
Mobile Code Security by Java Bytecode Instrumentation�

Ajay Chander
Computer Science Department

Stanford University
ajayc@cs.stanford.edu

John C. Mitchell
Computer Science Department

Stanford University
mitchell@cs.stanford.edu

Insik Shin
Department of Computer and Information Science

University of Pennsylvania
ishin@cis.upenn.edu

Abstract

Mobile code provides significant opportunities and risks.
Java bytecode is used to provide executable content to web
pages and is the basis for dynamic service configuration
in the Jini framework. While the Java Virtual Machine in-
cludes a bytecode verifier that checks bytecode programs
before execution, and a bytecode interpreter that performs
run-time tests, mobile code may still behave in ways that
are harmful to users. We present techniques that insert run-
time tests into Java code, illustrating them for Java applets
and Jini proxy bytecodes. These techniques may be used
to contain mobile code behavior or, potentially, insert code
appropriate to profiling or other monitoring efforts. The
main techniques are class modification, involving subclass-
ing non-final classes, and method-level modifications that
may be used when control over objects from final classes is
desired.

1. Introduction

Since its early beginnings in the Green project, the Java
language [26] has come a long way in its applicability and
prevalence. While its initial adoption was fuelled by the
ability to add “active content” to web pages, Java has also
become a predominant system and application development
language, providing useful capabilities over and above the
language features through an extensive set of application
programming interfaces (APIs). The APIs simplify pro-
gramming by providing a rich set of domain-dependent li-
braries, as well as enabling new programmatic and compu-
tational paradigms. As an example, the Java Cryptography

�Partially supported by DARPA contract N66001-00-C-8015 and ONR
grant N00014-97-1-0505.

API makes it possible for applications to easily implement
security protocols for their own needs, while the Jini API
provides a specification for Java bytecode based distributed
programming. One of the keys to Java’s success and appeal
is its platform independence, achieved by compilation of
source code to a common intermediate format, namely Java
Virtual Machine (JVM) bytecode, which can then be inter-
preted by various platforms. The ability to transport byte-
code between JVMs is most commonly encountered while
browsing the net, and Java’s platform independence ensures
a client-independent experience.

Although previous language implementations, such as
Pascal and Smalltalk systems, have used intermediate byte-
code, the use of bytecode as a medium of exchange places
Java bytecode in a new light. A networked computer can
import and execute Java bytecode in ways that are invisi-
ble or partly invisible to the user. For example, a user (or
his browser) may execute a Java applet embedded within a
page as part of the HTTP protocol, or a client may execute a
lookup service proxy as it prepares to join a Jini community.
To protect against execution of erroneous or intentionally
malicious code, the JVM verifies bytecode properties be-
fore execution and performs additional checks at run time.
However, these checks only enforce some type correctness
conditions and basic resource access control. For example,
these tests will not protect against large classes of undesir-
able run-time behavior, including denial-of-service, com-
promise of integrity, and loss of sensitive information from
password or credit card information files, say. The introduc-
tion of new security architectures [8] for Java has allowed
for digital signature verification and resource access control
through the Permissions framework, but suffers from lack
of specificity. A more expressive and fine-grained mech-
anism which can be customized to a user’s security needs
and is flexible enough to respond to security holes as they

Juniper Ex. 1008-p. 1 
Juniper v Finjan

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


are discovered, is needed.
The goal of our work is to develop methods for enforc-

ing foreign bytecode properties, in a manner that may be
customized easily. In this paper, we propose a technique,
called bytecode instrumentation, through which we impose
restrictions on bytecode by inserting additional instructions
that will perform the necessary run-time tests. These ad-
ditional instructions may monitor and control resource us-
age as well as limit code functionality. This approach is
essentially a form of software fault isolation [24], tailored
to the file structure and commands of the Java language.
Our technique falls into two parts: class-level modification
and method-level modification. Class-level modification in-
volves substituting references to a class by another class
subclassed from it. As this method employs inheritance,
it can not be applied to final classes and interfaces. In these
cases, method-level modification, which may be applied on
a method-by-method basis without regard to class hierarchy
restrictions, enforces the safe behavior that we hope from
foreign code.

We have implemented these techniques within two con-
texts, each of which has a different bytecode delivery path.
For the case of Java applets transported via the HTTP pro-
tocol, instrumentation is done by a network proxy, which in
addition can also function as a GUI-customizable firewall
to specific sites, Java classes, and tagged advertisements.
For Jini service proxies, for which there are only transport
interfaces but no specific transport mechanisms, we chose
to modify the bytecode at the client’s ClassLoader end, be-
fore its execution. Figures 5 and 6 summarize the system
architecture for these two cases.

