
Global Teleporting with Java:Towards ubiquitous personalised computingKenneth R. Wood�, Tristan Richardson�, Frazer Bennett�,Andy Harter�, Andy Hopper�y�The Olivetti & Oracle ResearchLaboratoryOld Addenbrooke's Site24a Trumpington StreetCambridgeCB2 1QAUnited Kingdom yUniversity of CambridgeComputer LaboratoryPembroke StreetCambridgeCB2 3QGUnited KingdomAbstractPrevious work has described teleporting, an approach to mobile computingin which it is the user's personal application environment which is mobilerather than the hardware on which the applications run. In this paper wedescribe a new teleporting system which makes the user's environmentavailable on any machine in the world running a Java-compliant webbrowser. We present some preliminary experimental results together withdiscussions of security and performance issues.1 IntroductionThe essence of mobile computing is having one's personal computing environmentavailable wherever he or she happens to be. Traditionally this is achieved byphysically carrying a computing device (say, a laptop or PDA) which may havesome form of intermittent network connectivity, either wireless or tethered.However, in [6] another form of mobility was introduced in which it is theuser's applications which are mobile. The user does not carry any computingplatform but instead is able to bring up his or her applications on any nearbymachine exactly as they appeared when last brought up in this way, thereor elsewhere. This form of mobility is called teleporting and has been usedcontinuously and fruitfully by many members of our laboratory for the lastthree years.Clearly, the machines to which one can teleport in this way must be attachedto a network and must provide a common interface at some level. In our casethe network is our local area network (Ethernet and ATM) and the commoninterface is the X Window System1 [8]. When we teleport, our personal X1The X Window System is a trademark of The X Consortium.1
Juniper Ex. 1022-p. 1

Juniper v Finjan
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 TELEPORTINGsession with all of its associated applications in their latest collective state istransferred from one host's display to another within the lab. This allows us,for example, to walk into someone else's o�ce and immediately call up andinteract with our personal working environment on their machine, alongsideany other working environments currently displayed there.In our current work we are attempting to extend this idea from our localarea network to the entire internet using Java2 as the common interface. It isstill our personal X sessions which are made mobile, but now they can appearwithin any browser which can execute Java applets, anywhere on the internet.Although in theory the original form of teleporting could be used acrossthe internet, it would be restricted to hosts running an X server, and, evenmore problematically, would contravene the X security policy implemented bymost system administrators. Perhaps most importantly, though, our approachto teleporting across the internet is intended to take advantage of the rapidglobal proliferation of the World Wide Web. Web browsers are available ina dramatically growing range of locations, including corporate, personal, andeven public-access sites. Thus, the ability to call up one's personal computingenvironment on any such browser will enable nomadic computing on a trulyglobal scale3.2 TeleportingThe teleporting system o�ers a means of redirecting the user interface of applicationswhich run under the X window system. In X, a display is controlled by an Xserver and applications are clients of the server, communicating with the serverusing the X protocol. This protocol allows applications to create windows onthe screen and receive input from the keyboard and mouse.The teleporting system introduces a level of indirection between applicationsand the display. This is done using a special X server, known as a proxy server.(See Figure 1.) Applications are made mobile by running them as clients ofthe proxy server, within a teleport session, rather than within a traditional Xsession under a real X server.Unlike a real X server, the proxy server does not have a screen, keyboardand mouse (a display) of its own. Instead, it is able to make use of the displayof some real X server. To the real X server, the proxy server appears just likean ordinary set of clients. In this way, the output of the proxy server's clientswill be sent to the screen of the real X server, and their input will come fromits input devices.The proxy server makes its clients mobile because it is able, upon request,to break down its connections with the real X server and, if desired, re-buildthem with another. This occurs without the clients' needing to be aware of thisactivity. The result is that the teleport session with all the clients' windows candisappear from one screen and (possibly much later) re-materialise on another.2Java is a trademark of Sun Microsystems.3Note that the next release of X, codenamed \Broadway", will also address some of theseissues. 2
Juniper Ex. 1022-p. 2

Juniper v Finjan
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3 TELEPORTING IN JAVA: THE CONCEPT
Proxy X
Server

