404/0033 - 68254 v2 -10-

Petitioners Amazon 
Ex. 1010, p. 14 of 399



logic (e.g., such as DEL 200 shown in Figure 2) constructed by programming 

an FPGA to implement a particular interconnection of computational functional 

units. In a particular implementation, a number of RPs 100 are implemented 

within a memory subsystem of a conventional computer, such as on devices 

that are physically installed in dual inline memory module (DIMM) sockets of a 

computer. In this manner the RPs 100 can be accessed by memory operations 

and so coexist well with a more conventional hardware platform. It should be 

noted that, although the exemplary implementation of the present invention 

illustrated includes six banks of dual ported memory 104 and two 

reconfigurable components 102, any number of memory banks and/or 

reconfigurable components may be used depending upon the particular 

implementation or application. 

[0051] Any computer program, including complex graphics processing 

programs, word processing programs, database programs and the like, is a 

collection of algorithms that interact to implement desired functionality. In the 

common case in which static computing hardware resources are used (e.g., a 

conventional microprocessor), the computer program is compiled into a set of 

executable code (i.e., object code) units that are linked together to implement 

the computer program on the particular hardware resources. The executable 

code is generated specifically for a particular hardware platform. In this 

manner, the computer program is adapted to conform to the limitations of the 

static hardware platform. However, the compilation process makes many 

compromises based on the limitations of the static hardware platform. 

[0052] Alternatively, a_n algorithm can be defined in a high level language then 

compiled into DEL. DEL can be produced via a compiler from high level 

programming languages such as C or FORTRAN or may be designed using a 

hardware definition language such as Verilog, VHDL or a schematic capture 

tool. Computation is performed by reconfiguring a reconfigurable processor 

with the DEL and flowing data through the computation. In this manner, the 

\\\CS - 80404/0033 - 68254 v2 -11-

Petitioners Amazon 
Ex. 1010, p. 15 of 399



hardware resources are essentially adapted to conform to the program rather 

than the program being adapted to conform to the hardware resources. 

[0053] For purposes of this description a single reconfigurable processor will be 

presented first. A sample of computational logic 201 is shown in Figure 2. This 

simple assemblage of functional units performs computation of two results 

("A+B" and "A+B-(B*C)) from three input variables or operands "A", "B" and 

"C". In practice, computational units 201 can be implemented to perform very 

simple or arbitrarily complex computations. The input variables (operands) and 

output or result variables may be of any size necessary for a particular 

application. Theoretically, any number of operands and result variables may be 

used/generated by a particular DEL. Great complexity of computation can be 

supported by adding additional reconfigurable chips and processors. 

[0054] For greatest performance the DEL 200 is constructed as parallel 

pipelined logic blocks composed of computational functional units capable of 

taking data and producing results with each clock pulse. The highest possible 

performance that can be achieved is computation of a set of results with each 

clock pulse. To achieve this, data should be available at the same rate the 

computation can consume the data. The rate at which data can be supplied to 

DEL 200 is determined, at least in significant part, by the memory bandwidth 

utilization and efficiency. Maximal computational performance can be achieved 

with parallel and pipelined DEL together with maximizing the memory 

bandwidth utilization and efficiency. Unlike · conventional static hardware 

platforms, however, the memory hierarchy provided in a RP 100 is 

reconfigurable. In accordance with the present invention, through the use of 

data access units and associated memory hierarchy components, 

computational demands and memory bandwidth can be matched. 

[0055] High memory bandwidth efficiency is achieved when only data required 

for computation is moved within the memory hierarchy. Figure 3 shows a 

simple logic block 300 comprising computational functional units 301, control 

\\\CS· 80404/0033 • 68254 v2 -12-

Petitioners Amazon 
Ex. 1010, p. 16 of 399



(not shown), and data access functional units 303. The data access unit 303 

presents data directly to the computational logic 301. In this manner, data is 

moved from a memory device 305 to the computational logic and from the 

computational logic back into a memory device 305 or block RAM memory 307 

within an RP 100. 

[0056] Figure 4 illustrates the logic block 300 with an additipn of a data prefetch 

unit 401. The data prefetch unit 401 moves data from one member of the 

memory hierarchy 305 to another 308. Data prefetch unit 401 operates 

independently of other functional units 301, 302 and 303 and can therefore 

operate prior to, in parallel with, or after computational logic. This 

independence of operation permits hiding the latency associated with obtaining 

data for use in computation. The data prefetch unit deposits data into the 

memory hierarchy within RP 100, where computational logic 301, 302 and 303 . 

can access it through data access units. In the example of Figure 4, prefetch 

unit 401 is configured to deposit data into block RAM memory 308. Hence, the 

prefetch units 401 may be operated independently of logic block 300 that uses 

prefetched data. 

[0057] An important feature of the present invention is that many types of data 

prefetch units can be defined so that the prefetch hardware can be configured 

to conform to the needs of the algorithms currently implemented by the 

computational logic. The specific characteristics of the prefetch can be 

matched with the needs of the computational logic and the format and location 

of data in the memory hierarchy. For example, Figure 9A and Figure 9B show 

an external memory that is organized in a 128 byte (16 word) block structure. 

This organization is optimized for stride 1 access of cache based computers. A 

stride 128 access can result in a very inefficient use of bandwidth from the 

memory, since an extra 120 bytes of data is moved for every 8 bytes of 

requested data yielding a 6.25% bandwidth efficiency. 

\\\CS - 80404/0033 - 682S4 v2 -13-

Petitioners Amazon 
Ex. 1010, p. 17 of 399



[0058] Figure 5 shows an example of data prefetch in which there are no 

bandwidth gains since all data fetched from external memory blocks is also 

transferred and used in computational units 301 through memory bank access 

units 303. However, bandwidth utilization is increased due to the ability of the 

data prefetch units 501 to initiate a data transfer in advance of the requirement 

for data by computational logic. 

[0059] In accordance with an embodiment of the present invention, data 

prefetch units 601 are configured to communicate with an intelligent memory 

controller 603 in Figure 6 and can extract only the desired 8 bytes of data, 

discard the remainder of the memory block, and transmit to the data prefetch 

unit only the requested portion of the stride 128 data. The prefetch units 601 

then delivers that data to the appropriate memory components within the 

memory hierarchy of the logic block 300. 

[0060] Figure 6 shows the prefetch units 601 delivering data to the RP's 

onboard memory banks 305. An onboard memory bank data access unit 303 

then delivers the data to computational logic 301 when required. The data 

prefetch units 501 couple with an intelligent memory controller 601 in the 

implementation of Figure 6 that supports a strided reference pattern, which 

yields a 100% bandwidth efficiency in contrast to the 6.25% efficiency. 

Although illustrated as a single block of ·external memory, multiple numbers of 

external memories may be employed as well. 

[0061] In Figure 7, the combination of data prefetch units 701 and data access 

units 703 feeding computational logic 301 such that bandwidth efficiency and 

utilization are maximized is shown in Figure 7. In this example strided data 

prefetch units 701 fetch only the required data words from external memory. 

Figure 8 demonstrates the efficiency gains enabled by this combination. 

Prefetch units 701 deliver the data into stream memory components 705 that is 

accessed by stream data access units 703. The stream data access units 703 

fetch data from the stream based on valid data bits that are provided to the 

\\\CS - 80404/0033 - 68254 v2 -14-

Petitioners Amazon 
Ex. 1010, p. 18 of 399



stream by the data prefetch units 701 as data is presented to the stream. Use 

of the stream data access unit allows computational logic to be activated upon 

initiation of the data prefetch operation. This, in turn, allows computation to 

start with the arrival of the first data item, signaled by valid data bits. 

· Computational logic 301 does not have to await arrival of a complete buffer of 

data in order to proceed. This elimination of latency increases the bandwidth 

utilization, by allowing data transfer to continue uninterrupted and in parallel 

with computation. 

[0062] Figure 8 illustrates the efficiency gains enabled by the configuration of 

Figure 7. Figure 8 shows a plurality of memory blocks 800 in which only one 

memory element 801 exists in each memory block 800. The configuration of 

Figure 7 allows the desired portions 801 of each memory block 800 to be 

compacted into a transfer buffer 805. The desired data elements 801 are 

compacted in order. Since only the contents of the transfer buffer 805 need be 

transferred to the computational logic, a significant increase in transfer 

efficiency can be realized. 

[0063] Figures 9A/9B, 10A/10B, 11A/11B and 12A/12B show bandwidth 

efficiency gains that are achieved in various situations when a subset of stored 

data is required for computation. , Applications store data in a specific order in 

memory. However it is often the case that the actual reference pattern required 

during computation is different from the ordering of data in memory. Figures 

9A/9B, 1 OA/1 OB, 11A/11 B and 12A/12B show an example of a X,Y,Z 

coordinate oriented data which is stored such that striding though the X axis is 

the most efficient for retrieving blocked data. 

[0064] Coupling data prefetch units in the RP 100 with an intelligent memory 

controller 601 in the external memory yields a significant improvement in 

bandwidth efficiency and utilization. Four examples are presented in the 

Figures 9A/9B, 1 OA/1 OB, 11 A/11 B and 12A/12B in which the shaded memory 

locations indicate desired data. The Figures illustrate an intelligent memory 

\\\CS - 80404/0033 - 68254 v2 -15-

Petitioners Amazon 
Ex. 1010, p. 19 of 399



controller's response to each of four different data prefetch unit's requests for 

data. Again, an important feature of the present invention is the ability to 

implement various kinds or styles of prefetch units to meet the needs of a 

particular algorithm being implemented by computational elements 301. For 

ease of illustration, each example shows the same set of computational logic, 

however, in most cases the function being implemented by components 301 

would change and therefore alter the decision as to which prefetch strategy is 

most appropriate. In accordance with the present invention, the prefetch units 

are implemented in a manner that is optimized for the implemented 

computational logic. 

[0065] Figure 9A/9B shows response to a request from an XV-slice data 

prefetch unit. Figure 10A/10B shows response to a XZ-slice data prefetch unit 

request. Figure 11A/11 B shows response to a YZ-slice data prefetch unit 

request. Figure 12A/12D shows the response to a SubCube data prefetch unit 

request. In each of these examples the data prefetch units are configured to 

pass information to the intelligent memory controller 601 to identify the type of 

request that is being made, as well as a data address and parameters, in this 

case, defining the slice size or sub-cube size. 

[0066] One of the largest bandwidth efficiency and utilization gains can be seen 

in the case of a Gather data prefetch unit working in cooperation with an 

intelligent memory controller 601. Figure 13 illustrates the activity in the 

external memory controller 601. In this example an index array 1301 and a 

data array 1303 reside in memory. A gather data prefetch unit in an RP 100 

requests a gather by specifying the access type as "gather'', and providing a 

pointer to index array 1301 , and another pointer to the data array 1303. The 

memory controller uses the index array 1301 to select desired data elements, 

indicated by shading, and then delivers an in order stream of data to the 

prefetch unit. Gains are made by delivering only requested data from transfer 

buffer 1305 (not the remainder of a data block as in cache line oriented 

systems) by eliminating the need to transfer an index array either to the 

\\\CS - 80404/0033 - 68254 v2 -16-

Petitioners Amazon 
Ex. 1010, p. 20 of 399



processor or to the memory controller, and by eliminating the start/stop time 

required when the data is not streamed to the requester. 

[0067] A further bandwidth efficiency and utilization gain is made when coupling 

a data prefetch unit with memory controller capable of computation. Figure 14 

illustrates activity in a cooperating memory controller having a computational 

component 1407 in response to a data prefetch unit. Here the prefetch units 

requests a "strided compute", providing parameters for an operator, and 

addresses, and strides for data to be operated upon. In Figure 14, the data to 

be operated on comprises "X" data 1401 and "Y" data 1403. The data 1401 

and 1403 are processed by computational component 1407 to generate a 

resultant value that is a specified function of X and Y as indicated by F(X,Y) in 

Figure 14. The resultant values are then passed to the requesting prefetch unit 

via transfer buffer 1405. In this case only computed results are passed and no 

operand data need to transferred. Accordingly, where the desired data, 

indicated by shading in Figure 14, resides across multiple blocks, efficiency is 

achieved not only by avoiding transfer of the undesired data surrounding the 

desired data, but also because only the result is transferred, not the original 

data 1401/1403. 

EXAMPLES 

[0068] Some programming examples utilizing the memory hierarchy of the 

present invention will now be illustrated. The first example illustrates how a 

computational intensive matrix multiplication problem may be handled by the 

explicitly parallel and addressable storage of the present invention. 

1. Example 1: Explicit Parallel and Addressable Storage 

[0069] Consider the matrix multiplication C = A x B, where: 

A is a matrix of size M rows by 64 columns; 

B is a matrix of size 64 rows by N columns; and 

\\\CS • 80404/0033 • 68254 v2 -17-

Petitioners Amazon 
Ex. 1010, p. 21 of 399



C is a matrix of size M rows by N columns. 

The size and shape of this problem typically arises in the context of LU 

decomposition in linear algebra libraries (e.g., LAPACK). The operation count 

for this problem would be 2*M*N*64, and the total data necessary to transport 

would be (M*64 + N*64 + M*N), making the problem quite computationally 

intensive. 

[0070] The dot-product formulation of the matrix multiplication may be 

represented as the following a triple-nested loop: 

for (i = O; l<m; I++) { 

for (j = O; j< n; j++) { 

sum= O; 

for (k = O; k < 64; k++) { 

} 

} 

sum += A[k*m*I] * BU*64+k]; 

} 

C 1 [i+j+mm] = sum; 

[0071] On a conventional microprocessor with static execution resources, these 

loops would be arranged to give stride-one data access where possible and 

also block or tile these uses to facilitate data cache hits on the B and A 

matrices, which are read many times. With the configurable memory hierarchy 

of the present invention, matrix B may be stored in on-board BRAM memory 

307 and rows of matrix A in registers. 

\\\CS - 80404/0033 - 68254 v2 -18-

Petitioners Amazon 
Ex. 1010, p. 22 of 399



[0072] The rows of matrix B may be stored in independently, locally declared 

BRAM arrays (BO, 81, ... 863). The rows are stored as independent memory 

structures, and may be accessed in parallel. Rows of matrix A may be stored in 

64 registers described with scalar variables. With these explicit data structures, 

the following pseudo code can describe the matrix multiplication: 

Load B into BRAM; 

for (i = O; i< m; i++) { 

Load ith Row of A into registers AOO to A63; 

For U = O; j< n; j++) { 

C[i+j+m] += 

AOO * bO[j] + 

A01 * b1[j] + 

A02 * b2[j] + //inner loop produces 

A03 * b3[j] + //128 results per 

A04 * b4[j] + //clock cycle. 64 rows 

A05 * b5[j] + //of B are read in 

A06 * b6[j] + //parallel 

A63 * b63[j]; 

[0073] The code is designed to minimize the amount of data motion. The A 

and B matrices are read once and the C matrix is written just once at it is 

produced. When computational resources permit, the i loop could also be 

\\\CS - 80404/0033 - 68254 v2 -19-

Petitioners Amazon 
Ex. 1010, p. 23 of 399



unrolled to process multiple rows of matrix A against matrix B in the inner loop. 

Processing two rows of A, for example, would produce 256 computational 

results per clock cycle. 

2. Example 2: Irregular Memory Access 

[007 4] Benchmarks have been developed for measuring the ability of a 

computer system to perform indirect updates. An indirect update, written in the 

C programming language, looks like: 

for (I = O; I < N; I++) { 

A[lndex[l]l) = A[lndex[I]] + B[I); 

} 

Typically, A is a large array, and Index has an unpredictable distribution. The 

benchmark generally forces memory references to miss in cache, and for entire 

cache lines to be brought in for single-word updates. The problem gets worse 

as memories get further away from processors and cache lines become wider. 

[0075] In this example, the arrays have 64-bit data. To complete one iteration 

of this loop, 24 bytes of information is required from memory and 8 bytes are 

written back for a total of 32 bytes of memory motion per iteration. On an 

implicit architecture with cache-lines of width W bytes, each iteration results in 

the following memory bus traffic: 

1. lndex[I]: 8 bytes per iteration due to stride-1 nature; 

2. B[I]: 8 bytes per iteration due to stride-1 nature; and 

3. A[lndex[I]]: W bytes read and written per iteration. 

The total amount of bus traffic is 2*W + 16 bytes per iteration. On an average 

microprocessor today, W = 128 so an iteration of this loop results in 272 bytes 

\\\CS - 80404/0033 - 68254 v2 -20-

Petitioners Amazon 
Ex. 1010, p. 24 of 399



of memory traffic when only 32 bytes is algorithmically required , making only 

12% of the data moved as being useful for the problem. 

[0076] In addition, because microprocessors rely on wide cache lines and 

hardware pre-fetching strategies to amortize the long latency to main memory, 

only a small number of outstanding cache-line misses are typically tolerated. 

Because of the irregular nature of this example, hardware pre-fetching provides 

little benefit, making it difficult to keep the memory bus saturated, even with the 

large amount of wasted memory traffic. Bus utilization on the microprocessor 

processing only consumes about 700 MB/sec of the 3.2 GB/sec available, or 

22%. Combining the poor bus utilization with the relatively small amount of 

data that is useful results in the microprocessor executing at about 2.5% of 

peak. 

[0077] The memory hierarchy of the present invention does not require that 

memory traffic be organized in a cache-line structure, permitting loop iteration 

to be accomplished with the minimum number of bytes (in this case 32 bytes of 

memory traffic). In addition, data pre-fetch functional units may be fully 

pipelined, allowing full use of available memory bus bandwidth. Data storing 

may be handled in a similar pipelined fashion. An example of the pseudo code 

that performs the random update in the memory hierarchy looks like: 

for (i=O; I < N-Gather_size; l=l+Gather_size) { 

gather ( A, Index, I, A_local, Gather_size) 

for O=); j < Gather_size; j++) { 

A_localU] = A_localU] + BU]; 

} 

scatter (A_local, Index, &A[I], Gather_size); 

} 

\\\CS • 80404/0033 • 68254 v2 -21-

Petitioners Amazon 
Ex. 1010, p. 25 of 399



[0078] This loop will pipeline safely as described by the pseudo code provided 

that the index vector has no repeated values within each Gather_size segment. 

If repeats are present, then logic within the gather unit can preprocess the 

Index vector and B vector into safe sub-lists that can be safely pipelined with 

little or no overhead. 

Conclusion 

[0079] It should be apparent that the scaleable, programmable memory 

mechanisms enabled by the present invention are available to the exploit 

available algorithm locality and thereby achieve up to 100% bandwidth 

efficiency. In addition, the scaleable computational resources can be leveraged 

to attain 100% bandwidth utilization. As a result, the present invention provides 

a programmable computational system that delivers the maximum possible 

performance for any memory bus speed. This combination of efficiency and 

utilization yields orders of magnitude performance benefit compared with 

implicit models when using an equivalent memory bus. 

[0080] Although the invention has been described and illustrated with a certain 

degree of particularity, it is understood that the present disclosure has been 

made only by way of example, and that numerous changes in the combination 

and arrangement of parts can be resorted to by those skilled in the art without 

departing from the spirit and scope of the invention, as hereinafter claimed. 

\\\CS· 80404/0033 - 68254 v2 -22-

Petitioners Amazon 
Ex. 1010, p. 26 of 399



WE CLAIM: 

1. A reconfigurable processor comprising: 

a first memory having a first characteristic memory type; and 

a data prefetch unit coupled to the memory, wherein the data prefetch 

5 unit retrieves data from a second memory of second characteristic memory 

type and wherein the memory types and data prefetch unit are configured by 

a program. 

10 

15 

20 

25 

2. The reconfigurable processor of claim 1. wherein the processor 

does not have a cache to store data from the memory. 

3. The reconfigurable processor of claim 1; wherein the data retrieved 

from the memory is not a cache line-sized unit of contiguous data. 

4. The reconfigurable processor of claim 1, wherein the data prefetch 

unit is coupled to a memory controller that controls the transfer of the data 

between the memory and the data prefetch unit. 

5. The reconfigurable processor of claim 1; wh_erein the data prefetch 

unit receives processed data from on-processor memory and writes the 

processed data to an external off-processor memory memory. 

6. The reconfigurable processor of claim 1, wherein the data prefetch 

unit comprises at least one register from the reconfigurable processor. 

7. The reconfigurable processor of claim 1, wherein the data prefetch 

unit is disassembled when another program is executed on the reconfigurable 

processor. 

8. The reconfigurable processor of claim 1 wherein said prefetch 

unit is operative to retrieve data from a processor memory. 

9. The reconfigurable processor of claim 8 ·wherein said processor 

memory is a microprocessor memory. 

\\\CS - 80404/0033 - 68254 v2 -23-

Petitioners Amazon 
Ex. 1010, p. 27 of 399



5 

10 

15 

10. The reconfigurable processor of claim 8. wherein said processor 

memory is a reconfigurable processor memory. 

11. A reconfigurable hardware system, comprising: 

a common memory; and 

one or more reconfigurable processors coupled to the common 

memory, wherein at least one of the reconfigurable processors includes a 

data prefetch unit to read and write data between the unit and the common 

memory, and wherein the data prefetch unit is configured by a program 

executed on the system. 

12. The reconfigurable hardware system of claim 1 ~, comprising a 

memory controller coupled to the common memory and the data prefetch 

unit. 

13. The reconfigurable hardware system of claim 1 ~, wherein the 

reconfigurable processor is not coupled to a cache. 

14. The reconfigurable hardware system of claim 1 ~, wherein the data 

written and read between the data prefetch unit and the common memory is 

not a cache line-sized unit of contiguous data. 

15. The reconfigurable hardware system of claim .11, wherein the at 

least of the reconfigurable processors also includes a computational unit 

20 coupled to the data access unit. 

16. The reconfigurable hardware system of claim 15, wherein the 

computational unit is supplied the data by the data access unit. 

17. A method of transferring data comprising: 

transferring data between a memory and a data prefetch unit in a 

25 reconfigurable processor; and 

transferring the data between a computational unit and the data access 

unit, wherein the computational unit and the data access unit, and the data 

prefetch unit are configured by a program. 

\\\CS - 80404/0033 - 68254 v2 -24-

Petitioners Amazon 
Ex. 1010, p. 28 of 399



18. The method of claim 17, wherein the data is written to the 

memory, said method comprising: 

transferring the data from the computational unit to the data access 

unit; and 

5 writing the data to the memory from the data prefetch unit. 

19. The method of claim 17, wherein the data is read from the 

memory, said method comprising: 

transferring the data from the memory to the data prefetch unit; and 

reading the data directly from the data prefetch unit to the 

10 computational unit through a data access unit. 

15 

20 

20. The method of claim 19, wherein all the data transferred from the 

memory to the data prefetch unit is processed by the computational unit. 

21. The method of claim 19, wherein the data is selected by the data 

prefetch unit based on an explicit request from the computational unit. 

22. The method of claim 17, wherein the data transferred between the 

memory and the data prefetch unit is not a complete cache line. 

23. The method of claim 17, wherein a memory controller coupled to 

the memory and the data prefetch unit, controls the transfer of the data 

between the memory and the data prefetch unit. 

24. A reconfigurable processor comprising: 

a computational unit; and 

a data access unit coupled to the computational unit, wherein the data 

access unit retrieves data from memory and supplies the data to the 

computational unit, and wherein the computational unit and the data access 

25 unit are configured by a program. 

\\\CS - 80404/0033 - 68254 v2 -25-

Petitioners Amazon 
Ex. 1010, p. 29 of 399



ABSTRACT OF THE DISCLOSURE 

[0081] A reconfigurable processor that includes a computational unit and a data 

prefetch unit coupled to the computational unit, where the data prefetch unit 

retrieves data from a memory and supplies the data to the computational unit 

through memory and a data access unit, and where the data prefetch unit, 

memory, and data access unit is configured by a program. Also, a 

reconfigurable hardware system that includes a common memory; and one or 

more reconfigurable processors coupled to the common memory, where at 

least one of the reconfigurable processors includes a data prefetch unit to read 

and write data between the unit and the common memory, and where the data 

prefetch unit is configured by a program executed on the system. In addition, a 

method of transferring data that includes transferring data between a memory 

and a data prefetch unit in a reconfigurable processor; and transferring the data 

between a computational unit and the data prefetch unit. 

\\\CS • 80404/0033 • 68254 v2 -26-

Petitioners Amazon 
Ex. 1010, p. 30 of 399



+
 

' ' ' ' 
10

0 
--

-V
 ' ' ' 

• 
-
-
-

-
-

-
-

-
-

-
-

-
-
-
-
-
-
-
-
·
-
•
•
 -

..
 -
-
-
-
-
-

-
-

-
-

-
-
-
-
-
-
-
·
 4

 •
 .

..
..

..
..

..
 -

-
-
---t

---
---

.... -
.....

.....
.....

... -
---

---
---

-...
..... 

