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collection. Exhibit A also includes an excerpt of pages 237 to 248 of that volume,

showing the article entitled Using reconfigurable hardware to customize memory

hierarchies (1996). Based onthis information, the date stamp on the volume cover page

indicates Using reconfigurable hardware to customize memory hierarchies (1996) was

received by University of Wisconsin-Madison Libraries on December 12, 1996.

Based on the information in Exhibit A,it is clear that the volume wasreceived by

the library on or before December 12, 1996, catalogued andavailableto library patrons

within a few days orat most 2 to 3 weeks after December 12, 1996.

I declare that all statements made herein of my own knowledge are true and that

all statements made on information and belief are believed to be true; and furtherthat

these statements were made with the knowledge that willful false statements and thelike

so made are punishable byfine or imprisonment, or both, under Section 1001 of Title 18

of the United States Code.
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Abstract

Over the past decade or more, processor speeds have
increased much more quickly than memory speeds.
As a result, a large, and still increasing, processor-
memory performance gap has formed. Manysignifi-
cant applications suffer from substantial memorybot-
tlenecks, and their memory performance problemsare
often either too unusual or extreme to be mitigated by
cache memories alone. Such specialized performance
“bugs” require specialized solutions, but it is impos-
sible to provide case-by-case memory hierarchies or
caching strategies on general-purpose computers.

Wehaveinvestigated the potential of implementing
mechanismslike victim caches and prefetch buffers in

reconfigurable hardware to improve application mem-
ory behavior. Based on technology and commercial
trends, our simulation-based studies use a forward-
looking model in which configurable logic is located
on the CPU chip. Given such assumptions, ourre-
sults show that the flexibility of being able to special-
ize configurable hardware to an application’s memory
referencing behavior more than balancestheslightly
slower response times of configurable memoryhier-
archy structures. For our three applications, small,
specialized memory hierarchy additions such as vic-
tim caches and prefetch buffers can reduce miss rates
substantially and can drop total execution times for
these programs to between 60 and 80% oftheir orig-
inal execution times. Our results also indicate that

different memory specializations may be most effec-
tive for each application; this highlights the useful-
ness of configurable memory hierarchies that are spe-
cialized on a per-application basis.

Keywords: memorylatency, configurable comput-
ing, victim cache, prefetching.

1 Introduction

Due to rapid increases in microprocessor speeds, the
performance gap between processors and main mem-
ory is widening. Cache memories are typically used in
computer systems to bridge this performance gap and
reduce the average memory access time. Although
caches work well in many cases, they maystill fail to
provide high performancefor certain applications.

Several hardware and software techniques have

been proposed to improve cache performance in such
cases. For example, prefetching techniques aim to
hide the large latency out to main memoryby bring-
ing data to the cache before it is referenced. Vic-
tim caches attempt to reduce conflict misses in low-
associativity caches. These hardware techniques have
variable results depending on the application’s mem-
ory referencing behavior. Their disadvantageis that
they represent wasted transistor space on the CPU
chip for those applications where they are ineffec-
tive. On the other hand, the drawback to purely

software-based techniques (such as blocked matrix ac-
cesses or compiler-inserted prefetching directives) is
that it can be difficult to statically analyze a pro-

gram’s memory behavior and determine when such
techniques will be useful. For these reasons, this pa-
per explores implementing memory hierarchy addi-
tions in programmable hardware.

Programmable logic, such as field-programmable
gate arrays (FPGAs), has gained tremendous popu-
larity in the past decade. Programmablelogic is pop-
ular because a given chip’s behavior can be configured
and customized for different functions during differ-
ent sessions. Customization on a per-application ba-
sis is feasible because the reconfiguration process is
fast and can be done with the device in the system.
Some FPGAscan even bepartially reconfigured while
the rest of the device is in use.
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The configurability of FPGAs makes them heavily

used for prototyping, but they have also been used to
build high-performance application specific compute
engines [12]. In addition, there has been work (such
as PRISC [21] and PRISM[2]) on supplementing con-
ventional processors with configurable coprocessors
to accelerate performancefor different applications

Thus far, most configurable computing projects
have focused heavily on computation as opposed to
data access. In this paper, we explore the potential
of using configurable hardware to make application-
specific improvements to memory behavior. We en-
vision a library of parameterized memory hierarchy
additions that can be invoked to target cases where
the cache system does not work well for a particular
application.

