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Abstract—This paperreports a 6-to-18 GHz integrated phased-
array receiver implemented in 130-nm CMOS. Thereceiver is
easily scalable to build a very large-scale phased-array system.
It concurrently forms four independent beams at two different
frequencies from 6 to 18 GHz. The nominal conversion gain
of the receiver ranges from 16 to 24 dB over the entire band
while the worst-case cross-band and cross-polarization rejections
are achieved 48 dB and 63 dB, respectively. Phase shifting is
performed in the LO path by a digital phase rotator with the
worst-case RMS phase error and amplitude variation of 0.5°
and 0.4 dB, respectively, over the entire band. A four-element
phased-array receiver system is implemented based on four re-
ceiver chips. The measured array patterns agree well with the
theoretical ones with a peak-to-null ratio of over 21.5 dB.

Index Terms—CMOS,concurrent, large-scale phased arrays,
multi-band, multi-beam, phased arrays, scalable, tritave.

I. INTRODUCTION

HASEDarrays steer the beam direction electronically,
bringing many benefits such as high directivity, inter-

ference rejection, signal-to-noise ratio improvement, and fast
scanning response [1]-[4]. For this reason, phased arrays have
been extensively employed in radar and communication sys-
tems in the area of military, space, and radio astronomy since
their advent in the 1950s [5], [6]. Recently, substantial atten-
tion is also drawn in civil applications including high-speed
point-to-point communicationsandcar radars [4], [7].

Benefits of phased arrays increase with the numberofele-
ments combined in the array. This gives rise to the desire to
make very large-scale phased arrays (up to 10° elements) for
high-precision radars, long-range sensors, or high-directivity
communication systems. One of the major obstacles in imple-
menting large-scale phased arrays lies in the high complexity
and cost to assemble the whole array system. Traditionally,
phased-array systems have been built using a module-based
approach. Most transmitter/receiver components, such as
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low-noise amplifiers (LNAs), power amplifiers, phase shifters,
attenuators, filters, mixers, and LO sources, are implemented
in separate modules and then interconnected to each other
externally [3], [6]. This approach not only increases the as-
sembly size and cost, but also degrades the system reliability
due to the complicated configuration. Furthermore, several
transmit/receive module components have been implemented
using expensive compound semiconductors such as GaAs,
whichtakes a substantial portion of the overall system cost[6],
[8]. Thus, the size of phased arrays has been limited to a certain
numberof elements (10+ or 10° at most), makingit difficult to
take full advantage of very large-scale array systems.

Integrated CMOSsolutions offer an opportunity for dramatic
reduction in cost and size of such systems. The high yield and
repeatability of silicon ICs allowsthe entire transmitter and/or
receiver to be integrated on a single chip. For example, there
have been reported a CMOSRF front-end[9], a fully integrated
Si-based phased-array receiver [10] and a CMOSphased-array
transmitter [11], all at 24 GHz and a fully integrated Si-based
phased-array transceiver at 77 GHz [12]. This single-chip ap-
proachin silicon reduces the overall system cost substantially,
compared to the conventional module-based counterpart in
compound semiconductors.

Thereis a trend in radar and communication systemsthat the
transceiver operates concurrently in multiple modes and mul-
tiple bands [13]. Furthermore, many applications require the
transceiver to operate in a wide range of RF frequencies [14].
These trends also apply to phased arrays when multiple tar-
gets must be tracked at the same timein radars and electronic
countermeasure systems or when multi-point communications
are desired at multiple frequencies in a wide bandwidth. The
high integration capability of CMOSoffers a promising solu-
tion to achieve the wideband phased arrays with multiple func-
tionalities. Several wideband phased (or timed) array receivers
[15], [16] and transceiver [17] have been reported in silicon.
However, none of the previous work has implemented a con-
current multi-band multi-beam phased-array receiver operating
in a wide range of RF frequencies.

In this work, we integrated RF front-end components of a
concurrent dual-band quad-beam phased-array receiver ele-
menton a single CMOSchip. Thereceiver is programmable to
concurrently receive two RF frequencies between 6 and 18 GHz
(a tritave) while forming four independently-controlled beams
with separate phase shifting operation. The receiver is also
easily scalable toward very large-scale phased arrays because
additional receiver chips can be added to increase the number
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Fig. 1. Basic phased-array receiver configuration.

of array elements with relatively lower cost and complexity. To
the authors’ best knowledge,this is the first reported concurrent
tritave phased-array receiver implemented in CMOS.

The paperis organized as follows. Section II briefly reviews
phasedarrays and a conventional approach to implementlarge-
scale phased arrays. Section III presents a proposed concurrent
array system architecture as well as the associated advantages.
In Section IV,the architecture and frequency plan of the CMOS
phased-array receiver chip is described. Section V presents the
detailed circuit block design. Section VI provides the exper-
imental results of the receiver chip and a four-element array
system that combines four receiver chips.