---
·--

---
---

---
---

---
---

. . .
 

-
1

0
8

~
 

M
IC

R
O

C
O

D
E

 
.-

--
--

-I
 

R
O

M
 

• 
C

O
N

TR
O

LL
E

R
 

I-•-
--_

___
, 

l 
'-

-
1

 
C

O
N

FI
G

 
R

O
M

 

10
2 

• 
S

IX
 B

A
N

K
S

 D
U

A
L 

10
4 
~
 

P
O

R
TE

D
 O

N
­

B
O

A
R

D
 M

E
M

O
R

Y
 

U
S

E
R

 L
O

G
IC

 1
 

(e
.g

., 
FP

G
A

) 

• •
 

• 
D

U
A

L-
P

O
R

TE
D

 
10

6 
~
 

M
E

M
O

R
Y

 

U
S

E
R

LO
G

IC
2 

(e
.g

., 
FP

G
A

) 

• 
l 

L 
..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
. -4

 .
..

..
..

..
..

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

..
..

..
..

..
..

..
..

..
..

..
 ..

 

• •
 

FI
G

. 
1 

A
 

B
 

{ 
2

0
0

c 

: .•
 ·

··
··

··
··

··
··

··
··

··
··

··
·r

··
··

··
··

··
··

··
··

··
··

··
· 

..
 : 

! 
• 

* 
! 

i 
--1

 
I 

I 
I.-

i 
M

U
LT

 

S
U

B
 

A
+B

 
A

+
B

-(
B

*C
) 

FI
G

. 
2 

(J
) -< ~ m
 

~
 

)>
 z 0 ~
 

m
 

-i
 

J:
 

0 0 0 "T
l 

m
 

z J:
 ~ ()
 z G

) 

.,,
 m

 
0

~
 

~
 

(
J
)
~

o
 

.....
... 

::U
zm

 
~
 

g
l>

z
 

... 
, 

l\
)z

n
 

I
V

 
(X

) 
Q

 -<
 

<
 )

>
 

-
z
 

()
 0

 C
 

-i
 r= ~ 5 z 0 "T

l 

~
 

m
 

~
 

0 ~ i 0 ~
 

+~
 

Petitioners Amazon 
Ex. 1010, p. 31 of 399



+
 

30
5 

: 

30
5 

M
EM

OR
Y 

B
A

N
K

 A
 

30
5 

M
EM

OR
Y 

B
A

N
K

B
 

30
5 

M
EM

OR
Y 

B
A

N
K

C
 

l 
LD

 
BA

N
K 

A
 

LD
 

B
A

N
K

 B
 

LD
 B

AN
K 

C
 

! 
; 

-
-

-
-

-

I 
~ 

~
 

30
1 

30
1 

30
3 ~ 

30
1 

ST
_B

AN
K_

D
 

30
3 

L __
____

____
____

____
 / 

____
____

____
___

____
____

 / 
·---

----
----

----
----

----
----

----
--: 

M
EM

OR
Y 

B
A

N
K

O
 

B
LO

C
K

 R
AM

 
M

EM
OR

Y 

FI
G

. 
3 

30
7 

(/
) -< ~ m
 

~
 ~ 0 ~
 

m
 

-l
 

I 0 0 0 ,, m
 

z I )>
 z (

)
 

z G
) 

-u
m

 
0

~
 

N
 

w
~

Q
 

...
_ 

~
z
m

 
~
 

o
)
>

Z
 

.. 
, 

"'
z
O

 
l'

V
 

CX
> 

0 
-< 

<
 )

>
 

-
z
 

()
 0

 C
 

-l
 

F ~ 6 z 0 ,, ~
 

m
 

~
 

0 ~ i ~ 

+~
 

Petitioners Amazon 
Ex. 1010, p. 32 of 399



+
 

E
X

TE
R

N
A

L 
M

E
M

O
R

Y
 

P
R

E
FE

TC
H

 I I
 PRE

FE
TC

H
 I 

I PR
E

FE
TC

H
 

50
1 
~
 I 

S
TR

ID
E

 1
 

S
TR

ID
E

 1
 

S
TR

ID
E

 1
 

~
 I 

M
E

M
O

R
Y

 
1

1
 

M
E

M
O

R
Y

 
I 

I 
M

E
M

O
R

Y
 

30
5 

B
A

N
K

 A
 

B
A

N
K

 B
 

B
A

N
K

 C
 

30
5 

r-
--

--
--

-.
..

..
..

 --
-

--
--

• ·
··

··
--

--
--

--
--

-•
••

• -
--

--
--

--
--

--
--

--
--

--
--

-
••

 --
--

--
--

--
--

-~
 

' 
' 

' 
' 

' 
' 

,,,h
_.,

. 
LD

_B
A

N
K

_A
 

LD
_B

A
N

K
_B

 
LD

_B
A

N
K

_C
 

j 

30
3 

' 
i 

AD
D

 
M

U
LT

 

30
1 

30
1 

30
1 

S
T_

B
A

N
K

_D
 

t_ 
___

___
___

___
___

___
 / 

___
___

___
___

___
___

___
__ 

/ 
___

___
___

___
___

___
___

___
___

___
___

_ :
 

M
E

M
O

R
Y

 
B

A
N

K
O

 
B

LO
C

K
 R

AM
 

M
E

M
O

R
Y

 

30
7 

FI
G

. 
5 

E
X

TE
R

N
A

L 
M

E
M

O
R

Y
 

IN
TE

LL
IG

E
N

T 
M

E
M

O
R

Y
 C

O
N

TR
O

LL
E

R
 

6
0

1
~

 

P
R

E
FE

TC
H

 
ST

R
ID

ED
 

M
E

M
O

R
Y

 
30

5 
~

,
.
 B

A
N

K
 A

 

P
R

E
FE

TC
H

 
ST

R
ID

ED
 

M
E

M
O

R
Y

 
B

A
N

K
S

 

P
R

E
FE

TC
H

 
ST

R
ID

ED
 

M
E

M
O

R
Y

 
B

A
N

K
C

 

60
3 

r···
····

·1 ·
· L

D
~

N
K

_
A

 ··1 ·
· L

D
_

B
~

K
_

 B
 ··1

·· L
D

 _
 B

~
K

_
C

 ··
···

, 

30
3 

/f
\-

.-
r 

AD
D

 
I 

I M
U

LT
 

30
0 

--
--

-U
-

30
1 

30
1 

30
1 

S
T_

B
A

N
K

_D
 

t_ 
___

___
___

___
___

___
 / 

-~
 --

--
--

--
--

--
~ 

--
--

~-
--

--
--

--
--

--
--

--
--

--
--

--
--

--

30
5 

M
E

M
O

R
Y

 
B

A
N

K
O

 

FI
G

. 
6 

B
LO

C
K

 R
A

M
 

M
E

M
O

R
Y

 
30

7 

en
 -< en
 

-I
 

m
 

s: )>
 

z 0 s: m
 

-I
 

I 0 0 0 ,, m
 

z I ~ ()
 z G

) 

1J
 m

 
0

~
 

W
 

en
~

Q
 

.._
 

~
z
m

 
...

,Ii
, 

g 
)>

 z
 

.. 
, 

"'
z
O

 
l'

V
 

C
X)

 
0 

-< 
<

 )>
 

-
z
 

0
0

 

+
 ~ r= ~ a z 0 ,, s: m

 
s: 0 ~ I 0 ~
 

6 ~ 

Petitioners Amazon 
Ex. 1010, p. 33 of 399



+
 

30
5 ( 

M
E

M
O

R
Y

 
B

A
N

K
 A

 

30
5 

M
E

M
O

R
Y

 
B

A
N

K
B

 

30
5 

M
E

M
O

R
Y

 
B

A
N

K
C

 

TO
 U

P
S

TR
E

A
M

 
LO

G
IC

 

TO
 U

P
S

TR
E

A
M

 
R

E
C

O
N

FI
G

U
R

A
B

LE
 

P
R

O
C

E
S

S
O

R
 M

E
M

O
R

Y
 

1
-
-
-
-
-
-
-
-
-
-
-
-
-
1

 

I 
30

5 
I 

I 
I 

I 
I 

I 
I 

1 
M

E
M

O
R

Y
 

I 

B
A

N
K

 F
 

I I I 

I I I I I I I I I I 
r·

--
--

--
--

--
--

--
-,-

--
--

--
--

--
···

···
·--

--
-,-

--
--

--
--

--
--

--
--

-··
x 

··-
···

···
 

' 

I L
D

_B
A

N
K

_A
 
I L

D
_B

A
N

K
_B

 
I L

D
_B

A
N

K
_C

 
I 

-··
·--

---
---

-··
---

--
....

....
.. !

 

30
0 
~
 

30
5 

~
 

40
3 

AD
D

 

30
1 

30
2 ~ S

T_
B

A
N

K
_D

 

M
E

M
O

R
Y

 
B

A
N

K
O

 
B

LO
C

K
 R

AM
 

M
E

M
O

R
Y

 

FI
G

. 
4 

30
1 

30
1 

30
3 

30
7 

P
R

E
FE

TC
H

 
i 

ST
R

ID
ED

 
i 

I 
P

R
E

FE
TC

H
 

B
A

N
K

 F
 
r 4

01
 

UN
IT

 

•
•
•
•
•
•
•
•
•
•
•
•
•
·
-
·
•
•
•
 

•
•
•
•
•
•
•
•
 I

 

JO
IN

 

B
LO

C
K

 
R

AM
 

M
E

M
O

R
Y

 30
8 

-
-
-
-
-
-
-
-
-
-
-
-
~

 

TO
 D

O
W

N
S

TR
E

A
M

 
LO

G
IC

 

I I 

I ME:
O

R
Y

 
I~ 

u,
 -< u,
 

--
l m
 

s: )>
 

z 0 s: m
 

--
l 

J:
 

0 0 0 "T
l m
 

z J:
 

)>
 z 0 z G>
 

-u
 m

 
0

~
 

u,
 ~
 0

 
;:u

 z
 f

ii 
0 

)>
 
z 

2
z
O

 
C

X)
 
0 

-< 
<

 )
>

 
-
z
 

O
o

 
C

 
--

l 
j=

 ~ 0 z 0 "T
l s: m
 s: 0 ~ ~ z 0 ~
 

+
 ~ ~
 

Petitioners Amazon 
Ex. 1010, p. 34 of 399



+
 

7
0

1
~

 

7
0

5
~

 

P
R

E
FE

TC
H

 
ST

R
ID

ED
 

S
TR

E
A

M
 

r·--
---

---

P
R

E
FE

TC
H

 
ST

R
ID

ED
 

S
TR

E
A

M
 

P
R

E
FE

TC
H

 
ST

R
ID

ED
 

S
TR

E
A

M
 

'-
-
-
-
,
-
-
-
-
-
'-

-
-
.
.
.
-
-
-
'-

-
-
-
-
,
-
-
-
-
-
' 

30
0 

--
-0

--

30
5 FI
G

. 
7 

M
E

M
O

R
Y

 
B

A
N

K
O

 

30
1 

AC
 B

LO
C

K
 R

AM
 

M
E

M
O

R
Y

 

M
U

LT
 

30
1 

30
1 

30
7 

(/
) -< ~ m
 

~
 ~ 0 ~
 

m
 

-4
 

I 0 0 0 'T
l m
 

z I )>
 z ()
 z G

) 

"'
O

m
 

0
~

 
U

1 
C

/l~
Q

 
-.

..
 

:::u
 z

 m
 

~
 

g
)>

z
 

..
 , 

"
'z

()
 

l'
V

 
ex

, 
0 

-< 
$

~
 

()
 0

 

+
 C

 
-4

 r= ~ 0 z 0 'T
l 

~
 

m
 

~
 

0 ~ i ~ ~ I 

Petitioners Amazon 
Ex. 1010, p. 35 of 399



SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZAilON OF MEMORY BANDWIDTH ... 

+ 

0 
0 
co 

~ 

\ 
0 
0 
co 

POZANANOVIC 
SRC028 

LO 
0 
ex:> 

6/12 + 

Petitioners Amazon 
Ex. 1010, p. 36 of 399



SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF MEMORY BANDWIDTH ... 

~ 

' f~ 

' ' 
' ' 

~~ ', '~ 
~ ' ' ~~ ~ 

~~" ' ' 
" ~ ' 

" ' ' ' ' ~, 
' ' ', ' ~" ' 

','- ' ' 
' ' 

' 

+ 

' ' 
' ' 

' ~ ' 
' ' 

' 
H~ 

~ 
' 

' 
~ 

~ 
' 

' 

~ 

' ' 
' ' ' 

' ~ 

' ' 
' '~ ' 

' 

POZANANOVIC 
SRC028 

7/12 

'-

1 
I.O N 

~ _J oO 
0::: (..) 

I.O ..... 

~ _J oO 
0::: (..) 

0::: 
UJ 
u.. 
u.. 
::::, 
m 
0::: 
w 
u.. 
(/) 
z 
~ 
I-
~ 
(..) 

+ 

Petitioners Amazon 
Ex. 1010, p. 37 of 399



SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF MEMORY BANDWIDTH ... 

' ' ' 
' ' 

' ' ~ ' ' 

" ' 
" " ' 

' 
~ "" " r 

~"~ "r 

r 

""" 
r 

r 
~ " 
" " r 

~ " 
"r... r 

',, "r 
" ' 

' 

+ 

' ' 
' 

' ' ~ ' 
' ' 

' ' ' 
' ' ' ' 

' 
' ' 

' ' 
' ' ' 

POZANANOVIC 
SRC028 

8/12 

..- C"1 s: _J 

oO 
0:: u 

0:: 
w 
LL 
LL 
::, 
co 
0:: 
w 
LL 
Cl) 
z 
~ 
I-
~ u 

+ 

) 

Petitioners Amazon 
Ex. 1010, p. 38 of 399



SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF MEMORY BANDWIDTH ... 

' 
' ' 

' ' ' 
~f\ ' ' 

' ' 
'r-. ' f\ ~ 

f\ ~~ 

r"r rr 
r 

r 
rr r 

r 

"' 
r 

r 
~ 

~ 

~ 
r 

~ 
~ '' 

r~ ', r 
' f\ 

',, 

+ 

' ~ ' 
' ' ' ' 

-..._- ~ ' ' 
' ' 

' ' 
' ' ' 

~ ~ '' ' 

' 
' 

' 
' 

' 

'' 
'' .,, 

POZANANOVIC 
SRC028 

9/12 

' 

~ 
"~ 

q: 
"t-
"t-. 
(!) 

u:: 

NN 
~ _J 

oO 
0::: (.) 

..-
~ _J 

oO 
c:::: (.) 

0::: 
w u. 
u. 
:::, 
co 
0::: 
w 
u. 
Cf) 
z 
~ 
I-
~ 
(.) 

+ 

ca 
"t-
"t-. 
(!) 

re 

Petitioners Amazon 
Ex. 1010, p. 39 of 399



SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF MEMORY BANDWIDTH ... 

+ 

POZANANOVIC 
SRC028 

10/12 

0:: 
0 
0 
<{ 

+ 

Petitioners Amazon 
Ex. 1010, p. 40 of 399



SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF MEMORY BANDWIDTH ... 

' 

+ 

POZANANOVIC 
SRC028 

11/12 

0:::: 
w 
u.. 
u.. 
::> 
cc 
0::: 
UJ 
u.. 
(/) 

z 
~ 
I-
~ 
<.) 

+ 

Lt') 

g 
,-

Petitioners Amazon 
Ex. 1010, p. 41 of 399



SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF MEMORY BANDWIDTH ... 

+ 

a:: 
w 
u. 
u. 
=> co 
a:: 
w 
u. 
(f) 
z 
~ r-
:2: 
(.) 

POZANANOVIC 
SRC028 

12/12 

LO 
0 ._,. 
...... 

+ 

Petitioners Amazon 
Ex. 1010, p. 42 of 399



• I •• ..., 

PTO/SB/01 (08-03 

DECLARATION FOR Attorney Docket No. SRC028 

UTILITY OR DESIGN First Named Inventor Daniel Poznanovic et al. 

PATENT APPLICATION COMPLETE IF KNOWN 

(37 CFR 1.63) Application Number --------
l8l Declaration OR D Declaration Filing Date Herewith Submitted Submitted after 

with Initial Initial Filing-- Art Unit 
Filing surcharge 37 CFR 

1.16( e) required Examiner Name 

I hereby declare that: 

Each inventor's residence, mailing address, and citizenship are as stated below next to their name. 

I believe the inventor(s) named below to be the original and first inventor(s) of the subject matter which is claimed and 
for which a patent is sought on the invention entitled: 

SYSTEM AND METHOD OF ENHANCING EFFICIENCY AND UTILIZATION OF MEMORY 
BANDWIDTH IN RECONFIGURABLE HARDWARE 

the specification of which 

l8l is attached hereto 

OR 

D was filed on 

I 

I as U.S. Application No. or 

I I (MM/DDNYYY) 

and was amended on 

PCT International AppHcaUon No. 

(MM/DDNYYY) (if applicable) 

I hereby state that I have reviewed and understand the contents of the above identified specification, including the 
claims, as amended by any amendment specifically referred to above. 

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56, including 
for continuation-in-part applications, material information which became available between the filing date of the prior 
application and the national or PCT international filing date of the continuation-in-part application. 

I hereby claim foreign priority benefits under 35 U.S.C § 119(a)-(d) or (f) , or 365(b) of any foreign application(s) for 
patent or inventor's or plant breeder's rights certificate(s), or§ 365(a) of any PCT international application which 
designated at least one country other than the United States of America, listed below and have also identified below, 
by checking the box, any foreign application for patent or inventor's or plant breeder's rights certificate(s), or any PCT 
international application having a filing date before that of the application on which priority is claimed. 

Prior Foreign Appl. No.(s) Country Foreign Filing Date Priority Not Certified Copy Attached? 
(MM/DDNYYY) Claimed Yes No 

D D D 
D D D 

D Additional foreign application nos. are listed on a supplemental priority data sheet PTO/SB/028 attached hereto: 

I hereby claim the benefit under 35 U.S.C. § 119(e) of any United States provisional application(s) listed below. 
Application Number(s) Filing Date (MM/DDNYYY) 

60/479,339 06/18/2003 

\ \\CS - 80404/0033 - 68264 v I 

Petitioners Amazon 
Ex. 1010, p. 43 of 399



. .. 

DECLARATION - Utility or Design Patent Application 

I hereby claim the benefit under 35 U.S.C. 120 of any U.S. application(s) or 365(c) of any PCT international 
application designating the United States of America, listed below and, insofar as the subject matter of each of the 
claims of this application is not disclosed in the prior United States or PCT international application in the manner 
provided by the first paragraph of 35 U.S.C. 112, I acknowledge the duty to disclose information which is material 
to patentability as defined in 37 CFR 1.56 which became available between the filing date of the prior application 
and the national or PCT international filini:i date of this ao olication 

U.S. Parent Application or PCT Parent No. Parent Filing Date Parent Patent No. 
(MM/CONY) (if aoolicable) 

0 Additional U.S. or PCT international aoolication nos. listed on PTO/SB/02B attached hereto. 
As a named inventor, I hereby appoint the following registered practitioner(s) to prosecute this application and to 
transact all business in the Patent Trademark Office connected therewith: 

181 Customer Number 25235 
OR 

0 Rei:iistered practitioner(s) name/reqistration number listed below 

Registration Registration 
Name Number Name Number 

0 Additional rei:iistered practitioner(s) named on suoolemental sheet PTO/SB/02C attached hereto. 

Direct all correspondence to: 181 Customer Number 25235 OR 0 Correspondence 

address below 

Name 

Address 

City I State I ZIP 

Country I Telephone Fax 

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on 
information and belief are believed to be true; and further that these statements were made with the knowledge 
that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 
1001 and such willful false statements mav jeopardize the validity of the aoolication or any patent issued thereon. 

Name of Sole or First Inventor: I O A petition has been filed for this unsigned inventor. 

Given Name (first and middle [if any]) Family Name or Surname 

Daniel Poznanovic 

Inventor's ~{-)6\1,-!- I Date lr \ I:, _ 0 +-
Signature 

Residence City Colorado 
, 

State Colorado Country USA Citizenship USA 
Springs 

Mailing Address 1136 Middle Creek Parkway 

City Colorado State Colorado ZIP 80921 Country USA 
Springs 

181Additional inventors or a legal representative are being named on the_ 1_supplemental additional inventor(s) sheet(s) 
PTO/S8/02A or 02LR attached hereto. 

\\\CS· 80404/0033 . 68264 vi 

Petitioners Amazon 
Ex. 1010, p. 44 of 399



DECLARATION 

Name of Additional Joint Inventor, if any: 

Given Name (first and middle [if any]) 

David E. 

ADDITIONAL INVENTOR(S) 
Supplemental Sheet 
Page_1_of _1_ 

D A petition has been filed for this unsigned inventor 

Family Name or Surname 

Caliga 

Inventor's b_j C~, 1el11e I 2<x> 1-Signature Date 

Colorado State co Country USA Citizenship USA 
Residence: City Springs 

Mailing Address 8445 Lauralwood Lane 

City Colorado State co ZIP 80919 Country USA 
Springs 

Name of Additional Joint Inventor, if any: D A petition has been filed for this unsigned inventor 

Given Name (first and middle [if any]) Family Name or Surname 

Jeffrey Hammes -
Inventor's ~~~ ~ '~1 G,-o'f SiQnature ~~ _;;;r ( Date 

~~,/ 
IUHIUU State co Country USA Citizenship USA 

Residence: City Springs 

Mailing Address 870 Vindicator Dr., #311 

City Colorado State co ZIP 80919 Country USA 
Springs 

Name of Additional Joint Inventor, if any: D A petition has been filed for this unsigned inventor 

Given Name (first and middle [if any]) Family Name or Surname 

Inventor's 
Sionature Date 

Residence: City State Country Citizenship 

Mailing Address 

City State ZIP Country 

\\\CS · 80404/0033 · 68264 vi 

Petitioners Amazon 
Ex. 1010, p. 45 of 399



PATENT APPLICATION SERIAL NO. 

06/21/2004 HVUON&1 00000046. 10869200 

01 FC:1001 
02 FC:1202 
03 FC:1201 

PT0-1556 
(5/87) 

770.00 OP 
72.00 OP 
86.00 OP 

---------

U.S. DEPARTMENT OF COMMERCE 
PATENT AND TRADEMARK OFFICE 

FEE RECORD SHEET 

Petitioners Amazon 
Ex. 1010, p. 46 of 399



Appllcat,on orDocket Numt>er 

PATENT APPLICATION FEE DETERMINATION RECORD 
(o~(q 'l-0 0 Effective October 1, 2003 

CLAIMS AS FILED - PART I SMALL ENTITY OTHER THAN 
(Column 1) (Column 21 TYPE c::J OR SMALL ENTITY 

TOTAL CLAIMS )l,f RATE FEE RATE · FEE 
I 

FOR NUMBER FILED . NUMBER EXTRA BASIC FEE 385 .00 OR BASIC FEE 770.00 

TOTAL CHARGEABLE CLAIMS 1.. /J minus 20= 
. u XS 9= XS18= ·72--OR 

it ' . 
INDEPENDENT CLAIMS minus 3 = \ X43= X86= ~Cb 
MULTIPLE DEPENDENT CLAIM PRESENf 

OR 

D 
+145= +290= -OR 

• If the difference in column , is less than zero. enter ~o .. in column 2 
TOTAL OR TOTAL qv,( 

CLAIMS AS AMENDED - PART II OTHER THAN 

(Column 1) (Column 2) (Column 31 SMALL ENTITY OR SMALL ENTITY 
CLAIMS HIGHEST ADDI- ADDI-ct REMAINING NUMBER PRESENT 

TIONAL RATE TIONAL .... AFTER PREVIOUSLY EXTRA RATE z AMENDMENT PAID FOR FEE FEF w· 
:E 

Total Minus X$18= 0 • - = X$9= OR z 
w Independent Minus ..... = 

. 
:E . 

X43= X86= 
ct FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM r 1 

OR 

+145= OR +290= 

TOTAL TOTAL 
ADDIT. FEE OR ADDIT. FEE 

(Column 1) (Column 2) (Column 3) 
CLAIMS HIGHEST 

ADDI- ADDI-m REMAINING 
. 

