
JAVA
FOUNDATION

CLASSES
A Desktop Quick Reference

IN A NUTSHELL

O ’REILLY® David Flanagan

Juniper Ex. 1018-p. 1
Juniper v Finjan

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Having created a JAR file like this, you can tell a web browser about it with the
following HTML tags:

<APPLET ARCHIVE="myapplet.jar" CODE="myapplet.class" WIDTH=400 HEIGHT=200>
</APPLET>

The ARCHIVE attribute does not replace the CODE attribute. ARCHIVE specifies where
to look for files, but CODE is still required to tell the browser which of the files in
the archive is the applet class file to be executed. The ARCHIVE attribute may actu
ally specify a comma-separated list of JAR files. The web browser or applet viewer
searches these archives for any files the applet requires. If a file is not found in an
archive, however, the browser falls back upon its old behavior and attempts to
load the file from the web server using a new HTTP request.

Web browsers introduced support for the ARCHIVE attribute at about the same time
that Java 1.1 was introduced. Some Java 1.0 browsers do not recognize ARCHIVE
and therefore ignore it. If you want to maintain compatibility with these browsers,
be sure to make your applet files available in an unarchived form, in addition to
the more efficient archived form.

Using Applets with the Java Plug-in
When a Java-enabled web browser encounters an <APPLET> tag, it starts up its
embedded Java VM, downloads the class files that implement the applet, and starts
running them. This approach has run into difficulties because web browser
releases are not synchronized with releases of new versions of Java. It was quite a
while after the release of Java 1.1 before commonly used browsers supported this
version of the language, and there are still quite a few browsers in use that sup
port only Java 1.0. It is not at all clear when, or even if, browsers will include sup
port for the Java 2 platform. Furthermore, because of the lawsuit between Sun and
Microsoft, the future of integrated Java support in the popular Internet Explorer
web browser is questionable.

For these reasons, Sun has produced a product called the Java Plug-in. This prod
uct is a Java VM that acts as a Netscape Navigator plug-in and as an Internet
Explorer ActiveX control. It adds Java 1.2 support to these browsers for the Win
dows and Solaris platforms. In many ways, Java support makes the most sense as
a plug-in; using the Java Plug-in may be the preferred method for distributing Java
applets in the future.

There is a catch, however. To run an applet under the Java Plug-in, you cannot
use the <APPLET> tag. <APPLET> invokes the built-in Java VM, not the Java Plug-in,
Instead, you must invoke the Java Plug-in just as you would invoke any other Nav
igator plug-in or Internet Explorer ActiveX control. Unfortunately, Netscape and
Microsoft have defined different HTML tags for these purposes. Netscape uses the
<EMBED> tag, and Microsoft uses the <0BJECT> tag. The details of using these tags
and combining them in a portable way are messy and confusing. To help applet
developers, Sun distributes a special HTML converter program that you can run
over your HTML files. It scans for <APPLET> tags and converts them to equivalent
<EMBED> and <0BJECT> tags.

Consider the simple HTML file we used for the first applet example in this chapter:

<APPLET code="MessageApplet.class" width=350 height=125>
<PARAM name="message" value=“Hello World">

</APPLET>

When run through the HTML converter, this tag becomes something like this:

OBJECT classid="clsid:8AD9C840-044E-llDl-B3E9-00805F499D93"
codebase= .
"http://java.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version-l,2,0,0

WIDTH=350 HEIGHT=125>
<PARAM NAME=C0DE VALUE="MessageApplet.cl ass" > _ n
<PARAM NAME="type" VALUE-’application/x-java-applet;version=1.2">
<PARAM NAME="message" VALUE-'Hello World">

<C0MMENT>
<EMBED type-'appl1eation/x-java-applet;version=l.2"

pluginspage= _
"http://java.sun.com/products/plugin/1.2/pl ugin-install.html"

• java_CODE="MessageApplet.class"
WIDTH=350 HEIGHT=125 message="Hello World">

</EMBED>
</C0MMENT>

</0BJECT>

When Navigator reads this HTML file, it ignores the <0BJECT> and <C0MMENT> tags
that it does not support and reads only the <EMBED> tag. When Internet Explorer
reads the file, however, it handles the <0BJECT> tag and ignores the <EMBED> tag
that is hidden within the <C0MMENT> tag. Note that both the <0BJECT> and <EMBED>
tags specify all the attributes and parameters specified in the original file. In addi
tion, however, they identify the plug-in or ActiveX control to be used and tell the
browser from where it can download the Java Plug-in, if it has not already down
loaded it.
You can learn more about the Java Plug-in and download the HTML converter util
ity from http://java.sun.com/products/plugin.

