
/*
* @(#)Socket.java 1.108 04/05/18
 *
 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/

package java.net;

import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InterruptedIOException;
import java.nio.channels.SocketChannel;
import java.security.AccessController;
import java.security.PrivilegedExceptionAction;

/**
* This class implements client sockets (also called just
* "sockets"). A socket is an endpoint for communication
* between two machines.
* <p>
* The actual work of the socket is performed by an instance of the
* <code>SocketImpl</code> class. An application, by changing
* the socket factory that creates the socket implementation,
* can configure itself to create sockets appropriate to the local
* firewall.
*
 * @author unascribed
* @version 1.108, 05/18/04
* @see java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory)
* @see java.net.SocketImpl
* @see java.nio.channels.SocketChannel
* @since JDK1.0
*/
public
class Socket {

 /**
* Various states of this socket.
*/

 private boolean created = false;
 private boolean bound = false;
 private boolean connected = false;
 private boolean closed = false;
 private Object closeLock = new Object();
 private boolean shutIn = false;
 private boolean shutOut = false;

 /**
* The implementation of this Socket.
*/

 SocketImpl impl;

 /**
* Are we using an older SocketImpl?
*/

 private boolean oldImpl = false;

 /**
* Creates an unconnected socket, with the
* system-default type of SocketImpl.
*

Juniper Ex. 1025-p. 1
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 * @since JDK1.1
 * @revised 1.4
 */
 public Socket() {

setImpl();
 }

 /**
 * Creates an unconnected socket, specifying the type of proxy, if any,
 * that should be used regardless of any other settings.
 * <P>
 * If there is a security manager, its <code>checkConnect</code> method
 * is called with the proxy host address and port number
 * as its arguments. This could result in a SecurityException.
 * <P>
 * Examples:
 * <code>Socket s = new Socket(Proxy.NO_PROXY);</code> will create
 * a plain socket ignoring any other proxy configuration.
 * <code>Socket s = new Socket(new Proxy(Proxy.Type.SOCKS, new
InetSocketAddress("socks.mydom.com", 1080)));</code>
 * will create a socket connecting through the specified SOCKS proxy
 * server.
 *
 *
 * @param proxy a {@link java.net.Proxy Proxy} object specifying what kind
 * of proxying should be used.
 * @throws IllegalArgumentException if the proxy is of an invalid type
 * or <code>null</code>.
 * @throws SecurityException if a security manager is present and
 * permission to connect to the proxy is
 * denied.
 * @see java.net.ProxySelector
 * @see java.net.Proxy
 *
 * @since 1.5
 */
 public Socket(Proxy proxy) {

if (proxy != null && proxy.type() == Proxy.Type.SOCKS) {
 SecurityManager security = System.getSecurityManager();
 InetSocketAddress epoint = (InetSocketAddress) proxy.address();
 if (security != null) {

if (epoint.isUnresolved())
 security.checkConnect(epoint.getHostName(),

 epoint.getPort());
else
 security.checkConnect(epoint.getAddress().getHostAddress(),

 epoint.getPort());
 }
 impl = new SocksSocketImpl(proxy);
 impl.setSocket(this);
} else {
 if (proxy == Proxy.NO_PROXY) {

if (factory == null) {
 impl = new PlainSocketImpl();
 impl.setSocket(this);
} else
 setImpl();

 } else
throw new IllegalArgumentException("Invalid Proxy");

}
 }

Juniper Ex. 1025-p. 2
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 /**
 * Creates an unconnected Socket with a user-specified
 * SocketImpl.
 * <P>
 * @param impl an instance of a SocketImpl
 * the subclass wishes to use on the Socket.
 *
 * @exception SocketException if there is an error in the underlying protocol,
 * such as a TCP error.
 * @since JDK1.1
 */
 protected Socket(SocketImpl impl) throws SocketException {

this.impl = impl;
if (impl != null) {
 checkOldImpl();
 this.impl.setSocket(this);
}

 }

 /**
 * Creates a stream socket and connects it to the specified port
 * number on the named host.
 * <p>
 * If the specified host is <tt>null</tt> it is the equivalent of
 * specifying the address as <tt>{@link java.net.InetAddress#getByName
InetAddress.getByName}(null)</tt>.
 * In other words, it is equivalent to specifying an address of the
 * loopback interface. </p>
 * <p>
 * If the application has specified a server socket factory, that
 * factory's <code>createSocketImpl</code> method is called to create
 * the actual socket implementation. Otherwise a "plain" socket is created.
 * <p>
 * If there is a security manager, its
 * <code>checkConnect</code> method is called
 * with the host address and <code>port</code>
 * as its arguments. This could result in a SecurityException.
 *
 * @param host the host name, or <code>null</code> for the loopback address.
 * @param port the port number.
 *
 * @exception UnknownHostException if the IP address of
 * the host could not be determined.
 *
 * @exception IOException if an I/O error occurs when creating the socket.
 * @exception SecurityException if a security manager exists and its
 * <code>checkConnect</code> method doesn't allow the operation.
 * @see java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory)
 * @see java.net.SocketImpl
 * @see java.net.SocketImplFactory#createSocketImpl()
 * @see SecurityManager#checkConnect
 */
 public Socket(String host, int port)

throws UnknownHostException, IOException
 {

this(host != null ? new InetSocketAddress(host, port) :
 new InetSocketAddress(InetAddress.getByName(null), port),
 new InetSocketAddress(0), true);