The rest of the paper is organized as follows. Section
2 gives examples of mobile code risks which cannot be
checked within the scope of the current Java verifier and
security model, and discusses the extent of our technique.
The bytecode instrumentation technique itself is presented
in Section 3. Section 4 explains how the mobile code trans-
port frameworks for Java applets and Jini proxies are aug-
mented to instrument the component bytecodes. Section 5
presents examples of the techniques presented in Section
3, with one illustrative example for each of class-level and
method-level modification. We make comparisons with ex-
isting work in Section 6, and conclude in Section 7.

2. Mobile Code Risks

We preface our techniques for enforcing Java bytecode
properties by examples of harmful behavior to illustrate the
risk associated with untrusted mobile code. While these at-
tacks have been around for a while, recent interest in peer to
peer computing has added value to individual machine cy-
cles, and one may presume, incentive to deploying mobile
code attacks.

The categorisations below should be taken only as in-
dicative, and not exhaustive. We situate the extent of our
techniques w.r.t. the various kinds of attack threats posed
by mobile code; Section 5 presents more detail for specific
examples.

2.1. Denial of Service

The current Java security model provides a Permissions
framework to specify the host resources that mobile code
may access. However, the extent of use is not monitored,
and code which has legitimate use for a certain resource,
say the screen, or the audio driver, may abuse this privi-
lege. The system may be rendered useless by greedy tech-
niques: monopolizing and stealing CPU time, grabbing all
available system memory, or starving other threads and sys-
tem processes. Many variants on this theme exist, a com-
mon scheme is for the foreign code to spawn a “resource
consuming” thread. The runaway thread redefines its stop
method to execute a loop and effects an “infinite access” to
the resource, which may result in annoying to crippling be-
havior, for example through screen flooding. Often a com-
plete browser or system shutdown becomes the only viable
option.

Since the safety of Java runtime system may be threat-
ened by inordinate system resource use, it is useful to have
some mechanism to monitor and control resource usage.

2.2. Information Leaks

An applet may subvert its constrained channels of infor-
mation flow through various means. A possible third-party
channel is available with the URL redirect feature. Nor-
mally, an applet may instruct the browser to load any page
on the web. An attacker’s server could record the URL as
a message, then redirect the browser to the original destina-
tion [5]. Another scenario exploits the ability of an applet to
send out email messages [10]. If the web server is running
an SMTP mail daemon, a hostile applet may forge email
after connecting to port 25.

Time-delayed access to files also can be used as a covert
channel [19]. Specifically, if mobile code fragment �, with
access to private information is prohibited from accessing
the net, information can still be sent out by another mo-
bile code fragment �, which shares a file with �. Inter-
code communication via storage channels may be detected
by system logs, but these are hard to analyze in real time.

It is generally accepted that theoretically feasible covert
channels like refreshing a page at uneven time intervals to
transmit a sequence of bits, are hard to detect. We ig-
nore such arbitrary and unpredictable information channels,
while using our techniques to plug more tractable pathways
as in the case of email forgery.

Juniper Ex. 1008-p. 2 
Juniper v Finjan

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


2.3. Spoofing

In a spoofing attack, an attacker creates a misleading
context in order to trick a user into making an inappropriate
security-relevant decision [7]. For example, some applets
display URLs as the mouse navigates over various compo-
nents of a web page, like a graphic or a link. By convention,
the URL is shown in a specific position on the status line. If
an applet displays a fake URL, the user may be misled into
connecting to a potentially hazardous website. It is also pos-
sible to abuse weaknesses in mobile code-fetch conventions
to spoof the real place of origin of a code fragment, laying
client-side security policies regarding network connections
to naught.

Bytecode instrumentation is an effective technique
against well-specified attacks, which include denial of ser-
vice and information leaks via specific pathways. In this
sense, its scope is monotonic; newly discovered attack spec-
ifications can be added to a client’s policy files and any addi-
tional bytecodes that match them can be instrumented to en-
force safety properties. The reader may like to think of this
in virus checking terms, where the safety net widens with
addition of new entries in the virus signature files. Byte-
code instrumentation thus allows for content-based protec-
tion, since the modification is a function of the bytecode and
the client’s safety policy.

We now move on to the technical details of our scheme.

3. Bytecode Instrumentation

Our goal is to design a safety mechanism for Java byte-
code that extends the signature based security manager with
user-controlled content-based control. The basic idea is to
restrict bytecode by the insertion of sentinel code. In the ex-
amples we have implemented and tested, sentinel code may
monitor and control resource usage as well as limit func-
tionality. This approach is a form of software fault isola-
tion [24], adapted to the specific structure and representa-
tion of Java bytecode programs.