NUMBER PRESENT .... AFTER PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL z AMENDMENT PAID FOR FEE FEE w 
:E 

Total Minus C • ... = X$ 9= OR X$18= z 
w Independent • Minus .... = :E X43= . OR X86= 
~ FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM n 

+145= OR +290= 
• 

TOTAl. TOTAL 
AODIT. FEE. OR ADDIT. FEE 

(Column 1) (Column2) 'Column 3) 
CLAIMS HIGHEST ' ADDI- ADDI-(.) REMAINING NUMBER PRESENT .... AFTER PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL z AMENDMENT PAIOFOR FEE FS:S: w 

:E 
Total C • Minus - = X$ 9= OR X$18= z 

w Independent • Minus ..... = :E X43= X86= ct 
FIR$T PRESENTATION OF MULTIPLE DEPENDENT CLAIM n OR 

+145= OR +290= 

• If the entry in COiumn 1 is less than the entry, in column 2, write ·o· in COiumn 3. TOTAL . TOTAL 
- If the "Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter "20.' AODIT. FEE .OR ADDIT. FEE 
-11 the "Highest Number Previously Paid For' IN THIS SPACE is less than 3, enter "3.' 

The "Highest Number Previously Paid For· (Total or Independent) is the highest number· found in the appropriate box in column 1. 

FOAM PT0-875 /Rev. 10/03l Patent and TraoemaTk Offlce .. tJ .S. DEPARTMENT OF COMMERCE 

Petitioners Amazon 
Ex. 1010, p. 47 of 399



Ref 
# 

Hits Search Query DBs Default Plurals Time Stamp 
Operator 

~~~~~~~~~~~~ ------~ 1: S' ... ...... 10:r: :+~&llrigJt$.:i~d1'·':'('p}8tesibt IY : Us PGPU1F :,2,=, :,o,,': 04:',=',• ... =, =,1·,.,1,:,•,2,',',·1','.,i .•. • ,.,i,', •. :.1, • ... 1.:.:. 1.•.3.' .•. 9 .•.•. ' 

··· ···· · : ;; : ::rn1~t<>:f prp~~s,9f!tt~FPlP~~s,9ri !:p$~.iTt!)• I rni !iii JI:I 
S2 125 reconfigur$3 adj (processor 

micro-processor CPU 
microprocessor) 

US-PGPUB; OR 
USPAT 

1 •~1:::::1 n•• Il~J ......... .................................... .................... ... ================ ============= ================== 
•• t~dhri~iJr1a•adi:(pr¢~¢S$¢t[ •••••••••••••••••• U.$.fi?(lPOS; •: 
=• +n1cr&•'processoWtPu •••••••••• =··==••======•=••••••··•• •• useArn••••:::::• 

1::::::::•::::u::::•::::::::: ::::::::: :::i ::Jrnisr9~r9F,~s,9n) l.~r~!i'i?iit;{la,$,l·········· •••·•·• ................. .. , .. 
S4 0 reconfigur$3 adj (processor US-PGPUB; OR 

micro-processor CPU USPAT 
microprocessor) and prefetch 

............. .... .. ... ..... .............. .... .. .......................................... ............... .... ....... 

111~~1;i~~M@tj~~t~j· t:n~!l~~t~~@l •• 1!!!!•! !! ~i~~M~~· · 
S6 847 smc.as. US-PGPUB; 

USPAT 

• $mf~$/~h~:;;71.1.;Ed~$.:::• ............... ::::: ws;p$#w.$.H 
========================================•=•===•=•=•==•=•"••••••••i•:::•:::::::•::::: f fUSPAT:•:••••••••• 

S8 0 smc.as. and "712" .clas. US-PGPUB; OR 
USPAT 

.......................... .. .. .. ................. ............ ................ ................ ............... ..... 

{gtht:ina!ddmpJterS)J~g. i8~ ·· :::::: ::tJs;pGt>Us{ 
I : : 1 ••••• ••••••••••••••• 1•• ' 'iii'\~1~s. ••••••·· ··• ••••••••••====•=••••••••••••••:••••••••••••••• WSP:At ••••• •= 

SlO (smc and computers) .as. 

S12 (src and computers).as. 

... ........................... .................................. ............ 

US-PGPUB; OR 
USPAT 

0.s.ipc§P0e.; 
Q$PAT ' 
US-PGPUB; OR 
USPAT 

.......................... .. 

ON 2004/11/26 15:49 

........................ ...... ..... ............ 

•• 2004)jj}i6:is:sc>: •• 
:::::::::: :::::·:::::: ·· ··················· · · 

. ..... .. 

............ ..... . ....... . 

ON 2004/11/26 15:50 

:::::: : : ::::::::::: : ::::::::::::::::::::::::::::::::::: 

=.' ·,=o· •·.·N· .= · =.= ,. ,, ... , =•:2 .. ·o• ·o·:·4 .. ·1=•1 .. •2:-:1=·0 ... 2 .. ••·1·•6 .. :"3 ... 4 ... •• 
:::::::: ::· .. ·: : : . : ::· .. ,: .: ::: 

ON 2004/12/02 16:34 

. ... ... ... ....... .......... ... ............... .. 

: : ?PP#ii~/ ti?: :t~i 3s :• 

ON 2004/12/02 16:35 

ON 
. ............... .... ........ ........... ...... . 

7fa/t10:2c,gt•~ha•avn~mi2$4 •·· 
•r~~r~•FPrri~u,f~$, ••••• ••••••••••·•••••• •·•···== ::~~[i~Mm; 1 T•••••••••• YI• • 

•?PP#h"2/ti? :i~f39 •• 

S14 

•s1s • 

S16 

S18 

S20 

711/170.ccls. and dynamic$4 
near3 configur$5 with cache 

ri9hfigJr~b.i¢ ~dJ pr~¢,$$9.t 
.... .... .. ::::::=:::: ·::::::1::111:1:11::11:}: 

::::::::::::::::::: :::::::::::::::::::::::: :::::::::;:::::::;; ;;;;:: :::: :::• 
4 "206189" .ap. 

5 "869200''.ap. 

376 711/170.ccls. and (reconfigur$5 
rearrang$4 application adj 
specific) 

Search History 1/10/05 7:53:03 AM Page 1 
C:\APPS\EAST\Workspaces\10869200.wsp 

US-PGPUB; 
USPAT 

2004/12/02 16:39 

............................ .. .............. . ..................... . 

ws;PGP0${ ~p(),1/i,~/Qi!i,1:}2 
UsPArn •••·•••·••• J: ••••••••••• • I:\ • • • • :i 

US-PGPUB; OR 
USPAT 

0.s.;PGP(.Je.I 
:usPATY •• 
US-PGPUB; OR 
USPAT 

ON 

ON 

ON 

2004/12/02 17:34 

2004/12/03 15:30 

............................................ 

~991.(tti:9:3=: i,$:3,q 

2004/12/03 18:33 

Petitioners Amazon 
Ex. 1010, p. 48 of 399



S21 

S23 

···s2·· ····· l:.:.4H 

S25 

······ ········ ·· · 

Ts26 H 

S27 

S29 

S31 

93 711/170.ccls. and matrix 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . .. . 

i~)r 11p.di1( ~m~ , pga u ... 

US-PGPUB; OR 
USPAT 

................ . ... . ..... . 

~~~~~~~ ... 

186 712/15.ccls. US-PGPUB; OR 
USPAT 

t11J.f1f~~1f ~8~::c1.pp11~~ti()&::::::• ::iws;AGPV~; ::oR •••r:~ri. $p~ifi¢ ~ppl!~~!Pnt~P¢,¢in¢) •:. • • USPAI •••••••••••• 
196 reconfigurable adj processor US-PGPUB; OR 

USPAT 
............................... 

usupc;puat .... 
UseAt•••:::•:: .. .. ............ .... 

6 526 and memory with US-PGPUB; OR 
reconfiguring USPAT 

iii/i1oi~tl~. ~8d ((r~hrlrigµf$$ ••• •• Ws.Upc;pQ~; QR • 
r~ rrahg$4) and applit~tioh ~df : useAt · · ·· •• ~P.~¢ifii) .. • ••••• ••••··· ................. ····· ...... . 

50 711/170.ccls. and FPGA US-PGPUB; OR 
USPAT 

·· fii/iipi~s1~. ~ri~ r~~pflflQ~f ••••••••·• m~~~P8:f OR • 
1 "6779131".pn. US-PGPUB; OR 

USPAT 

ss2•••·· •• <1'.~779-ilitifyijPN.••·•·•····· ········•••••• H•• •• us#Arn •••····· 
I 

.1 ~ 1···· ··· ········ ····················· ·········· ··· ···· ···· ··················································· 

S33 9 ("5892896" I "6060339" I US-PGPUB; OR 
"6081463" I "6154851" I USPAT; 
"6204562" I "6363502" I USOCR 

: 

It 
S35 

S37 

S39 

"6405324" I "6483755" I 
"6530005").PN. 

II I I 

4 711/170.ccls. and programmable 
adj logic adj blocks 

3 711/171-172.ccls. and FPGA 

................................................. ...... ···- ...... . 

zii/iiolc:cis. and t=PGA > J . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

50 711/170.ccls. and FPGA 

Search History 1/10/05 7:53:03 AM Page 2 
C: \APPS\EAST\ Workspaces\10869200. wsp 

........ .. . 

Us;PGPUB; OR : 

~gbtl 
US-PGPUB; OR 
USPAT; 
USOCR 

0$Upc;pt.J~; dR : 
USPAT; H 
USOCR 

US-PGPUB; OR 
USPAT 

0$URGP&8:~ OR • 
USPAT 

US-PGPUB; OR 
USPAT; · 
USOCR 

ON 2004/12/03 15:54 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

:ON ?PP#t~*/~3,)~i1P: 
ON 2004/12/03 16:41 

ON 2004/12/03 18: 18 

............................................... 

••?PCl#ii21ij•iit2t •• 
ON 2004/12/03 18:30 

•• ioo~112Jo3 •1ij:j4•• 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

ON 2004/12/13 16:42 

ON 2004/12/13 11:25 

........................... ........................ 

ON ··•• ~pQ#/tifl~)f2§: 
ON 2004/12/13 11 :42 

ON 2004/12/13 12: 16 

ON 2004/12/13 16:42 

ON 2004/12/13 16:42 

Petitioners Amazon 
Ex. 1010, p. 49 of 399



S40 

S42 

S44 

$4$ 

S46 

S48 

sso 

ssi 

S52 

S54 

S56. 

3 711/171-172.ccls. and FPGA US-PGPUB; OR 
USPAT; 
USOCR 

=i:>2.~Y IYYYI [W$Jpc:;P,µ~;'. 

78 711/170.ccls. and reprogram$5 

l~~bt~iiJi!i 
US-PGPUB; OR 
USPAT 

• iiizi7i;iiz!2di]~'hd •• i ::::": :::: ::: : :::: : .. • •. • •• • .••. •uu.·.:· .• . :.Ss.· .. ••.~P •. · . ... PA•.·.G .• T·· ·.· ... p •. • .•. • .•. u .. ',': B:· ··· ··· ··'.· .. J. OR i < • •:<r~Pro,~r~rn~$/~~Pr~~~~>I .. .. .. .. .. . 
70 S43 not S42 

.. 7fa/i70;1.7i,2.d{: ~hcl·· ········ ················ •• ((c:prf'ig~f$$).t,; :(c:pntig~rf 6).~~1) 
14 711/170-172.ccls. and 

(( configur$5). ti. ( configur$6).ab.) 
and prefetch 

...........•.•... . .... .• .••.................. . -................................. . 

•:7i}ft7Q~1.i2..i~i$ .• ~(,cl ·························· • ((c:ontigui1S).ti.••<c:onnguri6>1abi) 
• a11~ •~a11~wi~th•·••······· ···· ······· ·············· ····· ···· 

6 711/170-172.ccls. and 
((configur$5).ti. (configur$6).ab.) 
and vhdl 
. . . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . . . . . . ' . . . . . . . . . . . . . 

::7ii/i70Ji72.,2.di,: ~nd ••••······················ •• ((c:phf'igur$s).ti l •<c:qtjtig~rM)J~~s and m~tri*. · · ······ ·············· 

US-PGPUB; OR 
USPAT 
....... ... ... .............. . 

tJs#>t;t,us? 
Ust>AT / 
US-PGPUB; OR 
USPAT 

. .......................... . 

0S.~PGP0${ OR ••• 
lJSPAT 

US-PGPUB; OR 
USPAT 

12 711/170-172.ccls. and US-PGPUB; OR 
((configur$5).ti. (configur$6).ab.) USPAT 
and parallelism 

3 711/170-173.ccls. and 
reconfigurable adj processor 

........................................................................ 

•• ('.'20030046530"• ,• '.15737524'! . 
•• t$.M:i$.i.$.H:1: ··$$:i.$tP.1t• 1 ••••••••••• 

•• ·•s9.s3s1tr•1•··E>ooooH0

•1 ••••••••••· 

•• J)$iQ441$tt ••1• "621F2:1~"• 1•••• •••···· 
• E>33.~.81~ ·)l%····· ······ 

207 reconfigurable adj processor 

................................................. .. ... ·-··· 

••Jepo,hflgMr~~j~·~~j?.Pf?:~~~pr 

308 SSS not S54 

. ' . . . . . . . . . . . . . . . 

UsUp(;pus; OR 

WsPArn•••••••••• 
US-PGPUB; OR 
USPAT; 
JPO 

···························· 

j .J$tP§P,l.J6,1 OR 

l~~®~i iill:i 

US-PGPUB; OR 
USPAT; 
JPO 

9stpc:;r,µB,; 
=lJ$P:AT; , 
•JPO •••••••••••••=•• 

US-PGPUB; OR 
USPAT; 
JPO 

Search History 1/10/05 7:53:03 AM Page 3 
C:\APPS\EAST\Workspaces\10869200.wsp 

ON 

ON 

ON 

ON 

ON 

ON 

ON 

ON 

2004/12/13 16:43 

2064)12Ji3l.6:43 •• 

2004/12/14 15:49 

••:20641i2J14 iis:so•: .............. ······-························ 

2004/12/14 15:51 

2004/12/14 15:52 

2004/12/14 15:52 

2004/12/14 15:53 

. . . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . 

~pb4ji2Ji7 i):q3. 

2004/12/30 20:10 

2004/12/30 19:29 

2004/12/30 19:39 

Petitioners Amazon 
Ex. 1010, p. 50 of 399



S57 104 S55 and ("711" "713").clas. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

... · · ····:·::::::: :::: :: ::: ::···· ..... 

S59 3 S58 not S57 

US-PGPUB; OR 
USPAT; 
JPO 

•:: •vsjP,GP,0.~i 
1::11w1 @mm;••11•:::: 

US-PGPUB; 
USPAT; 
JPO 

ON 2004/12/30 19:42 

::::::::::::::::::: ::=::::::::::::::::::::: 

2004/12/30 19:43 

us: ~ci'P.'ua>L::====•==•=•=•=======•=L===•=•=•=====•==• '•• 2.ob.41iziit{zod():•• 

·~:l~rnrn• mi: :••·••••••• •• :1•• •••••••• •••:. 1···············::::•::··: •·::••:·•··········· 

S61 

S63 

S67 

5 "008128".ap. US-PGPUB; OR 
USPAT; 
JPO 
........................... ~,r~,~~, 

15 711/118.ccls. and reconfigurable US-PGPUB; OR 
near3 (memory cache RAM USPAT 
random adj access adj memory 
processor) 

•tii/i:if(:d{:~ri~· r~c},@gµf~~1J :: 
1,~ra•crnernow each~ RAM •·••••••••••:•• 
r:~h~91"11 ~~1 ~¢¢~~s•~~j•fl"l~fl"IC>:rv ••••• pr®~~Pr) : u • • · · · · · · · · · · 
"859051".ap. US-PGPUB; OR 

USPAT 
...................... 

vs1PGP0e.; 
iJSPA't YH 

2 "021492".ap. US-PGPUB; OR 
USPAT 

Search History 1/10/05 7:53:03 AM Page 4 
C:\APPS\EAST\ Workspaces\! 0869200. wsp 

ON 2004/12/30 20: 14 

ON 2005/01/03 13:19 

ON 2005/01/03 12:06 

··············· · ···· ····················· 

~qp~/q~/9~ ii:2~ 

ON 2005/01/10 07:41 

Petitioners Amazon 
Ex. 1010, p. 51 of 399



UNITED ST A TES PA TENT AND TRADEMARK OFFICE 

APPLICATION NO. 

10/869,200 

25235 7590 

FILING DATE 

06/16/2004 

01/14/2005 

HOGAN & HARTSON LLP 
ONE TABOR CENTER, SUlTE 1500 
1200 SEVENTEENTH ST 
DENVER, CO 80202 

FIRST NAMED INVENTOR 

Daniel Poznanovic 

UNITED STA TES DEPARTMENT OF COMMERCE 
United States Patent and Trademark Office 
Address: COMMISSIONER FOR PA TENTS 

P.O. Box 1450 
Alexandria, Vi,ginia 22313-1450 
www.uspt0.gov 

ATTORNEY DOCKET NO. CONFIRMATION NO. 

SRC028 5929 

EXAMINER 

THOMAS, SHANE M 

ARTUNIT PAPER NUMBER 

2186 

DATE MAILED: 01/14/2005 

Please find below and/or attached an Office communication concerning this application or proceeding_ 

PT0-90C (Rev. 10/03) 

Petitioners Amazon 
Ex. 1010, p. 52 of 399



Office Action Summary 

Application No. 

10/869,200 

Examiner 

Shane M Thomas 

Applicant(s) 

POZNANOVIC ET AL. 

Art Unit 

2186 

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --
Period for Reply 

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE J MONTH(S) FROM 
THE MAILING DATE OF THIS COMMUNICATION. 
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed 

after SIX (6) MONTHS from the mailing date of this communication. 
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely. 
- If NO period for reply is specified above, the maximum .statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. 
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). 

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any 
earned patent term adjustment. See 37 CFR 1.704(b). 

Status 

1)1:8l Responsive to communication(s) filed on 16 June 2004. 

2a)O This action is FINAL. 2b)r::8l This action is non-final. 

3)0 Since this application is in condition for allowance except for formal matters, prosecution as to the merits is 

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. 

Disposition of Claims 

4)1:8l Claim(s) 1-24 is/are pending in the application. 

4a) Of the above claim(s) __ is/are withdrawn from consideration. 

5)0 Claim(s) __ is/are allowed. 

6)1:8l Claim(s) 1-24 is/are rejected. 

7)0 Claim(s) __ is/are objected to. 

8)0 Claim(s) __ are subject to restriction and/or election requirement. 

Application Papers 

9)0 The specification is objected to by the Examiner. 

10)1:8l The drawing(s) filed on 16 June 2004 is/are: a)O accepted or b)r::8l objected to by the Examiner. 

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). 

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121 (d). 

11 )0 The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PT0-152. 

Priority under 35 U.S.C. § 119 

12)0 Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). 

a)O All b)O Some* c)O None of: 

1.0 Certified copies of the priority documents have been received. 

2.0 Certified copies of the priority documents have been received in Application No. __ . 

3.0 Copies of the certified copies of the priority documents have been received in this National Stage 

application from the International Bureau (PCT Rule 17.2(a)). 

* See the attached detailed Office action for a list of the certified copies not received. 

Attachment(s) 

1) C8J Notice of References Cited (PT0-892) 

2) 0 Notice of Draftsperson's Patent Drawing Review (PT0-948) 

3) 0 Information Disclosure Statement(s) (PT0-1449 or PTO/SB/08) 
Paper No(s)/Mail Date __ . 

4) 0 Interview Summary (PT0-413) 
Paper No(s)/Mail Date. __ . 

5) 0 Notice of Informal Patent Application (PT0-152) 

6) 0 Other: __ . 

U.S. Patent and Trademar1< Office 

PTOL-326 (Rev. 1-04) Office Action Summary Part of Paper No./Mail Date 12032004 

Petitioners Amazon 
Ex. 1010, p. 53 of 399



Application/Control Number: 10/869 ,200 

Art Unit: 2186 

DETAILED ACTION 

This Office action is responsive to the application filed 6/16/2004. Claims 1-24 are 

presented for examination. 

Page 2 

The examiner requests, in response to this Office action, any reference(s) known to 

qualify as prior art under 35 U.S.C. sections 102 or 103 with respect to the invention as defined 

by the independent and dependent claims. That is, any prior art (including any products for sale) 

similar to the claimed invention that could reasonably be used in a 102 or 103 rejection. This 

request does not require applicant to perform a search. This request is not intended to interfere 

with or go beyond that required under 37 C.F.R. 1.56 or 1.105. 

The request may be fulfilled by asking the attomey(s) of record handling prosecution and 

the inventor(s)/assignee for references qualifying as prior art. A simple statement that the query 

has been made and no prior art found is sufficient to fulfill the request. Otherwise, the fee and 

certification requirements of 3 7 CFR section 1. 97 are waived for those documents submitted in 

reply to this request. This waiver extends only to those documents within the scope of this 

request that are included in the application's first complete communication responding to this 

requirement. Any supplemental replies subsequent to the first communication responding to this 

request and any information disclosures beyond the scope of this are subject to the fee and 

certification requirements of 3 7 CFR section 1. 97. 

In the event prior art documentation is submitted, a discussion of relevant passages, figs. 

etc. with respect to the claims is requested. The examiner is looking for specific references to 

102/103 prior art that identify independent and dependent claim limitations. Since applicant is 

Petitioners Amazon 
Ex. 1010, p. 54 of 399



Application/Control Number: 10/869,200 

Art Unit: 2186 

Page 3 

most knowledgeable of the present invention and submitted art, his/her discussion of the 

reference(s) with respect to the instant claims is essential. A response to this inquiry is greatly 

appreciated. 

The examiner also requests, in response to this Office action, that support be shown for 

language added to any original claims on amendment and any new claims. That is, indicate 

support for newly added claim language by specifically pointing to page(s) and line no(s). in the 

specification and/or drawing figure(s) . This will assist the examiner in prosecuting the 

application. 

Drawings 

The element --computation logic 201-- of paragraph 53 ·should be corrected to 200 as per 

figure 2. 

Claim Objections 

Claims 1-23 are objected to because of the following informalities: 

As per claim 1, the term -- the memory-- of line 3 should be amended to read --the first 

memory-- since --the memory-- has not been previously defined. Appropriate correction is 

required. 

As per claim 2, the term --the processor-- should be amended to --the reconfigurable 

processor since the term --the processor-- has not been previously defined in the claims. 

As per claim 5, line 3, the term--memory-- has been mistakenly duplicated. 

Petitioners Amazon 
Ex. 1010, p. 55 of 399



Application/Control Number: 10/869,200 

Art Unit: 2186 

Page4 

As per claim 8, the term --prefetch unit-- should be amended to --data prefetch unit-­

since the term --prefetch unit-- has not been previously defined in the claims. 

As per claim 11, the term --the unit-- should be amended to --the data prefetch unit-­

since the term --the unit-- has not been previously defined in the claim. 

As per claim 15, the term --at least of the-- of line 2 should be corrected to read--at least 

one of-- . 

As per claim 17, the term --the data access unit-- oflines 4-5 should be amended to --a 

data access unit-- since the term --the data access unit-- has not been previously defined in the 

claim. 

claims. 

Claims 3,4,6,7,9;10, 12-14, 16, and 18-23, are objected to as being dependent on objected 

Claim Rejections- 35 USC§ 112 

The following is a quotation of the first paragraph of 35 U.S .C. 112: 

The specification shall contain a written description of the invention, and of the manner and process of making 
and usirig it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it 
pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode 
contemplated by the inventor of carrying out his invention. 

Claims 1-10, 13, and 14, are rejected under 35 U.S.C. 112, first paragraph, as failing to 

comply with the written description requirement. The claim(s) contains subject matter which 

was not described in the specification in such a way as to reasonably convey to one skilled in the 

relevant art that the inventor(s), at the time the application was filed, had possession of the 

claimed invention. 

Petitioners Amazon 
Ex. 1010, p. 56 of 399



Ap~lication/Control Number: 10/869 ,200 

Art Unit: 2186 

Page 5 

As per claim 1, the terms --first characteristic type-- and --second characteristic type-- are 

not clearly defined in the Applicant's specification. Applicant is reminded of 37 C.F.R. 1.75 

(d)(l) which states that the claim or claims must conform to the invention as set forth in the 

remainder of the specification and the terms and phrases used in the claims must find clear 

support or antecedent basis in the description so that the meaning of the terms in the claims may 

be ascertainable by reference to the description. (See l .58(a).) The phrases --first characteristic 

type-- and --second characteristic type-- are not terms of art; nonetheless, for the purposes of 

examination, the Examiner shall regard the terms as meaning any type of memory ( e.g. a 

SRAM, Flash Rom, DRAM, hard disk, etc.). 

As per claims 2 and 13, the Applicant's disclosure does not explicitly mention that the 

reconfigurable processors cannot have a cache. The disclosure mentions in the Background 

section, and specifically in paragraphs 16-17, the drawbacks of having a hard-wired cache in a 

system; however, the Detailed Description does not explicitly state that the reconfigurable 

processor as taught by the Applicant cannot contain a cache. It appears to the Examiner that no 

specific (hard-wired) cache memory is included in the reconfigurable 'processor as taught in the 

disclosure; rather an on-board memory and user-logic can be configured based on a program 

(paragraph 52). Therefore, for the purposes of examination, the Examiner shall interpret the 

claim such that the reconfigurable processor of claim I does not contain a hard-wired (specific) 

cache. 

