
The following paper was originally published in the
Proceedings of the Fourth USENIX Tcl/Tk Workshop

Monterey, CA, July 10-13, 1996

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

SWIG : An Easy to Use Tool For Integrating
Scripting Languages with C and C++

David M. Beazley
University of Utah

Salt Lake City, Utah 84112

Juniper Ex. 1019-p. 1
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SWIG � An Easy to Use Tool for Integrating Scripting Languages

with C and C��

David M� Beazley

Department of Computer Science

University of Utah

Salt Lake City� Utah �����

beazley�cs�utah�edu

Abstract

I present SWIG �Simpli�ed Wrapper and Interface
Generator�� a program development tool that au�
tomatically generates the bindings between C�C��
code and common scripting languages including Tcl�
Python� Perl and Guile	 SWIG supports most
C�C�� datatypes including pointers� structures�
and classes	 Unlike many other approaches� SWIG
uses ANSI C�C�� declarations and requires the
user to make virtually no modi�cations to the un�
derlying C code	 In addition� SWIG automati�
cally produces documentation in HTML� LaTeX� or
ASCII format	 SWIG has been primarily designed
for scientists� engineers� and application developers
who would like to use scripting languages with their
C�C�� programs without worrying about the un�
derlying implementation details of each language or
using a complicated software development tool	 This
paper concentrates on SWIG
s use with Tcl�Tk	

� Introduction

SWIG �Simpli�ed Wrapper and Interface Genera�
tor� is a software development tool that I never in�
tended to develop� At the time� I was trying to
add a data analysis and visualization capability to
a molecular dynamics �MD� code I had helped de�
velop for massively parallel supercomputers at Los
Alamos National Laboratory �Beazley� Lomdahl	� I
wanted to provide a simple� yet
exible user inter�
face that could be used to glue various code mod�
ules together and an extensible scripting language
seemed like an ideal solution� Unfortunately there
were constraints� First� I didn�t want to hack up
��years of code development trying to �t our MD
code into yet another interface scheme �having done
so several times already�� Secondly� this code was
routinely run on systems ranging from Connection

Machines and Crays to workstations and I didn�t
want to depend on any one interface language
out
of fear that it might not be supported on all of these
platforms� Finally� the users were constantly adding
new code and makingmodi�cations� I needed a
ex�
ible� yet easy to use system that did not get in the
way of the physicists�

SWIG is my solution to this problem� Simply
stated� SWIG automatically generates all of the
code needed to bind C�C�� functions with script�
ing languages using only a simple input �le con�
taining C function and variable declarations� At
�rst� I supported a scripting language I had devel�
oped speci�cally for use on massively parallel sys�
tems� Later I decided to rewrite SWIG in C�� and
extend it to support Tcl� Python� Perl� Guile and
other languages that interested me� I also added
more data�types� support for pointers� C�� classes�
documentation generation� and a few other features�

This paper provides a brief overview of SWIG with a
particular emphasis on Tcl�Tk� However� the reader
should remain aware that SWIG works equally well
with Perl and other languages� It is not my intent
to provide a tutorial or a user�s guide� but rather to
show how SWIG can be used to do interesting things
such as adding Tcl�Tk interfaces to existing C appli�
cations� quickly debugging and prototyping C code�
and building interface�language�independent C ap�
plications�

� Tcl and Wrapper Functions

In order to add a new C or C�� function to Tcl� it is
necessary to write a special �wrapper� function that
parses the function arguments presented as ASCII
strings by the Tcl interpreter into a representation
that can be used to call the C function� For example�

Juniper Ex. 1019-p. 2
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

if you wanted to add the factorial function to Tcl� a
wrapper function might look like the following �

int wrap�fact�ClientData clientData�

Tcl�Interp �interp�

int argc� char �argv��� 	

int result

int arg�

if �argc �
 �� 	

interp��result
 �wrong � args�

return TCL�ERROR

�

arg�
 atoi�argv����

result
 fact�arg��

sprintf�interp��result���d��result�

return TCL�OK

�

In addition to writing the wrapper function� a user
will also need to write code to add this function
to the Tcl interpreter� In the case of Tcl ���� this
could be done by writing an initialization function
to be called when the extension is loaded dynami�
cally� While writing a wrapper function usually is
not too di�cult� the process quickly becomes te�
dious and error prone as the number of functions
increases� Therefore� automated approaches for pro�
ducing wrapper functions are appealing�especially
when working with a large number of C functions
or with C�� �in which case the wrapper code tends
to get more complicated��

� Prior Work

The idea of automatically generating wrapper code
is certainly not new� Some e�orts such as Itcl���
Object Tcl� or the XS language included with Perl��
provide a mechanism for generating wrapper code�
but require the user to provide detailed speci�ca�
tions� type conversion rules� or use a specialized
syntax �Heidrich� Wetherall� Perl�	� Large packages
such as the Visualization Toolkit �vtk� may use their
own C�C�� translators� but these almost always
tend to be somewhat special purpose �in fact� SWIG
started out in this manner� �vtk	� If supporting mul�
tiple languages is the ultimate goal� a programmer
might consider a package such as ILU �Janssen	� Un�
fortunately� this requires the user to provide speci�
�cations in IDL�a process which is unappealing to
many users� SWIG is not necessarily intended to
compete with these approaches� but rather is de�
signed to be a no�nonsense tool that scientists and
engineers can use to easily add Tcl and other script�
ing languages to their own applications� SWIG is
also very di�erent than Embedded Tk �ET� which

Parser

Code
Generator

Doc.
Module

Tcl
Perl
Guile

ASCII
LaTeX
HTML

Input File

SWIG

Figure �� SWIG organization�

also aims to simplify code development �ET	� Un�
like ET� SWIG is designed to integrate C functions
into Tcl�Tk as opposed to integrating Tcl�Tk into
C programs�

� A Quick Tour of SWIG

��� Organization

Figure � shows the structure of SWIG� At the core
is a YACC parser for reading input �les along with
some utility functions� To generate code� the parser
calls about a dozen functions from a generic lan�
guage class to do things like write a wrapper func�
tion� link a variable� wrap a C�� member func�
tion� etc��� Each target language is implemented as
a C�� class containing the functions that emit the
resulting C code� If an �empty� language de�nition
is given to SWIG� it will produce no output� Thus�
each language class can be implemented in almost
any manner� The documentation system is imple�
mented in a similar manner and can currently pro�
duce ASCII� LaTeX� or HTML output� As output�
SWIG produces a C �le that should be compiled
and linked with the rest of the code and a docu�
mentation �le that can be used for later reference�

��� Interface Files

As input� SWIG takes a single input �le referred to
as an �interface �le�� This �le contains a few SWIG
speci�c directives� but otherwise contains ANSI C
function and variable declarations� Unlike the ap�
proach in �Heidrich	� no type conversion rules are
needed and all declarations are made using famil�
iar ANSI C�C�� prototypes� The following code

Juniper Ex. 1019-p. 3
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

shows an interface �le for wrapping a few C �le I�O
and memory management functions�

�� File � file�i ��

�module fileio

�	

�include �stdio�h�

��

FILE �fopen�char �filename� char �type�

int fclose�FILE �stream�

typedef unsigned int size�t

size�t fread�void �ptr� size�t size�

size�t nobj� FILE �stream�

size�t fwrite�void �ptr� size�t size�

size�t nobj�FILE �stream�

void �malloc�size�t nbytes�

void free�void ��

The �module directive sets the name of the initial�
ization function� This is optional� but is recom�
mended if building a Tcl ��� module� Everything
inside the �f� �g block is copied directly into the
output� allowing the inclusion of header �les and ad�
ditional C code� Afterwards� C�C�� function and
variable declarations are listed in any order� Build�
ing a new Tcl module is usually as easy as the fol�
lowing �

unix � swig �tcl file�i

unix � gcc file�wrap�c �I�usr�local�include

unix � ld �shared file�wrap�o �o Fileio�so

��� A Tcl Example

Newly added functions work like ordinary Tcl proce�
dures� For example� the following Tcl script copies
a �le using the binary �le I�O functions added in
the previous example �

proc filecopy 	name� name�� 	

set buffer �malloc �����

set f� �fopen �name� r�

set f� �fopen �name� w�

set nbytes �fread �buffer � ���� �f��

while 	�nbytes � �� 	

fwrite �buffer � �nbytes �f�

set nbytes �fread �buffer � ���� �f��

�

fclose �f�

fclose �f�

free �buffer

�

��� Datatypes and Pointers

SWIG supports the basic datatypes of int� short�
long� float� double� char� and void as well as

signed and unsigned integers� SWIG also allows de�
rived types such as pointers� structures� and classes�
but these are all encoded as pointers� If an un�
known type is encountered� SWIG assumes that it
is a complex datatype that has been de�ned ear�
lier� No attempt is made to �gure out what data
that datatype actually contains or how it should
be used� Of course� this this is only possible since
SWIG�s mapping of complex types into pointers al�
lows them to be handled in a uniform manner� As
a result� SWIG does not normally need any sort of
type�mapping� but typedef can be used to map any
of the built�in datatypes to new types if desired�

SWIG encodes pointers as hexadecimal strings with
type�information� This type information is used to
provide a run�time type checking mechanism� Thus�
a typical SWIG pointer looks something like the fol�
lowing �

����e��� Vector p

If this pointer is passed into a function requiring
some other kind of pointer� SWIG will generate a
Tcl error and return an error message� The NULL
pointer is represented by the string �NULL�� The
SWIG run�time type checker is saavy to typedefs
and the relationship between base classes and de�
rived classes in C��� Thus if a user speci�es

typedef double Real�

the type checker knows that Real � and double �
are equivalent �more on C�� in a minute�� From
the point of view of other Tcl extensions� SWIG
pointers should be seen as special �handles� except
that they happen to contain the pointer value and
its type�

To some� this approach may seem horribly restric�
tive �or error prone�� but keep in mind that SWIG
was primarily designed to work with existing C ap�
plications� Since most C programs pass complex
datatypes around by reference this technique works
remarkablywell in practice� Run time type�checking
also eliminates most common crashes by catching
stupid mistakes such as using a wrong variable name
or forgetting the ��� character in a Tcl script� While
it is still possible to crash Tcl by forging a SWIG
pointer value �or making a call to buggy C code��
it is worth emphasizing that existing Tcl extensions
may also crash if given an invalid handle�

��� Global Variables and Constants

SWIG can install global C variables and constants
using Tcl�s variable linkage mechanism� Variables

Juniper Ex. 1019-p. 4
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

may also be declared as �read only� within the Tcl
interpreter� The following example shows how vari�
ables and constants can be added to Tcl �

�� SWIG file with variables and constants

�	

��

�� Some global variables

extern int My�variable

extern char �default�path

extern double My�double

�� Some constants

�define PI �������� ����

�define PI�� PI����

enum colors 	red�blue�green�

const int SIZEOF�VECTOR
 sizeof�Vector�

�� A read only variable

�readonly

extern int Status

�readwrite

��� C		 Support

The SWIG parser can handle simple C�� class
de�nitions and supports public inheritance� virtual
functions� static functions� constructors and de�
structors� Currently� C�� translation is performed
by politely tranforming C�� code into C code and
generating wrappers for the C functions� For ex�
ample� consider the following SWIG interface �le
containing a C�� class de�nition�

�module tree

�	

include �tree�h�

�

class Tree 	

public�

Tree���

�Tree���

void insert�char �item��

int search�char �item��

int remove�char �item��

static void print�Tree �t��

�

When translated� the class will be access used the
following set of functions �created automatically by
SWIG��

Tree �new�Tree��

void delete�Tree�Tree �this�

void Tree�insert�Tree �this� char �item�

int Tree�search�Tree �this� char �item�

int Tree�remove�Tree �this� char �item�

void Tree�print�Tree �t�

All C�� functions wrapped by SWIG explicitly re�
quire the this pointer as shown� This approach has
the advantage of working for all of the target lan�
guages� It also makes it easier to pass objects be�
tween other C�� functions since every C�� object
is simply represented as a SWIG pointer� SWIG
does not support function overloading� but over�
loaded functions can be resolved by renaming them
with the SWIG �name directive as follows�

class List 	

public�

List��

�name�ListMax� List�int maxsize�

���

�

The approach used by SWIG is quite di�erent than
that used in systems such as Object Tcl or vtk
�vtk� Wetherall	� As a result� users of those systems
may �nd it to be confusing� However� It is impor�
tant to note that the modular design of SWIG allows
the user to completely rede�ne the output behavior
of the system� Thus� while the current C�� imple�
mentation is quite di�erent than other systems sup�
porting C��� it would be entirely possible write a
new SWIG module that wrapped C�� classes into
a representation similar to that used by Object Tcl
�in fact� in might even be possible to use SWIG to
produce the input �les used for Object Tcl��

��
 Multiple Files and Code Reuse

An essential feature of SWIG is its support for mul�
tiple �les and modules� A SWIG interface �le may
include another interface �le using the ��include�
directive� Thus� an interface for a large system
might be broken up into a collection of smaller mod�
ules as shown

�module package

�	

include �package�h�

�

�include geometry�i

�include memory�i

�include network�i

�include graphics�i

�include physics�i

�include wish�i

Juniper Ex. 1019-p. 5
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

