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Abstract

I present SWIG �Simpli�ed Wrapper and Interface
Generator�� a program development tool that au�
tomatically generates the bindings between C�C��
code and common scripting languages including Tcl�
Python� Perl and Guile	 SWIG supports most
C�C�� datatypes including pointers� structures�
and classes	 Unlike many other approaches� SWIG
uses ANSI C�C�� declarations and requires the
user to make virtually no modi�cations to the un�
derlying C code	 In addition� SWIG automati�
cally produces documentation in HTML� LaTeX� or
ASCII format	 SWIG has been primarily designed
for scientists� engineers� and application developers
who would like to use scripting languages with their
C�C�� programs without worrying about the un�
derlying implementation details of each language or
using a complicated software development tool	 This
paper concentrates on SWIG
s use with Tcl�Tk	

� Introduction

SWIG �Simpli�ed Wrapper and Interface Genera�
tor� is a software development tool that I never in�
tended to develop� At the time� I was trying to
add a data analysis and visualization capability to
a molecular dynamics �MD� code I had helped de�
velop for massively parallel supercomputers at Los
Alamos National Laboratory �Beazley� Lomdahl	� I
wanted to provide a simple� yet 
exible user inter�
face that could be used to glue various code mod�
ules together and an extensible scripting language
seemed like an ideal solution� Unfortunately there
were constraints� First� I didn�t want to hack up
��years of code development trying to �t our MD
code into yet another interface scheme �having done
so several times already�� Secondly� this code was
routinely run on systems ranging from Connection

Machines and Crays to workstations and I didn�t
want to depend on any one interface language
out
of fear that it might not be supported on all of these
platforms� Finally� the users were constantly adding
new code and makingmodi�cations� I needed a 
ex�
ible� yet easy to use system that did not get in the
way of the physicists�

SWIG is my solution to this problem� Simply
stated� SWIG automatically generates all of the
code needed to bind C�C�� functions with script�
ing languages using only a simple input �le con�
taining C function and variable declarations� At
�rst� I supported a scripting language I had devel�
oped speci�cally for use on massively parallel sys�
tems� Later I decided to rewrite SWIG in C�� and
extend it to support Tcl� Python� Perl� Guile and
other languages that interested me� I also added
more data�types� support for pointers� C�� classes�
documentation generation� and a few other features�

This paper provides a brief overview of SWIG with a
particular emphasis on Tcl�Tk� However� the reader
should remain aware that SWIG works equally well
with Perl and other languages� It is not my intent
to provide a tutorial or a user�s guide� but rather to
show how SWIG can be used to do interesting things
such as adding Tcl�Tk interfaces to existing C appli�
cations� quickly debugging and prototyping C code�
and building interface�language�independent C ap�
plications�

� Tcl and Wrapper Functions

In order to add a new C or C�� function to Tcl� it is
necessary to write a special �wrapper� function that
parses the function arguments presented as ASCII
strings by the Tcl interpreter into a representation
that can be used to call the C function� For example�
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if you wanted to add the factorial function to Tcl� a
wrapper function might look like the following �

int wrap�fact�ClientData clientData�

Tcl�Interp �interp�

int argc� char �argv��� 	

int result


int arg�


if �argc �
 �� 	

interp��result 
 �wrong � args�


return TCL�ERROR


�

arg� 
 atoi�argv����


result 
 fact�arg��


sprintf�interp��result���d��result�


return TCL�OK


�

In addition to writing the wrapper function� a user
will also need to write code to add this function
to the Tcl interpreter� In the case of Tcl ���� this
could be done by writing an initialization function
to be called when the extension is loaded dynami�
cally� While writing a wrapper function usually is
not too di�cult� the process quickly becomes te�
dious and error prone as the number of functions
increases� Therefore� automated approaches for pro�
ducing wrapper functions are appealing�especially
when working with a large number of C functions
or with C�� �in which case the wrapper code tends
to get more complicated��

� Prior Work

The idea of automatically generating wrapper code
is certainly not new� Some e�orts such as Itcl���
Object Tcl� or the XS language included with Perl��
provide a mechanism for generating wrapper code�
but require the user to provide detailed speci�ca�
tions� type conversion rules� or use a specialized
syntax �Heidrich� Wetherall� Perl�	� Large packages
such as the Visualization Toolkit �vtk� may use their
own C�C�� translators� but these almost always
tend to be somewhat special purpose �in fact� SWIG
started out in this manner� �vtk	� If supporting mul�
tiple languages is the ultimate goal� a programmer
might consider a package such as ILU �Janssen	� Un�
fortunately� this requires the user to provide speci�
�cations in IDL�a process which is unappealing to
many users� SWIG is not necessarily intended to
compete with these approaches� but rather is de�
signed to be a no�nonsense tool that scientists and
engineers can use to easily add Tcl and other script�
ing languages to their own applications� SWIG is
also very di�erent than Embedded Tk �ET� which
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Doc.
Module

Tcl
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Guile

ASCII
LaTeX
HTML

Input File

SWIG

Figure �� SWIG organization�

also aims to simplify code development �ET	� Un�
like ET� SWIG is designed to integrate C functions
into Tcl�Tk as opposed to integrating Tcl�Tk into
C programs�

� A Quick Tour of SWIG

��� Organization

Figure � shows the structure of SWIG� At the core
is a YACC parser for reading input �les along with
some utility functions� To generate code� the parser
calls about a dozen functions from a generic lan�
guage class to do things like write a wrapper func�
tion� link a variable� wrap a C�� member func�
tion� etc��� Each target language is implemented as
a C�� class containing the functions that emit the
resulting C code� If an �empty� language de�nition
is given to SWIG� it will produce no output� Thus�
each language class can be implemented in almost
any manner� The documentation system is imple�
mented in a similar manner and can currently pro�
duce ASCII� LaTeX� or HTML output� As output�
SWIG produces a C �le that should be compiled
and linked with the rest of the code and a docu�
mentation �le that can be used for later reference�

��� Interface Files

As input� SWIG takes a single input �le referred to
as an �interface �le�� This �le contains a few SWIG
speci�c directives� but otherwise contains ANSI C
function and variable declarations� Unlike the ap�
proach in �Heidrich	� no type conversion rules are
needed and all declarations are made using famil�
iar ANSI C�C�� prototypes� The following code
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shows an interface �le for wrapping a few C �le I�O
and memory management functions�

�� File � file�i ��

�module fileio

�	

�include �stdio�h�

��

FILE �fopen�char �filename� char �type�


int fclose�FILE �stream�


typedef unsigned int size�t

size�t fread�void �ptr� size�t size�

size�t nobj� FILE �stream�


size�t fwrite�void �ptr� size�t size�

size�t nobj�FILE �stream�


void �malloc�size�t nbytes�


void free�void ��


The �module directive sets the name of the initial�
ization function� This is optional� but is recom�
mended if building a Tcl ��� module� Everything
inside the �f� �g block is copied directly into the
output� allowing the inclusion of header �les and ad�
ditional C code� Afterwards� C�C�� function and
variable declarations are listed in any order� Build�
ing a new Tcl module is usually as easy as the fol�
lowing �

unix � swig �tcl file�i

unix � gcc file�wrap�c �I�usr�local�include

unix � ld �shared file�wrap�o �o Fileio�so

��� A Tcl Example

Newly added functions work like ordinary Tcl proce�
dures� For example� the following Tcl script copies
a �le using the binary �le I�O functions added in
the previous example �

proc filecopy 	name� name�� 	

set buffer �malloc �����


set f� �fopen �name� r�


set f� �fopen �name� w�


set nbytes �fread �buffer � ���� �f��


while 	�nbytes � �� 	

fwrite �buffer � �nbytes �f�


set nbytes �fread �buffer � ���� �f��


�

fclose �f�


fclose �f�


free �buffer

�

��� Datatypes and Pointers

SWIG supports the basic datatypes of int� short�
long� float� double� char� and void as well as

signed and unsigned integers� SWIG also allows de�
rived types such as pointers� structures� and classes�
but these are all encoded as pointers� If an un�
known type is encountered� SWIG assumes that it
is a complex datatype that has been de�ned ear�
lier� No attempt is made to �gure out what data
that datatype actually contains or how it should
be used� Of course� this this is only possible since
SWIG�s mapping of complex types into pointers al�
lows them to be handled in a uniform manner� As
a result� SWIG does not normally need any sort of
type�mapping� but typedef can be used to map any
of the built�in datatypes to new types if desired�

SWIG encodes pointers as hexadecimal strings with
type�information� This type information is used to
provide a run�time type checking mechanism� Thus�
a typical SWIG pointer looks something like the fol�
lowing �

����e��� Vector p

If this pointer is passed into a function requiring
some other kind of pointer� SWIG will generate a
Tcl error and return an error message� The NULL
pointer is represented by the string �NULL�� The
SWIG run�time type checker is saavy to typedefs
and the relationship between base classes and de�
rived classes in C��� Thus if a user speci�es

typedef double Real�

the type checker knows that Real � and double �
are equivalent �more on C�� in a minute�� From
the point of view of other Tcl extensions� SWIG
pointers should be seen as special �handles� except
that they happen to contain the pointer value and
its type�

To some� this approach may seem horribly restric�
tive �or error prone�� but keep in mind that SWIG
was primarily designed to work with existing C ap�
plications� Since most C programs pass complex
datatypes around by reference this technique works
remarkablywell in practice� Run time type�checking
also eliminates most common crashes by catching
stupid mistakes such as using a wrong variable name
or forgetting the ��� character in a Tcl script� While
it is still possible to crash Tcl by forging a SWIG
pointer value �or making a call to buggy C code��
it is worth emphasizing that existing Tcl extensions
may also crash if given an invalid handle�

��� Global Variables and Constants

SWIG can install global C variables and constants
using Tcl�s variable linkage mechanism� Variables
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may also be declared as �read only� within the Tcl
interpreter� The following example shows how vari�
ables and constants can be added to Tcl �

�� SWIG file with variables and constants

�	

��

�� Some global variables

extern int My�variable


extern char �default�path


extern double My�double


�� Some constants

�define PI �������� ����

�define PI�� PI����

enum colors 	red�blue�green�


const int SIZEOF�VECTOR 
 sizeof�Vector�


�� A read only variable

�readonly

extern int Status


�readwrite

��� C		 Support

The SWIG parser can handle simple C�� class
de�nitions and supports public inheritance� virtual
functions� static functions� constructors and de�
structors� Currently� C�� translation is performed
by politely tranforming C�� code into C code and
generating wrappers for the C functions� For ex�
ample� consider the following SWIG interface �le
containing a C�� class de�nition�

�module tree

�	


include �tree�h�

�


class Tree 	

public�

Tree���

�Tree���

void insert�char �item��

int search�char �item��

int remove�char �item��

static void print�Tree �t��


�

When translated� the class will be access used the
following set of functions �created automatically by
SWIG��

Tree �new�Tree��


void delete�Tree�Tree �this�


void Tree�insert�Tree �this� char �item�


int Tree�search�Tree �this� char �item�


int Tree�remove�Tree �this� char �item�


void Tree�print�Tree �t�


All C�� functions wrapped by SWIG explicitly re�
quire the this pointer as shown� This approach has
the advantage of working for all of the target lan�
guages� It also makes it easier to pass objects be�
tween other C�� functions since every C�� object
is simply represented as a SWIG pointer� SWIG
does not support function overloading� but over�
loaded functions can be resolved by renaming them
with the SWIG �name directive as follows�

class List 	

public�

List��


�name�ListMax� List�int maxsize�


���

�

The approach used by SWIG is quite di�erent than
that used in systems such as Object Tcl or vtk
�vtk� Wetherall	� As a result� users of those systems
may �nd it to be confusing� However� It is impor�
tant to note that the modular design of SWIG allows
the user to completely rede�ne the output behavior
of the system� Thus� while the current C�� imple�
mentation is quite di�erent than other systems sup�
porting C��� it would be entirely possible write a
new SWIG module that wrapped C�� classes into
a representation similar to that used by Object Tcl
�in fact� in might even be possible to use SWIG to
produce the input �les used for Object Tcl��

��
 Multiple Files and Code Reuse

An essential feature of SWIG is its support for mul�
tiple �les and modules� A SWIG interface �le may
include another interface �le using the ��include�
directive� Thus� an interface for a large system
might be broken up into a collection of smaller mod�
ules as shown

�module package

�	


include �package�h�

�


�include geometry�i

�include memory�i

�include network�i

�include graphics�i

�include physics�i

�include wish�i
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