i

The following paper was originally presented at the
Ninth System Administration Conference (LISA ’95)
Monterey, California, September 18-22, 1995

Patch Control Mechanism for Large Scale Software

Atsushi Futakata
Central Research Institute of Electric Power Industry (CRIEPI)

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Patch Control Mechanism for
Large Scale Software

Atsushi Futakata — Central Research Institute of Electric Power Industry (CRIEPI)

ABSTRACT

Applying patches to large scale software is often difficult because unofficial patches and
user modifications conflict with any “official” patches. Version control systems such as
RCS[1], CVS[2], and configuration management[3,4,5] are useful solutions for this problem
when the baseline of the software is fixed. However, an official patch that is developed
externally changes the baseline and any local changes based on this become obsolete. Thus
we must re-apply various unofficial patches and modifications, identify the causes of conflict,
change or remove patches, and repeat the patch and unpatch operations.

This paper presents a mechanism for (1) managing versions of a software package based
on patches, (2) automating the application of unofficial patches and modifications by the user,
and (3) rebuilding the package using file versions instead of timestamps. Using this

mechanism, it becomes easy to apply patches and re-build software.

Introduction

We have spent a lot of time installing and
patching large scale software packages such as the
X11 Window System, TeX, etc. Installation of new
software involves checking storage space, reading
documentation and setting various configuration files
correctly. This can be a non-trivial task even if the
platform is officially supported. If the platform is
not supported, installation becomes more compli-
cated because changes to the source code may be
required and tools such as Configure are not applica-
ble. Thus software porting systems represented by
the FreeBSD ports system[6] appear and become to
support the installation task.

Applying patches poses another difficult prob-
lem: If only official patches are applied to an
officially supported platform, the task is usually easy
because the patches are well managed and cause no
conflict. However an unsupported platform requires
source code changes which often conflict with an
official patch. Furthermore, the user may require
many useful, unofficial patches. These may be
patches for emergency security, localization (e.g.,
japanization), machine/OS-dependencies or various
extensions, such as Tcl/Tk has. Those patches may
also conflict with official ones. The reason for the
conflict is a lack of version management facilities
for distributed development. This conflict usually
necessitates the following operation:

o Remove all unofficial patches and apply the
official one,

e Re-apply the unofficial patches and user
modifications. If reject files are generated, the
unofficial patch must be fixed or removed,

e Rebuild the software. This can take a long
time because the above operations may cause
unnecessary changes to timestamps.

DOCKET

_ ARM

Configuration management systems such as
Aegis[7], CMS/MMS|8] are useful for version con-
trol and building software for multi-user develop-
ment. They target the continuous development of the
software and manage products based on a current
baseline, that is a reference version of software on
which each member of developing team fixes bugs
and develops new functions. After each task is com-
plete, all modifications are integrated and the
modified source code becomes a new baseline for
succeeding development. This baseline approach is
useful for inhouse development teams.

However, an official patch is delivered outside
of a user’s control and it only changes the baseline.
All modifications based on the previous version of
the software then become obsolete. Thus if the user
wants to apply a new official patch, all other patches
and modifications must be rearranged and re-applied
after the official one is applied.

In future, self-adaptive software agents or
automatic programming from very high level
specifications may solve the problem but, for the
present, we have no silver bullet. Thus, in order to
solve the above problem and support patch applica-
tion, this paper proposes a patch control mechanism
which has the following features:

e version management of the whole package,
including individual files and patches,

® management and control of patch application
order,

@ assistance with patch/unpatch operations and
patch modification,

e software rebuilding according to an individual
file version rather than a timestamp.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Patch Control Mechanism for Large Scale Software

Classification of patches

Unofficial patches may be generated by dif-
ferent people based on different baselines. Unified
management of these patches can be difficult and
confusing. In this paper, we classify patches into the
following three types and treat each differently.
official patch

A patch that is authorized by and distributed

from the software developer/maintainer. The

latest official patch number is the official
software version and we call it the patchlevel.
unofficial patch

A patch/extension that is widely distributed

but is not an official patch. An unofficial

patch may be applied in various directories
with various patch (1) options.
modification

A change made by the local user, which

includes editing files, fixing bugs, changing

configuration files, etc.

System Overview

This section presents an overview of the system
which is an implementation of the patch control
mechanism. This includes; (1) management of the
three types of patch, (2) control of patch application,
and (3) rebuilding of the software. The components
VM (Version Manager), PM (Patch Manager), and
BM (Build Manager) implement the three functions
respectively. Figure 1 shows the components and
the relation among them.

USER
PM
get info. .
& register invoke
VM BM

build

manage
g software

software

source
patch
object

:modification :

Figure 1. The components of this system

The VM manages information in the VDB (Ver-
sion Database) and the version tree, which records
information about version control for updating and
rebuilding of the software. The VDB records the

DOCKET

_ ARM

Futakata

location of the patches and the versions of individual
files. The version tree records the application order
for unofficial patches and modifications at each
patchlevel. When a new patch arrives, the user adds
the patch to the VDB using the VM. If the user
wants to apply this, and the result is successful, the
VM registers the sequence of patches actually
applied, to the version tree.

