ELECTROMAGNETIC THEORY OF PROPAGATION INTEREERENCE AND DIFFRACTION OF LIGHT Sixth Edition
MAX BORN \& EMIL WOLF

## Pergamon Press

# Principles of Optics 

 Electromagnetic Theory of Propagation, Interference and Diffraction of Lightby
MAX BORN
M.A., Dr.Phil., F.R.S.

Nobel Laureate
Formerly Professor at the Universities of Göttingen and Edinburgh and
EMIL WOLF
Ph.D., D.Sc.
Professor of Physics, University of Rochester, N.Y.
with contributions by
A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman and W. L. Wheook

SIXTH EDITION


## PERGAMON PRESS

OXFORD • NEW YORK • TORONTO • SYDNEY • PARIS • FRANKFURT



Copyright (C) 1980 Max Born and Emil Wolf All Rights Reserved. No pant of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechañical, photocopying, recording or otherwise, without permission in writing from the copyright holders

First edition 1959
Second (revised) edition 1964
Third (revised) edition 1965
Fourth (revised) edition 1970
Fifth (revised) edition 1975
Reprinted 1975; 1977
Sixth edition 1980
Library of Congress Cataloging in Publication Data Born, Max
Principles of optics. - 6th ed.

1. Optics - Collected works
I. Title II. Wolf, Emil

535 QG351 80-41470
ISBN 0-08-026482-4 hardcover ISBN 0-08-026481-6 flexiçover

Let $c$ be the distance between the focal points $F_{0}^{\prime}$ and $F_{1}$. Since the image space of the first transformation coincides with the object space of the second,

$$
\begin{equation*}
Z_{1}=Z_{0}^{\prime}-c, \quad Y_{1}=Y_{0}^{\prime} \tag{23}
\end{equation*}
$$

Elimination of the coordinates of the intermediate space from (22) by means of (23) gives

Let

$$
\left.\begin{array}{l}
Y_{1}^{\prime}=\frac{Z_{1}^{\prime} Y_{1}}{f_{1}^{\prime}}=\frac{Z_{1}^{\prime} Y_{0}^{\prime}}{f_{1}^{\prime}}=\frac{Z_{1}^{\prime} f_{0} Y_{0}}{f_{1}^{\prime} Z_{0}}=\frac{f_{0} f_{1} Y_{0},}{f_{0} f_{0}^{\prime}-c Z_{0}}, \\
Z_{1}^{\prime}=\frac{f_{1} f_{1}^{\prime}}{Z_{1}}=\frac{f_{1} f_{1}^{\prime}}{Z_{0}^{\prime}-c}=\frac{f_{1} f_{1}^{\prime}}{\frac{f_{0} f_{0}^{\prime}}{Z_{0}}-c}=\frac{f_{1} f_{1}^{\prime} Z_{0}}{f_{0} f_{0}-c Z_{0}} \tag{24}
\end{array}\right\}
$$

$$
\left.\begin{array}{cc}
Y=Y_{0}, & Z=Z_{0}-\frac{f_{0} f_{0}^{\prime}}{c} \\
Y^{\prime}=Y_{1}^{\prime}, & Z^{\prime}=Z_{1}^{\prime}+\frac{f_{1} f_{1}^{\prime}}{c} \tag{2ธ}
\end{array}\right\}
$$

Equations (25) express a change of coordinates, the origins of the two systems being shifted by distances $f_{0}^{\prime} f_{0} / c$ and $-f_{1} f_{1}^{\prime} / c$ respectively in the $Z$-direction. In terms of these variables, the equations of the combined transformation become

$$
\begin{equation*}
\frac{Y^{\prime}}{Y}=\frac{f}{Z}=\frac{Z^{\prime}}{f^{\prime}} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
f=-\frac{f_{0} f_{1}}{c}, \quad f^{\prime}=\frac{f_{0}^{\prime} f_{1}^{\prime}}{c} \tag{27}
\end{equation*}
$$

The distance between the origins of the new and the old systems of coordinates, i.e. the distances $\delta=F_{0} F$ and $\delta^{\prime}=F_{1}^{\prime} F^{\prime}$ of the foci of the equivalent transformation from the foci of the individual transformations are seen from (25) to be

$$
\begin{equation*}
\delta=\frac{f_{0} f_{0}^{\prime}}{c}, \quad \delta^{\prime}=-\frac{f_{1} f_{1}^{\prime}}{c} . \tag{28}
\end{equation*}
$$