II. PHASED ARRAYS

A. Overview

Phased-array receivers consist of multiple antenna elements
spaced with a certain distance (d) and a following separate
phase shifter per each element for the electronic beamforming
at a given incident angle (6) in space (Fig. 1). When a RF wave
arrives at the antenna elements, the arrival time of wavefrontis

different between two adjacent elements by

_ dsin@
—  ¢@

 
At ()

wherec is the speed oflight. In the narrowband circumstances,
the arrival time difference results in a phase delay of the received
signal between two adjacent elements, given by

Ay= ane 6 (2)
where \ is the wavelength of the incoming wave. Thus,the fol-
lowing phase shifter adjusts the phase delay in such a way that
output signals from each elementare all in-phase with one an-
other. By summing the signals from each element, a coherent
output signal can be obtained with a large array gain. On the
other hand, other incoming wavesat different incident angles
will not be summed coherently andthuswill be significantly at-
tenuated at the array output.

B. Benefits ofPhased Array

Since a phased array combinesseveral in-phase signals co-
herently at the array output, it can achievean effectively higher
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gain than a single element receiver. When the signals are com-
bined in the amplitude domain (current or voltage) with a same
output load, the array gain is given by

Garray = Gsingle + 20 logio N (dB) (3)

where Gingle is the gain of each single element and N is the
numberof array elements. Again, undesired signals such as the
interference or jammersarriving at other incident angles are in-
herently rejected accordingto the established array pattern.

Furthermore, the signal integrity is enhanced at the array
output through an effective improvement of the output
signal-to-noise ratio (SNR) by a factor of 10log,) N (dB).
This is because noise generated from each elementis uncor-
related with one another while the desired signal is combined
coherently [10].

Finally, since phase arrays steer the beam direction electron-
ically, it is able to receive multiple beamsarriving at different
incident angles simultaneously. Also, the beam can be steered
in a faster and morereliable way than that of a mechanically
steered antenna system.

C. Large-Scale Phased-Array System

The benefits of phased arrays given in Section II-B are more
noticeable as we increase the numberof array elements. For in-
stance, if we combinethe signals from one million (10°) el-
ements without any loss and phase distortion, then the array
gain given in (3) and the output SNR will be improved by a
factor of 120 dB and 60 dB, respectively. Although the improve-
mentfactor will be degraded in a practical array system due to
the non-ideal signal distribution and combining,it will enhance
the sensitivity of the receiver to a substantial degree. The capa-
bility of rejecting undesired signals will also be reinforced with
a larger number of elements because the main beam narrows
and a more numberofnull positions are presented in the array
pattern.

In spite of the apparent advantages of large-scale phased ar-
rays, their applications have been limited due to several dif-
ficulties, mainly, the prohibitive complexity and cost. Fig. 2
showsone of the conventional ways of building a large-scale
phased-array receiver system. In order to combinea very large
numberof elementsefficiently, several elements are groupedto-
gether into a sub-array, and then several sub-arrays are com-
bined by a RF distribution network to present a single output
for down-conversion.It is noteworthy that for active phased ar-
rays [1], every single element contains an independentreceiver
module which includesa filter, a LNA, a phase shifter, and an
attenuator. Usually, these receiver components are implemented
in separate chips or packages, interconnected to each other, and
then assembledinto a sub-array system by external transmission
lines such as microstrips, cables, or waveguides. Therefore, as
the numberof array elements increases, the cost and complexity
will also rise dramatically to assemble these componentsinto a
system. Furthermore, the design of the low-loss RF distribution
network will be challenging with a large number of elements
for two reasons. Thefirst reason is that the number of sub-ar-

rays is also increased accordingly, which requires more depth
of the signal distribution (or combining) network. The otheris
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Fig. 2. A conventional way of building a large-scale phased-array receiver
system (in the active array configuration) that supports multiple beams.

that the signal is distributed (or combined) in the RF domain
before down-conversion, which givesrise to higher loss than if
the distribution (or combining) were to be performed in the IF
or baseband domain.

Another challenge in large-scale phased arrays is the high
cost of active circuit components, most of which are fabricated
usually in expensive compound semiconductors such GaAs.
Although the cost of monolithic microwave integrated circuits
(MMICs) in GaAsdecreased recently due to the process matu-
rity, it still takes a large portion of the total array system cost
[6], [8], making a very large-scale array practically difficult to
implement.

Even more challenge arises whenthe array must receive mul-
tiple beamsat the same time. Since each beam requires a sep-
arate receiver module andadistribution network for the inde-

pendent beamforming capability, the associated complexity and
cost will be further exacerbated.