Applet Security
One of the most important features of Java is its security model. It allows untrusted
code, such as applets downloaded from arbitrary web sites, to be run in a
restricted environment that prevents that code from doing anything malicious, like
deleting files or sending fake email. The Java security model has evolved consider
ably between Java 1.0 and Java 1.2 and is covered in detail in Java in a Nutshell.

To write applets, you don’t need to understand the entire Java security model.
What you do need to know is that when your applet is run as untrusted code, it is
subject to quite a few security restrictions that limit the kinds of things it can do.
This section describes those security restrictions and also describes how you can
attach a digital signature to applets, so that users can treat them as trusted code
and run them in a less restrictive environment.

The following list details the security restrictions that are typically imposed on
tint rusted applet code. Different web browsers and applet viewers may impose

A t \ t \ h i t C o r w W h i 7 3 -?

Juniper Ex. 1018-p. 2
Juniper v Finjan

f

F
in

d
 a

u
th

e
n
tic

a
te

d
 c

o
u
rt d

o
c
u
m

e
n
ts

 w
ith

o
u
t w

a
te

rm
a
rk

s
 a

t d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

slightly different security restrictions and may allow the end user to customize or
selectively relax the restrictions. In general, however, you should assume that your
untrusted applet are restricted in the following ways:

• Untrusted code cannot read from or write to the local filesystem. This means
that untrusted code cannot:

- Read files

- List directories

- Check for the existence of files

- Obtain the size or modification date of files

- Obtain the read and write permissions of a file

- Test whether a filename is a file or directory

- Write files

- Delete files

- Create directories

- Rename files

- Read or write from Fi 1 eDescri ptor objects

• Untrusted code cannot perform networking operations, except in certain
restricted ways. Untrusted code cannot: .

- Create a network connection to any computer other than the one from
which the code was itself loaded

- Listen for network connections on any of the privileged ports with mini
bers less than or equal to 1,024

- Accept network connections on ports less than or equal to 1,024 or from
any host other than the one from which the code itself was loaded

- Use multicast sockets

- Create or register a Socketlmpl Factory, URLStreamHandl erFactory, or
ContentHandlerFactory

• Untrusted code cannot make use of certain system facilities. It cannot:

- Exit the Java interpreter by calling System.exit!) or Runtime.exit!)

- Spawn new processes by calling any of the Runtime.exec() methods

- Dynamically load native code libraries with the load!) or loadLlbrsir y(i
methods of Runtime or System

• Untrusted code cannot make use of certain AWT facilities. One major result
tion is that all windows created by untrusted code display a prominent visual
indication that they have been created by untrusted code and are “insecure

This is to prevent untrusted code from spoofing the on-screen appearance of
trusted code. Additionally, untrusted code cannot:

- Initiate a print job

Access the system clipboard

- Access the system event queue

Untrusted code has restricted access to system properties. It cannot call Sys
tem. getPropertiest), so it cannot modify or insert properties into the system
properties list. It can call System, get Property!) to read individual properties
but can read only system properties to which it has been explicitly granted
access. By default, appletviewer grants access to only the following 10 proper
ties. Note that user.home and user.di r are excluded:

- java.version

java.class.version

java.vendor

java.vendor.url

- os.name

os.version

os.arch

11le.separator

path.separator

11ne.separator

I 'unlisted code cannot create or access threads or thread groups outside of
die line.id group in which the untrusted code is running.

I hiiMisled code has restrictions on the classes it can load and define. It can
not:

l split itly load classes from the sun.* packages

Define classes in any of the java.* or sun.* packages

< le.iie a ClassLoader object or call any ClassLoader methods

i M in i . le d code cannot use the java.lang.Class reflection methods to obtain
Ini.......iiithi about nonpublic members of a class, unless the class was loaded
hi m i d ie s a m e host as the untrusted code.