If $c=0$, then $f=f^{\prime}=\infty$ so that the equivalent collineation is telescopic. The equations (24) then reduce to

$$
\left.\begin{array}{l}
Y_{1}^{\prime}=\frac{f_{1}}{f_{0}^{\prime}} Y_{0}  \tag{29}\\
Z_{1}^{\prime}=\frac{f_{1} f_{1}^{\prime}}{f_{0} f_{0}^{\prime}} Z_{0} ;
\end{array}\right\}
$$

the constants $\alpha$ and $\beta$ in (18) of the equivalent transformation, are therefore

$$
\begin{equation*}
\alpha=\frac{f_{1}}{f_{0}^{\prime}}, \quad \beta=\frac{f_{1} f_{1}^{\prime}}{f_{0} f_{0}^{\prime}} \tag{30}
\end{equation*}
$$

The angular magnification is now

$$
\begin{equation*}
\frac{\tan \gamma^{\prime}}{\tan \gamma}=\frac{\alpha}{\beta}=\frac{f_{0}}{f_{1}^{\prime}} \tag{31}
\end{equation*}
$$

If one or both of the transformations are telescopic, the above considerations must be somewhat modified.

We shall now tions. In this lie in the imn powers of off be neglected.

### 4.4.1 Refra।

Consider a pe two homoger rays in both origin will be symmetry. Let $P_{0}\left(x_{0}\right.$, respectively. §4.1 (40), aI the two rays
where, acco
$r$ being the
Let us ex to lie in th $P_{1}$ will ther rays, so the Now fror
and substit

$$
y_{1}=
$$

* As befo used. The v the Teachin!


### 4.4 GAUSSIAN OPTICS

We shall now study the elementary properties of lenses, mirrors, and their combinations. In this elementary theory only those points and rays will be considered which lie in the immediate neighbourhood of the axis; terms involving squares and higher powers of off-axis distances, or of the angles which the rays make with the axis, will be neglected. The resulting theory is known as Gaussian optics.*

### 4.4.1 Refracting surface of revolution

Consider a pencil of rays incident on a refracting surface of revolution which separates two homogeneous media of refractive indices $n_{0}$ and $n_{1}$. To begin with, points and rays in both media will be referred to the same Cartesian reference system, whose origin will be taken at the pole $O$ of the surface, with the $z$-direction along the axis of symmetry.
Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ be points on the incident and on the refracted ray respectively. Neglecting terms of degree higher than first, it follows from §4.1 (29), $\S 4.1(40)$, and $\S 4.1$ (44) that the coordinates of these points and the components of the two rays are connected by the relations

$$
\left.\begin{array}{l}
x_{0}-\frac{p_{0}}{n_{0}} z_{0}=\frac{\partial T^{(2)}}{\partial p_{0}}=2 \mathscr{A} p_{0}+\mathscr{C} p_{1} \\
x_{1}-\frac{p_{1}}{n_{1}} z_{1}=-\frac{\partial T^{(2)}}{\partial p_{1}}=-2 \mathscr{A} p_{1}-\mathscr{C} p_{0}, \tag{lb}
\end{array}\right\}
$$

where, according to §4.1 (45),

$$
\begin{equation*}
\mathscr{A}=\mathscr{B}=\frac{1}{2} \frac{r}{n_{1}-n_{0}}, \quad \mathscr{C}=-\frac{r}{n_{1}-n_{0}} \tag{2}
\end{equation*}
$$

$r$ being the paraxial radius of curvature of the surface.
Let us examine under what conditions all the rays from $P_{0}$ (which may be assumed to lie in the plane $x=0$ ) will, after refraction, pass through $P_{1}$. The coordinates of $P_{1}$ will then depend only on the coordinates of $P_{0}$ and not on the components of the rays, so that when $q_{1}$ is eliminated from (lb), $q_{0}$ must also disappear.
Now from the first equation (1b)

$$
\begin{equation*}
q_{1}=\frac{1}{\mathscr{C}}\left\{y_{0}-q_{0}\left(2 \mathscr{A}+\frac{1}{n_{0}} z_{0}\right)\right\}, \tag{3}
\end{equation*}
$$

and substituting this into the second equation, we obtain

$$
\begin{equation*}
y_{1}=-\left(2 \mathscr{B}-\frac{1}{n_{1}} z_{1}\right) \frac{1}{\mathscr{C}} y_{0}+\left[\frac{1}{\mathscr{C}}\left(2 \mathscr{B}-\frac{1}{n_{1}} z_{1}\right)\left(2 \mathscr{A}+\frac{1}{n_{0}} z_{0}\right)-\mathscr{C}\right] q_{0} \tag{4}
\end{equation*}
$$

# DOCKET <br> A LARM 

## Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

## Real-Time Litigation Alerts



Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

## Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

## Analytics At Your Fingertips



Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

## API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

## LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

## FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

## E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