Ill. PROPOSED LARGE-SCALE PHASED-ARRAY

SYSTEM ARCHITECTURE

To deal with the challenges discussed in Section I-C, wepro-
pose an efficient way of building large-scale phased-array re-
ceiver systems, as shownin Fig. 3. With a single CMOSchip (a
shaded block in Fig. 3), we integrate all receiver module com-
ponents on the same die except for the antenna and front-end
LNA. The CMOSreceiverincludes the tunable concurrent am-

plifiers (TCAs), down-conversion mixers, phase shifters, fre-
quency synthesizers, and basebandbuffers [18]. This integrated
solution avoids the costly large number of separate component
modules and their complicated interconnection for large-scale
arrays, which results in a dramatic cost reduction. More impor-
tantly, the chip is implemented in CMOS,which will bring an-
other substantial cost reduction compared with its compound-
semiconductor counterpart.

The CMOSreceiver has two input ports to receive two dif-
ferent polarization signals fed from an active antenna module,
i.e., horizontal polarization (HP) and vertical polarization (VP),
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Fig. 3. A proposed 6-18 GHz phased-array receiver system that receives four
beams at two frequencies concurrently andis easily scalable towarda very large-
scale array.

respectively. On the other hand, each input port is able to re-
ceive a dual-band signal containing two different frequencies
concurrently, one in the low band (LB) from 6 to 10.4 GHz
and the other in the high band (HB) from 10.4 to 18 GHz. The
dual-band signalis then split into two separate signals on-chip,
one for each band. Subsequently, each signal is down-converted
with the independentphase-shifting operation to provide sep-
arate beamforming. Therefore, the proposed array system can
receive and steer four different beamsat two different frequen-
cies concurrently.

The baseband outputs from each array element are combined
off-chip in the current domain, providing the back-end proces-
sors with one combined baseband signal per beam. Since the
signal combining is performed at the baseband rather than the
RF frequency,it alleviates the difficulty in designing a low-loss
combining networkfor large-scale arrays.

It is also noteworthy that the only feed signal which needs
to be distributed among the elements other than DC suppliesis
a 50 MHzreference signal for on-chip frequency synthesizers.
Dueto its low frequency,the reference can be simply distributed
without adding extra complexity. It also makes the proposed
array architecture easily scalable.

The LOsignals generated by the on-chip frequency synthe-
sizers may haverelatively higher phase noise than those pro-
vided by off-chip low-noise sources. However, when combining
N elements (or N chips) in the array, the phase noise origi-
nating from the on-chip components of each elementis uncor-
related with one another and thus adds up in power. On the
other hand, the carrier signal is combined in amplitude in the
current domain. Therefore, the phase-noise performanceat the
array output improves by a factor of 10log,) N (dB) as long
as the phase noise is dominated by on-chip sources, not by an
off-chip reference signal. This improvementalso makesthe in-
tegrated solution including on-chip frequency synthesizers suit-
able for large-scale phased arrays without degrading the array
performance.
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Fig. 4. Architecture of the tunable concurrent dual-band quad-beam phased-array receiver in CMOS.

In the complete array system, a separate active antenna
module, consisting of a broadband antenna and a GaN LNA,
will be employedin front of the CMOSreceiver.

IV. CMOS PHASED-ARRAY RECEIVER ELEMENT

In this section, the architecture and frequency plan of the
CMOSconcurrent phased-array receiver element is discussed
in detail. It should be noted that a single receiver chip operates
as one receiver elementin the array system, as shownin Fig.3.

A. Receiver Architecture

A block diagram of the receiver architecture is presented in
Fig. 4. Since it is a concurrent dual-bandreceiver, the incoming
RF signal contains two frequencies at LB and HB respectively,
and feeds a front-end tunable concurrent amplifier (TCA). The
TCA amplifies, filters, and finally splits the RF signal into two
separate outputs; one at LB and the other at HB. Each of the
two signals goes through separate double down-conversion by
subsequent RF and IF mixers. The IF mixers generate the I and
Q components of the baseband signal for digital demodulation
capability. The baseband VGAsadjust the baseband amplitude
and drive the output load differentially.

Thereare twosets of RF input (HP RF input and VP RF input
in Fig. 4) which are down-converted by two samesets of the
RF signal-path circuitry, respectively. Therefore, the receiver
presents a total of eight differential baseband outputs, one for
each combination of two different polarizations (HP and VP),
two different frequency bands (LB and HB), and I and Q.

