PATENT

N

Attorney Docket No.: FOS0-002/00US
EV 525579195 US R i |
' EVSESS?qquUS;

Express Mail Label Number:
August 25, 2005

Date of Deposit:
U.S. PATENT AND TRADEMARK OFFICE
PROVISIONAL APPLICATION COVER SHEET

- 113264 us
60/711975 °
S

9eclt

—
—
Se—

_
—

is is a request for filing a PROVISIONAL Type a plus sign (+)
PPLICATION under 37 C.F.R. §1.53(c). Docket Number FOS0-002/00US inside this box—> +

606280

b PR

INVENTOR(:)/APPLICANT(:)
RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)

MIDDLE INITIAL

FIRST NAME
1601 Alison Avenue, Mountain View, CA 94040

LAST NAME
CHESS

DO
THORNTON

Brian
10 Trish Court, Danville, CA 94506

Arthur
Roger 659 Miller Street, San Jose, CA 95110

TITLE OF INVENTION

APPARATUS AND METHOD FOR ANALYZING BINARY CODE AND
INSERTING BINARY CODE TO PROVIDE SECURITY

CORRESPONDENCE ADDRESS
COOLEY GODWARD LLP

INDIVIDUAL AND FIRM NAME:
23419

CUSTOMER NUMBER:
ATTIN: PATENT GROUP, Five Palo Alto Square, 3000 El Camino Real)
94306-2155 CounTrY U.S.A.

ADDRESS

Zip CODE

City Palo Alto STATE California
ENCLOSED APPLICATION PARTS (check at that apply)

[X] Specification - No. of Pages 45 [] Assertion of Entitlement to Small Entity Status

[X] Drawing(s) — No. of Sheets 4 (Including Figs 1-4) [] CD(s), number [X] Other: Receipt Postcard

Application Size Fee: If the spéciﬁcation and drawings exceed 100 sheets of paper, the application size fee due is $250 ($125 for small entity)

for each additional 50 sheets or fraction thereof. See 35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s)

METHOD OF PAYMENT (check onc)

[] NoFee is Enclosed. PROVISIONAL FILING

[1 Checkin the amount of § is enclosed to cover the filing fee. FEE AMOUNT ($)
. .) : . . . [1 $200.00 Large Entity

[X] The Commissioner is hereby authorized to charge the filing fee of $100.00 required by this paper, and to]

credit any overpayment, to Deposit Account No. 03-3117. This paper is being submitted in duplicate. [X] $100.00 Small Entity

The Invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

{]X] \N(::;, the names of the U.S. Government agency and the Government contract number are:
Applicant is entitled to claim small entity status. '
X} Yes [1 No.
Respectfully submitted, — " - Avg X | sooX”
SIGNATURE ‘ Dated: ?
TYPED or PRINTED NAME: William S. Galliani REGISTRATION NO. 33,885
0 Additional inventors are being named on separately numbered sheets attached hereto.
Juniper Ex. 1016-p. 1
Juniper v Finjan

709945 v1/PA

Attorney Docket No.: FOSO-002/00US

APPARATUS AND METHOD FOR ANALYZING BINARY CODE AND
INSERTING BINARY CODE TO PROVIDE SECURITY

BRIEF DESCRIPTION OF THE INVENTION
This invention relates generally to software security. More particularly, this
invention relates to the analysis of binary code to identify security flaws and to

responsively insert protective binary code.

BACKGROUND OF THE INVENTION

There are many drawbacks associated with existing software security systems.
‘In particular, existing software security systems are limited to monitoring events
through the host operating system or by observing the network traffic going to and
from a program.
This approach is limited to information external to a program. Thus, the prior art is
not able to make use of contextual information within a program. As a result, prior art
techniques, such as application firewalls and intrusion prevention systems, commonly
generate an unacceptable amount of false negatives and false positives.

It would be highly desirable to reduce the number of false negatives and false
positives associated with existing software security systems. In addition, it would be
highly desirable to detect many broad categories of attacks with more accuracy and

precision than possible with existing software security systems.

SUMMARY OF THE INVENTION
The invention protects software against attack and malicious use. The
invention operates by first inserting code into a compiled program, then using the
inserted code to monitor the program's behavior at runtime in order to log suspicious
behavior, intercept attacks, and take defensive action. The instrumented program is
able to communicate with a central server so that, if the program runs on multiple
computers, the central server can detect attacks that span computers. The central

server also allows an administrator to monitor the performance and behavior of the

Juniper Ex. 1016-p. 2
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

system and allows the administrator to modify the defensive configuration of the
program (the way the program responds to attacks) if the situation so warrants.

By modifying the program, the invention is able to detect many broad
categories of attacks with more accuracy and precision than previous approaches that
only monitor through the host operating system or by observing the network traffic
going to and from the program. Thus, the invention reduces the false negatives and
false positives normally associated with application firewalls and intrusion prevention
systems by making use of contextual information that is not available outside the
running program. Embodiments of the invention focus on web-based attacks and

support applications that run on more than one computer.

BRIEF DESCRIPTION OF THE FIGURES

The invention is more fully appreciated in connection with the following detailed
description taken in conjunction with the accompanying drawings, in which:

FIGURE 1 illustrates a computer configured in accordance with an
embodiment of the invention.

FIGURE 2 illustrates a graphical user interface that may be used in accordance
with an embodiment of the invention.

FIGURE 3 illustrates another graphical user interface that may be used in
accordance with an embodiment of the invention. ‘

FIGURE 4 illustrates processing operations associated with an embodiment of
the invention.

Like reference numerals refer to corresponding parts throughout the several

views of the drawings.

DETAILED DESCRIPTION OF THE INVENTION
Figure 1 illustrates a computer 100 configured in accordance with an
embodiment of the invention. The computer 100 includes a central processing unit
102 connected to a bus 104. A set of input/output devices 106 is also connected to the
bus 104. The set of input/output devices 106 may include a keyboard, mouse, display,
printer, network connection and the like. Also connected to the bus 104 is a memory
108. The memory 108 stores a source code program 110. For example, the source

code program 110 may be generated on computer 100 or it may be received from a

Juniper Ex. 1016-p. 3
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

networked computer that communicates with the computer 100 via input/output
devices 106.

The memory 108 also stores a compiler 112, which compiles source program
110 to produce a compiled (or binary) program 114. The foregoing components are
standard. The invention is directed toward the binary security module 116 stored in
memory 108. The binary security module 116 identifies security vulnerabilities
within a compiled (binary) program. In response to such vulnerabilities, the binary
security module 116 inserts protective binary into the compiled program. Thereafier,
at run time the compiled program monitors security events. For example, suspicious
events may be logged, attacks may be interrupted, and defensive actions may be
taken.

A graphical user interface module 118 may be associated with the security
module 116. The graphical user interface module 118 includes executable code to
produce user interfaces that allow the selection of a program to protect and the
selection of various protective measures.

Figure 2 illustrates a graphical user interface 200 used to choose an application
to protect. The graphical user interface module 118 may be used to produce this
interface. In this example, a user selects a J2EE application to protect using button
202. The file name is then specified in block 204.

Figure 3 illustrates another graphical user interface 300 that may be used in
accordance with an embodiment of the invention. Executable instructions associated
with the graphical user interface module 118 may be used to produce this interface.
In this example, a variety of guards (e.g., SQL injection, Information Leakage, Buffer
Overflow, ctc.) may be selected. In addition, various filters (e.g., a white list and a
black list) may be selected. Guards and filters may also be set by default without user
intervention.

Figure 4 illustrates processing operations associated with an embodiment of
the invention. The first operation of Figure 4 is to choose a compiled program 400.
The graphical user interface of Figure 2 may be used for this purpose. Optionally,
protective measures may be selected 402. The graphical user interface of Figure 3
may be used to impﬂement this function. Altemately, the protective measures may be
assigned by default. Security vulnerabilities are then identified within the compiled
program 404. The binary security module 116 may be used to implement this

operation. Protective binary code is then selectively inserted into the compiled

Juniper Ex. 1016-p. 4
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

program 408 using the binary security module 116. The compiled program may then
operate in a run time mode. In various embodiments, the run time mode logs security
behavior, intercepts attacks, and takes defensive measures.

Having described the general operations of the invention, attention now turns
to specific examples of security vulnerabilities and responsive protective measures
utilized in accordance with embodiments of the invention. Consider the problem of
SQL injection. SQL Injection is possible when data enters a program from an
untrusted source and the data is then used to dynamically construct an SQL query.

The following Java code dynamically constructs and executes an SQL query
designed to search for items matching a specified name. The query restricts the items
displayed to those where owner is equal to the user name of the currently

authenticated user.