 }

 /**
 * Creates a stream socket and connects it to the specified port

Juniper Ex. 1025-p. 3
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 * number at the specified IP address.
 * <p>
 * If the application has specified a socket factory, that factory's
 * <code>createSocketImpl</code> method is called to create the
 * actual socket implementation. Otherwise a "plain" socket is created.
 * <p>
 * If there is a security manager, its
 * <code>checkConnect</code> method is called
 * with the host address and <code>port</code>
 * as its arguments. This could result in a SecurityException.
 *
 * @param address the IP address.
 * @param port the port number.
 * @exception IOException if an I/O error occurs when creating the socket.
 * @exception SecurityException if a security manager exists and its
 * <code>checkConnect</code> method doesn't allow the operation.
 * @see java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory)
 * @see java.net.SocketImpl
 * @see java.net.SocketImplFactory#createSocketImpl()
 * @see SecurityManager#checkConnect
 */
 public Socket(InetAddress address, int port) throws IOException {

this(address != null ? new InetSocketAddress(address, port) : null,
 new InetSocketAddress(0), true);

 }

 /**
 * Creates a socket and connects it to the specified remote host on
 * the specified remote port. The Socket will also bind() to the local
 * address and port supplied.
 * <p>
 * If the specified host is <tt>null</tt> it is the equivalent of
 * specifying the address as <tt>{@link java.net.InetAddress#getByName
InetAddress.getByName}(null)</tt>.
 * In other words, it is equivalent to specifying an address of the
 * loopback interface. </p>
 * <p>
 * If there is a security manager, its
 * <code>checkConnect</code> method is called
 * with the host address and <code>port</code>
 * as its arguments. This could result in a SecurityException.
 *
 * @param host the name of the remote host, or <code>null</code> for the loopback
address.
 * @param port the remote port
 * @param localAddr the local address the socket is bound to
 * @param localPort the local port the socket is bound to
 * @exception IOException if an I/O error occurs when creating the socket.
 * @exception SecurityException if a security manager exists and its
 * <code>checkConnect</code> method doesn't allow the operation.
 * @see SecurityManager#checkConnect
 * @since JDK1.1
 */
 public Socket(String host, int port, InetAddress localAddr,

 int localPort) throws IOException {
this(host != null ? new InetSocketAddress(host, port) :
 new InetSocketAddress(InetAddress.getByName(null), port),
 new InetSocketAddress(localAddr, localPort), true);

 }

 /**
 * Creates a socket and connects it to the specified remote address on

Juniper Ex. 1025-p. 4
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 * the specified remote port. The Socket will also bind() to the local
 * address and port supplied.
 * <p>
 * If there is a security manager, its
 * <code>checkConnect</code> method is called
 * with the host address and <code>port</code>
 * as its arguments. This could result in a SecurityException.
 *
 * @param address the remote address
 * @param port the remote port
 * @param localAddr the local address the socket is bound to
 * @param localPort the local port the socket is bound to
 * @exception IOException if an I/O error occurs when creating the socket.
 * @exception SecurityException if a security manager exists and its
 * <code>checkConnect</code> method doesn't allow the operation.
 * @see SecurityManager#checkConnect
 * @since JDK1.1
 */
 public Socket(InetAddress address, int port, InetAddress localAddr,

 int localPort) throws IOException {
this(address != null ? new InetSocketAddress(address, port) : null,
 new InetSocketAddress(localAddr, localPort), true);

 }

 /**
 * Creates a stream socket and connects it to the specified port
 * number on the named host.
 * <p>
 * If the specified host is <tt>null</tt> it is the equivalent of
 * specifying the address as <tt>{@link java.net.InetAddress#getByName
InetAddress.getByName}(null)</tt>.
 * In other words, it is equivalent to specifying an address of the
 * loopback interface. </p>
 * <p>
 * If the stream argument is <code>true</code>, this creates a
 * stream socket. If the stream argument is <code>false</code>, it
 * creates a datagram socket.
 * <p>
 * If the application has specified a server socket factory, that
 * factory's <code>createSocketImpl</code> method is called to create
 * the actual socket implementation. Otherwise a "plain" socket is created.
 * <p>
 * If there is a security manager, its
 * <code>checkConnect</code> method is called
 * with the host address and <code>port</code>
 * as its arguments. This could result in a SecurityException.
 * <p>
 * If a UDP socket is used, TCP/IP related socket options will not apply.
 *
 * @param host the host name, or <code>null</code> for the loopback address.
 * @param port the port number.
 * @param stream a <code>boolean</code> indicating whether this is
 * a stream socket or a datagram socket.
 * @exception IOException if an I/O error occurs when creating the socket.
 * @exception SecurityException if a security manager exists and its
 * <code>checkConnect</code> method doesn't allow the operation.
 * @see java.net.Socket#setSocketImplFactory(java.net.SocketImplFactory)
 * @see java.net.SocketImpl
 * @see java.net.SocketImplFactory#createSocketImpl()
 * @see SecurityManager#checkConnect
 * @deprecated Use DatagramSocket instead for UDP transport.
 */

Juniper Ex. 1025-p. 5
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