The receiver includes two on-chip programmable frequency
synthesizers in order to support the separate down-conversion
of the LB and HBsignals, respectively. The frequency synthe-
sizers generate the first LO (LO) signal between 5-7 GHz for
LB and between 9-12 GHz for HB with a frequency step of
200 MHz. The LO, signal drives the RF mixers for two po-
larizations. The second LO (LOz2) signal, driving the phasero-
tators and IF mixers, is generated by three static divide-by-2
dividers and a 2:1 multiplexer. According to the receiver fre-
quency schemediscussed in Section IV-B, the LO2 frequency
is selected as either one half or one eighth of the LO, frequency
by the multiplexer. The LO» signal carries the I and Q com-
ponents separately to feed the phase rotators in quadrature. A
50 MHzreference signal for the phase-locked loops (PLLs) is
generated by an off-chip crystal oscillator.

The LO phase-shifting architecture is adopted in this phased-
array receiver in order to circumventthe challenge of designing
high-resolution wideband phase shifters in the RF signal path
[19]. The phase shifting is performed in the LO2 signal by a
10-bit digital phase rotator. Each IF mixeris driven by a separate
phase rotator to maximize the flexibility of the receiver. This
not only provides the independent beamforming capability to
the signals of different bands and polarizations, but also helps
to minimize the I and Q mismatch of the quadrature baseband
outputs.

The receiver includes an on-chip digital serial-bus control
unit that programs 170 bits to configure the dual RF frequen-
cies, LO frequencies, phase-shifting angles, baseband gains, and
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Fig. 6. Schematic of the TCA with a single input and a dual output.

other functionalities of the receiver. Bias voltages are generated
by on-chip bandgapreferencecircuitry.

B. Receiver Frequency Scheme

The receiver supports a concurrent dual-band RF signal, such
that two receive frequencies are tunable simultaneously and in-
dependently, one from 6 to 10.4 GHz (LB) and the other from
10.4 to 18 GHz (HB). As shownin Fig. 5, each bandis further
divided into two sub-bands depending onthe corresponding IF
frequency. Accordingly, the LO2 frequency switches between
1/2 and 1/8 of the LO, frequency. For instance, a RF signal be-
tween 5.625—7.875 GHz is down-converted to the IF between

0.625—0.875 GHz by the LO; between 5—7 GHz. The LOz is
then selected as 1/8 of LO; to down-convert the IF to the base-

band. Onthe other hand, for a RF signal between 7.5—10.5 GHz,
the LO, is selected as 1/2 of LO, to down-convert the IF be-

tween 2.5—3.5 GHz to the baseband. In this way, the entire RF
frequencies for LB (6—10.4 GHz) are covered without disconti-
nuity and so are those for HB as well.

With the dual-IF frequency scheme, the required VCO tuning
range is reduced from 54% to 33% and 29% for LB and HB,re-
spectively. This relaxed tuning range enablesusto further opti-
mize the other VCO performancesuchas phase noise and power
consumption [20].
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The RF channel spacing depends on which LO2 frequency
schemeisselected at the given LO; frequency step (200 MHz).
The channel spacing is 225 MHz whenoperatingin the 1/8 LO;
scheme and 300 MHzin the 1/2 LO; scheme.

V. CIRCUIT IMPLEMENTATION

Thedetailed circuit design of the CMOSreceiveris presented
in this section. Mostcircuit blocks including the mixers, base-
band VGAs, VCOs, LO distribution buffers, and phase rota-
tors use differential signaling while the TCA amplifies a single-
endedsignal.

A. Tunable Concurrent Amplifier (TCA)

Since the incoming concurrent dual-band signal is split
on-chip before the down-conversion, the front-end TCA must
provide a single input and a dual output. Important design
parameters in the TCA are the wideband input matching,
noise figure, frequency tunability, and isolation between two
different outputs. The single input port should provide a good
input matching performanceoverthe entire tritave, from 6 to
18 GHz. The two output ports present two separate signals well
filtered at the desired frequencies that should be tunable over
the entire LB and HB frequencies, respectively. Also, good
isolation is needed between the two output ports in terms of
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Fig. 7. Schematic of the RF mixerand IF buffer for (a) LB and (b) HB.

signal and noise. Note that the noise figure requirementof the
TCAis relaxed to a significant degree due to the low-noise
active antenna module that will be deployed in front of the
CMOSreceiverin the array system (Fig.3).

Throughan in-depth investigation of several potential topolo-
gies, the TCA is implemented in a parallel cascode configura-
tion with an active termination [21], as shown in Fig. 6. The
cascode amplifiers not only enhance the isolation between the
two output signals, but also minimizethe crosstalk of noise pro-
duced bythe active blocks.

The wideband input matching to 50 {2 is achieved by an ac-
tive termination with shuntresistive feedback and an impedance
transformation network. The active termination contributes less

noise to the subsequent blocksthan a simple shuntresistive ter-
mination [22].

2665

BiasO

BB out+ BB out—

! BB int BB in—!  
Fig. 8. Baseband VGA.

 
Vbias2

Fig. 9. Schematic of the wideband VCO.

