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Abstract—Extremely compact __resistive-feedback CMOS
low-noise amplifiers (LNAs) are presented as a cost-effective
alternative to multiple narrowband LNAsusing high-Q inductors
for multiband wireless applications. Limited linearity and high
power consumption of the inductorless resistive-feedback LNAs
are analyzed and circuit techniques are proposed to solve these
issues. A 12-mWresistive-feedback LNA, based on current-reuse
transconductanceboosting is presented with a gain of 21 dB and
a noise figure (NF) of 2.6 dB at 5 GHz. The LNA achieves an
output third-orderintercept point (IP3) of 12.3 dBm at 5 GHz by
reducing loop-gain rolloff and by improving linearity of individual
stages. Theactive die area of the LNAis only 0.012 mm”.

A 9.2-mW tunedresistive-feedback LNA utilizing a single com-
pact low-Q on-chip inductor is presented, showing an improved
tradeoff between performance, power consumption, and die area.
At 5.5 GHz, the fully integrated LNA achieves a measured gain
of 24 dB, an NF of 2 dB, and an output IP3 of 21.5 dBm. The
LNA draws 7.7 mA from the 1.2-V supply and has a 3-dB band-
width of 3.94 GHz (4.04-7.98 GHz). The LNA occupies a die area
of 0.022 mm?. Both LNAsare implemented in a 90-nm CMOS
process and do not require any costly RF enhancementoptions.

Index Terms—CMOSlow-noise amplifier (LNA), feedback am-
plifiers, multiband wireless receivers.

I. INTRODUCTION

OW-NOISEamplifiers (LNAs) occupy a significant per-Lcentage of the total die area in wireless front-ends today.
This is because the performance of the LNAis dependenton the
Q’s of the multiple on-chip inductors. Since the area require-
ment of high-Q on-chip inductors is high, the die area occu-
pied by the LNAisalso high. Often, costly process steps are
required to enhance the Q of the on-chip inductors to further
improve the performance of RF circuits. The design of these
circuits usually requires a higher numberof simulation and veri-
fication iterations. Cascode amplifiers with inductive source de-
generation [1], the predominant LNA implementation used in
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Fig. 1. Multiband receiver implementation using a multiband/wideband LNA.
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Fig. 2. Multiband receiver implementation using multiple narrowband LNAs.

CMOSwireless front-ends, require three high-Q inductors for
achieving input impedance matching, high gain, and low noise
figure (NF). In spite of the high die area requirements, cascode
LNAshavebeen used extensively in narrowband wireless ap-
plications because they provide high gain, low noise, and high
linearity at relatively low power consumption. With the advent
of multiple-input multiple-output (MIMO), multistandard, and
multiband wireless systems; however, the use of the area inten-
sive cascode LNAsis becoming increasingly expensive, leading
to the pursuit of alternative LNA implementations.

A multiband receiver can be implemented byusing a single
multiband or wideband LNA,as shownin Fig. 1. Cascode LNAs
based on inductive source degeneration are notsuitable for this
implementation since it is extremely difficult to switch the three
on-chip inductors to make the same cascode LNA workacross
all the required frequency bands without compromising perfor-
mance. Multiband receivers can also be implemented by using
multiple narrowband LNAs,each designed for a different fre-
quency band, as shownin Fig. 2. If cascode LNAs with induc-
tive degeneration are used for this implementation, the die area
and cost will both be prohibitively high.

Inductorless resistive-feedback CMOS LNAs [2]-[4] have

been shownto be a viable option for implementing multiband
receivers, as shownin Fig. 1. These circuits require very small
die area and can be implemented in a digital CMOSprocess
without any additional RF enhancements. Hence,this approach
can potentially significantly reduce the cost of the wireless
front-end implementation. Resistive-feedback LNAs achieve
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Fig. 3. Simplified schematic and small-signal model of a shunt-shunt feedback
amplifier.

high gain and reasonably low NF [4]. However, novel circuit
techniques are required to reduce power consumption and
improvelinearity.

