
/*
* @(#)Socket.java 1.108 04/05/18
 *
 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/

package java.net;

import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InterruptedIOException;
import java.nio.channels.SocketChannel;
import java.security.AccessController;
import java.security.PrivilegedExceptionAction;

/**
* This class implements client sockets (also called just
* "sockets"). A socket is an endpoint for communication
* between two machines.
* <p>
* The actual work of the socket is performed by an instance of the
* <code>SocketImpl</code> class. An application, by changing
* the socket factory that creates the socket implementation,
* can configure itself to create sockets appropriate to the local
* firewall.
*
 * @author  unascribed
* @version 1.108, 05/18/04
* @see   java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory)
* @see   java.net.SocketImpl
* @see   java.nio.channels.SocketChannel
* @since   JDK1.0
*/
public
class Socket {

  /**
* Various states of this socket.
*/

 private boolean created = false;
 private boolean bound = false;
 private boolean connected = false;
 private boolean closed = false;
  private Object closeLock = new Object();
 private boolean shutIn = false;
 private boolean shutOut = false;

  /**
* The implementation of this Socket.
*/

  SocketImpl impl;

  /**
* Are we using an older SocketImpl?
*/

 private boolean oldImpl = false;

  /**
* Creates an unconnected socket, with the
* system-default type of SocketImpl.
*
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     * @since   JDK1.1
     * @revised 1.4
     */
    public Socket() {

setImpl();
    }

    /**
     * Creates an unconnected socket, specifying the type of proxy, if any,
     * that should be used regardless of any other settings.
     * <P>
     * If there is a security manager, its <code>checkConnect</code> method
     * is called with the proxy host address and port number
     * as its arguments. This could result in a SecurityException.
     * <P>
     * Examples: 
     * <UL> <LI><code>Socket s = new Socket(Proxy.NO_PROXY);</code> will create
     * a plain socket ignoring any other proxy configuration.</LI>
     * <LI><code>Socket s = new Socket(new Proxy(Proxy.Type.SOCKS, new 
InetSocketAddress("socks.mydom.com", 1080)));</code>
     * will create a socket connecting through the specified SOCKS proxy
     * server.</LI>
     * </UL>
     *
     * @param proxy a {@link java.net.Proxy Proxy} object specifying what kind
     *     of proxying should be used.
     * @throws IllegalArgumentException if the proxy is of an invalid type 
     * or <code>null</code>.
     * @throws SecurityException if a security manager is present and
     *  permission to connect to the proxy is
     *  denied.
     * @see java.net.ProxySelector
     * @see java.net.Proxy
     *
     * @since   1.5
     */
    public Socket(Proxy proxy) {

if (proxy != null && proxy.type() == Proxy.Type.SOCKS) {
    SecurityManager security = System.getSecurityManager();
    InetSocketAddress epoint = (InetSocketAddress) proxy.address();
    if (security != null) {

if (epoint.isUnresolved())
    security.checkConnect(epoint.getHostName(),

  epoint.getPort());
else
    security.checkConnect(epoint.getAddress().getHostAddress(),

  epoint.getPort());
    }
    impl = new SocksSocketImpl(proxy);
    impl.setSocket(this);
} else {
    if (proxy == Proxy.NO_PROXY) {

if (factory == null) {
    impl = new PlainSocketImpl();
    impl.setSocket(this);
} else
    setImpl();

    } else
throw new IllegalArgumentException("Invalid Proxy");

}
    }
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    /**
     * Creates an unconnected Socket with a user-specified
     * SocketImpl.
     * <P>
     * @param impl an instance of a <B>SocketImpl</B>
     * the subclass wishes to use on the Socket.
     *
     * @exception SocketException if there is an error in the underlying protocol,     
     * such as a TCP error. 
     * @since   JDK1.1
     */
    protected Socket(SocketImpl impl) throws SocketException {

this.impl = impl;
if (impl != null) {
    checkOldImpl();
    this.impl.setSocket(this);
}

    }

    /**
     * Creates a stream socket and connects it to the specified port
     * number on the named host.
     * <p>
     * If the specified host is <tt>null</tt> it is the equivalent of
     * specifying the address as <tt>{@link java.net.InetAddress#getByName 
InetAddress.getByName}(null)</tt>.
     * In other words, it is equivalent to specifying an address of the 
     * loopback interface. </p>
     * <p>
     * If the application has specified a server socket factory, that
     * factory's <code>createSocketImpl</code> method is called to create
     * the actual socket implementation. Otherwise a "plain" socket is created.
     * <p>
     * If there is a security manager, its
     * <code>checkConnect</code> method is called
     * with the host address and <code>port</code> 
     * as its arguments. This could result in a SecurityException.
     *
     * @param      host   the host name, or <code>null</code> for the loopback address.
     * @param      port   the port number.
     *
     * @exception  UnknownHostException if the IP address of 
     * the host could not be determined.
     *
     * @exception  IOException  if an I/O error occurs when creating the socket.
     * @exception  SecurityException  if a security manager exists and its  
     *             <code>checkConnect</code> method doesn't allow the operation.
     * @see        java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory)
     * @see        java.net.SocketImpl
     * @see        java.net.SocketImplFactory#createSocketImpl()
     * @see        SecurityManager#checkConnect
     */
    public Socket(String host, int port)

throws UnknownHostException, IOException
    {

this(host != null ? new InetSocketAddress(host, port) :
     new InetSocketAddress(InetAddress.getByName(null), port),
     new InetSocketAddress(0), true);