As per claims 3 and 14, it follows from the rejection for claims 2 and 13, that since 

Applicant's disclosure does not explicitly state that a reconfigurable processor cannot have a 

cache, the disclose further does not explicitly teach that the reconfigurable processor cannot have 

Petitioners Amazon 
Ex. 1010, p. 57 of 399



Application/Control Number: I 0/869 ,200 

Art Unit: 2186 

Page 6 

a cache line-sized unit of contiguous data. For the purposes of examination and based on the 

discussion of claim 2 above, the Examiner shall interpret the limitation of claim 3 such that the 

reconfigurable processor of claim 1 does not have a hard-wired (specific) cache line-sized unit of 

contiguous data being retrieved from the [ second] memory. 

As per claim 4, it is not clear to which memory the term -the memory-refers as -the 

memory lacks antecedent basis--. For the purposes of examination, the Examiner shall interpret 

the term -the memory-to indicate the -second memory-of claim I . 

As per claim 7, the term --disassembled-- is not known to be a term of art, and further, 

not specifically defined in the Applicant's specification. Nonetheless, for the purposes of 

examination, the Examiner shall regard the term --disassembled-- with the broadest reasonable 

interpretation. Refer to 37 C.F.R. 1.75 (d)(l). 

Claims 5, 6, and 8-10, are rejected as being dependent on rejected base claim 1. 

The following is a quotation of the second paragraph of 35 U.S.C. 112: 

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the 
subject matter which the applicant regards as his invention. 

Claims 2-4,8-10, and 15-23 are rejected under 35 U.S.C. 112, second paragraph, as being 

indefinite for failing to particularly point out and distinctly claim the subject matter which 

applicant regards as the invention. 

As per claim 2, it is not clear which memory (first or second memory) the term 

--the memory-- is referring to since --the memory-- lacks antecedent basis. The Examiner 

recommends amending the term --the memory-- to overcome this rejection. Nonetheless, for the 

purposes of examination, the Examiner shall interpret the claim as --the first memory--. 

Petitioners Amazon 
Ex. 1010, p. 58 of 399



Application/Control Number: 10/869,200 

Art Unit: 2186 

As per claim 3, it is not clear which memory (first or second memory) the term 

Page 7 

--the memory-- is referring to since --the memory-- lacks antecedent basis. The Examiner 

recommends amending the term --the memory-- to overcome this rejection. Nonetheless, for the 

purposes of examination, the Examiner shall interpret the claim as --the second memory--. 

As per claim 4, it is not clear which memory (first or second memory) the term 

--the memory-- is referring to since --the memory-- lacks antecedent basis. The Examiner 

recommends amending the term --the memory-- to overcome this rejection. Nonetheless for the 

purposes of examination, the Examiner shall interpret that claim as --the second memory--. 

As per claim 8, it is not clear whether the processor memory is the same as the second 

memory or if the processor memory is a separate (third) memory since the data prefetch unit is 

claimed as retrieving data from both a second memory and a processor memory. The Examiner 

shall interpret the second memory as being a processor memory. 

As per claims 15 and 17, it is not clear if the term --the data access unit-- is referring to 

--the data prefetch unit-- or is a new entity being defined by the claim since the term --the data 

access unit-- lacks antecedent basis. Nonetheless, for the purposes of examination, the Examiner 

shall regard the term --the data access unit-- to be a separate entity based in part from the 

Applicant descriptions of the drawings on page 8 showing that the data prefetch unit and data 

access unit are distinct entities. 

As per claim 19, it is not clear whether the term --a data access unit-- is the same data 

access unit that has been defined in claim 17 or the --a data access unit-- is a different data access 

unit that performs the limitation of claim 19 and does not perform the limitation of the data 

Petitioners Amazon 
Ex. 1010, p. 59 of 399



Application/Control Number: 10/869 ,200 

Art Unit: 2186 

Page 8 

access unit of claim 17. For the purposes of examination, the Examiner shall interpret the --a 

data access unit-- as --the data access unit-- [ of claim 17]. 

As per claims 9-10 and 16-23, the claims are rejected as being dependent on rejected 

claims. 

Claim Rejections- 35 USC§ 102 

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the 

basis for the rejections under this section made in this Office action: 

A person shall be entitled to a patent unless -

(e) the invention was described in (I) an application for patent, published under section 122(b), by another filed 
in the United States before the invention by the applicant for patent or (2) a patent granted on an application for 
patent by another filed in the United States before the invention by the applicant for patent, except that an 
international application filed under the treaty defined in section 35 l(a) shall have the effects for purposes ofthi~ 
subsection of an application filed in the United States only if the international application designated the United· 
States and was published under Article 21 (2) of such treaty in the English language. 

Claims 1-24 are rejected under 35 U.S.C. 102(e) as being anticipated by Paulraj (U.S. 

Patent Application Publication No. 2003/0084244). 

As per claim 1; Paulraj shows a reconfigurable processor in figure 6 and a first memory 

(LI) having a first characteristc memory type (line size, blocking factor, associativity, etc.) and a 

second memory (L2) having a second characteristic memory type (line size, blocking factor, 

associativity, etc.). Refer to paragraph 23. Paulraj further teaches a functional unit 102 that 

executes applications using the memories LI and L2 (paragraph 9). As is known in the art, a 

cache memory controller is often used to access and move data between a memory hierarchy. 

The Examiner is considering a data prefetch unit to be the logic assocatied with the moving, and 

only the moving, of data between the first and second memories (LI and L2) since Paulraj shows 

Petitioners Amazon 
Ex. 1010, p. 60 of 399



Application/Control Number: 10/869 ,200 

Art Unit: 2186 

Page 9 

a connection between the levels of cache in figure 6. This logic as well as the first and second 

memory types (L 1 and L2) are configued by a program - refer to paragraphs 23-24. The data 

prefetch unit as defined by the Examiner must be configued as well by the program when 

moving data since the cache line size and blocking factor can change, so different amounts of 

data can be exchanged for the same access when different programs run. 

As per claims 2 and 13, as taught in paragraphs 23 and 29 of Paulraj, no specific cache is 

present in the system of Paulraj. Rather, an FPGA is utilized as representing a caching hierarchy 

and is optimized based on the memory needs of a specific program running on the reconfigurable 

processor. 

As per claims 3 and 14, Paulraj teaches in paragraph 23 that a specific cache line size of 

contiguous data is not retrieved since the data line size is optimized based on the memory needs 

of the program when executing on the reconfigurable processor. Refer also to paragraph 29. 

As per claim 4, Paulraj teaches that a load/store unit is used to access the caches (Ll-L3) 

in order to determine if cache data is present in the cache hierarchy (paragraph 6) . Since the 

functional unit 102 (figure 6) is responsible for accessing the programmable memory unit 104, 

the Examiner is therefore considering the load/store unit logic of the programmable memory unit 

that is responsible for for accessing the LI and L2 caches (first and second memory types) to be 

a memory controller. It can be seen that the memory controller, as defined by the Examiner, 

controls the transfer of data between the memory (assuming second memory L2) and the data 

prefetch unit, since the memory controller (load/store unit logic) is responsible for retrieving the 

data from the cache if a hit occurs (paragraph 4). 

Petitioners Amazon 
Ex. 1010, p. 61 of 399



Application/Control Number: 10/869,200 

Art Unit: 2186 

Page 10 

As per claim 5, as taught in paragraph 1, an external memory (element 18, figure 1) is 

generaly coupled to a microprocessor and holds data to be used by the microcontroller during 

program execution. The Examiner is considering the process of writing data back to the external 

memory from the FPGA memory 104 containing the caches ( on-board memory), such as during 

a write-back scheme as known in the art, to be performed by the data prefetch unit portion of the 

functional logic as defined above by the Examiner. The data prefetch logic, as defined above, is 

responsible for all of the transfer of data into, out of, and between the FPGA memory 104. 

As per claim 6, the Examiner is regarding a --register-- in its broadest reasonable sense 

and it thus considering it be to be a unit of logic. Therefore, the portion of the function logic that · 

is responsible for the movement of data (as defined above to be the data prefetch unit) is being 

considered by the Examiner as containing a --register-- portion of the reconfigurable processor 

since, for instance, the blocking factor and line size of the programmable memory 112 can 

change, a --register-- or portion of the reconfigurable processor must be set in order to indicate 

the curmet line size and blocking factor when a given application is being run on the 

reconfigurable processor at a given point in time. Refer to paragraph 23 . 

As per claim 7, the Examiner is considering the process of --disassembling the data 

prefetch unit-- as modifying the data prefetch unit logic of the fucntion logic 102 every time the 

program being executed by the reconfigurable processor changes. It can be seen that the data 

prefetch unit changes during these intervals since the cache line size, blocking factor, and 

associativity of the FPGA changes when optimal for the next program to be executed (refer to 

paragraph 23). Thus it can be seen that the data prefetch unit logic is --disassembled-- when 

another program is executed by the reconfigurable processor of Paulraj. 

Petitioners Amazon 
Ex. 1010, p. 62 of 399



Application/Control Number: 10/869,200 

Art Unit: 2186 

Page 11 

As per claim 8, as can be seen that the FPGA memory 112, that comprises the first and 

second memories (L 1 and L2) and which is accessed by the data prefetch unit of the functional 

unit 102 as discussed above, is a --processor memory-- (part of cpu 110). Therefore, since the 

data pretech unit can access the L2 cache as discussed above in the rejection of claim 1, the data 

prefetch unit can retrive data from the L2 portion of --processor memory--112. 

As per claim 9, as shown in figure 1 and taught in paragraph 1 of Paulraj, the system 10 

is actually a microprocessor, which contains a memory controller 14. The main difference 

between the prior art of figure 1 and the invention of Paulraj in figure 6 is that the memroy 

hierarchy is configurable and accessed by a fucntional unit in lieu of a separate memory 

controller logic (paragraph 9) . Therefore, since the memory controller logic for accessing the 

cache hierarchy is still contained within cpu 110 of figure 6, it can be seen that the cpu 110 is 

actually a microprocessor. It follows that the --processor memory-- 112 is therefore a 

--microprocessor memory--. 

As per claim l 0, since the cpu 110 of figure 6 is a reconfigurable processer ( able to 

reconfigure its memory heirarchy to match the needs of the application it is currently running), it 

can be seen that the cpu memory 112 is a reconfigurable processor memory. 

As per claim 11, Paulraj depicts a reconfigurable hardware system in figure 6. Paulraj 

further teaches in paragraph 26 that when a particular application is to be run by the 

reconfigrable processor 110, a configuration vector is retrieved to program the programmable 

memory 112 (figure 6). As shown in figure 6, the step of accesing the configuration vector is 

executed outside of the reconfigurable processor 110. Therefore, the Examiner is considering 

the memory that contains the configuration vectors to be a--common memory-- and a data 

Petitioners Amazon 
Ex. 1010, p. 63 of 399



Application/Control Number: 10/869,200 

Art Unit: 2186 

Page 12 

prefetch unit (reconfiguration unit 106 executing on the reconfigurable processor 110) accessing 

the common memory in order to determine how to program the memory 112 (paragraph 29). 

The data pref etch unit 106 is :--configured-- by an application to be excuted on the sysem 110 

since when a new application is to be executed, the data prefetch unit is called upon ( or 

configured) to access the configuration vector for the particular application. 

As per claim 12, the Examiner is considering a --memory controller-- to be the system 

portion utilized when creating a new configuration vector for an appli_cation. Such a process 

occurs in figure 5 and taught in paragraghs 23-25 of Paulraj. When a new configuration vector is 

created by analizing performance information that has been collected for the application. The 

Examiner is thereby considering the --memory controller-- to be the element of the 

reconfigurable hardware system that is associated with storing the new configuration vector into 

the common memory so that the vector can be accessed later when the same application is run 

agam. 

As per claim 15, the Examiner is considering the reconfiguration module 106 of the 

reconfigurable processsor 110, as comprising two distinct elements: a --computational unit-- and 

a --data access unit--. The data access unit is the element that is responsible for accessing the 

configuration vector as taught in paragraph 29 of Paulraj; or in other words, the Examiner is 

considering the --data access unit-- to be the same as the --memory controler-- defined in the 

rejection of claim 12. The Examiner is further considering the --computational unit-- of the 

rconfiguration module 106 to be the element that sets up the programmable memory module 104 

using the configuration vector that was accessed by the --data access unit-- (paragraph 29). 

Petitioners Amazon 
Ex. 1010, p. 64 of 399



Application/Control Number: 10/869 ,200 

Art Unit: 2186 

Page 13 

As per claim 16, as taught by Paulraj in paragraph 29, the --data access unit-- supplies the 

configuration vector to the --computational unit-- in order to set up the programmable memory 

104 as required by the application to be run on the reconfurable processor 110. 

As per claim 17, the Examiner is considering a --data prefetch unit-- to be the 

reconfiguration unit 106 ofreconfigurable processor 110 (figure 6). As taught in paragraph 26 

and 29 of Paulraj, the --data prefetch unit-- accesses a memory in order to determine if a 

configuration vector is known for a given application, and if so, the vector is retrieved ( from the 

memory). If this --data-- (configuration vector) is not known then a simulation is performed with 

the application in order to collect performance information. The Examiner is considering the 

element that executes and collects the performance data as being a --computational unit-- and the 

element of Paulraj that stores the configuration vector, once determined, to be a --data access 

unit-- since it stores the vector into the --memory-- from which it can be later retrieved (step 212 

of figure 5). The --computational unit--, --data access unit--, and the --data prefetch unit-- are all 

--configured-- by a program ( application) since ( 1) a new application configures the 

computational unit portion of the reconfiguration unit to perform a simulation in order to 

determine the optimal memory hierarchy organization; (2) the new application configures the -­

data access unit-- to store and retrieve (step 212) the configuration vector for that particular 

application; and (3) the --data prefetch unit-- is configured by the application to determine if a 

configuration file exists for the application and if so, the data prefetch unit is configured by the · 

program the programmable memory 112 in order to optimize the programmable memory for that 

particular application. 

As per claim 18, the --data-- ( configuration vector) is transferred from the 

Petitioners Amazon 
Ex. 1010, p. 65 of 399



Application/Control Number: 10/869,200 

Art Unit: 2186 

Page 14 

--computational unit-- to the --data access unit-- when the configuration unit has created a 

configuration vector (step 208 of figure 5). The --data--_is written to the memory--from-- the 

--data prefetch unit-- since the data prefetch unit (reconfiguration unit 106) is the element that 

executed the beginning of the configuration vector creation process (step 200 of figure 5). Refer 

to paragraph 26. Thus the Examiner is considering the data as being written --from-- the data 

prefetch unit. 

As per claim 19, as taught in paragraph 26, if the configuration vector is known, the 

vector is retrieved from the memory to the data prefetch unit (reconfiguration unit 106). The 

data is read directly from the data prefetch unit when a request to create a configuration vector is 

made for a new application as shown in figure 6 since the data prefetch unit is responsible for 

being the vector creation process. The data is directed from the data prefetch unit (reconfigure 

logic) to be read from the memory by the data access unit to the computational unit where it is 

processed to produce a configuration vector. 

As per claim 20, as stated above, the configuration vector (--data--) is created by the 

computational unit via acquired simulation data. The configuration vector is the resultant 

product that is transferred from the memory to the data prefect unit when it is determined that the 

configuration vector for the application is available (paragraph 26). Thus --all-- of the data that 

is transferred is processed by the computational unit ( albeit before the transfer occurs) since the 

data prefetch unit required the entire configuration vector in order to set up the programmable 

memory 112. 

Petitioners Amazon 
Ex. 1010, p. 66 of 399



Application/Control Number: 10/869,200 

Art Unit: 2186 

Page 15 

As per claim 21, Paulraj shows in paragraph 26 that an explicit request for the 

configuration vector for the current application results in the data (if it exists) selected for the 

optimal configuration of the programmable memory 112 for that application. 

As per claim 22, the Examiner is not considering the data ( configuration vector) to be the 

size of a complete cache line since the data is used to create a cache hierarchy. In other words, 

the caches (Ll-L3) of the programmable memory 112 are not programmed when the data is 

transferred from the memory to the data prefetch unit; therefore, the data cannot be a complete 

cache line. 

As per claim 23, since the Examiner defined the portion of the reconfiguration unit that 

accesses the configuration file ( data) from the memory, the Examiner is defining the logic that 

controls the actual transfer of that data to the data prefetch unit (portion of the reconfiguration 

unit that executes the fetch of the configuration vector and then programs the programmable 

memory 112) to be a --memory controller--. Thus the data access unit determines whether a 

configuration vector exists for an application and if so, the memory controller sends that data to 

the data prefetch unit. 

As per claim 24, The Examiner is considering the element that executes and collects the 

performance data as being a --computational unit-- and the element of Paulraj that stores and 

retrieves the configuration vector, once determined, to be a --data access unit-- since it stores the 

vector into the --memory-- from which it can be later retrieved (step 212 of figure 5). The 

--computational unit-- and --data access unit -- are --configured-- by a program (application) 

since ( 1) a new application causes in the configuration of the computational unit portion of the 

reconfiguration unit to perform a simulation in order to determine the optimal memory hierarchy 

Petitioners Amazon 
Ex. 1010, p. 67 of 399



Application/Control Number: 10/869 ,200 

Art Unit: 2186 

Page 16 

organization for the application and (2) the new application causes the configuration of the --data 

access unit-- to store and retrieve (step 212) the configuration vector for that particular 

application. Refer to paragraphs 25-27. 

Conclusion 

The prior art made of record and not relied upon is considered pertinent to applicant's 

disclosure. 

Poznanovic (U.S. Patent Application Publication No. 2003/0046530) teaches a 

reconfigurable processor (figure 2) which can be reprogrammed based on a program. 

Vondran (U.S. Patent No. 6,243,791) illustrates an example of the operation of a cache 

controller in a cache hierarchy ( column 1, lines 54-67). 

Ottemess (U.S. Patent No. 6,460,122) further teaches common operation of a cache 

controller in column 21, lines 1-16. 

Darling (U.S. Patent No. 6,714,041) teaches a reconfigurable system (figure 5) that is 

able to be reprogrammed based on a program. 

Burton (U.S. Patent Application Publication No. 2003/0088737) teaches uncached device 

· operations in a reconfigurable processor system. 

Gschwind et al. (U.S. Patent Application Publication No. 2003/0046492) teaches a 

reconfigurable memory array which can be operated as a cache or a non-cache memory. 

Any inquiry concerning this communication or earlier communications from the 

examiner should be directed to Shane M Thomas whose telephone number is (703) 605-0725. 

Petitioners Amazon 
Ex. 1010, p. 68 of 399



Application/Control Number: 10/869 ,200 

Art Unit: 2186 

Page 17 

Please note: the aforementioned number will change to (571) 272-4188 effecti.ve October 19, 

2004. The examiner can normally be reached M-F 8:30 - 5:30. 

If attempts to reach the examiner by telephone are unsuccessful, the examiner's 

supervisor, Matt M Kim can be reached on (703) 305-3821, which will change to (571) 272-

4182 effective October 19, 2004. The fax phone number for the organization where this 

application or proceeding is assigned is 703-872-9306. 

Information regarding the status of an application may be obtained from the Patent 

Application Information Retrieval (PAIR) system. Status information for published applications 

may be obtained from either Private PAIR or Public PAIR. Status information for unpublished 

applications is available through Private PAIR only. For more information about the PAIR 

system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR 

system, contact the Electronic Business Center (BBC) at 866-217-9197 (toll-free). 

Shane M. Thomas 

MAlTHEW AwousaiV' 
PRIMARY EXAMINER 

GROUP2(00 

Petitioners Amazon 
Ex. 1010, p. 69 of 399



Application/Control No. Applicant(s)/Patent Under 
Reexamination 

10/869,200 POZNANOVIC ET AL. 
Notice of References Cited 

Examiner Art Unit 

Shane M Thomas 2186 
Page 1 of 1 

U.S. PATENT DOCUMENTS 

* 
Document Number Date 

Name Classification Country Code-Number-Kind Code MM-YYYY 

A US-2003/0084244 A 1 05-2003 Paulraj, Dominic 711/118 

B US-2003/0046530 A 1 03-2003 Poznanovic, Daniel 713/100 

C US-6,243, 791 06-2001 Vondran, Jr., Gary Lee 711/120 

D US-6,460, 122 10-2002 otterness et al. 711/154 

E US-6,714,041 03-2004 Darling et al. 326/38 

F US-2003/0088737 05-2003 Burton, Lee 711/118 

G US-2003/0046492 A 1 03-2003 Gschwind et al. 711/118 

H US-

I US-

J US-

K US-

L US-

M US-

FOREIGN PATENT DOCUMENTS 

* 
Document Number Date 

Country Name Classification Country Code-Number-Kind Code MM-YYYY 

N 

0 

p 

Q 

R 

s 

T 

NON-PATENT DOCUMENTS 

* Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) 

u "Summary: The Cache Read/Write Process," The PC Guide, 2001, www.pcguide.com/ref/mbsys/cache/func.htm. 

V Chien et al., "Safe and Protected Execution for the Morph/AMRM Reconfigurable Processor," IEEE, 1999, pp 1-13. 

w 

X 

"A copy of this reference 1s not being furnished with this Office action. (See MPEP § 707 .05(a) .) 
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign. 

U.S. Patent ard Trademarl< Office 

PT0-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 12032004 

Petitioners Amazon 
Ex. 1010, p. 70 of 399



\ 

i NOTE: Using robot s~ftw<lfe to mass-downl~ad the site degrades the server and is prohibited. See here for . 
!more. 
l Find The PC Guide helpful? Please consider a donation to :D.!~:l(;JJ_!!!i:l~J)g_J_~r Visa/MC/Paypal accepted. 
! Interested in discussing the latest news, current events and other topics of general interest? Check out 
j CurEvents.com! 

[ The_PC Guide I S_y:5tems and_ Components_Reforence_Guide I 
Motherboard and System Devices I System Cache I Function 31~d 

Operntion_ofthe_Systern_Cache] 

Summary: The Cache Read/Write Process 

Having looked at all the parts and design factors that make up a cache, in 
this section the actual process is described that is followed when the 
processor reads or writes from the system memory. This example is the 
same as in the other sections on this page: 64 MB memory, 512 KB cache, 
32 byte cache lines. I will assume a direct mapped cache, since that is the 
simplest to explain (and is in fact most common for level 2 cache) : 

I. The processor begins a read/write from/to the system memory. 
2. Simultaneously, the cache controller begins to check if the 

information requested is in the cache, and the memory controller 
begins the process of either reading or writing from the system 
RAM. This is done so that we don't lose any time at all in the event 
of a cache miss; if we have a cache hit, the system will cancel the 
partially-completed request from RAM, if appropriate. If we are 
doing a write on a write-through cache, the write to memory always 
proceeds. 

3. The cache controller checks for a hit by looking at the address sent 
by the processor. The lowest five bits (AO to A4) are ignored, 
because these differentiate between the 3 2 different bytes in the 
cache line. We aren't concerned with that because the cache will 
always return the whole 32 bytes and let the processor decide which 
one it wants. The next 14 lines (A5 to Al 8) represent the line in the 
cache that we need to check (notice that 2"'14 is 16,384). 

4. The cache controller reads the tag RAM at the address indicated by 
the 14 address lines A5 to A18. So if those 14 bits say address 
13,714, the controller will examine the contents of tag RAM entry 
#13,714. It compares the 7 bits that it reads from the tag RAM at 
this location to the 7 address bits A 19 to A25 that it gets from the 
processor. If they are identical, then the controller knows that the 
entry in the cache at that line address is the one the processor 

L •• 
C Web @: The PC Guide 

Ads by Goooooogle 

Cache Upgrade 
Huge Selection of 
Merchants Compare & 
Find the Lowest Rate! 

Cache Upgrade 
Merchants compete for 
your business Compare 
instant bottom-line prices! 
\',''"'-.'Y,i . pr(<;<:N.J~·~~bbB:·. <X>:-r; 

Computer Cache 
Memory 
Compare Prices, Read 
Reviews & More Find the 
Lowest Prices at Smarter 
wv..rw· .Brr;;~r tt-~r. ~x;m 

Cache cpu memory 
Find the best components 
prices Compare products, 
stores & reviews 
f.f.•iJf>.rr.othf:rh~-;.1rCs n.:1xtag.:::;)1YJ 

Cache Upgrade 
New & Used Cache 
Upgrade. aff Check out the 
deals now! 
w,.,"' .. \11./ t~b~1y .,;-r~rr. 

5. 