This paper presents an inductorless resistive-feedback LNA
in which a current-reuse transconductance-boosting technique
[5] is utilized to reduce the power consumption to 12 mW. The
LNAhasa gain of 21 dB and an NFof 2.6 dB at 5 GHz. The
active die area of this circuit is only 0.012 mm?. The combi-
nation of small die area, broad bandwidth and moderate power
consumption make this LNAarchitecture suitable for low-cost
multistandard wireless front-ends, as shownin Fig. 1. By main-
taining a moderate loop-gain across the frequency band andre-
ducing the nonlinearities of individual stages, the LNA achieves
an outputthird-order intercept point (IP3) of 12.3 dBm at 5 GHz.
Techniquesto further improve IP3 by nonlinearity cancellation
[6]-[9] are also presented.

A resistive-feedback cascode LNA using a single com-
pact on-chip load inductor is presented next. It has a max-
imum gain of 24.4 dB, and a 3-dB bandwidth of 3.94 GHz
(4.04—7.98 GHz). At 5.5 GHz, the NF is 2 dB, and the output
IP3 is 21.5 dBm. Since the inductor Q is not required to be
high, the area of this LNA is only 0.022 mm?. This makesit
suitable for multiband receiver implementations, as shown in
Fig. 2. This LNA can also be easily modified to operate across
multiple frequency bands(as in Fig. 1) since the single low-Q
tuned load can be switchedto resonate at different frequencies.

The gain, input impedance, NF, and linearity of resis-
tive-feedback LNAs are discussed in Section II. Section HI

describes circuit techniques to improve linearity and lower
power consumption. The design of the inductorless LNA
with current-reuse transconductance boosting and the tuned
resistive-feedback LNA (using a compact low-Q inductor) are
described in Section III. The implementation details of these
circuits are discussed in Section IV. The measurementresults of

both the LNAsare given in Section V along with performance
comparison to other reported circuits. Finally, conclusions are
presented in Section VI.

II. RESISTIVE-FEEDBACK LNA THEORY

Consider a simplified resistive-feedback amplifier, as shown
in Fig. 3(a). M1 represents the input transconductancedevice,
which could bea single transistor or a cascode pair. Rz repre-
sents the load resistance including the output resistance of the
input transconductancestage. Rp is the resistor implementing
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the shunt-shunt feedback. Rg is the source resistance and

Regi is used for biasing along with dc blocking capacitors
Cp1,Cp2, and Cg3. The equivalent small-signal model of
the transimpedance amplifier is shown in Fig. 3(b), where gm

represents the transconductance of Mj. Cz. represents the
capacitance to groundat the gate of M,. For frequencies well
below 1/(27C,,Rg), the effect of Cz, can be neglected.

A. Voltage Gain

Using the small-signal model in Fig. 3(b), the voltage gain of
the amplifier can be derived as

Vout 1
Ay = — =- (gm —- ——|(RL||Rr). 1m==(gm—5) (Fle)

Feedback analysis [10] can be done by opening the loop and
determining the open-loop transresistance gain (a) and the feed-
back factor (f), shown as follows:

= —(Rs || Rr)gm(Rx || Rr) (2)
1

f= Rp (3)
The voltage gain given by feedback analysis is

Ay (Feedback Theory) = —9m(Rr || Rr). (4)

The discrepancy between (1) and (4) is because the feedfor-
ward path through Ap is ignored in the feedback analysis. This
differenceis negligible if gm >> 1/Rr.

B. Input Impedance Matching

Shunt-shunt feedback reduces the input impedance of the
amplifier by a factor of (1 + af). The input resistance (Rin)
of the amplifier is given by

(Rs||Rr) Rs
l+af l+af

since Rr >> Rg (for reasons related to NF, which will ex-

plained later). For input impedance matching, Ri, has to be
equal to Rg/2. From (5), input matching is achieved with a
loop gain (af) just below 1, which also ensures circuit sta-
bility. Using (3), the open-loop transresistance gain has to be
approximately equal to the value of the feedback resistance for
achieving input impedance matching

Rin = (5)

Input Impedance Match Condition: |a| & Rr. (6)

