
uopip]

| PAPf

Juniper Ex. 1017-p. 1 
Juniper v Finjan

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


The Java™ 
Virtual Machine

Second Edition

Tim Lindholm 
Frank Yellin

▼▼
ADDISON -WESLEY

An imprint of Addison Wesley Longman, Inc,
Reading, Massachusetts • Harlow, England • Menlo Park, California 

Berkeley, California • Doe Mills, Ontario • Sydney 
Bonn • Amsterdam • Tokyo • Mexico City

Juniper Ex. 1017-p. 2 
Juniper v Finjan

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Copyright © 1997-1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

Duke™ designed by Joe Palrang.
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is sub­
ject to the restrictions set forth in DEARS 252.227-7013 (e)(S)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents, foreign patents, or pend­
ing applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable, perpetual, 
worldwide limited license (without the right to sublicense) under SUN’s intellectual property rights that are 
essential to practice this specification. This license allows and is limited to the creation and distribution of
clean room implementations of this specification that: (i) include a complete implementation of the current To Lucy, Beatrice, and Arnold
version of this specification without subsetting or supersetting; (ii) Implement all the interfaces and function­
ality of the required packages of the Java® 2 Platform, Standard Edition, as defined by SUN, without subset­
ting or supersetting; (iii) do not add any additional packages, classes, or interfaces to the java.* or javax.* To Mark FY
packages or their subpackages; (iv) pass all test suites relating to the most recent published version of the 
specification of the Java® 2 Platform, Standard Edition, that are available from SUN six (6) months prior to 
any beta release of the clean room implementation or upgrade thereto; (v) do not derive from SUN source 
code or binary materials; and (vi) do not include any SUN source code or binary materials without an appro­
priate and separate license from SUN.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems 
Computer Corporation logo, Solaris, Java, JavaSoft, JavaScript, HotJava, JDK, and all lava-based trademarks 
or logos are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX® is a registered trademark 
in the United States and other countries, exclusively licensed through X/Open Company, Ltd. All other prod­
uct names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER 
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL 
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE 
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICRO­
SYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Library of Congress Cataloging-in-Publication Data
Lindholm, Tim

The Java virtual machine specification / Tim Lindholm, Frank 
Tallin, -- 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-43294-3
1. Java (Computer program language) 2. Internet (Computer 

network) 3. Virtual computer systems. I. Yellin, Frank.
II, Title.
QA76.73.J38L56 1999
005.13'3--dc21 99-18470

CIP
Text printed on recycled and acid-free paper

123456789 -MA- 03 02 01 00 99 
First printing, April 1999

-TL

Juniper Ex. 1017-p. 3 
Juniper v Finjanf 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


EXCEPTIONS 39

The element type of an array may be any type, whether primitive or reference. 
In particular, arrays with an interface type as the component type are supported; 
the elements of such an array may have as their value a null reference or instances 
of any class type that implements the interface. Arrays with an abstract class 
type as the component type are supported; the elements of such an array may have 
as their value a null reference or instances of any subclass of this abstract class 
that is not itself abstract.

2.15.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variable of array 
type does not create an array object or allocate any space for array components. It 
creates only the variable itself, which can contain a reference to an array.

Because an array’s length is not part of its type, a single variable of array type 
may contain references to arrays of different lengths. Once an array object is cre­
ated, its length never changes. To make an array variable refer to an array of dif­
ferent length, a reference to a different array must be assigned to the variable.

If an array variable v has type A [], where A is a reference type, then v can 
hold a reference to any array type B[], provided B can be assigned to A (§2.6.7).

2.15.3 Array Creation

An array is created by an array creation expression or an array initializer.

2.15.4 Array Access

A component of an array is accessed using an array access expression. Arrays may 
be indexed by i nt values; short, byte, or char values may also be used as they 
are subjected to unary numeric promotion (§2.6.10) and become i nt values.