:::::!~; we have a hit. If the tag RAM doesn't match, then we hav'f3EST AVAILABL 
If we do have a hit, then for a read, the cache controller reads the E 
3 2-byte contents of the cache data store at the same line address 
indicated by bits A5 to A 18 ( 13,714), and sends them to the 

COPv 

Petitioners Amazon 
Ex. 1010, p. 71 of 399



processor. The read that was started to the system RAM is 
canceled. The process is complete. For a write, the cache controller 
writes 32 bytes to the data store at that same cache line location 
referenced by bits AS to Al 8. Then, ifwe are using a write-through 
cache the write to memory proceeds; if we are using a write-back 
cache, the write to memory is canceled, and the dirty bit for this 
cache line is set to 1 to indicate that the cache was updated but the 
memory was not. 

6. Ifwe have a miss and we were doing a read, the read of system 
RAM that we started earlier carries on, with 32 bytes being read 
from memory at the location specified by bits AS to A2S. These 
bytes are fed to the processor, which uses the lowest five bits (AO to 
A4) to decide which of the 32 bytes it wanted. While this is 
happening the cache also must perform the work of storing these 
bytes that were just read from memory into the cache so they will be 
there for the next time this location is wanted. If we are using a 
write-through cache, the 32 bytes are just placed into the data store 
at the address indicated by bits AS to A18. The contents ofbits A19 
to A2S are saved in the tag RAM at the same 14-bit address, AS to 
A18 . The entry is now ready for any future request by the 
processor. If we are using a write-back cache, then before 
overwriting the old contents of the cache line, we must check the 
line's dirty bit. If it is set ( 1) then we must first write back the 
contents of the cache line to memory, and then clear the dirty bit. If 
it is clear (0) then the memory isn't stale and we continue without 
the write cycle. 

7. If we have a cache miss and we were doing a write, interestingly, 
the cache doesn't do much at all, because most caches don't update 
the cache line on a write miss. They just leave the entry that was 
there alone, and write to memory, bypassing the cache entirely. 
There are some caches that put all writes into the appropriate cache 
line whenever a write is done. They make the general assumption 
that anything the processor has just written, it is likely to read back 
again at some point in the near future. Therefore, they treat every 
write as a hit, by definition. This means there is no check for a hit on 
a write; in essence, the cache line that is used by the address just 
written is always replaced by the data that was just put out by the 
processor. It also means that on a write miss the cache controller 
must update the cache, including checking the dirty bit on the entry 
that was there before the write, exactly the same as what happens 
for a read miss . 

As complex as it already is:"') this example would of course be even more 
complex if we used a set associative or fully associative cache. Then we 
would have a search to do when checking for a hit, and we would also 
have the matter of deciding which cache line to update on a cache miss. 

f'.l.ti i Next: Cache Characteristics 

BEST AVAILABLE copy 
The PC Guide (http://www.PCGuide.com) 
Site Version: 2.2.0 - Version Date: April 17, 2001 

Petitioners Amazon 
Ex. 1010, p. 72 of 399



Safe and Protected Execution for the Morph/AMRM Reconfigurable 
Processor 

Andrew A. Chien 
Department of Computer Science and Engineering 

University of California, San Diego 
achien(ai.cs. ucsd. cdu 

Jay H. Byun 
Department of Computer Science 

University of Illinois at Urbana-Champaign 
jaybyun t'a),cs. u iuc .edu 

April 1, 1999 

Abstract 

Technology scaling of CMOS processes brings relatively faster 
transistors (gates) and slmver interconnects (wires), making viable 
the addition of reconfigurability to increase performance. In the 
Morph/AMRM system, we are exploring the addition of 
reconfigurable logic. deeply integrated with the processor core, 
employing the reconfigurability to manage the cache, datapath, 
and pipeline resources more effectively. However, integration of 
reconfigurable logic introduces significant protection and safety 
challenges for multiprocess execution. We analyze the protection 
structures in a state of the art microprocessor core (RJOOOO). 
identifying the few critical logic blocks and demonstrating that the 
majority of the logic in the processor core can he safely 
reconfigured. Subsequently, we propose a protection architecture 
for the Morph/AMRM reconfigurable processor which enable 
nearly the full range of power of reconfigurability in the processor 
core while requiring only a small number of fixed logic features 
which to ensure safe, protected multiprocess execution. 

1. Introduction 

Trends in semiconductor technology suggest that the 
use ofreconfigurable logic blocks within the processor will 
be desirable in the future. Projections from Semiconductor 
Industry Association(SlA) for the year 2007 indicate 
advanced semiconductor processes using 0.1 micron feature 
sizes [I]. However, thjs feature size, as measured by 
transistor channel length, is of decreasing importance to 
logic and circuit as well as processor speed. In systems of 
that era, logic density, logic speed, and processor speed will 
be dominated by interconnect performance and wiring 
density. For 2007, the SlA projects pitch for the finest 
interconnect at 0.4-0.6 microns. Between logic blocks, 
average interconnect lengths typically range from from 
l,OOOx to 10,000x pitch -- up to 6mm of intra-chip 
interconnect length. For such an interconnect, the 
achievable global clock speed would be limited to 
approximately 1 nanosecond. Within a few technology 
generations, a crossover will occur, and the average 
interconnect delay will surpass logic block delays -­
projections indicate that by the year 2007, average 
interconnect delay can be equivalent to five gate delays. 

Once past the cross-over point, dynamic interconnect 
(reconfigurable interconnect or logic) can be introduced at 
modest impact even on critical timing paths[2]. In such 
systems, the dynamic configurability in the processor can 
be used to significant advantage [4, 5), improving 
performance by factors of 10 to l OOx for computational 
kernels while avoiding the traditional disadvantages of 
custom computing approaches such as 1/0 coprocessor 
coupling and slower logic [6]. In these systems, 
reprogrammable logic blocks will replace static 
interconnects in the processor core, paving the way for a 
new class of architectures which are customized to the 
application, delivering more robust and higher performance. 

Reconfigurable, or application adaptive processors 
allow customization of mechanisms, bindings, and policies 
on a per application basis. While current microprocessors 
implement a number of aggressive architectural technique.s 
such as speculative execution, branch prediction, block 
prefetching, multi-level caching, etc. to achieve higher 
execution speeds, these mechanisms and policies are tuned 

BEST AVAILABLE COPY 

Petitioners Amazon 
Ex. 1010, p. 73 of 399



for a broad suite of applications ( e.g. SPEC), and thus 
cannot be tightly matched to the needs of a particular 
application, procedure, or even loop in an application. For 
example, the cache block size and organization is chosen to 
maximize performance over a suite of applications, but may 
not give best performance on any particular application. 
Similar constraints apply to other performance critical 
aspects such as value prediction, branch prediction, and 
data movement. In contrast, a processor incorporating 
reconfigurability can adopt optimal policies (and in some 
cases better mechanisms) for the application, enabling 
increased execution efficiency. Thus, the reconfigurable 
logic can used to tune the processor to better match the 
application, rather than the more traditional view of 
thinking of it as an add-on coprocessor. One example of 
this per-application basis tuning would be to adapt the 
cache line size to maximize performance for that 
application[3]. This approach is embodied in the 
Morph/ AMRM {Adaptive Memory Reconfiguration 
Management) architecture (4, 5], and the basic change in 
perspective is that the reconfigurable hardware is an 
extension of the application program, extending the 
application -- fixed hardware interface to enable more 
efficient execution. The fixed hardware then has a 
somewhat richer (and in parts lower level) interface as 
shown in Figure 1. Studies of Morph/ AMRM have 
demonstrated that performance increases of ten to l 00 times 
are possible [5]. In essence, this is an extension of the 
application binary interface (so-called ABI), but need not 
be a non-portable extension of the application programming 
interface (API) if appropriate CAD support is available. 
This approach is similar to that which has recently gained 
popularity in the software design community as "open 
implementations" [7] in which software architects 
recognize the need to open the implementation for 
customization for particular application uses in order to 
achieve adequate performance. 

Introducing application-controlled reconfigurability in 
the processor raises significant challenges for ensuring 
process isolation and protection (multiprocess isolation), a 
critical element of robust desktop and to an increasing 
degree, embedded computing systems. Multiprocess 
isolation is an essential modularity element in software 
systems: without the guarantee of safely isolated and 
protected processes, the system can never be robust since 
software faults cannot be contained and the system cannot 
be safely extended. It is essential for robust reconfigurable 
computing that an application's customization only affect its 
computation, not that of other applications. For example, if 
application-defined hardware were allowed to control 
hardware addressing; it could allow unauthorized 
corruption of operating system data or even the data of 
other application processes. If an application-defined 
hardware were allowed to control data prefetching, it could 
swamp the memory system with spurious requests. If 

2 

application-defined hardware were allowed to control 
privilege mode changes, it could compromise all traditional 
protection structures. 

Our study examines the protection ·structures of 
traditional processors and operating systems, and based on 
these lessons, proposes a safe multiprocess execution 
architecture for reconfigurable systems. We analyze in 
detail the software and hardware mechanisms central to the 
process · protection in conventional processors and OS, 
specifically studying the MIPS RIOOOO [8] microprocessor, 
an exemplar of a system employing Unix/RISC protection 
architecture. This study elucidates the key mechanisms and 
architectural features for Unix style two mode protection, 
and addressing based isolation. The key feature of this 
protection architecture is process isolation via address 
isolation and mediation. Specifically, 

1. All access to hardware devices is mediated by the 
operating system, 
2. The operating system manages address translation to 
isolate processes, 
3. Application processes cannot change the address 
translation information, 
4. Application processes cannot substitute other 
translation information, 
5. All application accesses are subject to this 
translation, and 
6. The hardware ensures these guarantees 

We subsequently describe the Morph/AMRM 
architecture, outlining the dimensions of configurability and 
the hazards for multiprocess protection they induce. For the 
Morph/AMRM system, we then describe the protection 
architecture, describing in detail how each of the key 
properties of the operating system I processor protection 
architecture are provided. The key elements of this 
protection architecture are: 

1. A hardwired control processor which controls 
instruction sequence and privilege mode transitions 
2. A hardwired control processor to TLB control for 
address translation and TL8 entry management 
3. A requirement for all other configurable elements 
(system chip sets, input/output devices, memory 
controllers) must deal in virtual addresses, and their 
accesses are checked by local TLBs 
4. Controlled access to key shared interconnects such as 
the system bus are controlled by hardwired arbiters · 
which are not changed, system reserves highest priority 
to allow preemption for these resources 

This architecture enables configurability in the processor 
complex because it can ensure multiprocess protection (safe 
configuration). We also believe it enables much of the 
useful configurability in the processor complex, notably 
policies for improving efficient management of resources 
and even the addition of instructions, special functional 

Petitioners Amazon 
Ex. 1010, p. 74 of 399



units, or even processor state. The model provided to 
application programs is a private, configurable, virtual 
machine which enables rich application customization. 
These applications (and their customizations) are cleanly 
isolated. 

The remainder of the paper is organized as follows. 
Section 2 describes the basic problem of protected 
execution and process isolation in computer systems. 
Section 3 describes our analysis of the software and 
hardware mechanisms central to the process protection in 
conventional processors and operating systems. Section 4 
discusses the implications of reconfigurability on process 
protection and identifies the key requirement for safe 
process isolation in reconfigurable processors. In Section 5, 
we describe the Morph/AMRM system and a proposed 
protection architecture that meets these requirements set 
forth in Section 3. Section 6 discusses alternate approaches 
and the limitations on configurability imposed by the 
Morph/ AMRM protection architecture. Sections 7 
summarizes future work and the material covered in this 
paper. 

2. Process Isolation: the Problem 

Frame PaQo 
NumborNuml»rValdty 

lnv.ali::I 

Page Table A 

Fr.imo Pog• 
Numl»!Numt»rValdty 

1 Vaid 

1n~D ~ t---+-_,_----<.,.__ U,;;or ~ 
1 0 Vaid -------------------

lnv:ild 

Page Table B 

Figure 2: Multiprocess Protection based on Address Space 
Isolation 

To understand the challenges of multiprocess isolation, 
it is instructive to first consider the possible modalities in 
which multiprocess isolation can be compromised. In the 
simplest mode, an application corrupts the data of another, 
causing it to fail or compute incorrectly. In a more complex 
mode, the application somehow locks up the machine, so no 
other application state is damaged, but neither can the 
machine make progress. One example of this would be 
jampling the memory bus or defeating the timer interrupt 
which ensures preemption. A more serious failure mode is 
to corrupt the operating system's data, which can lead to a 
machine crash in which all applications have data 
corruption. Finally, an application could also corrupt 

3 

input/output device state, confounding the operating 
system, the device (leading to data loss or misdirection), or 
application data itself. In all of these cases, the failure is 
the result of allowing an application action which can affect 
the machine hardware state, other application memory state, 
or operating system state. 

The key issue in safe multiprocess execution is to 
control access to hardware resources, ensuring that these 
accesses are non-interfering. In general, access to main 
memory, as well as other architecturally visible state 
(processor data registers, control registers), system chip 
registers, and input/output device state must be controlled. 
Traditional approaches partition memory access, virtualize 
resources such as processor data resources with 
multitasking, and use operating system calls to mediate 
operations which require access to control registers, system 
chip sets, input/output device state, etc. Note that isolation 
and virtualization must apply to any resource at any level 
that a process can claim its ownership. The final piece, of 
the puzzle is that in order to support the virtualization and 
multitasking, transitions between the different entities must 
be carefully controlled to prevent compromise. 

3. Process Isolation in the MIPS R10000 

The key issue in maintaining a safe multiprocessing 
environment is ensuring process isolation: the processor 
and the OS must prevent independent processes from 
interfering with the data and memory of each other and of 
the operating system kernel. They must also prevent a 
malicious process from taking over the processor and 
locking up the system. 

Through a detailed analysis of the RI 0000 architecture 
and operating system, we identify the hardware 
mechanisms and OS software structures that are central to 
process isolation. We chose the MIPS RIOOOO processor as 
an exemplar of a modern RISC processor that supports a 
relatively simple UNIX style protection structure [9]. We 
first examine how a UNIX style operating system ensures 
process isolation and thereby derive the hardware 
requirements it imposes. Then identify the corresponding 
support in the RI 0000 processor. In the following 
discussion, we assume that the address translation is on a 
simple paging system. Most of today's systems actually 

. employ multiple-paging or segmented paging but the 
address translation mechanism is fundamentally the same as 
a simple paging system. 

l-tP#ftl!J!iJg§y~ft,f#f P}t~?tclPfgg~~i 
Ptotectitfn 

3.1.1 Application and Operating System Memory 
Isolation 

Petitioners Amazon 
Ex. 1010, p. 75 of 399



Application and operating system memory isolation is 
achieved through controlled address translation. The 
physical memory of each process is isolated by having 
process's virtual address space pages map to its own 
physical memory frames only. To protect processes from 
modification by other processes, the memory-management 
hardware and the OS must prevent programs from changing 
their own address mappings. The UNIX kernel, for 
example, runs in a privileged mode (kernel mode or system 
mode) in which memory mapping may be controlled, 
whereas application processes run in an unprivileged mode 
(user mode). The page tables, mapping information for each 
process reside in the memory space of the kernel so that 
they can only be modified by the OS running in kernel 
mode This address translation control to ensure isolation is 
achieved through the following mechanisms in UNIX [9, 
l O]. 

l. Locating correct translation information for each process. 
By using a special page table base register(ptbr) which 
is set from the process control block(PCB) on each 
process switch, the OS can correctly locate the page 
table for the executing process. Then the index portion 
of the virtual address is added to the address pointed to 
by the ptbr to locate the appropriate page table entry 
(PTE). 

2. Distinguishing valid and invalid entries in page tables. 
Notice that the page table can contain entries that are 
not used by the process. These unused entries 
correspond to the pages that are not in the process's 
logical address space and thus compromise process 
isolation. The OS uses valid-invalid bits to distinguish 
these entries. Alternatively, the page table can also be 
implemented to contain only the entries that are 
actually used by the process. This implementation will 
require a special register containing the length of the 
process's page table, usually called page-table length 
register(_PTLR). PTLR can be used to check if page 
index portion of the virtual address is in the range and 
therefore is not accessing illegal translation 
information. 

3. Controlling access types 
While the address translation to physical memory 
frames can be valid, the access to those physical 
memory frames are unlimited; the process can read, 
write, and execute them. It will be safer and more 
efficient if we can control the type of access to them. 
The protection bit field in the PTE provides this access 
control information. At the same time that the physical 
address is being computed, the protection bits can be 
checked to verify that no accesses not granted are 
being made. These bits usually indicate whether the 
process can read/write, read-only, or execute-only. 
The type and the number of the protection bits 
provided are dependent on the underlying processor. 

4 

4. Managing TLB consistency. 
The translation information, namely the PTE, is 

cached in the processor's TLB to avoid extra memory 
access to the page table. Using special privileged 
instructions, OS updates the TLB with consistent 
mapping information when a miss occurs. But notice 
that after a context switch, although the new page table 
is pointed to by the new process's ptbr, the TLB would 
contain entries that are left over from the previous 
processes. Therefore, to ensure process isolation, we · 
need to invalidate or distinguish the entries in the TLB 
that does not belong to the executing process. This can 
be done by allowing the OS to flush the TLB by a 
special privileged instruction after a context switch or 
by tagging the TLB entries with the process ID's and 
valid-invalid bits. 

3.1.2 Resource Protection through Operating 
System Mediation 

Not only the memory but also all resources that can be 
shared by processes must be isolated and virtualized. The 
OS provides protected resource access through mediation. 
The most fundamental role of the operating system is to 
mediate process's accesses to system resources. Processes 
are provided with a system call interface to the operating 
system kernel, and all accesses to the resources must go 
through the system calls to the kernel hence protecting the 
resources from illegal accesses of processes. The operating 
system can enforce this through the following features of 
the OS and the hardware: 

l. System trap instruction and system call handler: 
System call invocation is made through special trap 
instruction that changes the mode to kernel mode and 
jumps to system call handler location predefined by 
the OS. This system call handler is responsible for all 
system call processing in kernel, such as 
saving/restoring process context, selecting appropriate 
kernel function through system call dispatch vector, 
transferring control back to user process in user mode. 
The system call handler is one of the most 
fundamental routines in the kernel and is written very 
carefully to ensure safety. 

2. Interrupt architecture: 
The interrupt architecture in the processor and the OS 
guarantees correct invocation and handling of 
interrupts and provides priority management 
mechanisms. The interrupt handler is one of the most 
fundamental and carefully-written kernel routines and 
is responsible for safe mode transition, context· 
saving/restoring, and priority based servicing. 

For general 1/0 resources, the following features of the 
OS and the hardware ensures protection. 
3. Privileged VO instructions: 

Petitioners Amazon 
Ex. 1010, p. 76 of 399



• I• 

I/0 address space is separate from main memory 
space(e.g. x86 processors) and can only be accessed 
through privilege mode instructions( e.g. inb, outb in 
x86) 

4. Memory mapped I/0 in protected memory space: 
1/0 accesses are made by memory access instructions 
to main memory space, but this space can only be 
accessed by kernel. 

5. I/0 buffers in protected memory space: 
Buffers for I/0 operations reside in kernel space or 
space private to each process and thus protected from 
other processes. 

For CPU resources, 
6.Preemptive time-quota based scheduling: 

A process must relinquish the CPU when its time­
quota expires. The scheduler is designed carefully to 
avoid starvation of low-priority processes. Timer 
interrupt has a very high priority, second on}y to 
power-failure interrupt. 

3.1.3 Machine State Virtualization and Safe Transitions 
(context switch) 

Multiprocess isolation in a computer system can be 
considered as providing to each process a private and 
isolated virtual machine. The OS captures the state of each 
virtual machine provided and ensures safe transitions 
between virtual machine states (i.e. safe context switching). 

· In UNIX, the virtual machine state is captured in the 
Process Control Block(PCB). It contains a snapshot of 
general-purpose registers, memory context, and special 
registers, etc. Context switching involves a series of low­
level privileged instructions to switching these states and 
performing many hardware-specific tasks in order to ensure 
safe transition to a new virtuai hardware state. These 
hardware-specific tasks include flushing the data, 
instruction, address translation(TLB) caches, and flushing 
the execution pipeline. 

The OS process isolation mechanisms that are identified 
in this section can be distilled into two key elements in the 
hardware which enable process isolation: 

I. Processor execution modes and kernel address space 
2. Control of address. translation and TLB management 

The two key elements in the hardware to support 
process protection can be further classified into a range of 
features that must be provided by the hardware to enable 
process protection mechanisms dictated by the OS: 

Execution modes and kernel address space: The 
processor should at least provide two modes of execution, 
i.e. privileged execution mode and user mode, so that the 

5 

kernel data structure, special registers, and processor 
control bits can only be access and altered through special 
privileged instructions. The virtual address space should 
contain a kernel address space that can only be accessed in 
privileged execution mode. This is where the kernel data 
structure resides. 
Context register: This register identifies the current 
process and is used to select appropriate page tables for 
controlling memory access. 
Valid-Invalid bit, PTLR: The processor should be able to 
recognize the valid-invalid bit for PTEs which identifies 
those that do not map to a valid physical address. 
Optionally, process can have a Page Table Length Register 
to set the bound on the page table. 
Protection bits: The process should be able to recognize a 
protection bit or some set of them to allow a finer level of 
access control on the pages. 
TLB tagging or flush mechanism: The processor should 
enable the OS to distinguish the TLB entries that belong to 
the executing process by having TLB entries tagged with 
process ID's or allow the OS to flush out the TLB by 
supplying a special TLB-flush instruction. 

In this section, we discuss how these features are 
implemented in the RIOOOO processor, a typical superscalar 
RISC microprocessor from the MIPS RISC family. 

3.2.1 The System Control Processor (CPO) 
The central part of RIOOOO's protection architecture is 

the CPO processor. The CPO controls execution mode 
switch, TLB management and control, exception catching 
and dispatching, cache control, and the TLB where the 
protection checking is carried out. CPO's states and 
registers can only be altered by CPO instructions, which are 
privileged MOVE instructions(MFCO, MTCO, etc). These 
instructions can only be executed in kernel mode. Thus the 
system is protected from non-privileged processes which 
attempt to alter the CPO processor state including the 
processor operation mode 

3.2.2 Processor Modes 
Processor operating modes for the RI 0000 include 

Kernel mode, Supervisor mode, and User mode. The 
current mode is indicated in the CPO registers, and that 
mode can only be changed in two ways: 

l. CPO status register's KSU field is changed explicitly 
by CPO MOVE instructions executed in kernel or 
supervisor mode. 

2. The processor is handling an error (ERL bit in CPO is 
set) or an exception(EXL bit in CPO is set) and is 
forced into kernel mode. This mechanism is used to 
implement guarded transitions such as those used by 
system calls. 

Petitioners Amazon 
Ex. 1010, p. 77 of 399



The current operating mode also determines access to the 
kernel address space (or a respective application address 
space) as described in the next section. 

When the system starts up, the system is in Error 
level(ERL bit is set) so the processor is in the kernel mode. 
The cold-reset exception handler boot straps the operating 
system which then runs in kernel mode. 

3.2.3 Kernel Address Space 
To enable the operating system kernel to mediate access 

to all hardware resources as well as interprocess 
communication, it must have access to all memory. While 
in kernel mode, the processor is allowed to access all kernel 
segments (ksegO, ksegl, kseg3) and user segments, 
allowing access to all of the system resources. 

KSU= JO 
EXL=O 
ERLaO 

UX•O 

0..ICCOC('Q) 1-----· 
0:. 7fFF FFFF 

2 Gbytes 
Mas:ped 

o.oocoo:m ------• 

K.SU ,..QJ 

EXL=O 
l'.RL=O 

Error 

g: = ~1-0-.-, _Gb_y_C-~.!'1--­

M..-lpped 
Oa.C'OCOOOOO <-----• 
0a BFff F~F Address 

Rr.ror 

2 Gbyte.:e 
Mapped 

us,g 

J.ug 

C KSU;::;OOor 

EXLss:J Dr 
BRLaJ) 

and K.X =0 

O. S Gbytes 
M-p,ped A:. J 

~Et:a1CtXXJ f-----· ug 
O. 5 Gbytes 
MappeCL 

g:~~---------------------
0. 5 Gbytes 

~~=~=~ bt!gl 
0,i; AOOOOOOO ---------------------
01t 9ffll' FFFF 

D. 5 Gbytes 
Urunapped 
[Jnc..-Johc-d 

8:mWr-11-I-----• 

2 Gbytes 
Mapped 

AugO 

Figure 3. Kernel and User Address Spaces in the RlOOOO 

While in user mode, the processor can only access a 
subset of the memory space as determined by the address 
mappings for that application process. This is typically a 
subset of the address space, and is illustrated in Figure 3. 
The accessible address space for a user process is 
determined by the TLB entries whose address space 
identifier (ASID) tags match the ID of the process. If an 
application process attempts to reference an address not 
mapped by its TLB entry or attempts to reference an 
address in kernel address space, an Address Error 
Exception will occur. As with all exceptions, this is 
handled by an operating system installed exception handler 
and generally results in a fatal signal for the application 
process and its termination, thus protecting the system data 
and other processes' data from unauthorized application 
access. 

