Global Teleporting with Java:
Towards ubiquitous personalised computing

Kenneth R. Wood*, Tristan Richardson*, Frazer Bennett*,
Andy Harter*, Andy Hopper*!

*The Olivetti & Oracle Research
Laboratory
Old Addenbrooke’s Site
24a Trumpington Street
Cambridge
CB2 1QA
United Kingdom

TUniversity of Cambridge
Computer Laboratory
Pembroke Street
Cambridge
CB2 3QG
United Kingdom

Abstract

Previous work has described teleporting, an approach to mobile computing
in which it is the user’s personal application environment which is mobile
rather than the hardware on which the applications run. In this paper we
describe a new teleporting system which makes the user’s environment
available on any machine in the world running a Java-compliant web
browser. We present some preliminary experimental results together with
discussions of security and performance issues.

1 Introduction

The essence of mobile computing is having one’s personal computing environment
available wherever he or she happens to be. Traditionally this is achieved by
physically carrying a computing device (say, a laptop or PDA) which may have
some form of intermittent network connectivity, either wireless or tethered.

However, in [6] another form of mobility was introduced in which it is the
user’s applications which are mobile. The user does not carry any computing
platform but instead is able to bring up his or her applications on any nearby
machine exactly as they appeared when last brought up in this way, there
or elsewhere. This form of mobility is called teleporting and has been used
continuously and fruitfully by many members of our laboratory for the last
three years.

Clearly, the machines to which one can teleport in this way must be attached
to a network and must provide a common interface at some level. In our case
the network is our local area network (Ethernet and ATM) and the common
interface is the X Window System! [8]. When we teleport, our personal X

!The X Window System is a trademark of The X Consortium.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 TELEPORTING

session with all of its associated applications in their latest collective state is
transferred from one host’s display to another within the lab. This allows us,
for example, to walk into someone else’s office and immediately call up and
interact with our personal working environment on their machine, alongside
any other working environments currently displayed there.

In our current work we are attempting to extend this idea from our local
area network to the entire internet using Java? as the common interface. It is
still our personal X sessions which are made mobile, but now they can appear
within any browser which can execute Java applets, anywhere on the internet.

Although in theory the original form of teleporting could be used across
the internet, it would be restricted to hosts running an X server, and, even
more problematically, would contravene the X security policy implemented by
most system administrators. Perhaps most importantly, though, our approach
to teleporting across the internet is intended to take advantage of the rapid
global proliferation of the World Wide Web. Web browsers are available in
a dramatically growing range of locations, including corporate, personal, and
even public-access sites. Thus, the ability to call up one’s personal computing
environment on any such browser will enable nomadic computing on a truly
global scale®.

2 Teleporting

The teleporting system offers a means of redirecting the user interface of applications
which run under the X window system. In X, a display is controlled by an X
server and applications are clients of the server, communicating with the server
using the X protocol. This protocol allows applications to create windows on
the screen and receive input from the keyboard and mouse.

The teleporting system introduces a level of indirection between applications
and the display. This is done using a special X server, known as a prozy server.
(See Figure 1.) Applications are made mobile by running them as clients of
the proxy server, within a teleport session, rather than within a traditional X
sesston under a real X server.

Unlike a real X server, the proxy server does not have a screen, keyboard
and mouse (a display) of its own. Instead, it is able to make use of the display
of some real X server. To the real X server, the proxy server appears just like
an ordinary set of clients. In this way, the output of the proxy server’s clients
will be sent to the screen of the real X server, and their input will come from
its input devices.

The proxy server makes its clients mobile because it is able, upon request,
to break down its connections with the real X server and, if desired, re-build
them with another. This occurs without the clients’ needing to be aware of this
activity. The result is that the teleport session with all the clients’ windows can
disappear from one screen and (possibly much later) re-materialise on another.

2Java is a trademark of Sun Microsystems.
*Note that the next release of X, codenamed “Broadway”, will also address some of these
issues.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3 TELEPORTING IN JAVA: THE CONCEPT

// \\
) r X server
X Client v ,
\ > -
L/
. Proxy X
X Client oXy -
Server
Y\\
- / \& ///’_‘\\\
X Client / \
r Xserver)

Figure 1: Proxy Server

In our lab we have made extensive use of the teleporting system in our
everyday work, and we have found that the ability to move our working sessions
on the fly from office to office, office to meeting room, office to kitchen, office to
home, etc, is extremely useful, especially for the sort of peripatetic collaboration
which tends to go on in a typical research lab. After having used the teleporting
system for our primary work environment, most of us would find it difficult to
go back to a static login session.

3 Teleporting in Java: The Concept

Given how useful we have found teleporting to be, it is only natural to want
to extend its range beyond the immediate environment of our lab and homes.
In order to do this, of course, we need a network and common interface widely
available in places over which we have no control. The World Wide Web and
Java provide just such an infrastructure.