C. NF

The contribution of each noise sourceto the total output noise
is evaluated. The NFis then calculated by evaluating the ratio of
the total output noise to the output noise due to fg as follows:
 Vom 1NF x1 ———TR39m RsRzg?2,

2

ARs -1aes yp 7Rp Rr + Rs 7)
1+ ——"|

(1 + gmRs)Rr
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where 7g, is the noise excess factor of M/[11]. Equation (7)
showsthat having a large feedback resistance can lower the NF.
From (6), a higher PRrequires a higher open-loop gain for input
matching, usually leading to higher power consumption.

D. Linearity

Consider a nonlinear amplifier modeled by the powerseries
[12]

Vout = 41 Vin + A2V:n + a3Vins (8)

Negative feedback improves its input IP3 by the following
factor:

IP3len
IP3loL

_ 2 a3
=G+aly layup =e
~(1+a,f)?/ (9)

 

where 2fa3 < a3(1+a1f), IP3|cr, and IP3|oxrepresentthe
close-loop and open-loop IP3, respectively. Equation (9) shows
that linearity is not significantly improved by feedback at high
frequencies if the open-loop gain of the amplifierrolls off [2].

II. LOw-POWER HIGH-LINEARITY

RESISTIVE-FEEDBACK LNAs

Asdiscussed in Section II, a high open-loop gain is required
to simultaneously achieve low NF and good input matching.
The open-loop bandwidth also has to be high to achieve high
linearity at high frequencies. These requirements usually lead
to high power consumptionsin resistive-feedback LNAs [2],
[4]. We nowpresentcircuit techniques to improvelinearity and
lower power consumptionin resistive-feedback LNAs.

A. Current-Reuse Resistive-Feedback LNA

The schematic of the restive feedback LNA with current-

reuse transconductance boosting is shown in Fig. 4. Cascode
transistors M1 and M3 form the input transconductancestage.
A significant portion of the bias current in MMis diverted away
from the load resistor Rz by transistor M2. This reduces the dc
voltage drop across R,. Moreover, the transconductance gener-
ated by M2 addsto that of Mj, increasingthe effective g,, of the
input stage. The current mirror formed by M7 and Mg controls
the amount of current shunted away from R;. The amplified
signal is fed back to the input transconductancestage through
feedback resistor Ry and the source follower formed by Mg,
Ms, and R;. The diode connected Ms is used in the source fol-

lower to generate gate bias voltages for M,, M2, and M3. The
dc and ac feedback loops are thus combined, makingit possible
to removethe dc blocking capacitors required in earlier reports
[4]. This reducesthe total area requirement, and avoids loading
of the source follower by the parasitic capacitance of the dc
blocking capacitor to the substrate. The latter improves the LNA
linearity. An additional source follower, formed by Mg and Ro,
is incorporated to improvereverse isolation and output driving
capability. As discussed in Section II, the linearity at high fre-
quencies can be improved by increasing open-loop bandwidth.
This is achieved by device sizing and reducing layout para-
sitics as muchas possible. The overall linearity of the LNA is
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Fig. 4. Schematic of the current-reuse transconductance-boosting resis-
tive-feedback LNA.

improved by making each block of the LNA morelinear. Re-
movingthe de block capacitors reducesthe loading of the source
follower, making it more linear, as explained earlier. Resistors
Ry and Rp replace active current mirrors, which are nonlinear
and have greater capacitance.

In all resistive-feedback LNAs with g,,-enhanced cascode
structure, the width/length (W/L)ratio of the cascodetransistor
is kept low to achieve a higher bandwidth. The cascode device
also has a lowerbias current than the inputtransistor soas to re-
duce the voltage drop acrossthe load resistor, as explained ear-
lier. The lower W/L ratio and bias current makes the transcon-

ductance of the common-gate cascode transistor significantly
lower than the common-sourceinputtransistor. The gain of the
common-source stage is the ratio of these transconductances.
The high gain in the common-source input stage preceding the
cascode stage makes the g,, nonlinearity in the cascode stage
limit the overall circuit linearity. This is because the IIP3 of
the combined stages (IIP3cg_cq) is related to the IIP3 of the
common-sourcestage (IIP3cs), its gain (Gos), and the IIP3 of
the common-gate stage (IIP3cq) by the following equation:

 

1 _ 1 1 ( Ges ) (10)(IP3cs_ce)? (IIP3cs)? IIP3cq

Hence, significant improvementin linearity can be obtained
if the nonlinearity of the cascode stage is reduced by nonlin-
earity cancellation. This can be achieved by using derivative
superposition [6], [13], as shown in Fig. 5(a). Here, the gn3
(6°Ip/5Vas) of the common-gate stage (M3) is cancelled
by the gm3 of the subthreshold transistor Mg. The measured
input IP3 of the g,,-enhanced cascode LNAis plotted against
the gate voltage of M3 (Vc) in Fig. 5(b). Though significant
improvements in IP3 have been demonstrated with derivative
superposition at the cost of increased NF (0.6 dB) [9], such
cancellation techniques may havepotential issues in volume
applications due to process and temperature variations.

B. Tuned Resistive-Feedback LNA with a Compact
Low-Q Load Inductor

Linearity issues due to the high gain in the common-source
stage preceding the common-gate cascode stage can be avoided
by replacing the load resistance with a low-@ resonant load,
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Fig. 5. Nonlinearity cancellation in a g,,,-enhanced cascode LNA with deriva-
tive superposition.
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Fig. 6. Schematic of the tuned resistive-feedback LNA utilizing a compact
low-Q load inductor.

using a compacton-chip inductor. The bias current of the cas-
code device can be madeequal to that of the input device be-
causethe dc voltage drop acrossthe resonantloadis negligible.
Sinceall the capacitanceat the output node can be resonated out
with the inductive load,it is not necessary to make the W/Lratio
of the cascode device small.

The schematicof a tuned resistive-feedback LNA is shown in

Fig. 6. Transistor M, is used as the common-source transcon-
ductance stage and Mz is used as the cascode common-gate
stage. A compact low-Q on-chipspiral inductor L, andthetotal
capacitance at the output node form the resonantload. The par-
asitic capacitance of the dc block capacitors (Cc¢2 and Ce3) to
substrate and the drain capacitance of MMcan, therefore, be res-
onated out along with the load capacitance at the output node.
Resistors Rrpi, Rrpe2, and Rrp3 form the shunt-shunt feed-

back path. Capacitors C'g; and C’g2 andresistor Rg, are used
for biasing the cascodetransistors.

Since this LNA utilizes only a single low-Q load inductor,
it can be made extremely compact. Hence, low-cost multiband
receivers can be implemented by using multiple tunedresistive-
feedback LNAseach designed for a different frequency band,
as shownin Fig. 2.

This circuit can be easily modified to operate across different
frequency bands for the multiband receiver implementation
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Fig. 7. Schematic of the modified super source follower output buffer.

shown in Fig. 1. The band-switching scheme enabling this
implementation is shown in Fig. 6. The resonant frequency
f, can be shifted by using the capacitors C, and C> and the
switches Sc, and Sc2. At resonance, the load impedance is
purely resistive and given by

Rrgr = 2af,Lys (en + a) (11)Qfr

Here, Ly, and Qf, are the inductance and Q of the load inductor
at the resonant frequency f,. All the equations from Section II
are still valid if Az is replaced by Rz,f,, and if g represents
the effective transconductance of the cascodestage.

If the switches So and Sz are used to shift f,, the value of
Rr,fr, given by (11), will not be the samein different frequency
bands. Thus, the open-loop transimpedance gain (a) given
by (2), will also vary from one frequency band to another.
To satisfy the input matching condition in (6) across all the
frequency bands, the feedback resistance Rpg will also have to
be switched, as shownin Fig. 6, using switches Sp; and Sro.