The RF signals at two frequencies are then selectively am-
plified by two separate cascode amplifiers (M,—M>, M3-Mz)
that have tunable LC output loads. A 3-bit switched capacitor
bank at each output load is tuned to cover the entire LB and
HBfrequencies. This allowsfor the digital tuning of the ampli-
fier so that it can provide the maximumgain atthe desired fre-
quency while attenuating out-of-band signals prior to the first
down-conversion.

B. Mixers

Fourdifferent mixer designs are presented in the receiver; RF
and IF mixers, each for LB and HB, respectively. The current-
commutating double-balanced topology is adopted for all the
mixers in order to minimize the LO-to-IF feedthrough. Fig. 7(a)
shows the schematic of the RF mixer and IF buffer for LB. A

shunt-peaking inductor (3.3 nH) is used to extend the IF 3-dB
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bandwidth upto over 3.5 GHz. Since the TCA providesa single-
ended RF signal to the differential RF mixers, one RF input
terminal is terminated to a bias voltage by a 2-kQ resistor and a
bypass capacitor.

The HB RF mixer employs a tunable LC load with a 3-bit
switched capacitor bankat the IF output, as shownin Fig. 7(b).
The resonant frequency of the LC load is tuned in such a way
that the conversion gain is maximized at the desired IF fre-
quency. The common-modefeedbackcircuitry ensures a given
bias voltage (Vpias) set for the subsequent buffer block.

The schematic of the IF mixers for LB and HBaresimilar to

that of the LB RF mixer. The difference is that the IF mixers em-

ploy no shunt-peaking inductors and are degenerated by source
resistors to improvelinearity of the basebandsignal.

C. Baseband Variable-Gain Amplifier (VGA)

The VGA combinesfive transconductance amplifiers in the
current domain with digitally switched bias voltages (Fig. 8).
TA, and TA, TAs and TA,are identical pairs that con-
stitute current-commutating cells by digital switches (SW,

2N

P| (16 - 63) S|
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and SW2). Each transconductance amplifier has a differential
common-source topology with resistive degeneration. Since the
output port is configured with open drains, the output signals
from each array element can be easily combinedin the current
domain using a passive network which imposeslittle additional
impact on the nonlinearity performance. The open-drain output
requires an external DC supply of 1.5 V. The VGAachieves a
nominal gain of 7 dB with a 11 dB gain variation in five steps
when driving a 100-2 differential output load.

D. Voltage-Controlled Oscillator (VCO)

Two separate LC VCOsare implemented to generate the LO
signals for LB and HB, respectively. The schematic is shown
in Fig. 9. A cross-coupled PMOSpair (M; and Mg) is used
to improve the phase noise performancein the 1/f* region. In
order to accomplish a widebandtuning range with relatively low
VCOgain (resulting in low phase noise), a two-step frequency
tuning mechanism is adopted [23]. The first coarse tuning is
fulfilled by 2-bit binary-weighted MIM capacitors (Cyy4 and
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2Cwim) in the LC tank. Then, MOSvaractors (Cya,) are used
for the further fine and continuous frequency tuning.

Thebiascurrentis controlled digitally (S;—S3) to ensure that
the VCO operates in the current-limited regime over the wide-
bandtuning range.Thisis beneficial for further improvementof
phase noise [24]. The simulated phase noise ranges from — 112
to — 103 dBc/Hz and from — 108 to —94 dBc/Hz at 1-MHzoffset

for the LB and HB VCOs,respectively.

E. Phase-Locked Loop (PLL)

Two fully-programmable PLLs are implemented to indepen-
dently synthesize the LO frequenciesfor the two different bands
[25]. Fig. 10 presents a block diagram of the PLL circuitry com-
monly used for both LB and HB. The programmable dynamic
divider takes one quarter of the VCO output frequency and pro-
vides a further division ratio between 16 and 63. The divided

outputis retimed to the dynamic divider input for noise improve-
ment and feeds the phase-frequency detector (PFD). To reduce
the outputjitter, a dead-zone elimination (DZE)circuitry is em-
ployed, followed by a charge-pumpanda third-orderloopfilter
to feed the VCOcontrol voltage. The core PLL circuitry draws
34 mA at 1.2 V DC.

F. Multiplexer

Asthe receiver has a dual-IF frequency schemediscussed in
Section IV-B, the LO2 frequency needs to switch between 1/8

(LOz,,,) and 1/2 (LOx, ,,) of the LO, frequency by a 2:1 mul-
tiplexer. Two cascode transconductance stages, each driven by

either LO2, js OF LO,, jo are combined in the current domain.
Then,the output signal is selected between the two by comple-
mentary switches that turn on or off the bias current of each
transconductance stage. Two separate multiplexers are used for
the I and Q components of the LOsignal.