    }

    /**
     * Creates a stream socket and connects it to the specified port
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     * number at the specified IP address.
     * <p>
     * If the application has specified a socket factory, that factory's
     * <code>createSocketImpl</code> method is called to create the
     * actual socket implementation. Otherwise a "plain" socket is created.
     * <p>
     * If there is a security manager, its
     * <code>checkConnect</code> method is called
     * with the host address and <code>port</code> 
     * as its arguments. This could result in a SecurityException.
     * 
     * @param      address   the IP address.
     * @param      port      the port number.
     * @exception  IOException  if an I/O error occurs when creating the socket.
     * @exception  SecurityException  if a security manager exists and its  
     *             <code>checkConnect</code> method doesn't allow the operation.
     * @see        java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory)
     * @see        java.net.SocketImpl
     * @see        java.net.SocketImplFactory#createSocketImpl()
     * @see        SecurityManager#checkConnect
     */
    public Socket(InetAddress address, int port) throws IOException {

this(address != null ? new InetSocketAddress(address, port) : null, 
     new InetSocketAddress(0), true);

    }

    /**
     * Creates a socket and connects it to the specified remote host on
     * the specified remote port. The Socket will also bind() to the local
     * address and port supplied.
     * <p>
     * If the specified host is <tt>null</tt> it is the equivalent of
     * specifying the address as <tt>{@link java.net.InetAddress#getByName 
InetAddress.getByName}(null)</tt>.
     * In other words, it is equivalent to specifying an address of the 
     * loopback interface. </p>
     * <p>
     * If there is a security manager, its
     * <code>checkConnect</code> method is called
     * with the host address and <code>port</code> 
     * as its arguments. This could result in a SecurityException.
     * 
     * @param host the name of the remote host, or <code>null</code> for the loopback 
address.
     * @param port the remote port
     * @param localAddr the local address the socket is bound to
     * @param localPort the local port the socket is bound to
     * @exception  IOException  if an I/O error occurs when creating the socket.
     * @exception  SecurityException  if a security manager exists and its  
     *             <code>checkConnect</code> method doesn't allow the operation.
     * @see        SecurityManager#checkConnect
     * @since   JDK1.1
     */
    public Socket(String host, int port, InetAddress localAddr,

  int localPort) throws IOException {
this(host != null ? new InetSocketAddress(host, port) :
       new InetSocketAddress(InetAddress.getByName(null), port),
     new InetSocketAddress(localAddr, localPort), true);

    }

    /**
     * Creates a socket and connects it to the specified remote address on
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     * the specified remote port. The Socket will also bind() to the local
     * address and port supplied.
     * <p>
     * If there is a security manager, its
     * <code>checkConnect</code> method is called
     * with the host address and <code>port</code> 
     * as its arguments. This could result in a SecurityException.
     * 
     * @param address the remote address
     * @param port the remote port
     * @param localAddr the local address the socket is bound to
     * @param localPort the local port the socket is bound to
     * @exception  IOException  if an I/O error occurs when creating the socket.
     * @exception  SecurityException  if a security manager exists and its  
     *             <code>checkConnect</code> method doesn't allow the operation.
     * @see        SecurityManager#checkConnect
     * @since   JDK1.1
     */
    public Socket(InetAddress address, int port, InetAddress localAddr,

  int localPort) throws IOException {
this(address != null ? new InetSocketAddress(address, port) : null,
     new InetSocketAddress(localAddr, localPort), true);

    }

    /**
     * Creates a stream socket and connects it to the specified port
     * number on the named host.
     * <p>
     * If the specified host is <tt>null</tt> it is the equivalent of
     * specifying the address as <tt>{@link java.net.InetAddress#getByName 
InetAddress.getByName}(null)</tt>.
     * In other words, it is equivalent to specifying an address of the 
     * loopback interface. </p>
     * <p>
     * If the stream argument is <code>true</code>, this creates a
     * stream socket. If the stream argument is <code>false</code>, it
     * creates a datagram socket.
     * <p>
     * If the application has specified a server socket factory, that
     * factory's <code>createSocketImpl</code> method is called to create
     * the actual socket implementation. Otherwise a "plain" socket is created.
     * <p>
     * If there is a security manager, its
     * <code>checkConnect</code> method is called
     * with the host address and <code>port</code> 
     * as its arguments. This could result in a SecurityException.
     * <p>
     * If a UDP socket is used, TCP/IP related socket options will not apply.
     *
     * @param      host     the host name, or <code>null</code> for the loopback address.
     * @param      port     the port number.
     * @param      stream   a <code>boolean</code> indicating whether this is
     *                      a stream socket or a datagram socket.
     * @exception  IOException  if an I/O error occurs when creating the socket.
     * @exception  SecurityException  if a security manager exists and its  
     *             <code>checkConnect</code> method doesn't allow the operation.
     * @see        java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory)
     * @see        java.net.SocketImpl
     * @see        java.net.SocketImplFactory#createSocketImpl()
     * @see        SecurityManager#checkConnect
     * @deprecated Use DatagramSocket instead for UDP transport.
     */
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