6 

3.2.4 Control of Address Translation and TLB 
Management 

The control of address translation, namely checking 
validity and access type control, is supported in RI 0000 by 
moving the PTE to CPO registers and then performing 
corresponding checks and raising appropriate exceptions in 
the CPO control processor core. The EntryHi and Entrylo 
CPO registers are always loaded with the TLB entry or the 
page table entry(if the TLB misses) that corresponds to the 
virtual address. The address translation, as well as the 
required checking and exception raising, is done using the 
contents of these registers. The EntryHi and Entry lo CPO 
registers are loaded only through TLBP, TLBR CPO 
instructions(in case of TLB hit) or generic move to CPO 
instructions(in case of TLB miss) so that these registers 
cannot be altered by user processes. 

Ent:rrJU. ll-s,.i.•t•s-

f'.. j 61 
.. ., Ul\3 

1!'":J:LL l VPN2 0 

,. ,, 

,:: j" 
Figure 4. 
RlOOOO. 

The Address Translation Control registers in the 

As shown in Figures 4, the TLB entry and the 
correspoding EntryHi and Entrylo <:PO registers have 
validity bits V and D that are recognized by the CPO and 
used as the invalid-valid bit and the protection bit that were 
described in the section on the OS protection scheme. 

The CPO has Context and Xcontext registers which 
point to the base of the page tables so that the page table for 
the executing process is located. safely and quickly after a 
context switch. 

The RIOOOO provides to the OS the means to manage 
and maintain consistent TLB entries. The TLB entries are 
not flushed after every context switch in RI 0000. Instead, 
RIOOOO allows the TLB entries loaded for different 
processes to be distinguished. Support for this can .be found 
in the 8-bitASJD(Address Space ID) field in the TLB entry. 
ASID is a unique id that is assigned to each process. After a 
context switch, a new value is loaded into the ASID field of 
the Entry Hi register. Only the TBL entries whose ASID tag 
matches this ID or set to global are enabled. In this way, it 
is guaranteed that only the pages that belong to the 
executing process or the pages that are globally shared are 
translated and accessed. The TLB entries are written with 
the contents of the EntryHi and Entry lo CPO registers only 
through TLBP, TLBWI, TLBWR CPO instructions so that the 
user processes cannot alter the TLB directly. 

The LI caches in RI 0000 are virtually indexed and 
physically tagged. It is virtually indexed in order to reduce 
access time to the cache by allowing. finding set/reading tag 
and address translation for tag to occur concurrently. It is 

Petitioners Amazon 
Ex. 1010, p. 78 of 399



important to note that because it is still physically tagged, 
accesses to the cache cannot bypass the TLB, where most 
of memory protection scheme is implemented, even though 
it is virtually indexed 

4. Process Isolation in Reconfigurable 
Hardware 

Because multiprocess decomposition is a critical 
element of modularity and fault isolation in software 
systems, providing a safe multiprocess execution is a 
critical requirement for reconfigurable processors to 
achieve widespread use. We have described the basic 
multiprocess protection problem in Section 2, and outlined 
the possible failure modes. In reconfigurable systems, these 
failure modes are largely the same, but can occur via the 
actions of both the software application program and the 
application-adapted configurable hardware. As we will see, 
a key aspect of a protection architecture for reconfigurable 
systems is to restrict the capabilities of the configurable 
hardware for unchecked access to architecturally visible 
and invisible system state. 

CPU 

Programmable Logic ,i;_ 

t ~' Pro,rammable Log,c 

....1-,c_a,_he ______ --1- ~- ~Exl-e-nd-ed~ 
P rugrammable Lag,c ABI 

Programmable Logic 

Network lnlv~aai 

' , ... I 

Programmablt Log,c 

Memory 

I 
Figure 5: The canonical application-adaptive reconfigurable 
architecture, where elements ofreconfigurable logic can in general 
be attached to all elements of interconnect, logic, and memory in 
the system. 

We characterize reconfigurable processors as a new 
class of processors with a fraction of the silicon area 
dedicated to reconfigurable logic blocks on which 
application-customized mechanisms or computations can be 
built. This basic architecture is characterized in Figure 5. 
In this basic architectural framework, reconfigurable 
elements can be attached to all elements of interconnect, 
logic, and memory, enabling any conceivable augmentation 

7 

of the hardwired system. This is the most general model, 
and is the starting point for our analysis of process 
isolation. As examples of the type of configurability that 
can be achieved, major functional blocks in these 
processors can also be reconnected, replaced, or have therr 
communication mediated. Elements of state can be altered, 
arbitration protocols can be changed, finite-state machines 
can be replaced and interconnect resources can be added ( or 
diverted) to speed (or slow) particular data movement 
operations. All of these changes can be integrated into the 
functional operation of the processor ( e.g. change the 
meaning of an instruction) as well as its protection structure 
(e.g. allow a non-privileged instruction to change a CPO 
register or a range of TLB entries). In summary, in the 
most general case, the configurable hardware can be 
attached to any part of the entire system, its actions can 
affect any part of the hardware system. 

4.i? !iiJP.1!¢ittHXtf~ Pf/ llll#lHif!llkt.f!f.iJl.!t.r 9n 
Ptocl!fsserotection 

For safe protected execution in reconfigurable 
machines, we need the guarantee of process isolation that 
the rigid process isolation mechanisms provide w~ile 
allowing a certain degree of freedom in reconfigurability of 
the hardware. Reconfigurability adds to the conventional 
concerns of controlling the software <-> software 
interactions of processes that share the processor, resulting 
in the following range of concerns: 

1. Software <-> software interactions 
2. Software <-> configurable hardware interactions 
3. Configurable hardware<-> 

configurable hardware interactions 

These cases are illustrated in Figure 6. The first case 
corresponds to the traditional process protection problem. 
In the second case, as the processor is context switched 
amongst the application processes, the surrounding 
configurable hardware may or may not be switched 
synchronously. In fact in some cases, it may be clearly 
advantageous for the configurable hardware to continue 
execution while the corresponding application process is 
context switched out. Because the configurable hardware. is 
properly viewed as an extension of the application process' 
"virtual machine", care must be taken to ensure that 
inappropriate interactions do not occur. For example, one 
such reconfiguration might involve permuting data in the 
memory between phases of execution in an application 
program. While it might be advantageous to allow this 
permutation to go on while the application is not scheduled 
on the processor, process isolation dictates that the 
customization of the memory controller must not affect the 
functional behavior of the system for other processes (e.g. 
other applications or even the kernel). Finally, the third 

Petitioners Amazon 
Ex. 1010, p. 79 of 399



case involves interactions of the configurable hardware 
with shared system (hardwired) resources which cause 
either compromises of data or more basic aspects of the 
system. For example, if application #I reconfigures the 
addressing interface from the processor to the memory bus, 
and application #2 customizes the addressing interface of 
the memory controller, allowing direct interaction could 
cause inappropriate data access or corruption. In short, the 
reconfigured logic as well as the processes must be safely 
isolated to achieve a robust and extensible system. 

Physica I Memory 

CPU 
Process A 

Proooo<or i 
Context 

Proc.a A - Process ll, 

1. Software"<·> Software lntera::tcn 

CPU 

2 Software <.-.;11 

Configurable Hardware lnteracfon 

• Arrows show 
problematic Interactions 

FPGA 
Conlgu r.ad lcr 

Prllcess A 

FPGA 
Contgu RX! 1cr 

Process B 

J. Configurable Hardware "<-> 
Configurable Hardware Interaction 

Figure 6. Three types of interactions can cause protection 
compromises in application-adaptive configurable machines. 
Arrows show problematic interactions. 

Requirements for process isolation in a configurable 
architecture extend the hardwired system requirements 
outlined in Section 3, requiring coordination across 
software and configurable hardware, and controlled access 
in all parts of the system that configurability is allowed. 

Reconfigurable architectures with process protection 
guarantees as well as existing reconfigurable architectures 
can be classified according to the customizability and the 
safety guarantee they provide. One possible range of 
configurable architecture classes spans a range of flexibility 
and safety as below: 

I. Full Configurability: All processor components fully 
reconfigurable, all memory accesses checked and 
translated by a hardwired TLB which enforces OS 
mappings. All other elements of system configurable. 

2. Aggressive Configurability with safety: All 
processor components excepting privilege mode 
changes and privileged operations fully reconfigurable, 
all memory accesses checked and translated by a 

8 

hardwired TLB which enforces OS mappings. All 
other elements of system configurable, but accesses to 
registers, shared resources such as busses, and 
memories all controlled via hardwired access checking. 

3. Moderate Configurability with safety: All processor 
components excepting privilege mode changes and 
privileged operations fully reconfigurable, all memory 
accesses checked and translated by a hardwired TLB 
which enforces OS mappings. Other devices which 
generate addresses are configurable, and have accesses 
checked by a shared ( or multiple) TLB's. Configuration 
of accesses to registers, shared resources such as 
busses, and memories not allowed. 

4. Traditional Coprocessor Configurability: Only 
coprocessor devices are configurable and their accesses 
to shared resources are unchecked (these could be 
checked by a hardwired TLB at the 1/0 interface). No 
address translation or shuffling in the MMU. This. 
approach is typically taken for FPGA-based 
coprocessor configurable designs. 

5. Processor Configurability with safety: All processor 
components excepting privilege mode changes and 
privileged operations fully reconfigurable, all memory 
accesses checked and translated by a hardwired TLB 
which enforces OS mappings. Other parts of the 
system are not configurable. 

These architectures vary widely in their capabilities for 
customization to enhance application performance and the 
cost of providing multiprocess isolation guarantees. 
Because the issues are complex, and a detailed analysis of 
even one of these architectures is a topic for an entire 
technical paper, we merely point out that #I allows the 
greatest flexibility, but cannot ensure that any isolation is 
guaranteed. 

Architecture types #2 and #3 allow what one might 
consider to be a broad notion of useful configurability, 
leaving only the protection core, TLB checks, and a few 
key arbitration resources fixed. By maintaining minimal 
structures and mechanisms that have been identified as 
essential in satisfying process protection requirements, we 
believe that process protection can be guaranteed while 
allowing a certain degree of freedom in reconfigurability of 
the hardware. Within the scope of types #2 and #3 alone, 
there is a wide range of architectural space to explore. 

Architecture type #4 is the traditional configurable 
coprocessor protection model where the configurable 
hardware is viewed as an extension of the system hardware, 
and dealt with by the operating system as an input/output 
device. This is dangerous, as the configurable logic can 
easily compromise system integrity. At a minimum, 
address checking (and interrupt capability) should be 
controlled. 

Finally, architecture type #5 is the complement of #4, 
providing processor side configurability but no coprocessor 

Petitioners Amazon 
Ex. 1010, p. 80 of 399



configurability. This type allows customization of data 
movement and computation around the primary locus of 
computation, and the tight coupling this makes 
customization significantly more powerful than in 
coprocessor systems. In type #5, process isolation is easily 
maintained by a hardwired TLB and checking all processor 
references. 

5. Process Isolation in the Morph/AMRM 
Architecture 

In the Morph/AMRM reconfigurable processor [4, 5], 
we propose that reconfigurable logic can be integrated into 
various components of the processor core to allow per 
applications adoption of optimal policies and/or custom 
mechanisms for data movement, memory hierarchy 
management, value prediction, branch prediction, etc. 
Rather than a more traditional approach of having a 
reconfigurable functional unit for custom computations, we 
are attaching reconfigurable logic to every component of 
the processor that is needed in optimizing various 

, performance criticai mechanisms and policies. This enables 
a highly flexible architecture but also makes virtually every 
part of the processor have reconfigurability. 

The design of the Morph/ AMRM protection architecture 
follows the protection model described in Section 3 by 
depending on memory addressing control and a privilege 
mode structure for ensuring that control and providing a 
virtual machine and system services for each process. 
However, because Morph/AMRM incorporates 
configurable logic deep internal to the processor core, 
careful engineering of exactly what must be hardwired is 
required. The Morph/AMRM architecture enables 
configurability in the processor complex with safe 
multiprocess protection. We also believe it enables much 
of the useful configurability in the processor complex, 
notably policies for improving efficient management of 
resources and even the addition of instructions, special 
functional units, or even processor states. The model 
provided to application programs is a private, configurable, 
virtual machine which enables rich applicatiqn 
customization. These applications (and their 
customizations) are cleanly isolated. 

The Morph/ AMRM protection architecture is a type #3 
configurable architecture (Moderate Configurability with 
Safety), preserving strong process isolation guarantees. 
The key idea is to have a few parts of the system be 
hardwired (unchangeable) and to also limit the connectivity 
to other resources ( ensuring mediated access to those 
resources). Together, these two approaches ensure that key · 
processor resources can be protected and recovered. 

The basic model uses a context switching mechanism 
which synchronously switches processor state and all of the 
process' configurable hardware throughout the system 
simultaneously. Thus, Morph/ AMRM eliminates concerns 

9 

of software<->configurable hardware and configurable 
hardware<->configurable hardware interactions for 
unrelated programs. This leaves the main issues of 
ensuring secure context switching and strict address 
isolation. 

The first two hardware features ensure virtualized 
execution and secure process switching. The latter five 
mechanisms enable process isolation. 

I . Hardwired CPO core: 
The control processor is central in providing mechanisms 

such as privileged/user mode transitions and exception and 
interrupt delivering and handling for OS mediation, which 
are required to guarantee process isolation. The control 
processor core cannot be reconfigured in our design. 

2. Hardwired instruction pipeline: 
Controls and the structure of the execution pipeline are 

fixed for instruction sequencing. However, Customizable 
functional unit provided for custom instruction. 

3. Hardwired CPO to the TLB control for address translation 
and TLB entry management: 

As pointed out in section 3, controlling/checking address 
translation in the TLB and TLB entry management is 
another central hardware requirement for process isolation. 
We have hardwired the TLB and the control from CPO to 
TLB to guarantee correct isolation. 

4. The remainder of the datapath, processor, and caches can 
all be configurable and connected in arbitrary ways for 
maximum flexibility. 

5. TLB controlled accesses for other configurable elements 
accessing system bus: 
Components such as system chip sets, 1/0 controllers, 

memory controllers that access the system bus( for memory 
or other memory-mapped items) can be fully configurable 
as long as they generate virtual addresses which is then 
checked by hardwired local TLBs. 

6. Hardwired arbiters for controlling accesses to key shared 
resources: 
Access to key shared interconnects such as the system bus 
are controlled by hardwired arbiters which are not changed, 
system reserves highest priority to allow preemption for 
these resources, configurable hardware can be redundant 
interconnects to these to accelerate, but cannot compromise 
the arbitration of these key resources. 

7. Context switching and multiplexing/bypassing 
reconfigurable blocks to isolate and virtualize reconfigured 
logic blocks for different processes. 

Petitioners Amazon 
Ex. 1010, p. 81 of 399



This is intentionally a simple model that provides most 
of the power of configurability and incurs a rather 
significant overhead of process isolation. The model 
provided to application programs is a private, configurable, 
virtual machine which enables rich application 
customization. These applications (and their 
customizations) are cleanly isolated. The schematic. 
diagram of the protection architecture with the 
considerations listed above is given in Figure 7. 

As explained earlier, these key features of the protection 
architecture are realized by restricting configurability of the 
components that are identified{in the previous sections) to 
be critical in maintaining classical process protection 
guarantees. The diagram in figure 7 shows which 
components are configurable or and which are not(shaded 
boxes in the diagram). System chip set, 1/0 controller, 

IO 

memory controllers also generate virtual addresses and 
have them checked and translated by a shared or local 
hardwired TLB, which also has hardwired control from 
CPO. 

In addition, to eliminate newly introduced concerns of 
software<->configurable hardware and configurable 
hardware<->configurable hardware interactions, our basic 
model incorporates mechanisms to synchronously switch 
processor state and all of the process' configurable hardware 
throughout the system simultaneously. The outline of this 
mechanism, namely the synchronized hardware context 
switching, is briefly explained below: 

Configuration owner table and configuration context 
register in CPO: The reconfigurable logic blocks are 
isolated, with multiplexers to control the inputs and outputs 

Petitioners Amazon 
Ex. 1010, p. 82 of 399



to each block. Controls to these multiplexers come from 
CPO, which maintains a table of the owner processes of 
each reconfigured block. The configuration context register 
in CPO indicates which reconfigurable blocks are to be used 
for the current process(see fig. 8). Notice that there are 
entries for two banks in each entry of the configuration 
owner table and that each reconfigurable logic block is 
divided into 2 banks. This can allow two different 
configurations of that block for two different processes to 
be switched without having to swap in the new 
configuration at each context switch. 

Configuration selection/bypassing: If the entries · in 
reconfigured block owner table for these blocks match the 
current process ID (different from process ID in OS. ASID 
used in TLB can be used here.), corresponding reconfigured 
block will be selected and activated while other 
reconfigurable blocks not used by the process will be 
bypassed. A more radical approach could even "suspend" 
the clock for this logic/memory to completely disable when 
the owner process is inactive it in order to ensure that no 
interference from unscheduled process' reconfigured logic. 

Configuration swapping: .If a block is to be used by the 
current process but does not match any of the two process 
ID fields (i.e. not configured for this process), an exception 
is raised and new configuration is swapped in. 

6. Discussion and Related Work 

The last decade has seen a proliferation of 
reconfigurable computing machines based on 
programmable logic blocks. In this section, . we present 
some of these efforts and discuss the multiprocess 
protection issues in these alternate approaches in 
comparison with the Morph/AMRM architecture. We also 
discuss the limitations of our current Morph/ AMRM 
protection architecture proposal. 

FPGA processors, or processors built entirely out of 
FPGAs . account for the majority of reconfigurable 

II 

computing machines that have been proposed [11, 12, 13]. 
Like ASIC hardware, these processors perform special 
computations that are specific to the task that systems with 
these processors are to carry out. The difference between 
ASIC design and FPGA processors is that FPGA processors 
can have a few contexts so that these processors can carry 
out different operations in different stages of the task. Also, 
unlike the rigid ASIC designs, they can also re-tune 
themselves for better performance in response to the data 
that they are computing. Since most of these could n"ot 
work as a stand-alone processor or only implemented as an 
experimental testbed, it is inappropriate to discuss 
multiprocess protection issues for these processors. There is 
no clear model for managing memory or external devices 
for these processors, which suggests that it will be difficult 
to, if not impossible, to design a stand-alone FPGA 
processor supporting safe multiprocess environment. 
Therefore, their use is usually limited to specific process 
engine used in domain-specific embe~ded systems. 

While impressive performances have been reported for 
FPGA-based processors [l 1, 12, 13], these machines also 
have other shortcomings such as no instruction sequencing, 
long configuration time due to limit I/0, and slower 
implementation of standard functions. To overcome these 
shortcomings that make them less than ideal for general­
purpose computing., architectures that couple a general­
purpose control processor with FPGA co-processors have 
been proposed [14]. FPGA is placed as a slave 
computational unit on the same die as the processor and is 
used to speed up what it can, while the main processor 
controls the whole execution and takes care of other 
computations. Only some regular portions in the program 
such as loops and subroutines that can be programmed in 
reconfigurable logic to obtain speed-up are carried out in 
the reconfigurable part. This falls in the architecture type #4 
as classified in section 4. The FPGA co-processor has its 
own memory interface and control logic, so it compromises 
multiprocess safety unless the system is extended so that 
the access is controlled by hardwired (local) TLB, which in 
turn is controlled through a hardwired control processor 
core. In Morph/AMRM, other configurable devices which 
generate addresses (e.g. system chip sets, input/output 
devices, memory controllers) must generate virtual address 
and is checked by local TLBs with fixed control from the 
control processor. Maintaining cache coherency is another 
problem to be solved for reconfigurable architectures of this 
kind. 

Reconfigurable processors with dynamic instruction sets 
[15] try to extend the application-specific computation 
capability of a general processor with a computational unit 
implemented in reconfigurable logic. Again, these efforts 
have not explicitly addressed multiprocess protection. The 
overall architecture of the processor and the instruction 
execution cycle is similar to a general purpose processor 
but they have an extensible instruction set that can carry out 

Petitioners Amazon 
Ex. 1010, p. 83 of 399



custom instructions as needed. As with other proposed 
works, this architecture is yet implemented only as an 
experimental testbed to demonstrate potential performance 
gain and thus lacks details in mechanisms to support real 
multiprocess environment. The existence of global 
controller in charge of interface to memory, registers, and 
processor status suggest that this architecture could be 
extended to provides protection guarantee of type #5 
architecture. But the configurability is simply limited to 
providing configurable functional unit(implementing 
custom instructions) whereas in Morph/AMRM, 
configurability extends to other processor and system 
components to improve utilization of performance critical 
resources while providing each process with a private, 
configurable virtual machine by ensuring isolation and 
lock-up freedom. The reconfigurable logic blocks in the 
core enables customization of hardware granularity, 
memory system management, and bindings between 
resources, which is driven by the application. 

The proposed Morph/AMRM protection architecture 
provides isolated, customizable virtual machine to each 
process, and pays a price in limiting configurability. While 
new instructions can be added, the parts of the instruction 
decoder and control that access the privilege control parts 
of the system must be hardwired. This still allows execution 
pipeline configurability and a wide range of optimizations, 
should they be performance sensible. The Morph/AMRM 
architecture also requires that all memory accesses be 
checked by hardwired TLBs and that there be nci other 
address translation or shuffling beyond that. This restriction 
precludes adaptations that dynamically remap memory 
addresses at the translation level to implement 
scatter/gather technique and to increase the reach of TLBs 
[16] . . However, such adaptations are not inherently safe, 
and depend on the values put into the translation tables. As 
such, they cannot be proven correct as a system attribute, 
but must depend on software to enforce some restrictions 
on use to ensure correctness and multiprocess isolation. 
Our Morph/ AMRM architecture can be extended to include 
such a notion. 

We have not completed the actual design and 
implementation of a prototype processor yet, but we are 
aware of the possibility that adding extra switches and 
muxes to isolate and context-switch customized logics that 
are spread about in the processor may incur considerable 
overhead in terms of clock rate, silicon area, and design 
complexity. 

7. Summary and Future Work 

Introducing application-controlled reconfigurability in 
the processor raises significant challenges in ensuring 
process isolation and protection (i.e. multiprocess 
isolations), a critical element of robust computing systems. 
In this paper, we have analyzed the implications of 

12 

hardware reconfigurability on a multi-process environment 
and proposed architectural requirements for safe ru;id 
protected execution for reconfigurable processors classified 
according to the protection guarantees and the level of 
reconfigurability they provide. Our study began by 
examining the protection structures of traditional processors 
and operating systems, identifying the key mechanisms of 
this protection architecture that is based on process isolation 
via address space isolation and mediation. This served as 
the starting point of our analysis and design of the 
protection architecture for reconfigurable processors. 

Based on observations made through the analysis and 
classification, we have presented an architectural design 
incorporating a protection architecture that is best suited for 
our MORPH/AMRM reconfigurable processor. The key 
elements of this protection architecture were: I. hardwired 
control processor for privilege mode transitions and 
instruction sequencing , 2. hardwired control to TLB for 
address translation and TLB entry management, 3. All other 
reconfigurable elements that generate addresses must deal 
in virtual address, and their accesses checked by 
local/shared TLBs, 4. Controlled access to key shru:ed 
interconnects are controlled by hardwired arbiters. With 
these features, the OS and hardware mechanisms required 
for process process protection are well preserved and 
protected accesses are strictly checked and controlled by 
these mechanisms, while allowing all other components to 
be reconfigurable for better flexibility. This architectural 
design will thus provide most of the power of 
configurability and at the same time provide to each process 
a private, configurable, virtual machine which enables rich 
per-application basis adaptation. We plan to carry out 
simulations to verify our design and refine it in parallel with 
the development of our prototype evaluation board of the 
MORPH/AMRM processor. The simulations that we are 
planning on will be capable of revealing realistic OS -
processor interaction, and is likely to be based on 
SimOS[l 7]. 

Making reconfigurable processors multiprocess-safe 
isn't the only requirement for a robust reconfigurable 
system, however. Dynamically validating and correcting the 
reconfigured logic is needed to find hardware faults and 
possibly to contain them. In the near future, we will study 
the issues concerning online validation/hardware fault 
containment and give a complete solution to building a 
reliable and robust reconfigurable system. 

Acknowledgements 
We would like to express our gratitude to Prof. Rajesh Gupta, 
Prof. Alex Nicolau, Prof. Alexander Veidenbaum, Louis Giannini, 
Ali Dasdan, Ben Zhang, and Martin Schulz for their comments 
and contributions. The Morph/AMRM project is supported by 
DARPA/ITO under contract number DABT63-98-C-0045 and by 
NSF Award number ASC-96-34947. 