Web browsers are now available almost everywhere a networked computer
can be found, and Java is emerging as the dominant technology for enabling
programs to be downloaded and executed within a browser. Thus, we decided
that an initial attempt at global teleporting should be based on the idea that a
working session is identified with a web page containing a Java applet. Simply
by pointing any Java-capable browser at this page, we cause the corresponding
working session to appear within the browser where we interact with it in the
natural way.

This is, in fact, exactly what we have done. We call the implementation
VNC (for Virtual Network Computer*) and Figure 2 shows a typical VNC
session which has been brought up in Netscape.

Having pointed Netscape to the web page corresponding to the session
shown, we can use the mouse and keyboard to manipulate windows and graphical
applications, edit files, and so on, just as if we were logged in to the session in
the normal way. We can also browse other pages, returning to the VNC page

*We originally used the name JavaTel (for Teleporting in Java) but changed to VNC to
avoid confusion with Java Telephony applications.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 TELEPORTING IN JAVA: THE MECHANICS

whenever we want to do some work there. Furthermore, we can go to another
physical location and point a different browser at the VNC page, whereupon the
session will appear in the new browser and vanish from the old one. (We also
provide the capability to disconnect a VNC session from one browser without
having it appear in another. It can then be called up from the same or another
browser at any later time.)

S el oA I AR T

mmﬂmq-lln-n-l—lﬂﬂ-w-ihilﬂml

'l'1

Baiffers FElea Tosls Fdit Searol lsss Hels
FF FEETTH B T

¢ B bikx sawra I5E eolours,
Firal grabio ink rasloloars = 206

¢ Inkarpodaking & b ol
Firal static inc[FETRep

¢ Inksrpolaking

Firal gtatio intk TIHE (THHHD

155 th ~c fumdloca LIPS hintoed ~dixz
Az At ool LIRS L ppm b LT
955 Auord locaLSLIFSDindoed ~dimpley ©
A At oo Lo LI L s toprs
148 Auord local e ncre_hitpdhttpd —d
DO A Lo LAmonoss nitpd itpd -1
A Suerdlacal e neee_hitpdhbtpd -4
D A Lo LA noss kil itpd -1
A Aumrdlacal e ncee_hitpdhbtpd —d
0l -zsh
9503 —zch
Al -zsh
HIL —xch
Loty ihese A L Lsvtat ok ? 12
rprwy [actl Liant,a
-Mll-h A

-, o
-Mll-eu S 1)

L1}
i1
L1}
i1
L1

(LR WL R BT R R T g T B

Figure 2: A sample VNC session

4 Teleporting in Java: The Mechanics

In order to move the concept of teleporting to the wider arena of the internet,
we make use of another sort of proxy which we call a remote frame buffer (or
REB) service. In our case, the RFB service is provided by an RFB X server
which is just a standard X server to which we have added two simple features:

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 TELEPORTING IN JAVA: THE MECHANICS

1. The RFB X server provides a TCP socket interface on which it will accept
mouse and keyboard events using a simple protocol. When any such event
is received, it is processed just as if it had been generated by a mouse or
keyboard connected directly to the X server.

2. The RFB X server provides another TCP socket interface on which it will
accept requests for information about the state of the screen display. In
reply to such a request, the RFB X server sends details of those regions of
the screen which have changed since the last such request. These details
are sent as a set of bitmapped rectangles which represent the changes to
the screen.

For example, if there were a word-processor running in the X session and
a lower-case letter "1’ had been typed into it since the last request, then in
response to the next request the RFB X server would send the following
data:

e the (x,y) pixel coordinates indicating the screen position of the top-
left corner of a rectangle containing the '1’.

b

e the width and height of the rectangle containing the ’1’, in pixels.

e a block of width*height pixel values which represent the rows of
pixels which make up the rectangle containing the ’1’. For example,
if the rectangle were 5 pixels wide and 11 pixels high, and the values
255 and 0 represented white and black respectively, then the block
of pixel values might look like Figure 3.

The changes to the screen might, of course, be much more extensive than
the addition of an ’1’(for instance, they might include the appearance of
a set of complex images) and in this case the RFB X server would send
as many rectangle specifications as are required to describe the changes.

Together the protocols used on the two socket interfaces described above
comprise the RFB protocol. By connecting to these socket interfaces, an RFB
clientrunning on a remote (non-X-aware) device can provide seamless interaction
between a user and the X server. The RFB client need only understand the
REB protocol, i.e. how to send input events (mouse and keyboard) and how
to receive and render screen-change rectangles. The complete RFB protocol is
somewhat (though not a great deal) more complex than that illustrated here,
as it allows different synchronization modes and also provides for compression
of the screen rectangles when this is deemed necessary.

The remote device for which we originally developed the RFB service (and
on which we are still using it) is a video tile, a pen-based ATM-connected display
[5]. The RFB client running on the tile passes pen events as mouse events to
the REFB X server and puts all screen changes it receives onto the tile display,
thereby allowing interaction with X applications on the tile.

It soon became apparent that simply by writing an RFB client in Java we
could use exactly the same approach to provide interaction with an X server
from within a Java applet and hence from within a web browser. The RFB

DOC KET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