As fabrication technology improves, more and more
transistors fit on a single chip. It seems likely that
we will soon see processor chips that include a re-
gion of on-chip configurable logic. This configurable
logic can clearly have many uses; our work does not
preclude configuring the logic for more traditional
compute-oriented uses, but simply attempts to ex-
plore an alternative use.

In Section 2, we will first discuss the structure of
the configurable memory unit that we envision. Fol-
lowing that, in Section 3, we present case studies of
applying the ideas of configurable memoryto several
applications. In Section 4, we discuss some of the
hardware organization and implementationissues in-
herent in our approach. A brief account of related
work is included in Section 5 and Section 6 presents
some discussion and our conclusions.

2 Configurable Hardware in
Memory Hierarchies

Webelieve that configurable logic can result in sig-
nificant performance improvement by improving av-
erage memory access latencies. Our overriding goal
is to minimize the numberof cache misses that result

in accesses to main memory. Researchers have pro-

posed methods that promise performance improve-
ments of up to 3X by reducing cache misses using
full-custom hardware [19]. These methods arerarely
included in commercial processors, however, because
they do not provide performance improvementsfor
a broad enough set of applications. Our current re-
search showsthe potential of these approaches using

238 / SPIE Vol. 2914

flexible, configurable hardware instead.

Integrated circuits are expected to soon grow to
contain over 100 million transistors. As this growth
takes place, we must determine ways to best make
use of these additional transistors. Rather than sim-

ply devoting increased chip areas to increased cache
sizes, our research explores other methodsfor using
the transistors to reduce (or better tolerate) memory
access latencies.

In current research projects, configurable logic is
typically incorporated into the architecture using an
attached processor array model. As shownontheleft
hand side of Figure 1, an accelerator based on FP-
GAsand dedicated static RAM (SRAM), is attached
to the I/O bus of a conventional host processor. The
conventional processor and configurable logic array
operate asynchronously. The host supplies control
signals and monitors results while the logic array pro-
cesses data obtained from an external source such as

a frame-buffer. The major problem with this model
is the high communication latency between proces-
sor and configurable logic, due to their physical and
logical separation.

As shown on theright handsideof Figure 1, the ex-
pected integration of configurable logic on-chip gives
us more flexibility not only in its logical placement
within the architecture, but also in its expected uses.
In addition, on-chip configurable logic has moreflexi-
bility in its connectivity to processors and caches. We
can now begin considering uses for configurable logic
that are infeasible (because of latency and connectiv-
ity constraints) with the attached processor model.

2.1 Logical Placement, Connectivity

The logical placement of the configurable logic is
driven by its intended memory optimization func-
tion. The right hand side of Figure 1 shows two
distinct possibilities, and in fact, each of these con-
figurable blocks may expend their transistor budgets
on some combination of configurable gates and asso-
ciated SRAM.(Inthis figure, the logical positions for
configurable logic are indicated by diamondslabelled
“C1” and\"C27.)

The configurable logic closest to the processor can
detect L1 cache misses and manage prefetch buffers,
stream buffers, or a victim cache. Similar functions
can be performed by the second block of configurable
logic, for the L2 cache. In addition, this logic could
observe memory accesses between nodes of a dis-
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Figure 1: Traditional (left) and more forward-looking (right) uses of configurable logic.

tributed memory multiprocessor, or hold specialized
multiprocessor coherence protocols.

In this paper, we focus primarily on two particu-
lar optimizations: victim caches and prefetching en-
gines, implemented in configurable hardware. Victim
caches are small, fully-associative caches that lie be-
tween the cache and main memory. Victim caches
primarily aim to reduce conflict misses by caching
data that has been evicted from the cache as a result

of a miss on another location. Even small (four-entry)
victim caches can reduce conflict misses by about 50%
and reduce total cache misses by 5-30% [19].