Petitioners Amazon 
Ex. 1010, p. 84 of 399



References: 
[1] Semiconductor Industry Association. National 
Technology Roadmap for Semiconductors{NTRS), 1997. 

[2] Satapath~, R., Gupta, R. Analysis of Technology 
Trends: Making a Case for Architectural Adaptation in 
Custom Data-paths, 1997. 

[3] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, X. Ji, 
Adapting Cache Line Size to Application Behavior. To 
appear in Proceedings of the 13'h ACM International 
Conference on Supercomputing, 1999(ICS '99). 

[4] ~hien, A. and Gupta, R. MORPH: A system 
Architecture for Robust High Performance Using 
Customization. In Proceedings of the Sixth Symposium on 
the Frontiers of Massively Parallel Computation (Frontiers 
'96)(0ct. 1996), pp. 336-345. 

[5] Zhang, X., Dasdan, A., Schulz, M., Gupta, R., and 
Chien, A. Architectural Adaptation for Application-Specific 
Locality Optimization. In Proceedings of the Jnternational 
Conference on Computer Design (Oct. 1997) 

[6] DeHon, A. Reconfigurable Architectures for Genera/­
Purpose Computing, Ph.D. thesis, Massachusetts Institute 
ofTechnology, 1996 

[7] Kiczles, G., et Al. Open Implementation Design 
Guidelines. In Proceedings of the J<jh International 
Conference on Software Engineering, 1997. 

[8] MIPS technologies, Inc. MIPS RJOOOO Microprocessor 
User's Manual, 1996. 

[9] B~ch, M., The Design of the UNIX Operating System, 
Prentice-Hall, Englewood Cliffs, NJ, 1986. 

[10] Leffler, S., McKusick, M., Karels, M., Quarterman, J. 
The Design and Implementation of the 4.3BSD UNIX 
Operating System, Addison-Wesley, Reading, MA, 1989 . 

. [11] Gokhale, M., Holmes, W., Kosper, A., Lucas, S., 
Minnich, R., Sweely, D., and Lopresti, D. Building and 
Using a Highly Programmable Logic Array. IEEE 
Computer, 24(1):pp. 81-89, Jan. 1991. 

[12] Arnold, J., Buell, D., and Davis, E., Splash 2. In 
Proceedings of the 4th Annual ACM Symposium on Parallel 
Algorithms and Architectures, pp. 316-324, June 1992. 

[13] Vuillemin, J., Bertin, P., Roncin, D., Shand, M., 
Touati, H., and Boucard, P. Programmable Active 
Memories: Reconfigurable Systems Come of Age. IEEE 
Transactions on VLSI Systems, 4(1):pp.56-69, Mar. 1996. 

13 

[14] Hauser, J. and Wawrzynek, J. Garp: A MIPS Processor 
with a Reconfigurable Coprocessor. In Proceedings of the 
IEEE Symposium on FPGAs for Custom Computing 
Machines, 1997. 

p 5] ~irthlin, J. and Hutchings, 8 . DISC: The dynamic 
mstruchon set computer. In Field Programmable Gate· 
Arrays (FPGAs) for Fast Board Development and 
Reconfigurable Computing, John Schewe!, Editor, Proc. 
SPIE 2607, pp. 92-103 (1995). 

[16]. J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, 
E. Brunvand, A. Davis, Chen-Chi Kuo, R. Kuramkote, M. 
Parker, L. Schaelicke, and T. Tateyama. Impulse: Building 
a Smarter Memory Controller. To appear in the 
Proceedings of IEEE Fifth International Symposium on 
High Peiformance Computer Architecture (HPCA-5) 

[ 17] Mendel Rosenblum, Stephen A. Herrod, Emmett 
Witchel, and Anoop Gupta. Complete Computer 
Simulation: The SimOS Approach. In IEEE Parallel and 
Distributed Technology, Fall 1995. 

Petitioners Amazon 
Ex. 1010, p. 85 of 399



This Page is Inserted by IFW Indexing and Scanning 
Operations and is not part of the Official Record 

. BEST AVAILABLE IMAGES 

Defective images within this document are accurate representations of the original 
documents submitted by the applicant. 

Defects in the images include but are not limited to the items checked: 

0 BLACKBORDERS 

0 IMAGE CUT OFF AT TOP, BOTTOM OR SIDES 

0 FADED TEXT OR DRAWING 

0 BLURRED OR ILLEGIBLE TEXT OR DRAWING 

0 SKEWED/SLANTED IMAGES 

0 COLOR OR BLACK AND WHITE PHOTOGRAPHS 

· 0 GRAY SCALE DOCUMENTS 

0 LINES OR MARKS ON ORIGINAL DOCUMENT 

0 REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY 

D OTHER: _____________________ _ 

IMAGES ARE BEST .AVAILABLE COPY. 
As rescanning these documents will not correct the image 
problems checked, please do not report these problems to 
the IFW Image Problem Mailbox . 

..........,.. _ -·---·· . : · .-... - .·' ·-:-:.-- ... -__ _ . - ... . ...... -~- ·· .. . 
~--· .• • • .• .,. ,. ·.- - - -- ...,. _ __ .· -i . ....... .. - • • • ---- - -· ·· -~ ... - ... · ..... .. --. ·- . . ·- ··· - ·-:-·-~-·-· · .......... . 

Petitioners Amazon 
Ex. 1010, p. 86 of 399



Index of Claims 
Application No. Applicant(s) 

II 111 II II 111 

10/869,200 POZNANOVIC ET AL. 
Examiner Art Unit 

Shane M Thomas 2186 

..J Rejected - (Through numeral) Non-Elected Appeal 
Cancelled N A 

= Allowed + Restricted I Interference 0 Objected 

Claim Date Claim Date Claim Date 

iii "' iii 
1i'i 

iii 
1i'i C: ~ 1i'i C: C: 
C: ·ci C: ·ci C: ·ci 
ii: ·c ii: ·c ii: ·c 

0 0 0 

1 ./ 51 101 
2 52 102 
3 53 103 
4 54 104 
5 55 105 
6 56 106 
7 57 107 
8 58 108 
9 59 109 
10 60 110 
11 61 111 
12 62 112 
13 63 113 
14 64 114 
15 65 115 
16 66 116 
17 67 117 
18 68 118 
19 69 119 
20 70 120 
21 71 121 
22 72 122 
23 73 123 
24 Iv' 74 124 
25 75 125 
26 76 126 
27 77 127 
28 78 128 
29 79 129 
30 80 130 
31 81 131 
32 82 132 
33 83 133 
34 84 134 
35 85 135 
36 86 136 
37 87 137 
38 88 138 
39 89 139 
40 90 140 
41 91 141 
42 92 142 
43 93 143 
44 94 144 
45 95 145 
46 96 146 
47 97 147 
48 98 148 
49 99 149 
50 100 150 

U.S. Patent and Trademark Office Part of Paper No. 12032004 

Petitioners Amazon 
Ex. 1010, p. 87 of 399



Search Notes Application No. Applicant(s) 

111 111 111 11 11 II II II 
10/869,200 POZNANOVIC ET AL. 
Examiner Art Unit 

Shane M Thomas 2186 

SEARCHED SEARCH NOTES 
(INCLUDING SEARCH STRATEGY) 

Class Subclass Date Examiner DATE EXMR 

711 170-173 12/2/2004 In" Inventor Name Seach 12/3/2004 ~ 
712 15 12/3/2004 ~ 

IEEE Seach 12/3/2004 ~ 

EAST Search 1/10/2005 ~ 

INTERFERENCE SEARCHED 

Class Subclass Date Examiner 

U.S. Patent and Trademark Office Part of Paper No. 12032004 

Petitioners Amazon 
Ex. 1010, p. 88 of 399



Client Matter No. 80404.0033.001 
Express Mail No.: EV330612115US 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Serial No. 10/869,200 

Application of: POZNANOVIC 

Filed: June 16, 2004 

Art Unit: 2186 

Examiner: THOMAS, Shane M 

Attorney Docket No. SRC028 

For: SYSTEM AND METHOD OF 
ENHANCING EFFICIENCY AND 
UTILIZATION OF MEMORY 
BANDWIDTH IN RECONFIGURABLE 
HARDWARE 

Confirmation No.: 5929 

Customer No.: 25235 

AMENDMENT AND RESPONSE PURSUANT TO OFFICE ACTION 
DATED JANUARY 14, 2005 

MAIL STOP AMENDMENT 
Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Sir: 

In response to the office communication mailed January 14, 2005 please 

amend the above-identified application as follows: 

Amendments to the Claims are reflected in the listing of claims which 

begins on page 3 of this paper. 

Amendments to the Drawings begin on page 7 of this paper and include 

both an attached replacement sheet and an annotated sheet showing changes. 

Remarks/Arguments begin on page 8 of this paper. 

11\BO • 80404/0033 • 175820 v1 

Petitioners Amazon 
Ex. 1010, p. 89 of 399



l 

Appl. No: 10/869,200 
Arndt. Dated April 11, 2005 
Reply to Office action of January 14, 2005 

An Appendix including 1 sheet of amended drawing figures is attached 

following page 8 of this paper. 

2 
\\\BO • 80404/0033 • 175820 v1 

Petitioners Amazon 
Ex. 1010, p. 90 of 399



Appl. No: 10/869,200 
Arndt. Dated April 11, 2005 
Reply to Office action of January 14, 2005 

A. Amendments to the Claims: 
This listing of claims will replace all prior versions and listings of claims in 

the application: 

Listing of Claims: 

1. (Currently Amended) A reconfigurable processor comprising: 

a first memory having a first characteristic memory bandwidth and/or 

memory utilization type; and 

a data prefetch unit coupled to the first memory, wherein the data prefetch 

unit retrieves data from a second memory of second characteristic memory 

bandwidth and/or memory utilization and place the retrieved data in the first 

memory type and wherein at least the first the memory types and data prefetch 

unit are configured by a program. 

2. (Currently Amended) The reconfigurable processor of claim 1, 

wherein the reconfigurable processor does not have a cache to store data from 

the first memory. 

3. (Currently Amended) The reconfigurable processor of claim 1, 

wherein the second memory has a characteristic line size and the data retrieved 

from the second memory is not a cache line-sized unit of contiguous data. 

4. (Currently Amended) The reconfigurable processor of claim 1, 

wherein the data prefetch unit is coupled to a memory controller that controls the 

transfer of the data between the second memory and the data prefetch unit. 

5. (Currently Amended) The reconfigurable processor of claim 1, 

wherein the data prefetch unit receives processed data from on-processor 

memory and writes the processed data to an external off-processor memory 

memory. 

3 
11\80 • 80404/0033 • 175820 v1 

Petitioners Amazon 
Ex. 1010, p. 91 of 399



Appl. No: 10/869,200 
Arndt. Dated April 11, 2005 
Reply to Office action of January 14, 2005 

6. (Original) The reconfigurable processor of claim 1, wherein the 

data prefetch unit comprises at least one register from the reconfigurable 

processor. 

7. (Original) The reconfigurable processor of claim 1, wherein the 

data prefetch unit is disassembled when another program is executed on the 

reconfigurable processor. 

8. (Currently Amended) The reconfigurable processor of claim 1 

wherein said second memory comprises a processor memory and said data 

prefetch unit is operative to retrieve data from [[a]] the processor memory. 

9. (Original) The reconfigurable processor of claim 8 wherein said 

processor memory is a microprocessor memory. 

10. (Original) The reconfigurable processor of claim 8 wherein said 

processor memory is a reconfigurable processor memory. 

11. (Currently Amended) A reconfigurable hardware system, 

comprising: 

a common memory; and 

one or more reconfigurable processors coupled to the common memory, 

wherein at least one of the reconfigurable processors includes a data prefetch 

unit to read and write data between the data prefetch unit and the common 

memory, and wherein the data prefetch unit is configured by a program executed 

on the system. 

12. (Original) The reconfigurable hardware system of claim 11, 

comprising a memory controller coupled to the common memory and the data 

prefetch unit. 

13. (Currently Amended) The reconfigurable hardware system of claim 

11, wherein the one or more reconfigurable processors are [[is]] not coupled to a 

cache. 

4 
11160 • 80404/0033 • 175820 v1 

Petitioners Amazon 
Ex. 1010, p. 92 of 399



Appl. No: 10/869,200 
Arndt. Dated April 11, 2005 
Reply to Office action of January 14, 2005 

14. (Currently Amended) The reconfigurable hardware system of claim 

11, wherein the common memory has a characteristic line size and the data 

written and read between the data prefetch unit and the common memory is not 

a cache line-sized unit of contiguous data. 

15. (Currently Amended) The reconfigurable hardware system of claim 

11, wherein the at least one of the reconfigurable processors also includes a 

computational unit coupled to tRe ~ data access unit. 

16. (Original) The reconfigurable hardware system of claim 15, 

wherein the computational unit is supplied the data by the data access unit. 

17. (Currently Amended) A method of transferring data comprising: 

transferring data between a memory and a data prefetch unit in a 

reconfigurable processor; and 

transferring the data between a computational unit and tRe ~ data access 

unit, wherein the computational unit and the data access unit, and the data 

prefetch unit are configured by a program. 

18. (Original) The method of claim 17, wherein the data is written to 

the memory, said method comprising: 

transferring the data from the computational unit to the data access unit; 

and 

writing the data to the memory from the data prefetch unit. 

19. (Currently Amended) The method of claim 17, wherein the data is 

read from the memory, said method comprising: 

transferring the data from the memory to the data prefetch unit; and 

reading the data directly from the data prefetch unit to the computational 

unit through [[a]] the data access unit. 

20. (Original) The method of claim 19, wherein all the data transferred 

from the memory to the data prefetch unit is processed by the computational 

unit. 

5 
11180 . 80404/0033 - 175820 v1 

Petitioners Amazon 
Ex. 1010, p. 93 of 399



Appl. No: 10/869,200 
Arndt. Dated April 11, 2005 
Reply to Office action of January 14, 2005 

21. (Original) The method of claim 19, wherein the data is selected by 

the data prefetch unit based on an explicit request from the computational unit. 

22. (Original) The method of claim 17, wherein the data transferred 

between the memory and the data prefetch unit is not a complete cache line. 

23. (Original) The method of claim 17, wherein a memory controller 

coupled to the memory and the data prefetch unit, controls the transfer of the 

data between the memory and the data prefetch unit. 

24. (Original) A reconfigurable processor comprising: 

a computational unit; and 

a data access unit coupled to the computational unit, wherein the data 

access unit retrieves data from memory and supplies the data to the 

computational unit, and wherein the computational unit and the data access unit 

are configured by a program. 

6 
\\\BO • 60404/0033 • 175820 v1 

Petitioners Amazon 
Ex. 1010, p. 94 of 399



Appl. No: 10/869,200 
Arndt. Dated April 11 , 2005 
Reply to Office action of January 14, 2005 

REMARKS/ARGUMENTS 

Claims 1-24 remain in the application. Claims 1, 2, 5, 8, 11, 15 and 17 

are amended to address informalities noted in the Office action. No new matter 

is added by these amendments. 

A. Drawings. 
The correction made to Fig. 2 is believed to overcome the objection to the 

drawings. 

B. Claim Obiections 
Claims 1, 2, 5, 8, 11, 15 and 17 are amended to overcome the objections 

stated in the office action. It is respectfully requested that the objections to 

claims 1-23 be withdrawn. 

C. Reiections under 35 U.S.C. 112. 
Claims 1-10, 13 and 14 were rejected under 35 U.S.C. 112. This rejection 

is respectfully traversed. 

Specifically, the Office action questions the reference to a first 

characteristic memory type and a second characteristic memory type in claim 1. 

This is illustrated, for example, in Fig. 3 in which a logic block 300 moves data 

from a first memory 305 having a first characteristic memory type to a second 

memory 307 having a second characteristic memory type. As set out in the 

paragraphs [0007]-[0016] of the specification, for example, the memory 

characteristics may include one or more of the following characteristics: line 

size, associativity, replacement policy, write policy, and cache size, all of which 

provide varying memory bandwidth efficiency and/or memory bandwidth 

utilization. The amendment to claim 1 is believed to clarify this feature of the 

invention and overcome the objections raised in the Office action. 

With respect to claims 2 and 13, the examiner's interpretation that claims 

2 and 13 do not require a hard-wired cache is accurate. It is noted that these 

limitations appear in claims 2 and 13, not claim 1. 

8 
11\BO • 80404/0033 • 175820 v1 

Petitioners Amazon 
Ex. 1010, p. 95 of 399



I . 

Appl. No: 10/869,200 
Arndt. Dated April 11 , 2005 
Reply to Office action of January 14, 2005 

The amendments to claims 3, 4 and 14 are believed to clarify the 

questions raised in the Office action. 

Claims 2-4, 8-10 and 15-23 were rejected under 35 U.S.C. 112 as 

indefinite. The amendments to claims 2, 3, 4, 8, 15 and 17 are believed to 

overcome the rejections. 

D. Rejections under 35 U.S.C. 102. 
Claims 1-24 were rejected under 35 U.S.C. 102 based upon Paulraj. This 

rejection is respectfully traversed. 

Independent claim 1 calls for a reconfigurable processor. As set out in 

Applicant's specification at paragraph (0039), a reconfigurable processor is a 

computing device that instantiates an algorithm as hardware. Although the 

reference show a reconfigurable cache, Paulraj does not show or suggest a 

reconfigurable processor that instantiates an algorithm as hardware. Moreover, 

nothing in Paulraj would suggest the rather significant changes required to 

replace the CPU with a reconfigurable processor. For at least these reasons 

claim 1 is not anticipated nor made obvious by Paulraj. 

Claims 2-10 that depend from claim 1 are allowable over Paulraj for at 

least the same reasons as claim 1 as well as the limitations that are presented in 

those claims. 

Claim 11 calls for a reconfigurable hardware system comprising one or 

more reconfigurable processors. As noted above with respect to claim 1, Paulraj 

does not show or suggest even one reconfigurable processor. For at least these 

reasons claim 11 and claims 12-16 that depend from claim 11 are believed to be 

allowable over Paulraj. 

Independent claim 17 calls for, among other things, transferring data 

between a memory and a data prefetch unit in a reconfigurable processor. As 

noted above, Paulraj does not show or suggest a reconfigurable processor, nor 

transferring data between a memory and a data prefetch unit in a reconfigurable 

9 
11180 • 80404/0033. 175820 v1 

Petitioners Amazon 
Ex. 1010, p. 96 of 399



Appl. No: 10/869,200 
Arndt. Dated April 11 , 2005 
Reply to Office action of January 14, 2005 

processor. For at least these reasons claim 17 and claims 18-23 that depend 

from claim 17 are allowable over Paulraj. 

Claim 24 calls for a reconfigurable processor having a computational unit 

and a data access unit that are configured by a program. Paulraj does not show 

a reconfigurable processor. Moreover, the element of Paulraj that stores and 

retrieves the configuration vector is not configurable by a program. Similarly, the 

element that executes and collects performance data is not configurable by a 

program. Paulraj does not suggest making these elements configurable. 

E. Conclusion. 
The references that were cited but not relied upon are no more relevant 

than the references that were relied upon. In view of all of the above, the claims 

are now believed to be allowable and the case in condition for allowance which 

action is respectfully requested. Should the Examiner be of the opinion that a 

telephone conference would expedite the prosecution of this case, the Examiner 

is requested to contact Applicants' attorney at the telephone number listed 

below. 

Any fee deficiency associated with this submittal may be charged to 

Deposit Account No. 50-1123. 

April 11, 2005 

\\\BO - 80404/0033 • 175820 v1 

Respectfully submitted, 

. Langley, Reg. N 
Hogan & Hartson LLP 

One Tabor Center 
1200 17th Street, Suite 1500 
Denver, Colorado 80202 
(720) 406-5335 Tel 
(303) 899-7333 Fax 

10 

Petitioners Amazon 
Ex. 1010, p. 97 of 399



l 

Appl. No: 10/869,200 
Arndt. Dated April 11, 2005 
Reply to Office action of January 14, 2005 

B. Amendments to the Drawings: 
The attached sheet of drawings includes changes to Fig. 2. This sheet 

which includes Figs. 1-2 replaces the original sheet including Fig. 1-2. In Figure 

2, element 201 is correctly identified. 

Attachment: Replacement Sheet 

Annotated Sheet Showing Changes 

7 
11\BO • 80404/0033 · 175820 v1 

Petitioners Amazon 
Ex. 1010, p. 98 of 399



r t·1
 

+
 

~. 
'}i

ll 
T

 

1 O
B 

;::
:;:

:;t
····

····
····

··I
····

····
····

····
····

····
····

····
····

····
····

 
...

...
...

...
...

...
...

. 
r
-
-

M
IC

R
O

C
O

D
E

 
* 

...
..-

--
--

1 
R

O
M

 

C
O

N
TR

O
LL

E
R

 
I.. 

I '-
-'

 
C

O
N

FI
G

 

10
2 ~ 

• • 
S

IX
 B

A
N

K
S

 
D

U
A

L 
P

O
R

TE
D

 
10

4 
~
 

O
N

-B
O

A
R

D
 

M
E

M
O

R
Y

 

U
S

E
R

 L
O

G
IC

 1
 

I I
ll 

...
 I 

(e
.g

., 
FP

G
A

) 

• 
• 

• 
D

U
A

L-
P

O
R

TE
D

 
10

6 
~
 

M
E

M
O

R
Y

 

• 
* 

FI
G

. 
1 

R
O

M
 

U
S

E
R

 L
O

G
IC

 2
 

(e
.g

., 
FP

G
A

) 

~ 
. 

10
2 ~ 

·~
 

A
 

B
 

{ 
2

0
1

c 

···
·1

···
···

···
···

···
···

···
···

···
···

·+
···

···
···

···
···

···
···

···
···

···
·4

 

A
D

D
 

M
U

LT
 

S
U

B
 

' ..
...

...
...

 , ....
...

....
...

....
...

... ,
 .....

...
...

...
...

...
...

...
...

...
...

.. ·
 

A
+B

 
A

+B
-(

B
*C

) 

FI
G

. 
2 

..
,l

i,
 

.....
... 

..
,l

i,
 

N
 

:::0
 

m
 

'1
) s; ('
) m
 s: m
 

z -I
 

en
 

:r:
 

m
 

m
 

-I
 +
 

Petitioners Amazon 
Ex. 1010, p. 99 of 399



Client Matter No. 80404.0033.001 
Express Mail No.: EV330612115US 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Application of: POZNANOVIC 

Filed: June 16, 2004 

Art Unit: 2186 

Examiner: THOMAS, Shane M 

Attorney Docket No. SRC028 

For: SYSTEM AND METHOD OF 
ENHANCING EFFICIENCY AND 
UTILIZATION OF MEMORY 
BANDWIDTH IN RECONFIGURABLE 
HARDWARE 

Confirmation No.: 5929 

Customer No.: 25235 

CERTIFICATE OF MAILING BY EXPRESS MAIL 

Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Sir: 
The undersigned hereby certifies that the following documents: 

• Amendment and Response Pursuant to Office Action( 10 pages); 
• Replacement drawing sheet (1 sheet); 
• Information Disclosure Statement and copies of 3 references; 
• Certificate of Mailing by Express Mail (1 page); and 
• Return Receipt Postcard 

relating to the above application, were deposited as "Express Mail", Mailing Label 
No. EV330612115US with the United States Postal Service, addressed to 
Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on April 11, 
2005. 

April 11, 2005 
Date 

April 11, 2005 
Date 

11\BO • 80404/0033 • 175820 v1 

Stuart T. Langley, Re . No. 33,940 
HOGAN & HARTSON LLP 

One Tabor Center 
1200 17th Street, Suite 1500 
Denver, Colorado 80202 
(720) 406-5335 Tel 
(303) 899-7333 Fax 

Petitioners Amazon 
Ex. 1010, p. 100 of 399



Express Mail No.EV330612115US 
Attorney Docket No. SRC028 

ClienVMatter No. 80404.0033.001 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

In re Application of: 

Daniel Poznanovic, David E. Caliga, and Jeffrey Hammes 
Group Art Unit: 2186 

Serial No. 10/809,200 Examiner: Thomas, Shane M. 

Filed: June 16, 2004 

For: SYSTEM AND METHOD OF ENHANCING 
EFFICIENCY AND UTILIZATION OF MEMORY 
BANDWIDTH IN RECONFIGURABLE HARDWARE 

Confirmation No.: 5929 

INFORMATION DISCLOSURE STATEMENT 
UNDER 37 C.F.R. 1.97 

Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Sir: 

Applicant hereby submits for filing under 37 CFR 1.97 a disclosure statement. In 

submitting these references, no representation is made or implied that the references 
are or are not material to the examination of this application . The patents, publications 
or other information of which Applicant is presently aware are listed in Form 

PTO/SB/08A submitted herewith and copies of all such patents and publications are 
attached hereto. 