All arrays are 0-origin. An array with length n can be indexed by the integers 
0 through n - l. All array accesses are checked at run time; an attempt to use an 
index that is less than zero or greater than or equal to the length of the array causes 
an ArraylndexOutOfBoundsExcepti on to be thrown.

2.16 Exceptions

When a program violates the semantic constraints of the Java programming lan­
guage, the Java virtual machine signals this error to the program as an exception. An

Juniper Ex. 1017-p. 4 
Juniper v Finjan

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


40 JAVA PROGRAMMING LANGUAGE CONCEPTS

example of such a violation is an attempt to index outside the bounds of an array. 
The Java programming language specifies that an exception will be thrown when 
semantic constraints are violated and will cause a nonlocal transfer of control from 
the point where the exception occurred to a point that can be specified by the pro­
grammer, An exception is said to be thrown from the point where it occurred and is 
said to be caught at the point to which control is transferred. A method invocation 
that completes because an exception causes transfer of control to a point outside the 
method is said to complete abruptly.

Programs can also throw exceptions explicitly, using throw statements. This 
provides an alternative to the old-fashioned style of handling error conditions by 
returning distinguished error values, such as the integer value -1, where a negative
value would not normally be expected.

Every exception is represented by an instance of the class Throwabl e or one of 
its subclasses; such an object can be used to carry information from the point at 
which an exception occurs to the handler that catches it. Handlers are established by
catch clauses of try statements. During the process of throwing an exception, the 
Java virtual machine abruptly completes, one by one, any expressions, statements, 
method and constructor invocations, static initializers, and field initialization expres­
sions that have begun but not completed execution in the current thread. This pro­
cess continues until a handler is found that indicates that it handles the thrown 
exception by naming the class of the exception or a superclass of the class of the 
exception. If no such handler is found, then the method uncaughtExcepti on is 
invoked for the Th readGroup that is the parent of the current thread.

In the Java programming language the exception mechanism is integrated 
with the synchronization model (§2.19) so that locks are properly released as 
synchronized statements and so that invocations of synchronized methods 
complete abruptly.

The specific exceptions covered in this section are that subset of the pre­
defined exceptions that can be thrown directly by the operation of the Java virtual 
machine. Additional exceptions can be thrown by class library or user code; these 
exceptions are not covered here. See The Javam Language Specification for infor­
mation on all predefined exceptions.

2.16.1 The Causes of Exceptions

An exception is thrown for one of three reasons:

EXCEPTIONS

1. An abnormal execution condition was synchronously detected by the Java vir­
tual machine. These exceptions are not thrown at an arbitrary point in the pro­
gram, but rather at a point where they are specified as a possible result of an 
expression evaluation or statement execution, such as:

• When an operation violates the normal semantics of the Java programming 
language, for example indexing outside the bounds of an array.

• When an error occurs in loading or linking part of the program.

• When some limit on a resource is exceeded, for example when too much 
memory is used. .

2. A throw statement was executed.

3. An asynchronous exception occurred because:

• The stop method of class Thread or ThreadGroup was invoked, or

• An internal error occurred in the virtual machine implementation.

Exceptions are represented by instances of the class Throwabl e and instances 
of its subclasses. These classes are, collectively, the exception classes.

2.16.2 Handling an Exception

When an exception is thrown, control is transferred from the code that caused the 
exception to the nearest dynamically enclosing catch clause of a try statement that 
handles the exception.

A statement or expression is dynamically enclosed by a catch clause if it 
appears within the try block of the try statement of which the catch clause is a 
part, or if the caller of the statement or expression is dynamically enclosed by the 
catch clause.

The caller of a statement or expression depends on where it occurs:

• If within a method, then the caller is the method invocation expression 
that was executed to cause the method to be invoked.

® If within a constructor or the initializer for an instance variable, then the 
caller is the class instance creation expression or the method invocation of 
newlnstance that was executed to cause an object to be created.

41

Juniper Ex. 1017-p. 5 
Juniper v Finjan

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/