The PM (Patch Manager) controls the
patch/unpatch operations and the building of the
software according to the version tree. In this sys-
tem, all operations, including editing a patch file,
applying a patch, and building a package, are per-
formed via the PM, and the result of the operation is
reflected in the VDB and the version tree.

When a user applies a new official patch, the
PM tries to apply unofficial patches which were
applied to the last version of software. If one of the
patches is rejected, the PM notifies the user. The
user may then remove or edit this patch and continue
the job. After the job finished, the PM returns the
result of the patch application and the VM revises
the VDB and the version tree.

The BM (Building Manager) is an extended
make command, invoked from the PM to build a tar-
get according to the version of file instead of its
timestamp. Because a new official patch forces
patch/unpatch operations of unofficial patches and
modifications, the timestamp of a file may change
even if the contents is not altered. The VM registers
the version of the newly generated target with the
VDB and the version tree.

This system manages several packages at once
by referring to the pcm file. An entry of the pcm
file has the following form:

application_name:top_directory:patch_option
Application_name is an identifier to be used for
selecting a package. Top_directory is the directory
where official patches are applied. Patch_option
species an option to the patch(1) command. For
example, the entry for X11R5 (X11 Window System,
Version 11, Release 5) becomes?:

X11R5:/X11R5:-p -s

This means that the following command is needed to
apply the patch.

% cd /X11R5
% patch -p -s <foo.patch
Version Management

In this system, changes of source codes and the
source code itself are managed separately to make

1Because of the limitation of line width, we denote the
location of the X11R5 package as /X11R5 in the
following examples. The actually location s
/staff/src/X11R5 in our site.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Futakata

patches independent of the baseline specified by an
official patch. Thus each unofficial patch and
modification has a separate version to avoid conflicts
which may occur with any new official patch. The
versions of these patches are managed using RCS.

The VM manages the patch information,
including the location of patches, versions of patches
themselves and the history of patch application. The
VM performs the following functions:

® generates the specified version of a software
package or a file by applying patches automat-
ically,

e registers/deletes/updates a patch,

e creates/updates a modification from the differ-
ences between a modified file and its original,

e maintains versions of files, which are deter-
mined by the patches which actually cause
change.

Information managed by the VM is recorded in
the VDB and the version tree. The VDB consists of
the locations and the versions of patches and the ver-
sions of the individual files. The version tree
describes the order of patch application required to
make the specified version of software, and which
version of each patch should be applied.

The version of the software package itself is
represented by a path of the version tree. For exam-
ple, #3:@1.2,@2.1,@3.2:351.2 means that the
version is generated by application of an official
patch #3, unofficial patches @1.2, @2.1, and
@3 .2, and a modification $1.2 in order. The fol-
lowing section describes the contents of the VDB
and the version tree.

#26

#1:/X11R5/fixes/fix-01
#2:/X11R5/fixes/fix-02
#3:/X11R5/fixes/fix-03
#4:/X11R5/fixes/fix-04

Figure 2: A part of .official file for X11R5

Version Database
The VDB consists of the four files.
.official

.official contains the current patchlevel
and the locations of official patches. The first line is
the current patchlevel of the software. The follow-
ing lines contain a patch identifier (which is used in
the version tree), and a corresponding patch location.
Figure 2 is a sample of a part of a .official file.
#26 in line 1 means that the current patchlevel is
26. The lines 2-5 specify the location of each official
patch. For example, line 2 means that the location of
the official patch #1 is /X11R5/fixes/fix-01.

.unofficial

.unofficial contains the locations of
unofficial patches and the information required to

DOCKET

_ ARM

Patch Control Mechanism for Large Scale Software

apply them. Each entry of this file has the following
form;

id:location:place:option

Id is the unofficial patch identifier which is used in
the version tree. Location is the location of the
unofficial patch. Place is the directory in which the
patch is applied, and option is the patch (1) options.
In general, there is no standard method for applying
unofficial patches, and this is a reason for the place
and option fields. Figure 3 shows a part of .unof-
ficial for X11R5.