String usexrName = ctx.getAuthenticatedUserName () ;
String itemName = request.getParamater ("itemName") ;
String gquery = "SELECT * FROM items WHERE owner = '*"
+ userName + "' AND itemname = '"
+ itemName + "'";

ResultSet rs = stmt.execute (query) ;

The query this code intends to execute is the following:

SELECT * FROM items
WHERE owner = <userName>

AND itemname = <itemName>;

However, because the query is constructed dynamically by concatenating a constant
base query string and a user input string, the query only behaves correctly if
itemName does not contain a single-quote character. If an attacker with the user
name wiley enters the string "name' OR 'a'='a" for itemName, then the

query becomes the following:

Juniper Ex. 1016-p. 5
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

SELECT * FROM items

WHERE owner = 'wiley!'
AND itemname = 'name' OR 'a'='a‘';
The addition of the OR 'a'='a' condition causes the where clause to always

evaluate to true, so the query becomes logically equivalent to the much simpler query:

SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the
query only return items owned by the authenticated user; the query now returns all
entries stored in the items table, regardless of their specified owner.

As another example, consider the effects of a different malicious value passed
to. the query constructed and executed in the example above. If an attacker with the

user name hacker enters the string "hacker'); DELETE FROM items; --

for i temName, then the query becomes the following two queries:

SELECT * FROM items
WHERE owner = 'hacker'

AND jtemname = 'name’;

DELETE FROM items;

Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL
statements separated by semicolons to be executed at once. While this attack string
would result in an error on Oracle and other database servers that do not allow the
batch-execution of statements separated by semicolons, on supported databases this

type of attack will allow the execution of arbitrary commands against the database.

Juniper Ex. 1016-p. 6
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

Notice the trailing pair of hyphens (--); these indicate to most database servers
that the remainder of the statement is to be treated as a comment and not executed. In
this case the comments are used to remove the trailing single-quote leftover from the
modified query. On a database where comments are not allowed to be used in this
way, the general attack could still be made effective using a trick similar to the first
example. If an attacker enters the string "name'); DELETE FROM items;
SELECT * FROM items WHERE ‘'a'='a" to create the following three valid

statements:

SELECT * FROM items
WHERE owner = 'hacker’

AND itemname = '‘name’;

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a’';

One traditional approach to preventing SQL injection attacks is to treat them as an
input validation problem and escape potentially malicious values before they are used
in SQL queries. This approach is riddled with loopholes that make it ineffective at
preventing SQL injection attacks. Attackers may target fields that are not quoted, find
ways of bypassing the need for certain escaped meta-characters, use stored procedures
to hide the injected meta-characters, or an array of other possibilities. Escaping
characters in input to SQL queries may help, but it will not make an application
secure from SQL injection attacks.

Another common solution proposed for dealing with SQL Injection attacks is
to use stored procedures. Although stored procedures will help prevent some kinds of
SQL injection attacks, they fail to protect against many others. The way stored
procedures typically help prevent SQL injection attacks is by placing limitations on
the type of statements that can be passed to their parameters. There are plenty of ways
around limitations and plenty of interesting statements that can still be passed to
stored procedures. Once again, stored procedures might help prevent some exploits,

but they will not make an application secure from SQL injection attacks.

Juniper Ex. 1016-p. 7
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

The invention utilizes various techniques to defend against SQL Injection
attacks. The foregoing SQL security vulnerabilities are first identified by executable
instructions associated with the binary security module 116. The binary security
module 116 then inserts protective binary into the compiled program near locations
where SQL injection attacks might be possible. The bytecode for the Java source
from the first example is modified so that it is equivalent to the following source

code:

String userName

ctx.getAuthenticatedUserName () ;

String itemName = request.getParamater ("itemName") ;
String query = "SELECT * FROM items WHERE owner = '"
+ userName + "' AND itemname = '"
+ itemName + "'";

com. fortify.appdefense.CheckForSQLInjection (query) ;

ResultSet rs = stmt.execute (query) ;

By inserting the call to CheckForSQLInjection (), before the SQL query is
executed, at runtime the program will now give the binary security module 116 a
chance to examine the query string before it is sent to the database. The binary
security module 116 will determine whether or not the query contains a SQL injection
attack b-y comparing the query against a set of SQL injection attack patterns and
considering the history of queries made from this call site. For example, if the query
contains a comment (denoted by the substring "--") multiple statements (denoted by
the semicolon character ";"), or tautological predicates (such as "1 = 1") when
previous queries have not contained comments, multiple statements, or tautological
predicates, the query stﬁng is likely to be a SQL Injection attack. In one embodiment,
the binary security module 116 includes a standard set of SQL injection attack
patterns, and administrators are free to add additional patterns and alter or remove

patterns from the standard set.

Juniper Ex. 1016-p. 8
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

If the query string contains a SQL Injection attack, the binary security module
will invoke the defensive measures specified by the administrator. Defensive
measures are discussed below.

Another type of security vulnerability is command injection. Command

injection vulnerabilities take two forms:

1. An attacker can change the command that the program executes: the attacker

explicitly controls what the command is.

2. An attacker can change the environment in which the command executes: the

attacker implicitly controls what the command means.

With the first scenario, command injection vulnerabilities occur when:

1. Data enters the application from an untrusted source.

2. The data is used as or as part of a string representing a command that 1s

executed by the application.

3. By executing the command, the application gives an attacker a privilege or

capability that the attacker would not otherwise have.

Example 1: The following code from a system utility uses the system property
APPHOME to determine the directory in which it is installed and then executes an

initialization script based on a relative path from the specified directory.

String home = System.getProperty ("APPHOME") ;
String cmd = home + INITCMD;

java.lang.Runtime.getRuntime () .exec (cmd) ;

Juniper Ex. 1016-p. 9
Juniper v Finjan

Attomey Docket No.: FOSO-002/00US

The code in Example 1 allows an attacker to execute arbitrary commands with the
elevated privilege of the application by modifying the system property APPHOME to
point to a different path containing a malicious version of INITCMD. Because the
program does not validate the value read from the environment, if an attacker can
control the value of the system property APPHOME, then they can fool the application
into running malicious code and take control of the system.

Example 2: The following code is from an administrative web application
designed to allow users to kickoff a backup of an Oracle database using a batch-file
wrapper around the rman utility and then run a cleanup.bat script to delete some
commonly generated temporary files. The script xrmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because
access to the database is restricted, the application runs the backup as a privileged

user.

String btype = request.getParameter ("backuptype") ;
String cmd = new String("cmd.exe /K
\"c:\\util\\rmanDB.bat
"+btype+"&&c:\\utl\\cleanup.bat\"")

System.Runtime.getRuntime () .exec (cmd) ;

The problem here is that the program does not do any validation on the
backuptype parameter read from the user. Typically the Runtime.exec ()
function will not execute multiple commands, but in this case the program first runs
the cmd . exe shell first in order to run multiple commands-with a single call to
Runtime.exec (). Once the shell is invoked, it will happily execute multiple
commands separated by two ampersands. If an attacker passes a string of the form
"&& del c:\\dbms*.*" then the application will execute this command
along with the others specified by the program. Because of the nature of the
application, it runs with the privileges necessary to interact with the database, which

means whatever command the attacker injects will run with those privileges as well.

Juniper Ex. 1016-p. 10
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

Once command injection vulnerabilities are identified by the binary security
module 116, the binary security module 116 inserts protective binary code near
locations where command injection attacks might be possible. The bytecode for the
Java source from Example 1 will be modified so that it is equivalent to the following

source code:

String home = System.getProperty ("APPHOME") ;
String cmd = home + INITCMD;
com. fortify.appdefense.CheckForCmdInjection (cmd) ;

java.lang.Runtime.getRuntime () .exec (cmd) ;

By inserting the call to CheckForCmdInjection(), before the command is
executed, at runtime the program will now give the binary security module 116 a
chance to examine the command before it is invoked. The binary security module
116 will determine whether the command is malicious by comparing the query against
a set of attack patterns and considering the history of commands issued from this call
site. For example, if the command contains references to parent directories (denoted
by the substring "..") or multiple subcommands (denoted by a semicolon ";" or "&&")
when previous queries have not contained references to parent directories or multiple:
subcommands, the string is likely to contain a command injection attack. Application
defense includes a standard set of command injection attack patterns, and
administrators are free to add additional patterns and alter or remove patterns from the
standard set.

If the command string does contain a command injection attack, the binary
security module 116 will invoke the defensive measures specified by the
administrator. Defensive measures are discussed below.

Another security vulnerability processed in accordance with embodiments of
the invention is resource injection. A resource injection issue occurs when the

following two conditions are met:

1. An attacker is allowed to specify the identifier used to access a system

resource. For example, an attacker might be able to specify part of the name

10.
Juniper Ex. 1016-p. 11
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

of a file to be opened or a port number to be used.

2. By specifying the resource, the attacker gains a capability he would not
otherwise have. For example, the program may give the attacker the ability to
overwrite the specified file or run with a configuration controlled by the

attacker.

Example 1: The following code uses input from an HTTP request to create a file
name. The author has not considered the possibility that an attacker may provide a file
name like "../../tomcat/conf/server.xml"”, which will cause the

application to delete one of its own configuration files.