Prefetching engines are hardware structures in-
tended to fetch pieces of data from main memory
before references to them occur, in order to hide the

large latencies out to main memory. They have been
studied in several contexts before [6, 7, 20]. Although
such hardware mechanisms have been evaluated via

simulation studies, widespread adoption in custom
hardware is unlikely, since their benefits vary from
application to application. Assumingthat future pro-
cessors will include a block of configurable logic on-
chip, this paper uses simulations to re-evaluate these
mechanismswithin the context of a dynamically cus-
tomizable memory hierarchy.

For prefetch or stream buffers, the configurable
logic must be able to detect a miss from the L1 (or L2)
cache, recognize that the address matches the address
of data in the prefetch buffer, abort the memoryre-

quest, and supply the data to the CPU. Simultaneous
to servicing the access request, the prefetch controller
may initiate a memory request for the next location
from which to prefetch. For a victim cache, the logic
must once again be able to detect the primary cache
miss, recognize the presence of the data in its SRAM,
abort the memoryrequest, and supply the data to the
CPU. These functions can be easily performed using
a small state machine controller.

2.2 Logical vs. Physical Placement

It is important to make a distinction between the log-
ical and the physical placement of the configurable
logic. The discussion above described the logical
placement, i.e. where the configurable logic needs to
be positioned in terms of the signals it needs access
to. Physically, we anticipate future generations of mi-
croprocessors to have a fixed amount of configurable
logic which may be used for a variety of tasks includ-
ing but not limited to accelerating computation and
memory accesses. Since each application will have
different requirements on where the configurable logic
should be placed, it is not reasonable to expect it to
be positioned in exactly the positions markedin Fig-
ure 1. The key demand that our logical placement
makes on configurable logic’s physical placement is
that of connectivity; there must be signal paths that
provide access to the signals required by the logical
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usage. The physical placement impacts performance
in two ways. First, the interconnect delay may be
significant. Second, the interconnect topology may
lead to contention of shared resources such as buses.
This contention has not been modelled in theinitial
study presented here.

2.3 Programming Model

In addition to hardware concerns, our configurable
memoryhierarchies raise software issues as well. Fig-
ure 2 gives a flowchart that represents the path a
program would go through in order to make use of
configurable memory hierarchy additions.

Cone AutomatedAdd directives

Code with[CodewithConfig.info}info

Eien

Figure 2: Flowchart of programming model with con-
figurable memory hierarchy additions.

 

Starting from conventional source code, some per-
formance analysis is needed to determine what types
of performance bottlenecks are present. Based on this
analysis, configuration directives may be added into
the code in order to use particular configurable mem-
ory hierarchy additions. The configuration directives
may either make use of hardware from a parameter-
ized library of pre-made designs, or they mayspecify
custom-made configurations. Our flowchart also al-
lowsfor the possibility that these configuration direc-
tives will either be hand-inserted into the code by the

programmer,or will be automatically inserted as part
of the compilation process. At this point, the code
is executed, and the memoryhierarchy additions are
configured as part of the program run. If the code
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is to be run repeatedly, then the performancestatis-
tics about this program run can be used as feedback
to modify the configuration for future runs. Clearly,
the widespread use of this sort of hardwarerelies on
automating the analysis and choice of configurations
as much as possible. In Section 3’s preliminary case
studies, however, we set the configuration directives
manually.

3 Application Case Studies

In order to quantitatively evaluate our idea, we
present results on three case study applications.

3.1 Configurable Memory Hardware

In the case studies presented here, we assume the con-
figurable memory hardware sits on the same chip as
the processor and first-level (L1) cache. This corre-
sponds to location C1 in Figure 1. For these studies,
we examine two configurable hierarchy additions sep-
arately: a victim cache and a prefetch buffer.

3.1.1 Victim Cache

A victim cache is a fully-associative cache with typ-
ically no more than 16 entries. When an L1 cache
miss occurs, the referenced line is pulled into the L1
cache and another line currently stored in the same
cache line is evicted. The victim cache is a small

fully-associative buffer that holds these evicted lines.
Using victim caches can have theeffect of increasing
the set associativity at low hardware cost.