@l:/X11R5/fixes/Xaw-pl:/X11R5:-p0
@2:/X11R5/fixes/Xsi-pl:/X11R5:-p0
@3:/X11R5/fixes/Xwchar-pl:/X11R5:-p0
@4:/X11R5/fixes/Xaw-p2:/X11R5: -p0

Figure 3: A sample of .unofficial file for X11R5

Versions of the patches are managed by RCS
and the RCS file for each patch is located in direc-
tory of location/RCS. A user can edit the patched
files themselves instead of the patch because it is
almost impossible to edit the patch directly. Changes
to the files are reflected in the patch by the follow-
ing process:

e choose the version of the software and the tar-
get patch to be edited. For example, we
assume that the patch is @3 .1 which changes
two files, foo.c and bar.c, and the version
is #3:@1.2,@2.1,@3.1,

e apply the sequence of patches which should
be applied in this version before applying the
target patch. After that, make a copy of the
patched file and apply the target patch. In
this example, first, the VM applies @1 .2 and
@2 .1 to the software whose patchlevel is #3.
Next, the VM makes copies of foo.c and
bar.c with an extension .prev. Then, the
VM applies @3 .1 to the software,

e after editing the patched files, make a new
patch by running diff (1) against the files of
which the VM made copies in the last step.
In this example, the two diff files between
foo.c/bar.c and
foo.c.prev/bar.c.prev are con-
catenated to a new patch, whose path name is
the same as @3. 1.

e check in the new patch using ci(1) . In this
example, the VM runs the following com-
mand:

$ ci -r2.1 location of @3

in which 2 of 2.1 is the new version number
for the patch @3.

The VM normally uses only the release number
of RCS. Thus a patch with version N has a revision
N.1 in the RCS file. For example, when applying
the version 3 of the patch @1 in the Figure 5, the
following commands are needed:

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Patch Control Mechanism for Large Scale Software

o°

co -1 -r3.1 /X11R5/fixes/Xaw-pl
cd /X11R5
patch -p0 </X11R5/fixes/Xaw-pl

o

o°

.modification

.modification contains the locations of
user modifications. There is at most one
modification file per directory and the result of edit-
ing the source is reflected in the modification file in
the same way as unofficial patch files. Figure 4
shows a part of .modification. The first field is
the identifier of modification and the second
specifies the location of the modification.

$1:/X11R5/mit/config/config.patch
$2:/X11R5/mit/1ib/Xt /Xt .patch

Figure 4. A sample of .modification file for X11R5

1 ver

.£_ver contains the version history of the
source and object files. In this system, a file has
two different forms of version. One is the strict ver-
sion which is indicated by the software version. The
other is the historical version which indicates the
history of changes by patches. The historical ver-
sion is used instead of the file timestamp when the
software is rebuilt. For example, the strict version
of file foo is indicated as:

foo.#3.{@1.1,@2.1,@3.2}.%1.2

where #3 means the official patchlevel is 3 and
@N.M means that the applied unofficial patch
identifier is N and the version of the patch itself is
M. $1.2 means that the version of a modification
to foo. The historical version has the following
form:

foo:#1,#3:@1.1,@2.1:51.2

This means that foo is changed by the official
patches #1 and #3, unofficial patches @1.1 and
@2 .1, and user modifications with version $1. 2.

.£_ver must exist in all subdirectories of the
software source tree. An source/object entry in this
file is updated as follows:

e if a patch is applied to the file, the identifier
of the patch is added to the entry,

e if the version of a source file differs from the
object file, after making the object, the object
is given the same version as the source. |If
multiple sources exist, e.g., linking *.o files,
the versions of the sources are merged and
becomes the version of the object because it
is made under the effect of patch applications
to the sources. This method is described in
the section Make Command,

e editing the file changes the version of the
modification in the entry.

If the file in the VDB is a symbolic link, the VM
follows the link and updates the location of the file
to be the real location.

DOCKET

_ ARM

Futakata

Version tree

The version tree manages the software version
and describes the application order of unofficial
patches and modifications at each patchlevel. The
version tree includes applied unofficial patches and
modifications only. Figure 5 shows the concept of
the version tree. #N is the patchlevel and @N.M
and $N.M are the unofficial patch identifier and the
modification identifier to be applied. A conflict
between unofficial patches causes branching or
modification of a patch.

The .vtree, which is located in the top direc-
tory of the software, records the version tree as the
collection of the following form;

official_id:unofficial_ids:modifications

For example, the path A in figure 5 is described as
“#1.@1.1,@2.1,@4.1:$1.1,...” and the path branched
from @1.1 is described as “#1:@1.1,@3.1,
@4.2,...”.

$1.1 Mo

Figure 5: The concept of version tree

Patch Control Mechanism

This section describes the patch control
mechanism based on the version tree. The PM stores
source files to which only official patches are
applied. The unofficial patches/modifications are
applied on demand when editing the latest version
sources, rebuilding the software, etc.

The PM provides an asynchronous way to
apply a patch or to rebuild a software package by
exchanging information with the user via e-mail.
Once the PM is invoked, the PM reports conflicts or
compilation failure to the user via e-mail. After the
user edits files or abandons the patch, the user only
sends a simple command with the file contents if it
is needed. The PM accept the following commands:

o edit [file | id] (ver)

edit the file or a patch whose identifier is id in

the software version ver. In the PM interface,

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