G. LO Distribution and Buffers

The LO, and LOz signals generated from the frequency syn-
thesizers are distributed to the RF mixers and the phaserota-
tors, respectively, as shown in Fig. 11. Due to the high-level
of integration in the single receiver chip, the LO distribution
length becomesas long as 3.7 mm in the worst case (the LO,
distribution for LB). The LO buffers need to compensate for
the insertion loss and bandwidth limitation caused by the long
signal distribution. Each path of the LO distribution includes a
two-stage buffer, whichis a self-biased cascode asthefirst stage
followed by a common-source amplifier with shunt peaking.
The shunt-peaking inductanceis carefully chosen, such that the
3 dB bandwidth is higher than the maximum LOfrequency in
the distribution without raising a significant gain peaking and
instability issue [26].

The transmission line used for the LO distribution is imple-
mented by a grounded differential coplanar waveguide (CPW)
structure, shown in Fig. 11. In order to minimizethe insertion
loss, the top thick metal layer (4-j4m aluminum)is used for the
signal lines (S+ and S—). The simulated insertion loss of the
CPW with Zoaq = 50 Q is 0.35 dB per mm at the highest LO
frequency, i.e., 12 GHz. The side and bottom groundplanes im-
prove the isolation between adjacent LO signals in distribution
[27].
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Fig. 12. (a) Block diagram of the 10-bit digital phase rotator. (b) Unit current-
commutating cell.

H. Phase Rotator

A block diagram of the digital linear phase rotator is shown
in Fig. 12(a). It takes the I and Q components of the LO» signal
as an input and applies a different gain (A; and Aq) indepen-
dently to each of them using two digitally-controlled VGAs
[28]. By adding the two VGA outputs in the current domain,
the desired phase (Your) and amplitude (Aout) can be inter-
polated in the Cartesian coordinates of the I and Q outputs.
Each VGAis implemented by combining five binary-weighted
current-commutating cells. Fig. 12(b) shows the schematic of
a unit current-commutating cell. M;—My,are transconductance
transistors with identical dimensions. The output signal (Out+
and Out—) changesits polarity depending on the bias control
bit (Vpit). This full-scale current-commutating scheme makes
the phase interpolating performanceless vulnerable to the PVT
(process, voltage, and temperature) variations.

Sincefive bits are assigned to each VGA,the phaserotatoris
able to interpolate 1024 (21°) different points over all the four
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Fig. 13. Chip micrograph.

quadrantsofthe output Cartesian coordinate. The schemebrings
in theory an rmsphaseerror of 0.3° with sufficiently large am-
plitudes to drive the switching mixers, regardless of the oper-
ating frequency.

VI. EXPERIMENTAL RESULTS

The phased-array receiver element is implemented in a
130-nm CMOSprocess. It provides eight metal layers in-
cluding top two thick metal layers of 4-4m aluminum and
3-jum copper. Fig. 13 shows a die micrograph of the imple-
mented chip that occupiesan area of 3.0x5.2 mm?.

In this section, the experimental results of the receiver ele-
ment are presented. Then, followed is the measuredarray pat-
tern of a four-element phased-array system that is implemented
using four receiver chips as a feasibility demonstration toward
very large-scale arrays.

For the measurementofthe receiver element,a printed circuit
board (PCB) is designed on a Duroid substrate of a 0.254-mm
thickness. The PCB providesthe traces for the DC supplies, ref-
erence signal, digital signals, and differential baseband outputs.
All signal inputs and outputs are fed with SMA connectors. The
PCB is attached on a gold-plated brass board. Then, through a
pre-cut aperture of the PCB, the chip is mounteddirectly on the
brass board using silver epoxy in orderto provide good substrate
grounding and heatsink. The chip pads are wire-bondedto the
PCBtraces exceptthat the ground padsare wire-bondeddirectly
to the brass board.

A block diagram of the measurement setup is shown in
Fig. 14. The RF inputsignal is fed by a coplanar GSG probeto
minimize the feed loss. Off-chip baluns convert the differential
baseband output to a single-ended one for the measurement
purpose. There are three different DC supplies applied to the
chip; 1.6 V and 2.7 V for the RF and LO circuitry and 1.5 V
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Fig. 14. Receiver measurementsetup.

for the baseband buffers. A temperature-compensated crystal
oscillator with phase noise of —155 dBc/Hz at 1-kHz offset
provides a 50-MHzreference signal for the on-chip PLLs.
Digital codewords of 170 bits are generated by an external
DACboard.