Figure 3 shows a diagram of the victim cache we
consider. The address and data lines go to both the
Ll cache and the victim cache. On an L1 cache hit,

the data is provided directly from the L1 cache, and
the configurable hardware is not involved. On an
Li cache miss, the victim cache is probed in parallel
with the request to the next level of memory.If the
reference hits in the victim cache, the victim cache
data provides to the processor. When the data is
pulled into the L1 cache, another line mustbe evicted
from the cache. The victim cache intercepts this line
and storesit.

3.1.2 Prefetching Buffer

The goal of a prefetch buffer is to initiate main mem-
ory accesses in advance, so that the data will be closer
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| Lower level memory

 
Figure 3: Block diagram of victim cache.

to the processor when referenced. Prefetching can be
especially beneficial when the main memory band-
width is large, but the access latency is also quite
high. The prefetch buffer in our model has several
independent “slots”. Each slot holds several cache
lines and works like a FIFO. It can issue prefetch-
ing commands to the main memory. We need several
slots because in a typical program,there will be sev-
eral concurrent data access streams. For example,
when a program is performing matrix addition, there
will be three access streams for the two source arrays
and the destination array. Figure 4 is the schematic
of a prefetch buffer with four slots; each slot holds
four cachelines of data.

If there is an L1 cache hit, it does not trigger any

operation in the prefetch buffer. If there is an L1
miss, the request is sent to the prefetch buffer. If
the referenced item is available in one of theslots,
this line is pulled into the CPU as well as the L1
cache. The remaining lines move toward the top of
the FIFO. The vacancyis filled with data prefetched
from main memory. The prefetching engine must de-
termine which line to prefetch next. In the simple
case, the memory address for the subsequentline is
calculated by incrementing the current address by the
cache linesize.

If the L1 cache miss also misses in the prefetch
buffer, the least recently used slot is designated to
begin prefetching the subsequent data following this

 

 
| Lowerlevel memory

 
Figure 4: Block diagram of prefetch buffers.

referenced address. By doing this, we can avoid com-
pulsory cache missesif the initial reference to a mem-
ory line is already covered by the prefetching.

To make better use of the slots, we may program

them with address ranges and data access strides. For
example, when we havea lot of accesses on one array,
we can set one slot with the address range of the data

array. Theslot will only respond to references in this
range. If the access pattern has an address increment
stride larger than the cache line size, we can assign
the stride so we only prefetch the data that is useful.

3.2 Evaluation Methodology

In this study, we use software simulationsto estimate
the performance for our applications. In particular,
we used the TangoLite memory reference generator
to perform high-level simulations. TangoLite uses a
direct-execution simulation approach. The original
program written in C or FORTRANis compiled and
instrumented with calls out to routines that simulate

memory behavior and keep statistics.
In our simulation model, we have a single CPU

that issues no more than one instruction per cycle.
The direct-mapped L1 data cache has a capacity of
8 KB andalinesize of 32 bytes. In order to focus

SPIE Vol. 2914 /241

Petitioners Amazon
Ex. 1007, p. 10

 

 



Petitioners Amazon 
Ex. 1007, p. 11

 
242 / SPIE Vol. 2914

on data references, we have assumed ideal memory
performancein the instruction stream.

Our simulations assume a hit in the L1 cache costs
one cycle, the same as a simple ALU instruction. Ifa
reference misses in the L1 cache, additional cycles are
needed depending on where the datais found. Weas-
sume that data found in the configurable cache takes
2 extra cycles and a miss in both Li and configurable
cache will cost 10 extra cycles to go to main memory.

The victim cache we simulate is fully-associative
with 4 cache-line-sized entries, updated according to
an LRU policy. The prefetch buffer has four slots
with 4 cache lines each. Our simulator ignores any
additional contention that prefetching may introduce.

3.3 Per-Application Results

With that background, wewill now look in more de-
tail at three applications. Our goal is to see the po-
tential performance improvement available by imple-
menting memoryhierarchy additions in configurable
hardware. The three applications studied include
two kernel applications known for their poor cache
performance (Matrix Multiplication and Fast Fourier
Transform) as well as a more substantial program:
the Tomcatv benchmark from the SPEC92 suite [9].