String rName = request.getParameter ("reportName") ;
File rFile = new File("/usr/local/apfr/reports/" - +
rName) ;

rFile.delete () ;

Example 2: The following code uses input from a configuration file to determine
which file to open and echo back to the user. If the program runs with privileges and
malicious users can change the configuration file, they can use the program to read

any file on the system that ends with the extension ".txt".

fis new FileInputStream(cfg.getProperty ("sub")+".txt") ;

amt fis.read (arr);

out .println(arr) ;

The kind of resource the data affects indicates the kind of content that may be
dangerous. For example, input that is allowed to contain filesystem special characters
like period, slash, and backslash warrants attention when it can reach methods that
interact with the file systerri; similarly, data that may hold URLs and URIs are a risk

for functions used to create remote connections. One special case of resource

11.

Juniper Ex. 1016-p. 12
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

injection, known as Path Manipulation, occurs when an attacker is able to control
filesystem resources on a Web server.

Similar to the defense against SQL Injection and Comand Injection, the binary
security module 116 inserts code near locations where resource injection attacks
might be possible. The bytecode for the Java source from Example 1 will be modified

so that it 1s equivalent to the following source code:

String rName = request.getParameter ("reportName") ;

com. fortify.appdefense.CheckForRsrcInjection{(cmd) ;

File rFile = new File("/usr/local/apfr/reports/" +
rName) ;

rFile.delete () ;

By inserting the call to CheckForRsrcInjection (), before the resource access
occurs, at runtime the program will now give the binary security module 116 a chance
to examine the resource name before it is used. The binary security module 116 will
determine whether the resource name is malicious by comparing the resource name
against a set of attack patterns and considering the history of resources accessed from
this call site. For example, if the resource name contains references to parent
directories (denoted by the substring "..") when previous queries have not contained
references to parent directories, the string may be a command injection attack. The
binary security module 116 includes a standard set of command injection attack
patterns, and administrators are free to add additional patterns and alter or remove
patterns from the standard set.

If the resource string does contain an injection attack, the binary security
module 116 will invoke the defensive measures specified by the administrator.
Defensive measures are discussed below.

Another security vulnerability processed in accordance with the invention is

log forging. Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.

12.

Juniper Ex. 1016-p. 13
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

2. The data is written to an application or system log file.

Applications typically use log files to store a history of events or transactions for later
review, statistics gathering, or debugging. Depending on the nature of the application,
the task of reviewing log files may be performed manually on an as-needed basis, or it
may be automated with a tool that automatically culls logs for important information
or trend information.

An examination of the log files may be hindered or misdirected if an attacker
can supply data to the application that is subsequently logged verbatim. In the most
benign case, an attacker may be able to insert false entries into the log file by
including the appropriate characters in the data provided. If the log file is processed in
an automated fashion, the attacker may be able to render the file unusable by
corrupting the format of the file or injecting unexpected characters. A more subtle
attack could involve skewing the log file statistics. Forged or otherwise corrupted log
files may be used to cover an attacker's tracks or even to implicate another party in the
commission of a malicious act. In the worst case, an attacker may inject code or other
commands into the log file and take advantage of a vulnerability in the log processing

utility.

Example: The following code from a web application attempts to read an integer
value from a request object. If the value fails to parse as an integer, then the input is

logged along with an error message indicating what happened.

String val = request.getParameter ("val");
try {
int value = Integer.parselnt (val);
}
catch (NumberFormatException) {

log.info("Failed to parse val = " + val};

13.

Juniper Ex. 1016-p. 14
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

If a user submits the string "twenty-one" for val, the following entry will be

logged:

INFO: Failed to parse val=twenty-one

However, if an attacker submits the string "twenty-
one%0a%0aINFO: +User+logged+out%$3dbadguy”, the following entry will
be logged:

INFO: Failed to parse val=twenty-one

INFO: User logged out=badguy

Clearly, the attacker can use this same mechanism to insert arbitrary log entries.

In accordance with an embodiment of the invention, the binary security
module 116 inserts code near locations where log forging attacks might be possible.
‘The bytecode for the Java source from the example above will be modified so that it is

equivalent to the following source code:

String val = request.getParameter ("val") ;
try {

int value = Integer.parselnt (val);
}

catch (NumberFormatException) (
com. fortify.appdefense.CheckForLogForging(val) ;

log.info("Failed to parse val = " + wval);

By inserting the call to CheckForLogForging (), before the log file entry is
written, at runtime the program will now give the binary security module 116 a

chance to examine the data before it is written to the log. The binary security module

14.
Juniper Ex. 1016-p. 15
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

116 will determine whether the data is malicious by comparing it against a set of
attack patterns and considering the history of log entries written from this call site.
For example, if the data contains carriage returns or line feeds (characters that are
typically used to denote the beginnjﬁg of a new log file entry) when previous queries
have not contained these characters, the string may be an attempt at log forging. The
binary security module 116 includes a standard set of log forging attack patterns, and
administrators are free to add additional patterns and alter or remove patterns from the
standard set.

If the data does contain a log forging attack, the binary security module 116
will invoke the defensive measures specified by the administrator. Defensive
measures are discussed below.

If an attacker can cause a target program to write outside the bounds of a block
of allocated memory, the program may corrupt its own data, crash, or execute
malicious code on behalf of the attacker. Languages like Java and C# have built-in
features like array bounds checking and strong type checking that prevent buffer
overflow, but these safeguards do not prevent attackers from using these programs in
order to deliver a buffer overflow attack to vulnerable back-end software.

Languages like Java and C# are often used to write front-end interfaces for
older systems written in older languages like C or Cobol. For example, a brokerage is
likely to have a web site that allows users to conduct stock trades. The software that
generates the web pages might be written in Java while the trading software is written
in C. In this scenario, the Java front-end will be responsible for communicating trade
information to the back-end system. If the back-end trading system contains a buffer
overflow vulnerability, it may be possible for an attacker to exploit the vulnerability
by providing the attack data to the Java front-end and causing the Java code to pass

the attack on to the vulnerable back-end system.

Method #1: input length restriction

Buffer overflow attacks often require the attacker to provide an unusually large
amount of data. The binary security module 116 inspects each HTTP request as it is
received by the program and checks to make sure that the contents of the request are
not overly large. The request data includes the URL, query string, HTTP headers

(including cookies), parameter names and values, and multi-part form data.

15.

Juniper Ex. 1016-p. 16
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

The administrator can configure a size limit for each part of the request and can
specify different size limits depending on the URL requested, the name of the HTTP
header or parameter, or upon a combination of these factors.

The binary security module 116 inspects the request before it is visible to the
application by modifying the program configuration. For J2EE applications, this is
accomplished by modifying the application deployment descriptor. (See Appendix A
for an example of a deployment descriptor before and after modification by the binary
security module 116.)

If the binary security module 116 determines that a request contains data that
exceeds the specified length limits, it will invoke the defensive measures given by the

administrator. Defensive measures are discussed below.

Method #2: detecting a buffer overflow sled

In order to take advantage of a buffer overflow in order to execute malicious code, an
attacker must carefully structure the input they send to the target program. If the
buffer overflow allows the attacker to write data onto the stack, then the attacker can
specify a new value for the function return pointer. (The function return pointer
specifies a memory address that the program will jump to and begin executing
instructions when the current function ends). If the attacker specifies an address on
the stack where their input buffer containing malicious code has been written, then the
program will proceed to execute the malicious code.

For the attacker, the hardest part of carrying out this attack is knowing the
memory address to specify for the function return pointer. Because they cannot know
the precise state of the stack before the attack is launched, they cannot know with
100% accuracy where their malicious code will be written in memory. If the address
they specify is not completely accurate, some or all of the malicious code will be
skipped. This is undesirable from the attacker’s point of view: if the computer begins
executing in the middle of the malicious code, then it is unlikely that the attack will
have its intended effect.

The purpose of a buffer overflow sled (sometimes also referred to as a “slide™)
is to reduce the precision required for a successful buffer overflow attack. The sled is
a long and repetitive sequence of simple instructions that the computer can execute
beginning at any point. By appending a sled to the beginning of their malicious code,

the attacker now has an easier objective: if they specify a function return pointer that

16.

Juniper Ex. 1016-p. 17
Juniper v Finjan

Attommey Docket No.: FOSO-002/00US

points to any memory address in the sled, the computer will execute whatever portion
of the sled it encounters, then execute all of the malicious code. The longer the sled
is, the more robust the resulting attack will be. The simplest possible sled is a
sequence of no-op instructions. More complex sleds may also include jump
instructions or other simple operations.

The binary security module 116 can detect buffer overflow attacks by
detecting the buffer overflow sled. By monitoring locations where the application
may be vulnerable, such as calls out to external programs or functions that are
implemented in native code, the binary security module 116 can look for long
sequences of no-op instructions or other common sled contents. For example, a

program that contains the following call:
native_method call (input) ;
will be transformed to contain an additional check:

com. fortify.appdefense.CheckForOverflowSled (input) ;

native method call (input);

If the binary security module 116 determines that a potentially vulnerable call is about

to receive input that contains a buffer overflow sled, it will invoke defensive measures

as specified by the administrator. Defensive measures are discussed below.
Embodiments of the invention also address cross site scripting and HTTP

response splitting. Cross-Site Scripting (XSS) vulnerabilities occur when:

1. Data enters a web application through an untrusted source, most frequently a web

request.