X Client

X Client

X Client

X server

X server

X serverFigure 1: Proxy ServerIn our lab we have made extensive use of the teleporting system in oureveryday work, and we have found that the ability to move our working sessionson the
y from o�ce to o�ce, o�ce to meeting room, o�ce to kitchen, o�ce tohome, etc, is extremely useful, especially for the sort of peripatetic collaborationwhich tends to go on in a typical research lab. After having used the teleportingsystem for our primary work environment, most of us would �nd it di�cult togo back to a static login session.3 Teleporting in Java: The ConceptGiven how useful we have found teleporting to be, it is only natural to wantto extend its range beyond the immediate environment of our lab and homes.In order to do this, of course, we need a network and common interface widelyavailable in places over which we have no control. The World Wide Web andJava provide just such an infrastructure.Web browsers are now available almost everywhere a networked computercan be found, and Java is emerging as the dominant technology for enablingprograms to be downloaded and executed within a browser. Thus, we decidedthat an initial attempt at global teleporting should be based on the idea that aworking session is identi�ed with a web page containing a Java applet. Simplyby pointing any Java-capable browser at this page, we cause the correspondingworking session to appear within the browser where we interact with it in thenatural way.This is, in fact, exactly what we have done. We call the implementationVNC (for Virtual Network Computer4) and Figure 2 shows a typical VNCsession which has been brought up in Netscape.Having pointed Netscape to the web page corresponding to the sessionshown, we can use the mouse and keyboard to manipulate windows and graphicalapplications, edit �les, and so on, just as if we were logged in to the session inthe normal way. We can also browse other pages, returning to the VNC page4We originally used the name JavaTel (for Teleporting in Java) but changed to VNC toavoid confusion with Java Telephony applications.3
Juniper Ex. 1022-p. 3

Juniper v Finjan
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 TELEPORTING IN JAVA: THE MECHANICSwhenever we want to do some work there. Furthermore, we can go to anotherphysical location and point a di�erent browser at the VNC page, whereupon thesession will appear in the new browser and vanish from the old one. (We alsoprovide the capability to disconnect a VNC session from one browser withouthaving it appear in another. It can then be called up from the same or anotherbrowser at any later time.)

Figure 2: A sample VNC session4 Teleporting in Java: The MechanicsIn order to move the concept of teleporting to the wider arena of the internet,we make use of another sort of proxy which we call a remote frame bu�er (orRFB) service. In our case, the RFB service is provided by an RFB X serverwhich is just a standard X server to which we have added two simple features:4
Juniper Ex. 1022-p. 4

Juniper v Finjan
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 TELEPORTING IN JAVA: THE MECHANICS1. The RFB X server provides a TCP socket interface on which it will acceptmouse and keyboard events using a simple protocol. When any such eventis received, it is processed just as if it had been generated by a mouse orkeyboard connected directly to the X server.2. The RFB X server provides another TCP socket interface on which it willaccept requests for information about the state of the screen display. Inreply to such a request, the RFB X server sends details of those regions ofthe screen which have changed since the last such request. These detailsare sent as a set of bitmapped rectangles which represent the changes tothe screen.For example, if there were a word-processor running in the X session anda lower-case letter 'l' had been typed into it since the last request, then inresponse to the next request the RFB X server would send the followingdata:� the (x,y) pixel coordinates indicating the screen position of the top-left corner of a rectangle containing the 'l'.� the width and height of the rectangle containing the 'l', in pixels.� a block of width*height pixel values which represent the rows ofpixels which make up the rectangle containing the 'l'. For example,if the rectangle were 5 pixels wide and 11 pixels high, and the values255 and 0 represented white and black respectively, then the blockof pixel values might look like Figure 3.The changes to the screen might, of course, be much more extensive thanthe addition of an 'l'(for instance, they might include the appearance ofa set of complex images) and in this case the RFB X server would sendas many rectangle speci�cations as are required to describe the changes.Together the protocols used on the two socket interfaces described abovecomprise the RFB protocol. By connecting to these socket interfaces, an RFBclient running on a remote (non-X-aware) device can provide seamless interactionbetween a user and the X server. The RFB client need only understand theRFB protocol, i.e. how to send input events (mouse and keyboard) and howto receive and render screen-change rectangles. The complete RFB protocol issomewhat (though not a great deal) more complex than that illustrated here,as it allows di�erent synchronization modes and also provides for compressionof the screen rectangles when this is deemed necessary.The remote device for which we originally developed the RFB service (andon which we are still using it) is a video tile, a pen-based ATM-connected display[5]. The RFB client running on the tile passes pen events as mouse events tothe RFB X server and puts all screen changes it receives onto the tile display,thereby allowing interaction with X applications on the tile.It soon became apparent that simply by writing an RFB client in Java wecould use exactly the same approach to provide interaction with an X serverfrom within a Java applet and hence from within a web browser. The RFB5
Juniper Ex. 1022-p. 5

Juniper v Finjan
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