3.3.1 Matrix Multiplication

In the first example, we study a matrix multiplication
program multiplying two 100 by 100 matrices. The
elements are double-precision floating point. This
meansthat a total of 80000 bytes are needed for each
matrix. This greatly exceeds the size of the L1 cache.
Clearly the calculation involves two source matrices
and one destination matrix. As shown in Figure 5
one of the source matrices is accessed in sequential
column order while the other is accessed in sequen-
tial row order.

 
Figure 5: Memory access pattern for arrays in matrix
multiplication.

Results The simulated performance of 100x100
matrix multiplication is summarized in Table 1. The
standard cache does not perform well both because
of the size of the data set and also because oneof the
arrays is accessed down the columns. Overall, the
data miss rate is 21%.

The second column of the table shows the new re-
sults obtained when a configurable victim cache is
used. In this case, some of the conflict misses can
be avoided. The overall performance is only slightly
better than in the original case though. The third
column ofthe table shows the results when a config-
urable prefetch engine is used. In this “stride-one
prefetching” each prefetch slot always attempts to
prefetch the next cache line. This prefetching allows
the program to avoid some compulsory misses, but
does not dramatically improve overall performance.
The difficulty here is that one of the arrays has a
columnar memory access pattern that does not ben-
efit from the stride-one prefetching.

Since simple stride-one prefetching is not fully ef-
fective, we also investigated allowing the prefetching
engine adjust its prefetch stride on a per-slot basis.
The fourth column shows the results of this experi-
ment. Here, we have allocated one slot to each ma-
trix. For the source matrix that accesses elements
across a row, the prefetch stride is still one cache
line. For the source matrix whose elements are ac-
cessed down the columns, we set the stride to be the
size of one row in the matrix. Every reference to
an address within the matrix will only update the

prefetch buffer for its matrix. This technique yields
much better performance. The miss rate is reduced
by 15% and (as shown in Figure 6) the total program
execution time is reduced to 61% of the original.

3.3.2 Fast Fourier Transformation

The next example we examine is Fast Fourier Trans-
formation (FFT), a commonly used algorithm in sig-
nal processing. FFT’s access patternis not as regular
as other matrix computations; the butterfly memory
access pattern is shown in Figure 7 for an 8-point
radix-2 FFT. In this figure, the data is prepared in
bit-reversed order and the result is in normal order.
The calculation is done in-place, i.e. only one data
array is used for source, intermediate and destination.
The computation is done in dual pairs as follows:

Xm+1(P) = Xm(p) + WyXm(q)
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Table 1: Performance results for matrix multiplication.
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Figure 6: Execution times with different configurable hierarchy additions, normalized to execution time with
original cache hierarchy.

Xm+1(9) = Xm(P) — WyXm(Q)

where

W,, = eI(2t/N)

is the coefficient which is precomputed in our pro-

gram. The subscript of X stands for the stage of
computation and the number in bracket stands for
the position in the data array.

For this paper, we examine a 1024-point complex
FFT. Since there are 1024 points and each point
needs 2 doubles, a data array of 16 KBis involved.
The corresponding coefficients are precalculated and
stored as an 8KBarray. The calculation requires 10

stages. The whole data array is referenced in each
stage and the memoryaccessis in dual pairs as shown
in Figure 7. For an 8KB direct-mapped cache, the
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misses come from conflicts between the data and co-
efficient arrays.

Results Table 2 shows the simulation results for
FFT. As before, the first column shows the results
with the original memory hierarchy. Here, the data
miss rate is 22%. Unlike in matrix multiply, the vic-
tim cache is fairly effective here in improving FFT’s
memory performance. The program’s miss rate drops
to 16%. This is due to the significant data reuse in
loops and the reduction of conflict misses.