2. The data is included in dynamic content that is sent to a web user without being

validated for malicious code.

The malicious content sent to the web browser often takes the form of a segment of
JavaScript, but may also include HTML, HTTP, Flash or any other type of code that

may be executed by the browser.

17.

Juniper Ex. 1016-p. 18
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

HTTP response splitting is the name for a special class of Cross-Site Scripting that
takes place when unvalidated content sent to a web user in an HTTP header contains
an unescaped carriage return (or carriage return/line feed combination) followed by an
HTTP response crafted by the attacker. The carriage return will cause the user's
browser to interpret the data that follows as a new HTTP response. This behavior

gives the attacker complete control of the information displayed in the browser.

Example 1: The following JSP code segment reads an employee ID number from the
HttpServietRequest and prints it out to the user.

<% String eidid = req.getParameter("eid"); %>

Employee ID: <%= eid %>

The code in Example 1 will behave correctly if eid contains only standard alpha-
numeric text. But if eid contains meta-characters or source code then an attacker can
execute malicious commands in the web browser of any user who views content that
includes its value. At first glance it is temping to ask: "The user who made the request
is also viewing the resulting data -- why would they attack themselves?" Avoid the
temptation to label this code benign for this reason. A common attack is to convince a
victim to visit a malicious URL via email or other means, which will cause the victim
to unwittingly reflect malicious content off of a vulnerable web application and
execute it locally, oftentimes in the form of a segment of JavaScript. This mechanism

of exploiting vulnerable web applications is known as Reflected Cross-Site Scripting.

Example 2: The following JSP code segment queries a database for an employee with

a given employee ID and then prints the name corresponding with the ID.

A
o

Statement stmt = conn.createStatement () ;
ResultSet rs = stmt.executeQuery('"select * from emp
where id="+eid) ;

if (rs !'= null) {

18.

Juniper Ex. 1016-p. 19
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

rs.next () ;

String name = rs.getString("name") ;

o
\}

Employee Name: <%= name %>

As in Example 1, the code in Example 2 behaves correctly when values of name are
well mannered, but does nothing to prevent exploits in the event that they are not. In
contrast with Example 1, we may be even less likely to consider the code dangerous
because the value of name is read from a database, whose contents the application
manages. The vulnerability here is not a result of the data being read from the
database, but rather, is caused by the original source of the data stored in the database.
If the value of name originated from user supplied data, then the database simply
serves as a conduit for dangerous data. Without proper input validation on all data
stored in the database, an attacker may be able to execute malicious commands in the
user's Web browser. This flavor of exploit, known as Stored Cross-Site Scripting, is
particularly insidious because the indirection caused by the data store makes them
more difficult to identify and increases the likelihood that the attack will affect
multiple users. |
Cross-Site Scripting vulnerabilities are caused by the inclusion of unvalidated

data in dynamic content displayed to the user. There are three typical vectors for

dangerous data to make its way to the user:

1. Asin Example 1, data is read directly from an untrusted source, most

frequently a web request, and included in dynamic content.

2. Asin Example 2, the application stores dangerous data in a database or other
trusted data store. The dangerous data is subsequently read back into the

application and included in dynamic content.

19.

Juniper Ex. 1016-p. 20
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

3. A source outside the current application stores déngerous data in a database or
other data store, and again the dangerous data is subsequently read back into

the application as trusted data and included in dynamic content.

Reflected XSS exploits occur when an attacker causes a user to supply dangerous
content to a vulnerable web application, which is then reflected back to the user and
executed by the web browser. The most common mechanism for delivering the
malicious content is to include it as a parameter in a URL that is posted publicly or
emailed directly to users. URLs constructed in this manner are at the heart of many
phishing schemes where an attacker convinces victims to visit a URL that refers to a
vulnerable site. When the site reflects the attackers content back to the user it then
proceeds to transfer private information, such as cookies, from the user's machine to
the attacker or perform other nefarious activities.

Stored XSS exploits occur when an attacker gets dangerous content into a
database or other data store that is later read and included in dynamic content viewed
by a user. From an attacker's perspective, the most desirable place to inject malicious
content is in an area that is displayed to either many users or interesting users.
Interesting users are likely have elevated privilege in the application or interact with
sensitive data that is valuable to the attacker. If one of these users executes malicious
content, the attacker may be able to perform privileged operations on behalf of the

user or gain access to sensitive data belonging to the user.

The binary security module 116 inserts code near locations where a Cross-Site
Scripting payload could be written out to an HTTP response (in either the body or a
header). The bytecode for the Java source from Example 1 will be modified so that it

is equivalent to the following JSP source code:
<% String eidid = reqg.getParameter ("eid"),; %>

Employee ID: <%
com. fortify.appdefense.CheckForXss (cmd) ;

out .print (eid) %>

20.

Juniper Ex. 1016-p. 21
Juniper v Finjan

Attomey Docket No.: FOSO-002/00US

By inserting the call to CheckForXss (), before the string is written to the output
stream, at runtime the program will now give the binary security module 116 a chance
to examine the data before it is sent back to the user. By interceding at the last
possible point beforc the data is written back to the user, the binary security module
116 can detect Cross-Site Scripting regardless of whether it is of the reflected or
stored variety.

The binary security module 116 can also check for Cross-Site Scripting attack
patterns as the data is read out of an HTTP request, or database, or from another data
store.

The binary security module 116 will determine whether or not a piece of data
contains a Cross-Site Scripting attack by comparing it against a set of attack patterns
and considering the history of data written out from the call site in question. For
example, if the data contains script tags (denoted by the substring "<script>") when
previous queries have not contained script tags, the string may be cross site scripting
attack. Application defense includes a standard set of cross site scripting attack
patterns, and administrators are free to add additional patterns and alter or remove
patterns from the standard set.

If the string does contain a cross-site scripting attack, the binary security
module 116 will invoke the defensive measures specified by the administrator.
Defensive measures are discussed below.

Site defacement is another problem addressed with embodiments of the
invention. If an attacker finds a way to damage or alter the program files for a server-
based application, legitimate users of the application may be misled, inconvenienced,
or defrauded. The attacker might change the contents of a web page, add a new and
unauthorized web page, or alter the logic of the application itself. Attackers have
many possible ways avenues for altering the application. They may be able to exploit
a vulnerability in the application itself, or they may take advantage of a weakness in
the underlying application server, operating system, or network. They may also be
able to bribe, corrupt, or trick system administrators into making the changes.

In addition to changes that are made with malicious intent, program files may
be updated by developers or administrators who are well intentioned, but ignorant of
the organization change control process. Well-intentioned but misguided alterations

can be just as damaging as malicious alterations.

21.

Juniper Ex. 1016-p. 22
Juniper v Finjan

Attorney Docket No.: FOSO-002/060US

Because there are so many ways that site defacement can occur that are out of
the control of the program, the binary security module 116 does not attempt to prevent
site defacement. Instead, it focuses on detecting when site defacement has occurred
so that the program can take defensive action.

The binary security module 116 detects site defacement in the following way:
After the binary security module 116 inserts code into the program but before the
program is run, the binary security module 116 creates a manifest that lists the name,
size, and a secure hash of each file that comprises the application. (The secure hash is
computed using an algorithm like MDS5 or SHA.) Then, when the program is running,
the binary security module 116 periodically checks the contents of manifest against
the application files present on the computer. If files have been added, deleted, or
modified, the security module 116 knows that a Site Defacement attack may have
taken place.

Site probing is another problem addressed with embodiments of the invention.
Before attackers can launch successful targeted attacks against a program, they need
to explore the program in order to learn about its potential weaknesses. This
exploration usually involves probing the program in ways that a normal user would
not. For example, an attacker may probe for outdated web pages, backup files, and
administrative web pages by making requests for URLS that are not referenced from
the application’s user-visible web pages. The attacker might also alter URL
parameters, HTTP headers, and POST parameters in an effort to discover
vulnerabilities.

The binary security module 116 can protect against site probing in two ways:

1. By monitoring the HTTP errors that users generate, the security module 116
can determine when a user is generating an unusual number of errors. For
example, HTTP 404 errors indicate that the user requested a page that does
not exist in the application. Most users will generate either no errors at all, or
a very small number. Attackers will generate long sequences of errors.

2. By modifying the HTTP responses that the application generates, the security
module can bait attackers into probing the application in ways that reveal
their malicious intent. For example, the security module can add a cookie to
the HTTP response. The cookie has no meaning to the application, and
regular users of the application will not be aware of the cookie and will not

have an opportunity (or a motivation) to change its value. An attacker, on the

22.

Juniper Ex. 1016-p. 23
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

other hand, may believe that altering the cookie could be advantageous to
them. When the security module sees an altered cookie value, it knows that

the application is being probed and can take defensive action.