The measured performance of the on-chip LO generation is
shown in Fig. 15, where the LO frequency is plotted versus
the VCO control voltage for LB and HB, respectively. Each
curve represents one of the four different settings of the 2-bit
switched MIM capacitors in the VCO. As expected, the syn-
thesizers are able to generate 4.8—7.8 GHz and 8.8—12.5 GHz
of LO signals for LB and HB,respectively without any blind
spot. This result satisfies the required LO frequency range for
the down-conversion of RF signals over the entire tritave (see
Section IV-B). The phase noise of the frequency synthesizers is
below —95 dBc/Hz at an offset of 100 kHz overthe entire LO
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Fig. 15. Measured performanceof the on-chip frequency synthesizers: (a) LB;
(b) HB.
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Fig. 16. Measured phase noise of the HB frequency synthesizerat 9.4 GHz.

frequencies of 5—7 GHz and 9-12 GHz.Fig. 16 showsthe mea-
sured phase noise of the HB frequency synthesizer at 9.4 GHz.

Fig. 17 plots the measured conversion gain of the receiver.
The maximum and the minimum gains achievable with different
baseband VGAsettings are shown in dashedlines. The solid
line with markers represents the nominal gain with the optimum
VGAsettings, which ranges from 16 to 24 dB acrossthe entire
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Fig. 18. Measured nonlinearity performance: input-referred IP3 and 1-dB
compression.

tritave band. The discontinuities at 7.6, 10.4, and 13.5 GHz are

due to the switching of either the frequency band orthe IF fre-
quency scheme.

The measured nonlinearity performance is shownin Fig. 18.
Thethird-order intercept point (IP3) is measured by applying a
two-tone signal with 10-MHzspacing. The input-referred power
of IP3 and 1-dB compression doesnot vary with different VGA
gain settings. This is because the VGAis configured by the full-
scale current-commutating cells that keep the same nonlinearity
performanceregardless of the signalpolarity.

The RF inputreturnloss is better than 9.8 dB acrossthe entire
bandas shownin Fig. 19. The input-matching performance does
not vary with different LC load settings of the TCA, due to the
high isolation between the input and the output of the cascode
stage (Fig. 6).

The noise figure is measured by a standard Y-factor method
[29]. Fig. 20 showsthe measured noise figure of the CMOSre-
ceiver, which ranges from 8 to 14 dB overthe entire band. How-
ever, taking into account a preceding widebandactive antenna
module in the complete system (Fig.3), the noise contribution of
the CMOSreceiver to the system will be significantly reduced.
Thenoise figure of the complete system that includes the CMOS
receiver and the preceding module with a 2.5-dB noise figure
and a 20-dB gain is also plotted in the dashedline.

Since the receiver supports a concurrent dual-band and dual-
polarization signal, it is very important to characterize the iso-
lation performance between the two bandsand between the two
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Fig. 19. Measured input matching performance with the TCA input probed
on-wafer.
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Fig. 20. Measurednoisefigure of the CMOSreceiver(solid line with markers)
and the complete system including the active antenna module (dashedline).

polarizations. For the isolation measurement, a rejection ratio
is defined as a ratio of the undesired signal power, which is
cross-coupled from different bands or polarizations, to the de-
sired signal powerat the output port. For example, in order to
measure the cross-band rejection ratio at the LB output port, a
two-tone signal containing one LBtone and one HBtoneis ap-
plied with the same input powerlevel. Then, the rejection ratio
of the HB signal (the undesired cross-coupled output) is mea-
sured with reference to the LB signal (the desired output) at the
LB output port. As shownin Fig. 21, the cross-band rejection
ratio is more than 48 dB acrossthe entire band. In addition, the

cross-polarization rejection ratio is measured to be 63 dB in the
worst case. This indicates that the rejection ratio in the entire
system will not be limited by the CMOSchip but rather deter-
mined by the preceding antenna module.

Finally, the phase-shifting performance of the receiver is
characterized. A relative delay of the down-converted baseband
signal is measured by a digital oscilloscope while varying
the LO phase with 1024 different interpolating points of the
phase rotator. Fig. 22 shows a measured constellation of the
interpolated baseband output at the RF frequency of 18 GHz.
Eachsingle point represents an interpolated output set by each
particular phaserotator setting. The nonuniform distribution in
the constellation is due to the unavoidable I and Q mismatch
in the LOsignal and the dispersive interpolation of harmonic
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Fig. 21. Measured isolation performance: Cross-band and cross-polarization
rejection ratios.

Normalizedvoltage(Q) 
-0.5 0.0 0.5 1.0

Normalized voltage(I)

Fig. 22. Measured constellation of the interpolated baseband output at RF fre-
quency of 18 GHz.