IV. IMPLEMENTATION OF THE RESISTIVE-FEEDBACK LNAs

Both of the resistive-feedback LNAs are implemented in a
90-nm seven-metal CMOSprocess. The only RF enhancement
option used is the high-resistivity substrate under RF signal
paths. All the capacitors were implementedasinter-digitated
metal finger capacitors. Since the output impedance of the
LNAsare not 50 2, a modified super source follower [4] was
usedto facilitate measurements. The schematic of this circuit is

shownin Fig. 7.
The current-reuse transconductance-boosting resistive-feed-

back LNA draws6.7 mAfrom the 1.8-V supply, thus consuming
12 mW of power. The chip micrograph of this LNA is shown in
Fig. 8. The chip is pad limited and the actual LNA dimensions
are 40 xm X 310 yum (Area: 0.012 mm?). This implementation
is a very low-costalternative to the conventional inductor-based
circuits for multiband multistandard radios.

The tuned resistive-feedback LNA has a power consump-
tion of 9.2 mW,drawing 7.7 mA from the 1.2-V supply. Band
switching is not implemented and the LNA is designed to op-
erate in a single frequency band around 5.5 GHz. The chip mi-
crographofthis circuit is shown in Fig. 9. The LNA dimensions
are 155 ym x 145 yum (Area: 0.022 mm’).
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Fig. 8. Chip micrographof the current-reuse transconductance-boostingresis-
tive-feedback LNA.

 

 
Fig. 9. Chip micrograph ofthe tuned resistive-feedback LNA.

V. MEASUREMENT RESULTS

The measurements for both of the resistive-feedback LNAs

were performed with on-wafer probing. Standalone output
buffers were measured to deembedtheir effect on the measure-

mentresults of the LNAs.

A. Measurement Results of the Current-Reuse
Resistive-Feedback LNA

The standalone output buffer used with the current-reuse
transconductance boosting LNA hasan insertion loss of 7 dB.
Its input IP3 is 15.6 dBm at 5.8 GHz, 18 dBm at 5 GHz,and
higher at lower frequencies. The buffer NF is 10 dB, including
the noise added by a 50-() resistor added at the input for
impedance matching.

The measured and simulated gain of the LNA and output
buffer is shownin Fig. 10. Also plotted in Fig. 10 are the buffer
loss and the deembedded LNAgain. Thegain falls from 22 dB
at low frequencies to 21 dB at 5 GHz. The 3-dB bandwidth is
7.5 GHz.

The measured and simulated input matching of the LNA are
plotted in Fig. 11. It is —10 dB at 5 GHz andbetter at lower
frequencies. The measured NF is plotted against frequency
in Fig. 12. The NF is 2.6 dB at 5 GHz and varies between
2.3-2.9 dB from 500 MHz to 7 GHz. The 1.5-dB increase in

gain in the measuredresults is due to slightly higher values
for Rz and Rp. This increase in gain leads to improved input
matching and noise performance compared to the simulated
results.
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Fig. 10. Measured and simulated gain of the current-reuse transconductance-
boosting resistive-feedback LNA andoutput buffer.
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Fig. 11. Measured and simulated input matching of the resistive-feedback
LNA.
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Fig. 12. Measured and simulated NF of the LNA andoutput buffer.

Theinput IP3 of the LNAis plotted in Fig. 13 after deembed-
ding the effects of the output buffer. It varies from —2.3 dBm at
500 MHzto —8.8 dBm at 5.8 GHz. The degradationof linearity
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Fig. 13. Measured input IP3 of the current-reuse transconductance-boosting
LNA.
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Fig. 14. Measured and simulated gain of the tuned resistive-feedback LNA and
output buffer.

with frequencyis dueto the loop gain rolloff with frequency, as
explained earlier.

B. Measurement Results of the Tuned Resistive-Feedback LNA

The standalone output buffer used with the tunedresistive-
feedback LNAis similar to the one used with the current-reuse

LNAandhasa loss of 8 dB, and an NFof 9.8 dB (including the
noise added by the 50-2 resistor at the input). The output buffer
has an input 1-dB compression point of 6.5 dBm and an input
IP3 of 18 dBm at 5.5 GHz.