Session ID guessing security vulnerabilities are also identified in accordance
with an embodiment of the invention. Many web-based applications have a login
page where the user provides a username and a password (or other authentication
credentials). After the user successfully authenticates with the application, he or she
is allowed to use the application for some period of time without authenticating again.
The application achieves this by associating a session identifier with the user. The
session identifier is typically stored as a cookie on the user’s browser. After
authentication, every time the user makes a request to the application, the cookie
containing the session identifier is sent to the application and the application verifies
that the session identifier corresponds to a correctly authenticated user.

If an attacker can guess the session identifier for an authenticated user, the
attacker can begin making requests using that session identifier; by guessing the
session identifier they can essentially take over the user’s session. The application
will see that the session identifier corresponds to an authenticated user and will
happily grant the attacker access to anything that the true user has access to. For this
reason, it is important for session identifiers to be hard to guess. In a typical attack,
the attacker will have to make a large number of guesses before finding a valid
session identifier.

The binary security module 116 defends against session identifier guessing by
looking for large bursts of requests that all use invalid session identifiers. This burst
of requests is likely to represent an attack, especially if a large number of them come
from the same IP address.

Forceful browsing is another security vulnerability identified in accordance
with embodiments of the invention. Many interactions with a web-based application
take place over a series of web péges. For example, a user may add items to a
shopping cart on one page, fill in their name and address on the next page, and
complete their checkout by specifying a credit card number on the final page.
Forceful browsing is the term used to refer to attacks where the attacker subverts the
normal flow of the application. For example, if the application computes the amount

of tax due on the order after the address page is filled out, the attacker may be able to

23.

Juniper Ex. 1016-p. 24
Juniper v Finjan

Attorney Docket No.: FOS0O-002/00US

submit a tax-free order by bypassing the name and address page. Well-written

applications will contain very few, if any, vulnerabilities of this sort, so an attacker

will likely need to try many combinations and sequences of pages in order to identify

a vulnerability.

The binary security module 116 can protect against forceful browsing attacks

in two ways:

1.

The “referrer” header in an HTTP request gives the name of the page that led
the user to make the current request. In the normal flow of the application,
this header should always be set to the correct preceding page in the
application flow. Application defense looks for referrer headers that are
incorrect based on the current page being requested. Note that it is possible
for an attacker to forge the referrer header. Less sophisticated attackers will
not do this, but this protection will not succeed against more astute attackers.
Another technique typically applied by less sophisticated attackers is to make
their Forceful browsing requests using a different HTTP method than the
application would normally use. In most circumstances, when a user fills out
a form on a web page and submits it, the request is sent to the server using an
HTTP POST request. If an attacker attempts to jump directly to a particular
part of the application by altering the URL in their browser window, the
information will be sent to the server as an HTTP GET request. The security
module 116 can keep track of which method is normally used to access a page,
then report discrepancies from this pattern as attempts at forceful browsing.
Forceful browsing is likely to cause an unusual number of application errors as
the program attempts to fulfill the user’s out-of-order requests. Because the
attacker is likely to try multiple sequences of requests before finding a
vulnerability, the application will encounter a large number of errors. By
tracking the number of errors that a user generates, the security module 116

can detect potential attempts at forceful browsing.

Embodiments of the invention also address Credential Guessing and

Registration Guessing. A network-based application typically requires users to

authenticate themselves before they are allowed to view or modify sensitive

information. The most common form of authentication in use today is the

24.

Juniper Ex. 1016-p. 25
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

username/password combination. If an attacker can guess both the username and the
password for a legitimate user, the attacker can impersonate the user.

If attackers are allowed to make an unlimited number of username/password
guesses, they will eventually gain access to the system. Some applications limit the
number of consecutive authentication attempts that can be made for a single
usemame. For example, an application might limit a user to five consecutive
unsuccessful login attempts before the user must contact customer support.
(Generally speaking, this type of defensive measure is unacceptable in systems that
must maintain a high level of availability for reasons explained below.)

But if an attacker is more interested in having any account on a system rather
than in having a specific account on a system, then this limitation does little to hamper
an attack on the authentication system. The attacker can simply guess different
username/password combinations and never try the same username more than four
times.

Alternatively, an attacker may use the application's defensive behavior in
order to deny access to legitimate users. Continuing the example above, by
repeatedly guessing bad passwords for a large number of accounts, the attacker will
be able to prevent users from accessing the application until they have contacted
customer support. (In addition to inconveniencing users, this may place a heavy
burden on customer support.)

Another form of attack, registration guessing, allows an attacker to collect a
list of legitimate usernames from a system that allows users to self-register. Take, for
example, a web-based email service. If the service allows people to sign up for a free
trial account, it will ask a new user to pick an email address as part of the registration
process. If the new user picks an email address already taken by another user, the
system will ask the new user to pick a different address. This behavior is valuable to
an attacker: if the system tells them that a particular email address is already taken,
then they know that the username belongs to someone already registered with the
system By guessing a large number bf addresses, the attacker can build up a list of
legitimate account names. The attacker may then use this list as part of a different
attack such as phishing or password guessing.

The binary security module 116 defends against credential guessing and by
looking for large bursts of authentication requests that all fail. Similarly, the

invention defends against registration guessing attacks by looking for long sequences

25.

Juniper Ex. 1016-p. 26
Juniper v Finjan

Attormney Docket No.: FOSO-002/00US

of registration attempts that are not completed or that generate collisions with existing
users. These bursts of requests are likely to represent an attack, especially if a large
number of them come from the same IP address.

Error Mining is another vulnerability addressed with embodiments of the
invention. When an attacker explores a web site looking for vulnerabilities, the
amount of information that the site provides back to the attacker is crucial to the
eventual success or failure of the attack. If the application shows the attacker a stack
trace, it gives up information that makes the attacker's job significantly easier. For
example, a stack trace might show the attacker a malformed SQL query string, the
type of database being used, and the version of the application container. This
information will enable the attacker to target known vulnerabilities in these
components.

The application configuration should guarantee that the application can never
leak error messages to an attacker by specifying a default error page. Handling
standard HTTP error codes is a useful and user-friendly thing to do, but a good
configuration will define a last-chance error handler that catches any exception that
could possibly be thrown by the application.

The binary security module 116 protects against error mining by installing a
top-level error catcher. Any errors that the application does not handle itself will be
handled by the binary security module 116, thereby preventing the application
container’s default error response mechanism from ever displaying sensitive system
information to. an attacker. The binary security module 116 will handle any errors it
receives by presenting an error page that does not reveal sensitive information. This
error page can be customized by the administrator.

Sensitive Data Extraction is another issue addréssed by embodiments of the
invention. A system information leak occurs when system data or debugging

information leaves the program through an output stream or logging function.

Example: The following code prints an exception to the standard error stream:

try {

} catch (Exception e) {

e.printStackTrace () ;

26.

Juniper Ex. 1016-p. 27
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

}

Depending on the system configuration, this information might be displayed to a
terminal window, written to a log file, or exposed to a remote user. In some cases the
error message can tell the attacker precisely what sort of an attack the system will be
vulnerable to. For example, a database error message might reveal that the application
is vulnerable to a SQL injection attack. Other error messages may reveal more oblique
clues about the system. Showing a classpath to a user could imply information about
the type of operating systemn, the applications installed on the system, and the amount
of care that the administrators have put into configuring the program.

The binary security module 116 protects against sensitive data extraction by
monitoring the information that the application emits. By searching for patterns in the
data being written out, the security module determines when and where sensitive data

is leaving the system. For example, a stack trace has a distinctive appearance:

java.io.FileNotFoundException: secret . txt
at java.io.FileInputStream.<init> (FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at SecretXfer.readFile (SecretXfer.java:41)

at SecretXfer.main(SecretXfer.java:87)

This approach is termed “blacklisting” because it involves creating a negative pattern
set: a set of patterns that represent data that the application should not expose.

If the binary security module 116 sees information of this form leaving the
application, it can respond by preventing the information from being written out,
altering the information so that it is no longer sensitive, or simply altering the
administrator that sensitive data is leaving the system.

Another issue to consider is Privacy Violation. Privacy violations occur when:

1. Private user information such as a credit card number, password, or social security

number, enters the program.

27.

Juniper Ex. 1016-p. 28
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

2. The data is written to an external resource, such as the console, filesystem, or

network.

Example: The following code contains a logging statement designed to track the
contents of records that are added to a database by storing them in a log file. Among
other values that are stored, the get Password () function returns the user-supplied

plaintext password associated with the account.
pass = getPassword() ;

dbmsLog.println(id+":"+pass+":"+type+":"+tstamp) ;

The code in the example above logs a plaintext password to the filesystem. Although
many developers trust the filesystem as a safe storage location for data, it should not
be trusted implicitly, particularly when privacy is a concern.