No fee is believed due for this submittal pursuant Examiner's request for 

references in the Office Action dated January 14, 2005. However, any fee deficiency 
associated with this submittal may be charged to Deposit Account No. 50-1123. 

Date 1 1 

11180 - 60404/0033 - 177661 v1 

Respectfully submitted 

Stuart T. Langley, . No. 33,940 
HOGAN & HARTSON LLP 
One Tabor Center 
1200 17th Street, Suite 1500 
Denver, Colorado 80202 
(720) 406-5335 Tel 
(303) 899-7333 Fax 

Petitioners Amazon 
Ex. 1010, p. 101 of 399



PTO/S8/08a(08/03) 
Approved for use through 07/31/2006. 0MB 0651-0031 

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE 
~ L~I Under the Paperwork Reduction Act of 1995. no persons are required to respond to a collection of information unless it displays a valid. 0MB control number. 

~ 'a\.~~te for form 1449A/PTO Application Number 10/809,200 

Filing Date June 16, 2004 

INFORMATION DISCLOSURE First Named Inventor Daniel Poznanovic et al. 
STATEMENT BY APPLICANT 

Art Unit 2186 
(Use as many sheets as necessary) Examiner Name Thomas, Shane M. 
Sheet 

I 
1 I of I 2 Attorney Docket No. SRC028 

U.S. PATENT DOCUMENTS 
Examiner Cite Document No. Publication Date Name of Patentee or Pages, Columns, Lines, Where Relevant 

Initials No.1 
No. - Kind Code2 MM-DD-YYYY Applicant of Cited Doc Passages or Relevant Figures Appear 

US-6,076, 152 06/13/2000 Huppenthal et al. 

US-6,247,110 06/12/2001 Huppenthal et al . 

US-6,356,983 03/12/2002 Parks 

US-6,594,736 06/15/2003 Parks 

US-

US-

US-

US-

US-

US-

US-

US-

FOREIGN PATENT DOCUMENTS 

Examiner 
Initials 

EXAMINER 
SIGNATURE 

Cite 
No. 1 

I 

Foreign Patent Document Publication Date 

Country Code' Number' Kind Code 5 MM-DD-YYYY 
Name of Patentee or Pages, Columns. Lines Where 

Applicant of Cited Doc Relevant Passages or Relevant r6 
Figures Appear 

I DATE I 
CONSIDERED 

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not 
considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of 
USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). • For 
Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document 
by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English 
language Translation is attached. 

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by 
the US PTO to process) and application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to 
complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any 
comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, 
U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED 
FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 

11180 - 80404/0033 • 177661 vl 

Petitioners Amazon 
Ex. 1010, p. 102 of 399



-~ 
PTO/S8/08a(08/03) 

Approved for use through 07/31/2006. 0MB 0651-0031 
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE 

Under the Paoerwork Reduction Act of 1995, no persons are reQuired to respond to a collection of information unless it displays a valid. 0MB control number. 

Substitute for form 1449A/PTO Application Number 10/809,200 

Filing Date June 16, 2004 

INFORMATION DISCLOSURE First Named Inventor Daniel Poznanovic et al. 
STATEMENT BY APPLICANT 

Art Unit 2186 
(Use as many sheets as necessary) 

Examiner Name Thomas, Shane M. 

Sheet 

Examiner 
Initials" 

EXAMINER 
SIGNATURE 

I 

Cite 
No.1 

I 

2 I of I 2 Attorney Docket No. SRC028 

NON PATENT LITERATURE DOCUMENTS 

Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, 
magazine, journal, serial , symposium, catalog, etc.), date, page(s), volume-issue number(s) publisher, city and/or 

country where published 

DALLY, BILL, HANRAHAN, PAT, FEDKIW, RON, "A Streaming Supercomputer'', September 18, 
2001, pp. 1-17. 

DALLY, WILLIAM J. et al., "Merrimac: Supercomputing with Streams", SC'03, November 15-21, 
2003, Phoenix, AZ, 7 pages. 

"Code Development and Porting Issues", SRC Computer, Inc., SRC-6E C Programming 
Environment v1.3 Gulde, April 11, 2003, pp. 17-26. 

I DATE I 
CONSIDERED 

EXAMINER; Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not 
considered. Include copy of this form with next communication to applicant. 

T' 

1 Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached. This collection 
of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to 
process) and application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including 
gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the 
amount of lime you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and 
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS 
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 

11180 - 80404/0033 • 177661 v1 

Petitioners Amazon 
Ex. 1010, p. 103 of 399



l 

e 
SRC-6E C Programming Environment v1 .3 Guide 

4 CODE DEVELOPMENT AND PORTING ISSUES 

4.1 ALLOCATING MAP RESOURCES 

When a program begins execution on the SRC-6E system, the only resources available to it are the local 
memory and processor assigned to it by the operating system at program start-up. The user must allocate 
MAP resources needed prior to calling a function, which will execute on the MAP. The function, which 
allocates and initializes MAP resources, is map_allocate. The prototype for this function is: 

int map_allocate (int nmaps); 

where nmaps is an input parameter indicating the number of MAPs to allocate for the job. 

1 <= nmaps <= MAX.MAPS (SRC6-E system only supports one MAP to be allocated per 
program executable) · 

The function's return value indicates if the allocation was successful (0) or not (<>O). 

NOTE: MAPs are identified by their MAP ID number. If n MAPS are currently allocated, their ID numbers 
are O thru n-1 . 

4.2 RELEASING MAP RESOURCES 

It is necessary to explicitly release any MAP resources allocated during the execution of a program prior 
to termination of the program when executing on a MAP or in emulation mode. The function that frees 
MAP resources is map_free. The prototype for this function is: 

int map_free (int nmaps); 

where nmaps is an input parameter indicating the number of MAPs to release from the job. 

1 <=nmaps <= MAX.MAPS (SRC6-E system only supports one MAP to be allocated per program 
executable) 

The Function's return value indicates success (0) or failure (<>O) of the release . 

NOTE: map_free releases the MAPs with the highest MAP ID's first. For example, consider an 
application that has seven MAPs allocated to it, MAP IDs 0, 1, 2, 3, 4, 5 and 6. After the execution of the 
statement: 

stat= mapfree( 2 ) ; 

there are five MAPs remaining allocated to the job with MAP IDs 0, 1, 2, 3, and 4. 

Copyright© 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

17 April 11, 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 104 of 399



e 
SRC-6E C Programming Environment v1.3 Guide 

4.3 APPLICATION MODIFICATIONS FOR MAP EXECUTION 

To take full advantage of the MAP hardware, it is necessary for the user to make some modifications to 
the application. As the compiler technology matures and more optimizations can be automatically 
performed that target the unique characteristics of MAP hardware, it will become less important for the 
users to understand the behavior of the hardware and modify their code accordingly. The next sections 
describe required application modifications for MAP execution. The modifications include partitioning the 
code for MAP execution into a new file, restructuring the partitioned code, inserting MAP resource 
management library calls, and inserting calls to the function compiled for MAP execution in the code that 
executes on the Intel processor. 

4.3.1 Partitioning The Code 
The first step in porting an application to the SRC-6E system utilizing the MAP hardware is to identify 
some portion of the application such that, when that portion is compiled for the MAP, overall performance 
will improve. Loops are often good candidates for execution on the MAP. Loop nests and their associated 
loop bodies, that can be pipelined, have shown execution speed-up. Another potential improvement could 
be in the process of manipulating single bits from within a long bitstream of data. 

NOTE: Once a section of code has been identified for MAP, it must be placed in its own separate function 
and be the only function in that file. 

The function name will be the base name of all the components generated as a result of compilation . 
Similarly, the filename that contains the function to be compiled, minus .c or .C suffix, becomes the base 
name for all files generated as a result of compilation. The function has the computational portion of code 
that will be executed on the MAP. It must also be modified to manage the data movement to and from the 
MAP's On-Board Memory (OBM). Data movement functions must be inserted to manage data movement 
between the System Common Memory (SCM) and OBM. At the beginning of program execution, all data 
(memory) resides in SCM. Any array data needed by a function executing on the MAP must be moved to 
OBM explicitly, and any array result data computed during MAP execution must be explicitly moved back 
to SCM. The compiler automatically moves scalar formal parameters of the MAP function to and from the 
MAP as needed. Array data resides in OBM structures during MAP execution. The OBM data movement 
functions are described in the next section. 

In addition to isolating the MAP code in its own function, and the insertion of data movement function 
calls, other code modifications may be required for MAP execution. Performance gains using the MAP wil l 
generally come through the efficient execution of loops. The MAP C Compiler attempts to pipeline loops, 
where a loop's iterations are fired one per clock. The MAP C Compiler has restrictions on the kinds of 
loops it can pipeline, and ongoing work on the compiler at SRC Computers, Inc. is aimed toward reducing 
these restrictions. 

Copyright© 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

18 April 11, 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 105 of 399



e 
SRC-6E C Programming Environment v1 . 3 Guide 

Loops may not have "breaks" in them, since a break creates a multiple-exit loop body. Because of C's 
rules regarding the evaluation of the '&&' and 'II' logical operators, in which the right-hand expression is 
evaluated only if the left-hand side does not resolve the operator's result, the use of these operators in a 
loop termination expression will produce a multiple-exit loop and a compiler error such as: 

error (martello, #32): can't pipeline a multiple-exit loop 

To avoid this, use the bitwise operators '&' and 'I' instead. Here is an example, where an array is 
searched for the value '42': 

for (i=O, a=O; (i<m)&(a!=42); i++) { 
a= AL[i]; 
idx = i; 

In general, a MAP function may have only one lexical reference, read or write, to each bank of OBM. The 
exception to this is that a pipelined loop may contain up to eight reads from a given bank. When multiple 
reads occur, the loop code generated by the compiler is throttled so as to use N clocks per iteration, 
where N is the maximum number of reads to any bank from within the loop. This is because the MAP 
hardware can reference only one OBM word per clock. 

A structural subtlety arises with regard to the restriction that multiple code blocks cannot reference the 
same bank of OBM in a MAP function. Because the MAP C Compiler creates bottom-test loops in its 
dataflow graphs, a 'while' loop is implemented by creating a zero-trip test outside of the loop, and then 
converting the loop to a bottom-test. This means that a test such as: 

while (A [i] ! = 42) 

will result in two array references to 'A', and compilation will produce the error: 

error (martello, #25): multiple reference to bank 'a' 

In general, bottom-test loops will produce slightly more space-efficient MAP implementations since the 
zero-trip test does not need to be created. 

Occasionally a user might wish to prevent loop pipelining. The most common reason would be an inner 
loop that contains a call to an external macro. Since external macros don't pipeline, the MAP C Compiler 
will issue an error when it sees the external macro. To tell the compiler not to pipeline, use the ··-nf' 
option. 

All data referenced or defined during execution of the MAP function is explicitly passed through the formal 
procedures of the function. No global data (externs) can be accessed by the MAP function, with the 
exception of the specifically named structures associated with the OBM. These structures are described 
in the following section. 

Copyright© 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

19 April 11, 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 106 of 399



e e 
SRC-6E C Programming Environment v1.3 Guide 

Array parameters must be declared with the square bracket notation ( [ ] ) rather than as pointers to data. 
Pointer arithmetic is not supported in MAP functions. 

The last formal parameter in the MAP function's argument list is a default int mapid. mapid is the number 
that indicates the MAP on which the function is to execute. The MAPs allocated to a job are identified by 
an integer in the range of O thru n-1 where n is the number of MAPs currently allocated to the job. (Refer 
to section 4.1 for more information about MAP allocation.) 

NOTE: Only one MAP may be allocated to a user's job, and thus, the mapid specified for a MAP function 
to execute on should be 0. 

The function must not contain any external calls or external function references except those that will be 
linked to either SRC defined or user defined macros (Refer to section 5) . In this sense, functions must be 
wholly contained on the MAP. No 1/0, system calls, or other runtime functions such as memory allocation 
that require operating system intervention are allowed. 

Data types int, long, and long long are supported. The intrinsic operators +, -, *, .==, !=, >, >=, <, and <= 
are fully supported for these types. The intrinsic operator/ (division) is supported only for 32-bit integers 
at this time, as is the math function SQRT. The bitwise operators &, I, and ! are provided for signed and 
unsigned int and long long (32 and 64-bit) data types. Left and right shift operators, « and », are 
supported for signed and unsigned int and long long types. Logical operators&&, !, II are also supported. 

Floating-point and complex data types are supported for MAP functions; however, operations on floating­
point and complex data are not supported. Logical data types and operations are not yet supported . 

Table 4. Supported Operations 

Integer Real Boolean Complex 
long 

long float/ long double 
Type= char short int long double double complex complex 

Addition y y 
Subtraction y y 
Multiplication y y 
Division y 
-- I-<---,.-, -, y y 
>=,<, > 
!, &, I," y y 
&&, II.!," y y 

The following is a list of criteria that must be met with regards to data in a MAP function : 

• Except as parameters to data movement functions, function array formal parameters must not be 
referenced or defined. 

• Function array formal parameters must be declared using square brackets ( [ ] ) to distinguish 
them from formal parameters that are pointers to scalars. 

• Formal parameter arrays must be of either signed or unsigned long long type (64-bit integer 
data). 

• Lexically, each OBM bank can be read from only one code block, and written by only one code 
block. If a bank is both read and written, then the read and write must be from separate code 
blocks. The number of writes to a bank is limited to one. The number of reads from a bank is 
limited to eight, and the reads must all occur in the same code block. 

Copyright © 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

20 April 11 , 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 107 of 399



· ·· ··· ,'. 

e 
SRC-6E C Programming Environment v1 .3 Guide 

4.3.2 Local Scalars And Arrays 

The MAP Compiler supports local arrays, of one and two dimensions, which are allocated to Block RAM 
within the user chip. These arrays are available in 32-bit and 64-bit widths, and in size increments of 512 
up to 8192 words. Any number of arrays can be alliocated up to the limit of the Block RAM space in the 
user chip (144 512x32 RAM units). The user may specify any size up to 8192; the compiler will allocate a 
size to the next increment of 512. For example: 

int TO[lOOO); 

The compiler will allocate the 1024x32 BRAM to the array TO'. Each local array is subject to the same 
read/write restrictions that exist for OBM accesses; lexically, each array can be read from one code block 
and written from one code block. The read and write must be from separate code blocks. The number of 
writes to an array is limited to one. The number of reads is limited to eight, and they must occur in the 
same code block. 

32-Bit 64-Bit 
512X32 512X64 
1024X32 1024X32 
1536X32 1536X64 
2048X32 2048X64 
2560X32 2560X64 
3072X32 3072X64 
3584X32 3584X64 
4096X32 4096X64 
4608X32 4608X64 
5120X32 5120X64 
5632X32 5632X64 
6144X32 6144X64 
6656X32 6656X64 
7168X32 7168X64 
7680X32 7680X64 
8192X32 8192X64 

4.3.3 Data Alignment And Movement Functions 
The user must correctly declare the data needed for the MAP c·omputation. All arrays, passed as 
arguments to a MAP function, must be cache aligned (aligned on multiple 32-byte cache line boundaries) 
in order for correct movement between SCM and MAP OBM. This can be achieved using setting pointers 
to a cache aligned address within an array that has been padded in size to allow alignment. To facilit~te 
this alignment, the function addr32 exists in the MAP library (libmap). An example of the use of this 
function is given in the example. The prototype for this function is: 

void *addr32 (void *addr); 

where "addr" is the address of an array that has been declared with padding for alignment, and the 
function result is the address of the first cache aligned word within that array. 

Copyright© 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

21 April 11 , 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 108 of 399



e 
SRC-6E C Programming Environment v1 .3 Guide 

Alternately, cache alignment of data can be achieved in C by using a memory allocation function that 
provides cache-aligned buffers. The prototype for the cache-aligned allocation function is: 

char *Cache_Aligned_Allocate(int size); 

where "size" is the requested buffer size in bytes. The function returns a pointer to the requested buffer. 

Cache aligned buffers can be freed using the Cache Aligned Free function . The prototype for th is 
function is: - -

void Cache_Aligned_Free(char *buffer); 

where "buffer" is a pointer to the buffer that is to be freed . 

Special functions handle the data movement between SCM and MAP OBM. Since OBM is actually 
comprised of 6 banks, each with separately addressable memory, SRC developed a syntax for users that 
identifies where data is to be moved when transferring it from local memory to OBM. This syntax involves 
utilizing structures whose names specifically correspond to the six banks of OBM. The banks or structures 
are named banka, bankb, ... , bankf. Each structure may only contain one array member and no other 
members. All array data involved in MAP computation must reside in one of these six specifically named 
structures. 

For example: 

#define size 10000 
struct { 

uint64 t data array [size]; 
} banka; -

Rather than referencing the array through a structure dereference, a pointer may be created : 

uint64 t *data_array banka . data_array 

If such a pointer is used, the name of the pointer must be identical to the structure member array it points 
to. 

Copyright © 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

22 April 11 , 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 109 of 399



l. 

e 
SRC-6E C Programming Environment v1 .3 Guide 

To simplify the declaration of the structures, member arrays, and pointers, the user may wish to define 
macros for doing so. The macros may be placed in a header file and be included in all the users MAP 
functions . An example of a macro for allocating a single dimensioned array in OBM banka may look like: 

#define BANK A ALLOC( name, type, _size) \ 
struct-{\ - -

type name[ size);\ 
} bank;;\ -

_type* name banka._name ; 

Assuming this macro is place in the user header file my _macros, the declarations above of the structure 
banka with a member data_array of 10000 elements of type int and the associated pointer to that array 
would be replaced with: 

#include rny_rnacros 
#define size 10000 
BANK_A_ALLOC(data_array, uint64_t, size) 

Multiple arrays may be allocated in an OBM bank. For example, the following declarations allocate two 
arrays in banka: 

struct { 
int64_t AL0[32]; 
int64 t AL1[32] i 

} banka; 
int64 t *ALO banka.ALO; 
int64 t *ALl banka.ALl; 

However, · because multiple reads to an OBM bank can occur only from within one pipelined loop, these 
two arrays can be referenced only from wit~in the same pipelined loop. 

To transfer data from SCM to OBM, six functions are provided, one for each OBM bank. To transfer data 
from OBM to SCM there are also six functions, one for each OBM bank. Finally, there are six functions to 
synchronize completion of transfers to or from each OBM bank. The f~nction prototypes are: 

void cm2obm_x(void *obm_addr , void *cm_addr, int length); 
void obrn2cm_x(void *cm_addr, void *obm_addr, int length); 
void wait_server_x(); 

where "x" is the name of the OBM banka thru bankf; "cm_addr" is the first word address in SCM; 
"obm addr" is the first word address in OBM (see OBM stripe function below); and "length" is the - -
number of bytes to transfer. Using these functions, it is only possible to read or write a given bank within a 
MAP function. For example, the use of cm2obm_a and obm2cm_a within the same function is not 
permitted because OBM banka is both read and written. 

Copyright© 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

23 April 11, 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 110 of 399



e 
SRC-6E C Programming Environment v1 .3 Guide 

In some cases, it is desirable to stripe data from SCM across multiple banks of OBM. Addition functions 
are provided to stripe into and out of OBM. The prototypes for these functions are: 

void cm2obm_svn(void *obm_addr, void *cm_addr, long long obm_stride, 
long long cm_stride, int length); 

void obm2cm svn (void *cm addr, void *obm_addr, long long cm_stride, 
long long obm_stride, int length); 

void wait_server_svn(); 

where "n" is a digit in the range of 0-5; "obm_addr" is the first word address in OBM; "cm_addr" is the 
first word address in SCM; "obm_stride" is a constant which represents the stripe/stride pattern in OBM; 
"cm_stride" is the SCM stride; and "length" is the transfer size in bytes. 

NOTE: See the SCR-6E MAffi Hardware Guide for further information on use of the stripe and stride 
transfers. 

A function, OBM_stripe, is provided which creates the obm_stride argument to the above routines. 
This is an integer constant which represents the stripe pattern across the OBM banks and the stride in the 
banks. The function prototype is: 

int64_t OBM_stripe (int stride, char *stripes, int *err); 

where "stride" is the stride between elements in an OBM bank; "err" is the error return code of the 
function (0 = successful; <O = an error occurred); and "stripes" is a character string representing the 
OBM bank stripe pattern of the transfer. Stripes is comprised of one to sixteen characters A-F or X, all 
upper case, each separated by a comma. The characters A-F represent the banks in which to place 
(take) the next value transferred, and X indicates a skipped value. For example, stride = 1, and 
stripes = A, c, A, E, X, OBM_stripe returns a value, which if used as the obm_stripe argument to 
cm2obm_svn, results in values coming from SCM to be placed in OBM as follows. The first value goes to 
bank A, the second to bank C, the third to bank A, the fourth to bank E, the fifth is discarded (ignored). If 
more values remain to be transferred, the pattern is repeated until all values are transferred. In the case 
of a transfer from OBM to SCM (obm2cm_svn) the value O is transferred to SCM for each bank 
designated as "X" in the string. 

It is possible to OMA to and OMA from the same OBM bank using the cm2obm_syn and the 
obm2cm_syn functions. For example, a MAP function can have an input array that is both an input, and 
an output to the function. A cm2obm_svn function may be used with the obm_stride value set to write 
to only a single bank to transfer input values to OBM. After MAP computation is complete, a obm2cm_svn 
function may be used with the obm_stride value set to read from only the same bank to copy the array 
out of OBM. 

Copyright© 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

24 April 11, 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 111 of 399



r 

e 
SRC-6E C Programming Environment v1 .3 Guide 

There are a total of six OBM servers, which perform the memory transfers between SCM and OBM. 
These servers are shared by the bank specific transfer functions (those ending with a specific bank 
identifier A-F) and the stripe transfer functions (those ending with a server number 0-5). Each OBM server 
may be used only once per MAP function. The functions sharing a given OBM server are: 

Server 0: cm2obm_a, obm2cm_a, cm2obm_sv0, obm2cm_sv0 
Server 1: cm2obm_b, obm2cm_b, cm2obm_sv1 , obm2cm_sv1 
Server 2: cm2obm_c, obm2cm_c, cm2obm_sv2, obm2cm_sv2 
Server 3: cm2obm_d, obm2cm_d, cm2obm_sv3, obm2cm_sv3 
Server 4: cm2obm_e, obm2cm_e, cm2obm_sv4, obm2cm_sv4 
Server 5: cm2obm_f, obm2cm_f, cm2obm_sv5, obm2cm_sv5 

Given this sharing, a MAP function may not call both crn2obrn_d and obrn2crn_sv3 as both of these 
functions share OBM server 3. 

The data transfers between SCM and OBM are asynchronous. The wait server functions wait for the 
transfers to complete before execution continues. 

The concepts of the previous section are demonstrated in the following example. 

Copyright© 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

25 April 11, 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 112 of 399



t, 

e 
SRC-6E C Programming Environment v1 .3 Guide 

The original code to be modified for MAP execution is as follows: 

#include <Stdio.h> 
#include <Sys/types.h> 

#define SIZE 64 

int main (} { 

/* 

int i,n; 
int so, sl, s2, s3, s4, sS, s6, s7, S8, S9, S10; 
long long a[SIZE + 8), b[SIZE + 8); 

for ( i = O; 
b[i) 
} 

i < SIZE; i++) 
6 (i%12); 

/*********************************************************************** 
* 10th degree horner's rule polynomial evaluation. 

* 
* 
* 
* 
* 

n 
a 
b 

- Vector length 
- Input vector (addr) 
- Output vector (addr) 

***********************************************************************/ 

/* ·coefficients */ 
so 1; 
sl 2; 
s2 3; 
S3 4. 

' 
S4 5; 
S5 6· 

' 
s6 7 . 

' 
s7 8; 
s8 9; 
S9 10; 
slO 11; 

calculation loop */ 

for ( i = O; i < n; i++) { 
a[i) so+ b(i] * (sl + b[i] * (s2 + b(i] * (s3 + b[i] 

* (s4 + b[i] * (sS + b[i] * (s6 + b[i] 
* (s7 + b(i] * (s8 + b[il * (s9 + b[i] 
* slO))))))))); 

/* Print Results*/ 

for (i O; i < SIZE; i++) { 
printf ("b[%d): %lld \t a[%d]: %lld \n", 

i,b[i] ,i,a[i]); 

When modifying code for MAP execution, the computational portion of the code that will benefit from MAP 
execution is first identified. In this example, the for-loop on the "db" array is what is targeted. The loop 

Copyright© 2002, 2003 SRC Computers, Inc. 
ALL RIGHTS RESERVED. 

26 April 11 , 2003 
SRC-007-06 

Petitioners Amazon 
Ex. 1010, p. 113 of 399