With stride-one prefetching the program’s perfor-
mance is improved even more. This is because of the
good spatial locality and the sequential access pat-
tern of computing the dual pairs. The miss rate in
this case is reduced by 14% and the total execution
timeis reduced to 83% of the original cache. In each
stage, there is one reference sequence(i.e. oneslot
is used) if the dual pair stride is less than a cache
line. In later stages, the dual-pair stride will be more
than four cache lines (the size of one prefetch slot),
and in those cases, two slots are used. In intermedi-
ate stages (ie. the stride falls between one line and
four lines) the access to the dual pair may cause the
prefetch buffer to be updated prematurely and use-
ful data already in the prefetch buffer is lost. More
sophisticated prefetching may avoid this problem but
may be too complex to be implemented by reconfig-
urable hardware.

3.3.3 Tomcatv

Tomcatv, a SPECfp92 benchmark, is a vectorized
mesh generation program written in Fortran. There
are 7 data arrays used in the program. Each array
is a 257 by 257 matrix of double precision floating

 
Figure 7: Butterfly access pattern in FFT.
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Table 3: Performance results for tomcatv.

point. Thus, the data arrays take about 3.7MBeach,
and are far larger than the cache size. The arrays are
mainly accessed sequentially in row order and data
elements are reused several times in each loop. Due

to the large active data set, however, the missrate is
still quite high.

Results Table 3 shows the results for tomcatv. Al-

though the active data set is very large, there is a
good dealofspatial and temporal locality in the mem-
ory accesses. Thus, it may be somewhat surprising
that the original miss rate is as high as 33%. This
high miss rate is due to a large numberof conflict
misses in the direct-mapped cache. As shown in the
second column of the table, the victim cache gives

very good results on this application by greatly re-
ducing the conflict misses. The total miss rate drops
to 14% and execution timeis reduced to 69% ofits

original value.

The prefetch buffer, however, does not do well

scaeo
st
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in this case because the repeated access of nearby
data causes items to be prematurely updated in the
prefetch buffer. Prefetching still reduces the miss rate
to 26% though, and reduces execution time to 86%
of its original value.

3.3.4 Summary

Overall, this section has shown that relatively sim-
ple per-application additions to the memory hierar-
chy can improve performancesignificantly. For the
three applications studied, total execution time was
reduced by 17% to 39%. In the most “realistic” ap-
plication of the three, tomcatv, execution timeis re-
duced by 31% by adding a small victim cache. It
is interesting to note that different applications got
their best performance from different hierarchy addi-
tions; this helps confirm our belief that application-
specific memory hierarchy additions can be useful in
customizing hardware to improve performance.

Although our case studies were relatively limited in
which hardware options were explored, other mecha-
nisms are possible as well. For example, if we start
with a prefetch buffer but configure it to keep the
line that has just been accessed in the prefetch buffer
(as well as forwarding it to the L1 cache), then the
prefetch buffer also serves as a miss cache [19]. Jouppi
has shown that miss caches can be moderately use-
ful in reducing misses due to cache conflicts. Another
possible embellishment on the features evaluated here
would be to add complexity to the prefetching mecha-
nism to allow for more elaborate address calculations.

Evaluating these additional features is a topic for fu-
ture work. Y

4 Hardware Implications

Having shown potential performance improvements
from configurable memory hierarchy customizations,
this section will delve further into someof the related

hardware and implementationdetails.

First, due to our connectivity requirements, our
idea clearly assumes that configurable logic will re-
side on the CPU chip itself. This assumption is borne
out by commercial trends that indicate that combina-
tions of CPU and configurable logic should be widely
available in the next decade.

In order to make the remaining hardware discus-
sion more concrete, we will couch them in terms of

technology similar to that found in a Xilinx XC4000-
series FPGA [24]. This class of FPGAs uses 4-input
lookup tables to implementlogic functions. In 4000-
series FPGAs, a configurable logic block (CLB) in-
cludes two 4-input LUTs. When these two are com-
bined, any 5-input function and some 9-input func-
tions can be implemented. Each LUT can be used as
a 16x1 bit SRAM as well. In addition to the lookup
tables, each CLB has tworegisters that can used in-
dependently of the LUTs. Based on this information,
Table 4 shows the number of CLBs required to imple-
ment certain basic functions. Although our discus-
sion gives calculations on a pet-hardware-structure
basis, these estimates compare well with CLB es-
timates given by automated synthesis from VHDL
down to Xilinx parts.