Private data can enter a program in a variety of ways. It may originate directly
from the user in the form of a password or personal information. It may be accessed
from a database or other data store where it is held until needed by the application. It
may arrive indirectly from a partner or other third party. Sometimes data that is not
necessarily labeled as private can carry an additional private meaning. For example,
student identification numbers are often not considered private because there is
generally not a publicly available mapping back to an individual student's personal
information. However, if a school decided to generate their identification numbers
based student social security numbers, then the numbers would have to be treated as
private.

It is not uncommon for security and privacy concerns to apparently compete
with one another. From a security perspective it is often advisable to record important
operations that occur so that any anomalous activity can later be identified. However,
when private data makes its way into these operations is otherwise well-intentioned
practice can in fact become a risk.

Although private data can be handled unsafely for a variety of reasons, one of
the most common is misplaced trust. Developers often consider the operating

environment where a program runs to be partially if not completely trusted. Because

28.

Juniper Ex. 1016-p. 29
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

of this a programmer may not think twice about storing private information on the
filesystem, in the registry or to other locally controlled resources. However, the fact
that certain resources are not accessible to arbitrary users does not guarantee that the
individuals that do have access to them can be entirely trusted, particularly with
potentially valuable private data. In 2004 AOL suffered from the wrong employee
getting his hands on private customer information when he sold approximately 92
million AOL customer email addresses to a spammer marketing an offshore gambling
website.

In response to high-profile exploits like the one suffered by AOL, the
collection and management of private data is becoming an increasingly regulated
undertaking. Depending on its location, the type of business it conducts and the nature
of any private data it handles, an organization may find itself under the purview of
one or more of the following federal and state regulations: Safe Harbor Privacy
Framework, Gramm-Leach Bliley Act (GLBA), Health Insurance Portability and
Accountability Act (HIPAA), and California SB-1386. Despite an abundance of
regulation, privacy violations continue to occur with alarming frequency.

Similar to the protection against sensitive data extraction, the binary security
module 116 protects against privacy violations by monitoring the information that the
application emits and comparing it a set of patterns (a blacklist) that represent private
information that the application should not expose. For example, the binary security
module 116 might look for the pattern

ddd-dd-dddd
(where the letter “d” stands for any digit) in order to identify that the application is
writing out social security numbers.

Click fraud is another vulnerability addressed with embodiments of the
invention.

Advertising on the internet is a big business. Of course, instead of billboards,
magazine pages, and television channels, ads are carried on web pages. Under one
common arrangement, advertisers compensate the owners of the web pages based on
the number of people who click on a link in the advertisement. This arrangement
brings with it the potential for fraud: a web site owner could repeatedly click the links
on their own web page in order to increase their advertising profits. Similarly, an
attacker who wanted to cause havoc could run up a company’s advertising costs by

setting up a program to generate clicks. These practices are known as click fraud.

20.

Juniper Ex. 1016-p. 30
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

The binary security module 116 helps detect click fraud by tracking URL
requests. By examining the history of requests for a particular URL and the timing
and other details about those requests, the security module 116 points out sets of
requests that are suspect. For example, one definition of suspect requests might be
identified by

e asharp increase in the frequency of requests for a particular URL

e a majority of the requests come from a small number of IP addresses

s the HTTP headers, such as the browser string, are identical

Unauthorized access is another security vulnerability that may be addressed in
accordance with an embodiment of the invention. Regardless of the security
measures taken by an application, it is always possible for users to lose control of
their authentication credentials. Users may fall for a scam e-mail message (this
approach is called phishing), fall prey to a DNS server that has been compromised by
an attacker (called pharming), write down their username and password and store it in
an unsafe location, or accidentally install a spyware program that logs all of their
keystrokes and transmits them to an attacker.

Regardless of the way that users lose control of their authentication
credentials, an attacker must make use of them before any damage has been done.
The security module 116 can detect abnormal account activity that may indicate that a
user’s authentication credentials have been stolen. The security module 116 takes
three approaches to detecting abnormal account activity:

1. Create a model of the user’s behavior and identify situations where the
observed behavior deviates from the model.. The security module 116 creates

a model of the types of requests that each user makes, then, if the types of

requests that a user makes suddenly and significantly deviates from the model,

then the security module flags the abnormal account activity. Similarly, by
using JavaScript, an Applet, or an ActiveX control, the security module
monitors the small amount of time that a user pauses between keystrokes when
they type into the application’s web page fields (the username and password

field, for example). This inter-key timing information can be used to build a

model of the user’s typing. The security module 116 flags significant changes

30.

Juniper Ex. 1016-p. 31
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

in the way a user types, since a large change may.indicate that someone other
than the real user is typing.

2. Track activity across accounts and look for abnormally similar behavior
between accounts. If an attackers harvest authentication credentials from a
large number of accounts, they may set up a script to perform the same action
across all of the accounts. For example, a spammer may use a large number of
compromised accounts on a web-based email service to send spam. The
security module can be configured so that it detects that large number of users
are all sending the same e-mail message.

3. Keep track of activity from previous account compromises and flag behavior
that matches those compromises. This requires the administrator to identify to
the security module the system activity related to compromised account

accCess.

The security module 116 may also be configured to address the issue of
anonymous access. An IP address is an identifier used to route packets on the
internet. Under normal circumstances, when a web browser makes a request to
retrieve a page from a web site, the web site’s name is translated into an IP address,
then the request is routed to the web server with that IP address. The web server
. responds by sending the page back to the IP address of the computer that originated
the request. In this way, an IP address serves to identify a computer on the Internet.

In some situations, computer users may wish to be anonymous. Examples
include:

e A dissident group may think it is undesirable for the government to know

about the set of web sites they are visiting.

e A criminal may wish to probe a web site for vulnerabilities without

revealing any identifying information.
In order to be anonymous, a user must find a way to have packets routed back to their
computer without revealing their true IP address. A protocol for achieving this goal is
called an anonymous routing protocol. Onion Routing is probably the most popular
anonymous routing protocol, and the most popular implementation of Onion Routing

is called “TOR”. See nttp://tor.eff.org/ for more information.

31.

Juniper Ex. 1016-p. 32
Juniper v Finjan

Attorney Docket No.: FOS0O-002/00US

The administrators for a web application may or may not wish to handle traffic
from anonymous users. Some anonymous routing implementations, TOR, for
example, make it possible, but non-trivial, to distinguish between normal and
anonymous HTTP requests.

The security module 116 allows an application to change its behavior based on
whether or not an HTTP request comes through TOR. It does this by comparing the
IP address that the request appears to originate from to a list of TOR “exit servers”

published at http://tor.noreply.org:9030/.

In this way, a system using the security module 116 is able to deny access to
anonymous users, limit the actions that anonymous users are allowed to take, or
change the thresholds the security module uses to distinguish between normal use and
potential attacks. For example, a regular user may be able to send requests with
parameters that are up to 1000 characters in length while anonymous users are
restricted to 100 character parameters.

The security module 116 may also be configured to address Publicly Available
Attack tools. Less sophisticated attackers may use pre-existing tools to probe a web
application for vulnerabilities. Such tools include WVS (Web Vulnerability Scanner)
from Acunetix, RedTeam Workbench from Fortify Software, or AppScan from SPI
Dynamics. These tools are capable of finding web application vulnerabilities such as
cross-site scripting or buffer overflow. By providing an easy to use interface, these
tools automate the repetitive task of looking for vulnerabilities across a large number
of web. pages and parameters on those pages. The tools also make it possible for a
person with malicious intent but little knowledge to create an effective attack.

The security module can detect attacks that originate from some types of
automated attack tools. Some of these tools are meant to be used by application
testers in order to find vulnerabilities before attackers do. These tools put a distinct
signature in the HTTP requests that they generate in order to make it easy for anyone
looking- at the traffic to understand where the requests come from. Other tools leave
more subtle clues. WVS generates cross-site scripting attacks that include the string
“WVS_” in them. AppScan generates a buffer overflow attack that consists of fifty
‘a’ characters.

By looking for application signatures or more subtle clues in HTTP requests

made to the application and blocking or otherwise defusing them, the security module

32.

Juniper Ex. 1016-p. 33
Juniper v Finjan

. Attorney Docket No.: FOS0-002/00US

makes it impossible for an attacker to use a publicly available attack tool to find
vulnerabilities in an application.

As discussed earlier, the security of a web-based application is dependent
upon the attacker not being able to learn the session identifier of a legitimate user. If
the attacker can guess a valid session identifier, they can simply take over the user’s
session. Of course good session identifiers are long and completely random, so
they’re hard to guess.

Rather than guessing, an attacker may trick a user into using a particular
session identifier that the attacker specifies. The result is the same as if the attacker
had guessed the session identifier: the attacker can now take control of the user’s
session. This attack is known as “session fixation™.

Here is one scenario by which an attacker could force a user to have a
particular session identifier: Some Serviet containers, notably Tomcat, allow session
identifiers to be passed in two ways:

1) as a cookie;

2) as a URL parameter.
Most modern applications only use cookies. There is a good security motivation for
this decision: passing a session identifier as a URL parameter may cause the value to
be logged, written to the browser history, or otherwise exposed to an attacker. If
Tomcat is configured to pass the session identifier as a cookie and it sees a session
identifier passed as a URL parameter, it will take the parameter value and transfer it to
a cookie.