Our safety mechanism substitutes one executable entity,
such as a class or a method, with a related executable en-
tity that performs additional run-time tests. For instance, a
class such as Window can be replaced with a more restric-
tive class Safe$Window that performs additional security
and sanity checks. This replacement must occur before the
transported bytecode is loaded within the JVM of the client,
and we achieve this at different points in the transport path
in our experiments with Java applets and Jini proxies (see
Section 4). Note that we will use the prefix Safe$ to indi-
cate a safe class.

The following sections explain how modified executable
entities are inserted in Java bytecode. The modifications

may be performed at the level of the class or the method, by
modifying the constant pool to replace references to substi-
tuted entities by their safe substitutes.

3.1. Class-level Modification

A class such as Window can be replaced with a subclass
of Window (say Safe$Window) that restricts resource us-
age and functionality. For example, Safe$Window’s con-
structor can limit the number of windows that can be open
at one time, by calling Window’s constructor, and raising
an exception when the number of windows opened cur-
rently (stored as a private variable in the method) exceeds
the limit. Since Safe$Window is defined to be a subclass
of Window, the applet should not notice the change, unless
it attempts to create windows exceeding the limit.

This class substitution is done by merely substitut-
ing references to class Window with references to class
Safe$Window. When Safe$Window is a subtype of
Window, type Safe$Window can be used anywhere type
Window is expected.

In Java, all references to strings, classes, fields, and
methods are through indices into the constant pool of the
class file [16]. Therefore, it is the constant pool that should
be modified in a Java class file. More specifically, two
entries are used to represent a class in the constant pool.
A constant pool entry tagged as CONSTANT Class repre-
sents a class while referencing a CONSTANT Uft8 entry
for a UTF-8 string representing a fully qualified name of
the class, as in figure 1.

If we replace a class name of a CONSTANT Uft8 en-
try, Window, with a new class name, Safe$Window,
the CONSTANT Class entry will represent the new class,
Safe$Window, as shown in figure 2.

Substituting a class requires just one modification of a
constant pool entry representing a class name string. This
is straightforward since a subclass may appear anywhere a
superclass is used without any modifications to the program.
However, this approach cannot be applied to a final class or
an interface class.

3.2. Method-level Modification

In class-level modification, the basic idea is to substitute
a potentially harmful method (for example, those that pro-
vide direct access to system resources) with a safer version
that provides for customized control. Unlike class-level
modification, however, there is no relationship between the
two methods. This provides more flexibility in that it can be
used even when the method is final or is accessed through
an interface, but requires more modifications than a simple
substitution of methods.

Juniper Ex. 1008-p. 3 
Juniper v Finjan

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


class name index

class name

CONSTANT_Class entry

CONSTANT_Utf8 entry

CONSTANT POOL

Figure 1. Class references in the constant pool

101
11

101

101
11

101
java/awt/Window Safe$Window

AfterBefore

Figure 2. Modfying class references

Before getting into the general mechanism, let us con-
sider a field and a method descriptor within the Java class
file format. The field descriptor represents the type of a
class or instance variable. For example, the descriptor of an
int instance variable is simply I. Table 1 shows the mean-
ing of some field descriptors.

Descriptor Type
C character
I integer
Z boolean

L�classname�; an instance of the class

Table 1. The meaning of the field & method
descriptors

The Method descriptor represents the parameters that
the method takes and the value that it returns. A parameter
descriptor represents zero or more field types, and a return
descriptor a field type or V. The character V indicates that
the method returns no value(void). For example, the
method descriptor for the method

void setPriority (Thread t, int i)
is

(Ljava/lang/Thread;I)V

We will describe an instance method in the form
�ClassName.MethodNameAndType� and an class(static)
method in the form�ClassName:MethodNameAndType�,

to distinguish them, though they are not distinguished in the
constant pool.

A method such as Thread.setPriority(I)V can
be replaced with a safer version, say Safe$Thread:-
setPriority(Ljava/lang/Thread;I)V, which
does not allow threads spawned by mobile code to have
higher priority than a user-specified upper limit defined
in class Safe$Thread. The new safeguarding method
takes priority of type integer as one of the arguments,
and compares it with its upper limit. If the argument is
higher, the argument is set to the upper limit. Eventually,
the new method invokes Thread.setPriority(I)V
with the verified argument. Since the new method invokes
an instance method mentioned before, a reference to an
instance of class Thread should be passed to the new
method.

3.2.1 Method Reference Modification

It is more difficult to represent a method than a class;
consequently the bytecode modification procedure for
methods is more involved. A constant pool entry
tagged as CONSTANT Methodref represents a method
of a class(a static method) or of a class instance(an in-
stance method). The CONSTANT Class entry repre-
senting the class of which the method is a member
and the CONSTANT NameAndType entry representing
the name and descriptor of the method are referenced
by CONSTANT Methodref. In our example, the CON-
STANT Class entry and the CONSTANT NameAndType

Juniper Ex. 1008-p. 4 
Juniper v Finjan

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


entry reference the CONSTANT Uft8 entries represent-
ing java/lang/Thread.setPriority and (I)V, re-
spectively.