  

 

 

 

TABLE I
MEASURED PERFORMANCEOF THE PHASE ROTATOR

RF freq.|RMS phase|Max. phase|RMS amplitude|Max. amplitude
(GHz)|error (deg)|error (deg)|variation (dB)|variation (dB)

6 0.5 2.7 0.3 1.7

10.35 0.2 1.2 0.2 1.7

14 0.3 1.4 0.2 1.7

18 0.3 1.3 0.4 1.7
       
 
   
    

components. As can be seen, it is a very dense constellation
with a small amplitude variation. When weshift the phase to
any arbitrary angle over 360°, the RMSphaseerroris 0.3° with
an RMS amplitude variation of 0.4 dB. The performanceat
other RF frequencies is summarized in Table I. The worst-case
RMSphaseerroris only 0.5°. It turns out from the array mea-
surementthat the fine resolution of the on-chip phase shifting
brings accurate beamforming performance.

A four-element phased-array receiver system is built by em-
ploying and incorporating four CMOSreceiver chips. To char-
acterize the array performance, we adopts an electrical way of
feeding the incoming RF wave, where four external variable
phase shifters are used to emulate the incoming wavefrontat
a given incident angle.
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Fig. 23. Measuredarray patterns of the four-element array with theoretical patterns superimposed. The antenna spacing is assumedto be a half wavelength at
each frequency.

TABLEII
MEASURED PERFORMANCE SUMMARY

Receiver Element Performance

 

 

 

 

 

RMSPhase-shifting error (6 — 18GHz)

RF channel spacing

Conversion gain (6 — 18GHz) 16.3 ~ 24.3dB

Input-referred 1-dB compression (6 — 18GHz) —26.3 ~-14.8dBm

Input-referred IP3 (6 — 18GHz) -17.0 ~-5.2dBm

Input return loss (6 — 18GHz) > 9.8dB

Cross-polarization rejection (6 — 18GHz) > 63.4dB

Cross-bandrejection (6 — 18GHz) > 48.8dB

LOleakage (6 — 18GHz) <—24.5dBm

Antenna-to-basebandnoise figure! (6 — 18GHz) 2.6 ~ 3.1dB
<0.5°

(within 0.4-dB RMS amplitude variation)

225MHz(Div8 LO»), 300MHz (Div2 LO.)
          
 

 

 

 
  

RF and LO circuitry|658mA @2.7V, 217mA @1.6V
Power consumption

Baseband buffers 34mA @1.5V each buffer

Technology 130nm CMOS

Die area 3.0x5.2 mm?

Including the active antenna module in the system.

Phased-Array Performance (four elements)

Numberofbeamsconcurrently receivable 4

Phase shifting resolution per element (6 — 18GHz)|Continuous with 0.5° RMSphase error max.

Total phased-array gain (6 — 18GHz) 28.3 ~ 36.3 dB

Beam-forming peak-to-null ratio > 21.5dB
    

beam patterns are well steered in excellent agreement with the
theoretical ones. The worst case peak-to-null ratio is 21.5 dB.
This good array performanceis attributed to the fine resolu-
tion of the on-chip phase shifting that enables a precise digital

The measured array patterns at 6, 10.35, and 18 GHz are
shownin Fig. 23. Four different beam-pointing angles are set
at each different RF frequency. Theoretical patterns are super-
imposedon the measuredones.It can be seen that the measured
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array calibration. The calibration offsets the process variation
between different element chips and the inevitable systematic
skewsin phase and amplitude originating from the reference and
RF signal distribution to array elements. Each element should
be calibrated once at each RF frequency.In addition, the array
beam-pointing angle can be steered with a high resolution over
the entire direction (the incident angle between —90° and 90°)
due to the low RMSerror of the on-chip phase shifting (see
Table I).

Each array element draws 658 mA and 217 mA for the RF
and LO circuitry from DC supplies of 2.7 V and 1.6 V, re-

spectively. Each baseband buffer draws 34 mA from a 1.5-V
DC supply.It should be noted that this array forms four beams

concurrently over a tritave bandwidth, which demands higher
power consumption comparedto other narrowbandsingle-beam

arrays. However, the power consumption can be further reduced
by revising the LO distribution circuitry with inductorless de-

sign, which will decrease the LO distribution length and thus
the powerrequired at the LO buffers. Table II summarizes the
measurement results of the receiver element and the four-ele-

mentphasedarray.

VII. CONCLUSION

In this paper, an integrated CMOSphased-array receiver that
supports concurrent dual-band and quad-beam signals from

6 to 18 GHz has been presented. Since all receiver-module
components are integrated in a single CMOSchip except for

the antenna and LNA,the receiveris easily scalable to build a
very large-scale (e.g., millions of array elements) phased-array

system with low cost, low complexity, and high reliability.
For a demonstration of the array performance, a four-element

phased-array system has been implemented using four receiver
chips. Owingto the fine resolution of on-chip phase shifting and

the precise digital calibration, we achieved the array patterns
that agree well with the theoretical ones. To the authors’ best

knowledge, this is the first concurrent multiband multibeam
phased-array receiver in a tritave bandwidth, implemented in
CMOS.
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