Applets

Juniper Ex. 1018-p. 3
Juniper v Finjan

f

F
in

d
 a

u
th

e
n
tic

a
te

d
 c

o
u
rt d

o
c
u
m

e
n
ts

 w
ith

o
u
t w

a
te

rm
a
rk

s
 a

t d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

• Untrusted code has restrictions on its use of the java.security package. It
cannot:

- Manipulate security identities in any way

- Set or read security properties

- List, look up, insert, or remove security providers

- Finally, to prevent untrusted code from circumventing all of these restric
tions, it is not allowed to create or register a Securi tyManager object.

Local Applets
When an applet is loaded from the local filesystem, instead of through a network
protocol, web browsers and applet viewers may relax some, or even many, of the
preceding restrictions. The reason for this is that local applets are assumed to be
more trustworthy than anonymous applets from the network.

Intermediate applet security policies are also possible. For example, an applet
viewer can be written so that it places fewer restrictions on applets loaded from an
internal corporate network than on those loaded from the Internet.

Signed Applets
Java 1.1 added the ability to attach a digital signature to a JAR file that contains an
applet. This signature securely identifies the author or origin of an applet. If you
trust the author or originating organization, you can configure your web browser
or applet viewer to run applets bearing that signature as trusted code, rather than
as untrusted code. Such an applet runs without the onerous security restrictions
placed on untrusted applets. Java 1.2 platform actually allows the security policy to
be customized based on the origin of an applet. This means that an end user or
system administrator may define multiple levels of trust, allowing fully trusted
applets to run with all the privileges of a standalone application, while partially
trusted applets run with a reduced list of security restrictions.

The process of attaching a digital signature to an applet’s JAR file is platform
dependent. In Java 1.1, you use the javakey program. In Java 1.2, this program has
been superseded by jarsigner. Netscape and Microsoft also provide their own digl
tal signature programs that are customized for use with their browsers.

The process of telling your web browser or applet viewer which digital signatured
to trust is also vendor dependent, of course. In Java 1.1, you use javakey to spec
ify which signatures are trusted. In Java 1.2, you use a different tool, policytool, in
specify trusted signatures and the security policies associated with them. See Java
in a Nutshell for further details.

..'ll . i - -* A . . I j --t •**

PART II

API Quick Reference

in II is the real heart of this book: quick-reference material for the APIs
Ii.ii comprise the Java Foundation Classes. Please read the following sec-
ion. I low To Use This Quick Reference, to learn how to get the most out of
Ills material.

I i.i | in i H, The java.applet Package
I m | iii a 9, The java.aw t Package
I c 11 >ii i 10, The java .awt. color Package
1111 in I II, The java. awt. datatransfer Package
1111' i' i 12, The ja v a . awt. d nd Package
1111 p11 • i 13, 'the java.awt.dnd.peer Package
1111 a i i I i, The java. awt.event Package
111| 'll I IS, The java.awt.font Package
I i.i pi i a 16, The java.awt.geom Package
1111 »ii i I '. The java.awt.im Package
1111 u - i IH, The java.awt.im age Package
1111 iii i 10, The java. awt. image, renderable Package
I iii | it i a .10, The java.awt.peer Package
1111 ■!< i ’ I The java.awt.print Package
I i.i I 'I* i 22, The javax.accessibility Package
I la pi ci 23, The javax.swing Package
I iipii i 'i, th e javax.swing, border Package
lliiplci 23, 'Thejavax.swing.colorchooserPackage
I it I ii< i ’(i, th e javax.swing.event Package
hiiptci The javax. swing.filechooser Package
111 pi • i 2M, The javax.sw ingp la f Package
lliiplci 20, The javax.swing.table Package
I in pi ■ i to. The javax.swing.text Package

Juniper Ex. 1018-p. 4
Juniper v Finjan

f

F
in

d
 a

u
th

e
n
tic

a
te

d
 c

o
u
rt d

o
c
u
m

e
n
ts

 w
ith

o
u
t w

a
te

rm
a
rk

s
 a

t d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