Since a new class appears, we should add a new CON-
STANT Uft8 entry representing a new classname string,
Safe$Thread, and another new CONSTANT Class en-
try referencing the new CONSTANT Uft8 entry, and
then modify the CONSTANT Methodref entry to re-
fer to the new CONSTANT Class entry instead of an
old CONSTANT Class entry (which represents the class
java/lang/Thread.) Since a method descriptor
changes, we also need to add a CONSTANT Uft8 en-
try representing a symbolic name for the new method de-
scriptor, (Ljava/lang/Thread;I)V, and then mod-
ify the CONSTANT NameAndType entry to refer to the
new CONSTANT Uft8 entry for the method descrip-
tor. Now the CONSTANT Methodref entry represents
a new method, Safe$Thread:setPriority(Lja-
va/lang/Thread;I)V, as shown in figure 3.

3.2.2 Method Invocation Modification

Among various Java Virtual Machine instructions im-
plementing method invocations, we are interested in
invokevirtual for an instance method invocation
and invokestatic for a class(static) method invoca-
tion. Both instructions require an index to a CON-
STANT Methodref constant pool entry, but they require
slightly different environments. The instance method in-
vocation is set up by first pushing a reference, to the in-
stance which the method belongs to, onto the operand
stack. The method invocation’s arguments are then
pushed onto the stack. The contents of the stack at
this point (the environment), which include the refer-
ence to the method and the operand stack of the call
to Thread.setPriority(I)V, is shown in Figure
4(a). The class method invocation requires an en-
vironment much like that of the instance method in-
vocation, except that a reference to the instance is
not pushed onto the operand stack. The environ-
ment of a call to Safe$Thread:setPriority(Lja-
va/lang/Thread;I)V is shown in Figure 4(b).

A visual comparison of the two method invocation envi-
ronments in figure 4 makes the modification required very
clear. The contents of the operand stacks are the same,
though an instruction for method invocation changes from
invokevirtual to invokestatic.

The distinct nature of methods and classes, and their
distinct representation in bytecode thus leads to different
mechanisms for their respective modification. Method-level
modification requires a change in bytecodes in addition to
some modifications in the constant pool, whereas class-
level modification requires only one change in the constant

pool. The difference in the costs of these operations is made
up by the difference in the applicability of the schemes;
method-level modifications provide finer-grained control,
and are the only choice for final classes and interfaces.

4. Application Frameworks

Our experiments with bytecode transfer and untrusted
code execution were carried out in the context of Java ap-
plets and Jini service proxies. While the same instrumen-
tation mechanisms apply in both cases (and, in general, for
arbitrary bytecode), the transport mechanism is modified at
different points. In the following, we refer to the code which
carries out the bytecode instrumentation as the bytecode fil-
ter.

4.1. Java Applets

The ubiquity of Java applets and their usefulness comes
at the price of an increased security risk owing to unin-
tentional execution of malicious mobile code during web
browsing.

There are two obvious ways of inserting a Java bytecode
filter into the network and browser architecture. One ap-
proach would be to modify the class loader of the Java vir-
tual machine used by the browser. The other is to capture
and modify Java bytecode before it enters the browser. The
latter provides an easier experimental framework, since a
user can easily configure his or her browser to obtain web
content through a piece of software called a network proxy.
This can be done by a simple modification to a standard
browser dialog box. In contrast, modifying the class loader
of the Java virtual machine requires installation of special-
purpose code in every browser. Moreover, using a standard
proxy interface allows us to install a Java-based “security-
tuner” interface in every browser, which allows the user to
specify their security constraints. Thus a proxy interface
provides a simple, customizable and flexible framework for
developing and testing Java bytecode filters.

The basic architecture of our system is shown in Fig-
ure 5. When the web browser requests a web page or applet,
this request goes through the network proxy. The proxy for-
wards the request to the web server and receives the desired
display or executable content. When the web server sends a
Java applet, the proxy will pass the applet code to the byte-
code filter. The bytecode filter will examine the bytecode
for potential risks and modify the bytecode before sending
the code for execution to the web browser. In this way, the
web browser only receives bytecode that has been screened.
The proxy also has access to a repository of Java classes, in-
cluding secure safe classes that can be substituted for stan-
dard library classes and implementations of user-interface
methods. The user interface, written in Java and run as an

Juniper Ex. 1008-p. 5 
Juniper v Finjan

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