This transfer mechanism gives an attacker an opportunity to force a session
identifier on their victim. The session identifier cookie or parameter is traditionally
named “‘jsessionid”. If an attacker sends the victim a email message or other
communication that contains a link like this:

http://www.vulnerablesite.com/login.jsp?jsessionid=abc123

when the victim clicks the link, tomcat will start using “abc123” as the victim’s
session identifier. The attacker now knows the victim’s session identifier.

Without the security module 116, an application can prevent session fixation
by issuing a new session identifier whenever a user goes through the authentication
process. In this way any session identifier supplied by the attacker will be discarded.
Unfortunately, not all applications do this, and it would be difficult to add this

behavior to an application.

33.

Juniper Ex. 1016-p. 34
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

Instead, the security module can determine situations in which an attacker is
attempting to force a particular session identifier on a user. Since session identifiers
are usually passed as cookies, if the security module sees a session identifier passed as
a URL parameter, it can flag the request as being the result of a session fixation attack
and respond appropriately.

The invention uses a number of techniques to respond to an attack. The
administrator configures the security module so that the response will be appropriate
for the type of application and the type of attack. The administrator can change the
way the module responds to an attack without restarting the program, so it is possible
for an application to take an increased or more relaxed defensive posture depending
on the administrator's perception of the current threats to the program.

The security module can respond to an attack in one or more of the following
ways:

e Log: create a log file entry indicating that an attack has taken place.

s Alert: send an e-mail message or contact a pager with a short summary of the
attack that has taken place.

e Stop processing request: abort the processing of the HTTP request, either by
throwing an exception or by not passing the request on to the program.

o Defuse attack: Remove, alter, or render ineffective a dangerous piece of data.
For example, a privacy violation might be defused by replacing most of the
digits of a credit card number with the letter “X”. This is a dangerous course
of action—attackers may be able to trick the protection logic into modifying
the data to their advantage. However, it may be desirable to not immediately
acknowledge to an attacker that the program has detected malicious intent. By
defusing the attack but not denying the request, the program may succeed in
obscuring the defensive capabilities of the program.

¢ Issue a challenge: Some forms of attack can be defeated by interrupting the
normal flow of the application and presenting the user with a challenge. The
challenge may only attempt to discern between a human and a computer.

(This type of challenge is known as a kaptcha.) Alternatively, it may ask the

user to prove their identity by providing a piece of identifying information

(their home address or telephone number, for example).

34.

Juniper Ex. 1016-p. 35
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

e Slow down application: An effective countermeasure for attacks that require
the attacker to make a significant number of repeated guesses (Session ID
guessing, for example) is to slow down the application's rate of response. If
the application detects that an attacker is trying to guess a legitimate session
ID, if the application responds to the attacker's guesses at a fraction of the
usual speed, it will multiply the length of time the attacker needs in order for
the attack to be successful. This defense might be all that is required, or it
may simply serve as a stall tactic until a program administrator can assess the
situation.

e Shut down application: Cause the application to stop responding to any further
user requests. This is a drastic action, but it may be the only safe thing to do if
the application has been corrupted by an attacker.

e User defined: turn the attack information over to an program-specific handler
that has been written for this purpose.

An embodiment of the present invention relates to a computer storage product
with a computer-readable medium having computer code thereon for performing
various computer-implemented operations. The media and computer code may be
those specially designed and constructed for the purposes of the present invention, or
they may be of the kind well known and available to those having skill in the
computer software arts. Examples of computer-readable media include, but are not
limited to: magnetic media such as hard disks, floppy disks, and magnetic tape;
optical media such as CD-ROMs and holographic devices; magneto-optical media
such as floptical disks; and hardware devices that are specially configured to store
and execute program code, such as application-specific integrated circuits (“ASICs™),
programmable logic devices (“PLDs”) and ROM and RAM devices. . Examples of
computer code include machine code, such as produced by a compiler, and files
containing higher-level code that are executed by a computer using an interpreter.
For example, an embodiment of the invention may be implemented using Java, C++,
or other object-oriented programming language and development tools. Another
embodiment of the invention may be implemented in hardwired circuitry in place of,
or in combination with, machine-executable software instructions.

The foregoing description, for purposes of explanation, used specific

nomenclature to provide a thorough understanding of the invention. However, it will

35.

Juniper Ex. 1016-p. 36
Juniper v Finjan -

Attorney Docket No.: FOSO-002/00US

be apparent to one skilled in the art that specific details are not required in order to
practice the invention. Thus, the foregoing descriptions of specific embodiments of
the invention are presented for purposes of illustration and description. They are not
intended to be exhaustive or to limit the invention to the precise forms disclosed;
obviously, many modifications and variations are possible in view of the above
teachings. The embodiments were chosen and described in order to best explain the
principles of the invention and its practical applications, they thereby enable others
skilled in the art to best utilize the invention and various embodiments with various
modifications as are suited to the particular use contemplated. It is intended that the

following claims and their equivalents define the scope of the invention.

36.

Juniper Ex. 1016-p. 37
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

Appendix A: Deployment descriptors

This is a sample deployment descriptor prior to modification by Application defense.

<?xml version=91.0° encoding=7IS0-8859-1°?>

<!DOCTYPE web-app

PUBLIC °-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN*"
http://java.sun.com/dtd/web-app 2 3.dtd>

<web-app>
<filter>
<filter-name>Request Dumper Filter</filter-name>
<filter-class>filters.RequestDumperFilter</filter-class>
</filter>

<filter-mapping>
<filter-pname>Request Dumper Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<listener>
<listener-class>com.order.splc.DatabaseController</listener-
class>
</listener>
<gervlet>
<gservlet-name>FileCatcherServlet</serviet-name>
<servlet-class>com. fortify.ssm.msging.FileCatcherServlet</servlet-
classs
<init-param>
<param-name>maxMemorySize</param-name>
<param-value>2000000</param-value>
</init-param>
<init-param>
<param-name>maxRegquestSize</param-pame>.
<param-value>2000000</param-value>
</init-param>
<init-param>
<param-name>tempDirectory</param-name>
<param-values>/tmp/</param-value>
</init-param>
<load-on-startup/>
</serviet>
<gservliet>
<gervlet-name>action</servlet-name>
<gservlet-class>org.apache.struts.action.ActionServiet</serviet-
class>

<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>

<init-param>
<param-name>debug</param-name>
<param-value>2</param-value>

</init-param>

<init-param>
<param-names>detail</param-name>
<param-value>2</param-value>

</init-params

<load-on-startup>2</load-on-startup>

</serviet>

<servlet-mapping>
<servlet-name>FileCatcherServletc/serviet-name>

37.

Juniper Ex. 1016-p. 38
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

<url-patterns>/FileCatcher</url-pattern>
</servlet-mapping>

<servlet-mapping>
<gervlet-name>action</servliet-name>
<url-pattern>*.do</url-pattern>
</servlet-mapping>

<welcome-file-list>
<welcome-file>pages/index. jsp</welcome-file>
</welcome-file-list>

<taglib>
<taglib-uri>/tags/struts-bean</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-html</taglib-uri>
<taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-logic</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-nested</taglib-uri>
<taglib-location>/WEB-INF/struts-nested. tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-template</taglib-uri>
<taglib-location>/WEB-INF/struts-template.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-tiles</taglib-uri>
<taglib-location>/WEB-INF/struts-tiles. tld</taglib-location>
</taglib>

<resource-ref>
<description>DB Connection</description>
<res-ref-name>jdbc/splc</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

<gsecurity-constraint>
<display-name>Admin Constraint</display-name>
<web-resource-collection>
<web-resource-name>Admin Area</web-resource-name>
<url-patterns>/pages/index. jsp</url-pattern>
<url-pattern>*.do</url-pattern>
<url-pattern>/FileCatcher</url-pattern>
<http-method>GET</http-method>
<http-method>HEAD</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>only admin</description>
<role-names>admin</role-name>
</auth-constraint>
</security-constraint>

<security-constraint>
<display-namesUser Constraint</display-name>
<web-resource-collection>
<web-resource-namesUser Area</web-resource-name>
<url-pattern>/pages/index. jsp</url-pattern>
<url-pattern>*.do</url-pattern>

38.

Juniper Ex. 1016-p. 39
Juniper v Finjan

Attormey Docket No.: FOS0-002/00US

<url-pattern>/FileCatcher</url-pattern>
<http-method>GET</http-method>
<http-method>HEAD</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>all users</description>
<role-name>user</role-name>
</auth-constraint>
</security-constraints>

<login-config>
<auth-method>FORM</auth-method>
<realm-name>Authentication</realm-name>
<form-login-config>
<form-login-page>/login/login. jsp</form-login-pagex>
<form-error-page>/login/error. jsp</form-error-page>
</form-login-config>
</login-config>

<security-role>
<role-names>admin</role-name>

</security-role>

<security-role>
<role-names>user</role-name>

</security-role>

</web-app>. .