Namaber of CUBE

fines

16:1 multiplexer|55
16x2 bit memory
4 bit comparator
 

Table 4: CLB counts for commonlogic functions.

Using that basic information as a starting point,
Table 5 gives a breakdown of how much hardware
is required for the victim cache and prefetch buffer
described in the previous section. First, consider a
victim cache with four 32-byte cache lines. To im-
plement it, we will need SRAM to store 4x256 bits
of data. Assuming a 27 bit tag and 1 valid bit per-
entry, we need 112 bits to store the four tags and valid
bits. To minimize the latency of the cache lookup, we
want to be able to access all four victim cache entries

simultaneously. Thus, we need four comparators to
decide whether one of the lines holds the requested
data. The output of the comparators is encoded into
multiplexer contro] signals, and the multiplexer then
selects the requested cacheline. In our design, the tag
bits use only registers, not lookup tables, so they need
not contribute to the CLB count. (We can make use
of unused registers from other functions that required
only LUTs.) All told, this design requires slightly
over 400 CLBs. Current 4000-series parts are already
more than large enough to hold this sort of design.
(For example, a Xilinx XC4025 has 1024 CLBs.)

Based on Figure 4, it might appear as though the
4-slot/4-entry-per-slot prefetch buffer would require
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Table 5: Hardware breakdown and CLB count for
victim cache.

significantly more hardware than the victim cache.
Because the prefetch buffer can use the CLBs more
efficiently, however, we find that its CLB count is
only slightly higher than that of the victim cache.
Although we are storing four times as much data in
the prefetch buffer, the prefetch buffer uses the same
numberof CLBsfor data storage, because it uses the
LUTs more efficiently. 448 bits of tag are used to
identify the 16 entries in the prefetch buffer and 16
comparators are required to identify the correct en-
try. For the stride-one prefetching, a 27-bit adderis
needed to determine the next cacheline to prefetch.
Overall, the prefetch buffer needs slightly over 550
CLBs.

Num. units|Num. CLBs
 

  
 
  

 

 

256x16 bits 128

448 bits|224 (reg. only)
16x28 bits 129

 27 bits

ratMux|aS bite|8S
Tetsu25klsvslissatndvtoei nis

Table 6: Hardware breakdown and CLB count for
prefetch buffer.

The next hardwareissue to consideris connectivity.
Typical FPGAs have more than enough routing re-
sources for functionslike our victim cache or prefetch
buffer. The real issue concerns connectivity between
the CPU and the configurable logic. Since we expect
that the configurable logic will also be expected to
sometimes serve as a processing unit, it is likely to
have a data path that allows for 2 operands to arrive
from the CPU simultaneously. For a 32-bit processor,
this means a pathwidth of 64 bits. If the unit is used
for configurable memory, then this connection would

be wide enough for both a 32-bit address and 32-bit
data operand to be sent between the CPU and the
configurable caching structures. Therefore, adding
cache functionality to a configurable processing unit
does not necessarily increase its connectivity require-
ments with the CPU core. In the case of prefetching
however, configurable prefetch buffer does, however,
require additional connections to lower-level caches
or memory in order to prefetch data.

Overall, the point of this discussion is to show that
configurable memory hierarchies place relative mod-
est hardware requirements on the configurable hard-
ware and its connection to the CPU. Given that con-
figurable hardwareis likely to be co-located on-chip
with CPUs in the near future, both our performance
results and our hardware results indicate that config-
urable memory hierarchies are likely to be a useful
area for further study.

5 Related Work

Our work represents a convergence of two areas of
ongoing research. This section first describes related
configurable computing research. We then discuss
memoryhierarchy research that guided our choice of
applications and hierarchy customizations to be in-
corporated in configurablelogic.