The measured and simulated gain of the LNA and output
buffer is plotted in Fig. 14. The buffer loss and the deembedded
gain of the LNA without the buffer are also plotted in Fig. 14.
The LNA has a maximum gain of 24.4 dB and a 3-dB band-
width of 3.94 GHz from 4.04 to 7.98 GHz. The measured input
matchingis plotted in Fig. 15. The input matchingis better than
—10 dB from 5 to 6.85 GHz.

Fig. 16 shows the measured and simulated NF of the tuned
resistive-feedback LNA andthe output buffer. The deembedded
NF of the LNA without the output buffer is also plotted. The
tuned resistive-feedback LNAhas an NFof approximately 2 dB
between 4-6 GHz.

The IP3 of the LNA andoutput buffer is plotted in Fig. 17.
The input IP3 of the tuned resistive-feedback LNA and output
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Fig. 15. Measured and simulated input matching of the tuned LNA.
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Fig. 16. Measured and simulated NF ofthe tuned resistive-feedback LNA and
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Fig. 17. Input IP3 ofthe tuned resistive-feedback LNA.

buffer is —7.7 dBm at 5.5 GHz. The IIP3 of the LNAis found to

be —2.6 dBm after deembedding the output buffer nonlinearity
using the IIP3 of the standalone buffer (18 dBm) and the gain
of the LNA (24.1 dB). Therefore, the output IP3 of the LNA
is 21.5 dBm. The measured input 1-dB compression point of
the LNA and buffer is —18 dBm at 5.5 GHz. The input 1-dB
compression point of the LNA withoutthe outputbuffer is found
to be —7.2 dBm after deembedding.
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TABLEI
WIDEBAND LNA PERFORMANCE COMPARISON

This Work
Current-Reuse Tuned

LNA LNA 

90-nm
CMOS

90-nm
Process CMOS 

Freq.
(GHz) 0.5-7

4-8
 

Power

(mW) 

Area

(mm’)

Voltage
Gain

(dB)
Noise

Figure
(dB)

OIP3

(dBm)

      
8.8 (5.8 76
GHz) GHz)

The performance of the two resistive-feedback LNAs are
tabulated and compared with others reported in Table I. The
current-reuse transconductance-boosting—resistive-feedback
LNAprovides comparable performance at lower power con-
sumption while occupying very small die area. The tuned
resistive-feedback LNA, though requiring slightly larger die
area than the inductorless LNA, provides very high linearity,
low noise, and high gain while dissipating low power. This
LNApresents a much improvedtradeoff between performance,
power consumption, and cost, especially for multiband multi-
standard wireless receivers.

VI. CONCLUSION

Extremely compact LNAcircuits based onresistive feedback
are presented as a cost-effective alternative to multiple tuned
LNAsrequiring many high-@ inductors for multiband wireless
applications. The relationships between the feedbackresistance,
NF, input matching, and open-loop gain are presented. The ef-
fect of the open-loop bandwidth on the close-loop linearity is
also explained. A current-reuse transconductance boosting tech-
nique is used to reduce the power consumptioninaresistive-
feedback LNAto 12 mW.The inductorless LNA achievesa gain
of 21 dB and an NF of 2.6 dB at 5 GHz. Therolloff of loop
gain and the nonlinearities in the feedback loop are reduced to
improve the output IP3 to 12.3 dBm at 5 GHz. Theactive die
area of this LNA is only 0.012 mm?. A tuned resistive-feed-
back LNA, using a compact resonant load, is also presented.
It achieves a maximum gain of 24.4 dB and a 3-dB bandwidth
of 3.94 GHz using a single low-Q on-chip inductor and con-
suming 9.2 mW of power. The LNA has an active die area of
0.022 mm?. The NFofthe tunedresistive-feedback LNAis ap-
proximately 2 dB between 4—6 GHz. At 5.5 GHz, the LNA has
an output IP3 of 21.5 dBm. The combination of high linearity,
low NF, high broadband gain, small die area, and low power
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consumption makes this LNA architecture a compelling choice
for low-cost multistandard wireless front-ends.
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