39.

Juniper Ex. 1016-p. 40
Juniper v Finjan

Attomey Docket No.: FOSO-002/00US

This is the same application deployment descriptor after being modified by Application
Defense. Additions are in bold.

<?xml version=%1.07 encoding="UTF-87?>

<!DOCTYPE web-app PUBLIC °-//Sun Microsystems, Inc.//DITD Web Application 2.3//EN"
“http://java.sun.com/dtd/web-app 2 3.dtd">

<web-app>

<filter>
<filter-name>Request Dumper Filter</filter-name>

<filter-class>filters.RequestDumperFilter</filter-class>
</filter>

<filter>
<filter-namesFortifyAppDefenseValidation</filter-names
<filter-
class>com. fortify.appdefense.runtime. analyzer.Inputvalidation</filter-class>
</filter>
<filter-mapping>
<filter-name>FortifyAppDefenseValidation</filter-name>
<url-patterns/*</url-pattern>
</filter-mapping>

<listener>
<listener-

class>com.fortify.appdefense.runtime.analyzer.SystemOutListener</listener-class>
</listener>

<filter-mapping>
<filter-name>Request Dumper Filter</filter-name>
curl-pattern>/*</url-pattern>
</filter-mapping>

<listener>

<listener-class>com.order.splc.DatabaseController</listener-class>
</listener>

<servlet>
<servlet-name>FileCatcherServiet</serviet-name>
<servlet-class>com. fortify.ssm.msging.FileCatcherServlet</servlet-class>
<init-param>
<param-names>maxMemorySize</param-name>
. <param-value>2000000</param-value>
</init-param>
<init-param>
<param-name>maxRequestSize</param-name>
<param-value>2000000</param-value>
</init-param>
<init-param>
<param-name>tempDirectory</param-name>
<param-value>/tmp/</param-value>
</init-param>
<load-on-startup/>
</serviet> .

<servlet>
<servlet-name>action</servlet-name>
<servlet-classs>org.apache.struts.action.ActionServlet</servliet-class>
<init-param>
<param-name>config</param-name:
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>
<init-param>
<param-name>debug</param-name>
<param-value>2</param-value>

709500 v1/PA 40.

Juniper Ex. 1016-p. 41
Juniper v Finjan

Attorney Docket No.: FOS0-002/00US

</init-param>
<init-param>
<param-name>detail</param-name>
<param-value>2</param-value>
</init-param>
<load-on-startup>2</load-on-startup>
</servliet>

<servliets>
<servlet-namesFortifyAppDefenseConfig</servliet-name>
<servlet-
class>com. fortify.appdefense. runtime.config.ConfigServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</serviet>
<servlet-mapping>
<servlet-name>FortifyAppDefenseConfig</servlet-name>
<url-patterns/FortifyAppDefenseConfig</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>FileCatcherServlet</servlet-name>
<url-patterns>/FileCatcher</url-pattern>
</serviet-mapping>

<gerviet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>
</serviliet-mapping>

<!-- The Usual Welcome File List -->
<welcome-file-list>

<welcome-file>pages/index.jsp</welcome-filex>
</welcome-file-list>

<i-- Struts Tag Library Descriptors -->
<taglib>
<taglib-uri>/tags/struts-bean</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>
<taglib>
<taglib-uris/tags/struts-htmi</taglib-uri>
<taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>
<taglib>
<taglib-uris>/tags/struts-logic</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>
<taglib>
<taglib-uris>/tags/struts-nested</taglib-uri>
<taglib-location>/WEB-INF/struts-nested.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-template</taglib-uri>
<taglib-location>/WEB-INF/struts-template.tld</taglib-location>
</taglib>
<taglib>
<taglib-uris/tags/struts-tiles</taglib-uri>
<taglib-location>/WEB-INF/struts-tiles.tld</taglib-location>
</taglib>

<resource-ref>
<description>DB Connection</description>
<res-ref-names>jdbc/splc</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

709500 v1/PA 41.

Juniper Ex. 1016-p. 42
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

</resource-ref>

<security-constraint>
<display-name>Admin Constraint</display-name>
<web-resource-collection>

<web-resource-name>Admin Area</web-resource-name>

<url-pattern>/pages/index. jsp</url-pattern>
<url-pattern>*.do</url-pattern>
<url-pattern>/FileCatcher</url-pattern>
<http-method>GET</http-method>
<http-method>HEAD</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>only admin</description>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>

<security-constraint>
<display-namesUser Constraint</display-name>
<web-resource-collection>
<web-resource-names>lser Areac</web-resource-name>
<url-pattern>/pages/index. jsp</url-patterns>
<url-patterns*.do</url-pattern>
<url-pattern>/FileCatcher</url-pattern>
<http-method>GET</http-method>
<http-method>HEAD</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>all users</description>
<role-names>user</role-name>
</auth-constraint>
</security-constraint>

<login-config>
cauth-method>FORM</auth-method>
<realm-name>Authentication</realm-name>
<form-login-config>
<form-login-page>/login/login.jsp</form-login-page>
<form-error-page>/login/error. jsp</form-error-page>
</form-login-config>
</login-config>

<security-role>
<role-name>admin</role-name>

</security-role>

<gsecurity-role>
<role-names>user</role-name>

</security-role>

</web-app>

709500 v1/PA 42.

Juniper Ex. 1016-p. 43
Juniper v Finjan

Attorney Docket No.: FOS0-002/00US

In the claims:
1. A method of securing software, comprising;:
finding security vulnerabilities in binary code;
inserting protective code in response to finding to produce secured binary code; and

executing said secured binary code.

2. The method of claim 1 wherein finding includes finding an SQL injection
vulnerability.

3. The method of claim 1 wherein finding includes finding a command injection
vulnerability.

4. The method of claim 1 wherein finding includes finding a resource injection
vulnerability.

5. The method of claim 1 wherein finding includes finding a log forging vulnerability.

6. The method of claim 1 wherein finding includes finding a buffer overflow
vulnerability.

7. The method of claim 1 wherein finding includes finding a cross site scripting
vulnerability.

8. The method of claim 1 wherein finding includes finding a site defacement
vulnerability.

9. The method of claim 1 wherein finding includes finding a site probing vulnerability.
10. The method of claim 1 wherein finding includes finding a session ID guessing
vulnerability.

11. The method of claim 1 wherein finding includes finding a forceful browsing
vulnerability.

709500 v1/PA 43.

Juniper Ex. 1016-p. 44
Juniper v Finjan

Attorney Docket No.: FOS0O-002/00US

12. The method of claim 1 wherein finding includes finding a credential guessing

vulnerability.

13. The method of claim 1 wherein finding includes finding an error mining vulnerability.
14. The method of claim 1 wherein finding includes finding a sensitive data extraction
vulnerability.

15. The method of claim 1 wherein finding includes finding a privacy violation
vulnerability.

16. The method of claim 1 wherein finding includes finding a click fraud vulnerability.
17. The method of claim 1 wherein finding includes finding an unauthorized access
vulnerability.

18. The method of claim 1 wherein finding includes finding an SQL an anonymous

access vulnerability.

19 The method of claim 1 wherein finding includes finding a publicly available attack

tools vulnerability.

20. The method of claim 1 wherein finding includes finding a session fixation
vulnerability.
709500 v1/PA 44,

Juniper Ex. 1016-p. 45
Juniper v Finjan

Attorney Docket No.: FOSO-002/00US

ABSTRACT
A method of securing software includes finding security vulnerabilities in binary
code, inserting protective code in response to finding to produce secured binary code, and
executing the secured binary code. Security vulnerabilities identified may include: SQL
injection, command injection, resource injection, log forging, buffer overflow, cross site
scripting, site defacement, site probing, session ID guessing, forceful browsing, credential
guessing, error mining, sensitive data extraction, privacy violation, click fraud, unauthorized

access, anonymous access, publicly available attack tools, and session fixation.

709500 v1/PA 45.

Juniper Ex. 1016-p. 46
Juniper v Finjan

P O Vs (Yo ls4
P Q Flo hrts
N .
/ .0‘-{ N
N
1% N
— HC»
() SoUr¢a h‘o%ﬂ\ﬂ\ :
. 1 - — 1
C,o/«q,l LU“
- : 1Y
55.‘«4\.—«,\ Seromt, |G
- Mo Jul g :
— (1%

g . |
T

Best Avcilablé Copy

Juniper Ex. 1016-p. 47
Juniper v Finjan

A
N

KOO 48
Juniper v Finjan

Best Available

ilable Copy

Best Ava

Juniper Ex. 1016-p. 49

Juniper v Finjan

>"'0amp\
)
Nz
Selct ™~
Trote e HO-
AAG{ Ur—(
violnermie e | 104

.u:/\ur* peetechiye]
&(;\o-ﬁk

hd

R~ i S

’ 1 \{_0 M"\QX "fog

ﬁ‘j- H

Best Available Copy...t 1016..5

Juniper v Finjan