5.1 Configurable Computing

To date, many research efforts that use FPGAs as
configurable computing resources have focused on
system architectures, tools, and algorithms to ac-
celerate end-user applications. In most cases, re-
searchers have identified particular types of compute-
intensive applications, and have used configurable
hardware to accelerate computation for those applica-
tion domains. Examples ofthis include systolic com-
putations (12, 13, 15], image processing (1, 5, 10], and
video compression [18].

Other researchers have focused more broadly on
the acceleration of C code [2]. For example, Athanas
et al. worked to automate the mapping to config-
urable hardware using a compiler. Finally, another
category of research projects have used FPGAs to
emulate conventional microprocessors, as in the Spy-
der project [17].

In contrast to these compute-oriented approaches,
we have investigated accelerating memory access in
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microprocessors. To our knowledge, no other projects
have directly attacked this problem, but a handful of
projects are relevant to this work. Shirazi has studied
the emulation of floating point instructions on FP-
GAs [22]. Although not focused on memory system
behavior,this work had a “data-oriented” angle, since
it aimed to specialize data types (such as shortening
floats) to the operations the program performed. The
ArMen group [4] used programmable logic to con-
trol concurrency in a Transputer-based multiproces-
sor, by implementing the network interface in config-
urable logic. Finally, DeHon et al. have explored
mechanisms for integrating configurable logic with
microprocessors [8].

5.2 Reducing and Tolerating Memory
Latency

In addition to building on research from the config-
urable computing domain, our work also draws from
extensive prior research in memorylatency reduction
and tolerance techniques. While somepreviously pro-
posed structures may not haveoffered the across-the-
board performance improvements necessary to war-
rant inclusion in custom hardware, building struc-
tures in configurable logic allows us to draw from
this pool of proposals and specialize our selections
for particular applications.

Prefetching, for example, is an area that has un-
dergone extensive prior research. Some work has
suggested particular hardware structures to aid in
prefetching (3, 6, 7, 19]. Hardware structures for
prefetching the instruction stream have shown broad
enough performance improvements towarrant in-
clusion on current commercial processors [11]. For
the data stream, however, hardware prefetching has
shown mixed results across applications. Thus, our
work suggests that prefetching structures could be
implemented in configurable hardware only when use-
ful.

Other work has also examined issues in prefetch-
ing under software (compiler) control [20, 23]. As
with hardware prefetching, performance improve-
ments due to compiler-directed prefetching can be
significant, but approaches are very application-
dependent [14]. Compilers often have difficulty per-
forming the pointer analysis required to identify
which program references are likely to miss, in or-
der to be selective in flagging references to prefetch.
In other cases, such decisions of which references to

prefetch are highly data-dependent, and can only
be effectively identified at runtime [16]. Our work
demonstrates the promise of combining runtime mon-
itoring and prefetching support in order to selec-
tively and effectively prefetch data references for
these difficult-to-analyze programs.

6 Conclusions

This paper has described a preliminary exploration of
the potential of using configurable logic on the CPU
chip to improve average memory access times. We
feel that it is very likely that configurable logic will
be integrated onto some CPU chips in the near fu-
ture. While there has been extensive research on

compute-oriented uses of this configurablelogic, there
has been little evaluation of more memory-oriented

applications. Our work represents a first step towards
such evaluations.

Prior work has proposed a wide array of memory
hierarchy additions that offer performance improve-
ments on some applications. While many of these
special hierarchy features are fairly small and easy
to build, they are often not implemented in commer-
cial processors because they do not promise improved
performance to a wide-enough array of applications.
Configurable memoryhierarchy additions are promis-
ing because we can use the configurable logic for dif-
ferent hierarchy additions on a per-application basis.

Our simulation-based work has shown that these

additions can improve application performance by 20
to 30% even after accounting for the fact that the
configurable logic will be slower than custom-made
counterparts. Their hardware requirementsare fairly
modest; the victim caches and prefetch buffers we
evaluated required roughly 417 and 554 CLBs respec-
tively.

Overall, our study provides a first look at the is-
sues and promise inherent in memory-oriented uses of
configurable logic for general-purpose computing. We
feel that a broader application set and the availabil-
ity of configurable logic on CPUsfor experimentation
will spur more innovations along these lines.
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