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Preface 

This book had its inception in the early 1980s, when Bob Fischer and 
I, as coeditors of the then Macmillan, now McGraw-Hill, SerieB on Op
tical and Electro-Optical Engineering, were planning the sort of books 
we wanted in the series. The concept was outlined initially in 1982, 
and an extensive proposal was submitted to, and accepted by, 
Macmillan in 1986. At this point my proposed collaborators elected to 
pursue other interests, and the project was put on the shelf until it 
was revived by the present set of authors. 

My coauthor is Genesee Optics Software, Inc. Obviously the book is 
the product of the work of real people, i.e., myself and the staff of 
Genesee. In alphabetical order, the Genesee personnel who have been 
involved are Charles Dubois, Henry Gintner, Robert Macintyre, 
David Pixley, Lynn VanOrden, and Scott Weller. They have been re
sponsible for the computerized lens data tables, lens drawings, and ab
erration plots which illustrate each lens design. 

Many of the lens designs included in this book are from OPTICS 
TOOLBOX® (a software product of Genesee Optics Software), which 
was originally authored by Robert E. Hopkins and Scott W. Weller. 
OPTICS TOOLBOX is a collection of lens designs and design commen
tary within an expert-system, artificial-intelligence, relational data 
base. 

This author's optical design experience has spanned almost five de
cades. In that period lens design has undergone many radical changes. 
It has progressed from what was a semi-intuitive art practiced by a 
very small number of extremely patient and dedicated lovers of detail 
and precision. These designers used a very limited amount of labori
ous computation, combined with great understanding of lens design 
principles and dogged perseverance to produce what are now the clas
sic lens design forms. Most of these design Jonns are still the best, and 
as such are the basis of many modern optical systems. However, the 
manner in which lenses are designed today is almost completely dif
ferent in both technique and philosophy. This change is, of course, the 

Ix 
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x Preface 

result of the vastly increased computational speed now available to 
the lens designer. 

In essence, much modern lens design consists of the selection of a 
starting lens form and its subsequent optimization by an automatic 
lens design program, which may or may not be guided or adjusted 
along the way by the lens designer. Since the function of the lens de
sign program is to drive the design form to the nearest local optimum 
(as defu?.ed by a merit function) , it is obvious that the starting design 
form and the merit function together uniquely define which local op
timum design will be the result of this process. 

Thus it is apparent that, in addition to a knowledge of the principles 
of optical design, a knowledge of appropriate starting-point designs 
and of techniques for gtiiding the design program have become essen
tial elements of modern lens design. The lens designs in this book 
have been chosen to provide a good selection of starting-point designs 
and to illustrate important design principles. The design techniques 
described are those which the author has found to be useful in design
ing with an optimization program. Many of the techniques have been 
developed or refined in the course of teaching lens design and optical 
system de~ign; indeed, a few of them were initially suggested or in
spired by my students. 

In order to maximize their usefulness, the lens designs in this book 
are presented in three parts: the lens prescription, a drawing of the 
lens which includes a marginal ray and a full-field principal ray, and 
a plot of the aberrations. The inclusion of these two rays allows the 
user to determine the approximate path of any other ray of interest. 
For easy comparison, all lenses are shown at a focal length of approx
imately 100, regardless of their application. The performance data is 
shown as aberration plots; we chose this in preference to MTF plots 
because the MTF is valid only for the focal length for which it was 
calculated, and because the MTF cannot be scaled. The aberration 
plots can be scaled, and in addition they indicate what aberrations are 
present and show which aberrations limit the performance of the lens. 
We have expanded on the usual longitudinal presentation of spherical 
aberration and curvature of field by adding ray intercept plots in 
three colors for the axial, 0. 7 zonal, and full-field positions. We feel 
that this presentation gives a much more complete, informative, and 
useful picture of the characteristics of a lens design. 

This book is intended to build on some knowledge of both geometri
cal optics and the basic elements of lens design. It is thus, in a sense, 
a companion volume to the author's Modem Optical Engineering, 
which covers such material at some length. Presumably the user of 
this text will already have at least a re~onable familiarity with this 
material. 
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Preface xi 

There are really only a few well-understood and widely utilized 
principles of optical design. If one can master a thorough understand
ing of these principles, their effects, and their mechanisms, it is easy 
to recognize them in existing designs and also easy to apply them to 
one's own design work. It is our intent to promote such understanding 
by presenting both expositions and annotated design examples of 
these principles. 

Readers are free to use the designs contained in this book as starting 
points for their own design efforts, or in any other way they see fit. Most 
of the designs presented have, as noted, been patented; such designs may 
or may not be currently subject to legal prot.ection, although there may, 
of course, be differences of opinion as to the effectiveness of such protec
tion. The reader must accept full responsibility for meeting whatever 
limitations are imposed on the use of these designs by any patent or 
copyright coverage (whether indicated herein or not). 

Warren J. Smith 

, 
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Chapter 

1 
Introduction 

Modern Lens Design is intended as an aid to lens designers who work 
with the many commercially available lens design computer pro
grams. We assume that the reader understands basic optical princi
ples and may, in fact, have a command of the fundamentals of classi
cal optical design methods. For those who want or need information in 
these areas, the following books should prove helpful. This author's 
Modern Optical Engineering: The Design of Optical Systems, 2d ed., 
McGraw-Hill, 1990, is a comprehensive coverage of optical system de
sign; ~t includes two full chapters which deal specifically with lens de
sign in considerable detail. Rudolf Kingslake's Optical System Design 
(1983), Fundamentals of Lens Design (1978), and A History of the Pho
tographic Lens (1989), all by Academic Press, are complete, authori
tative, and very well written . . 

Authoritative books on lens design are rare, especially in English; 
there are only a few others available. The Kingslake series Applied 
Optics and Optical Engi,neering, Academic Press, contains several 
chapters of special interest to lens designers. Volume 3 (1965) has 
chapters on lens design, photographic objectives, and eyepieces. Vol
ume 8 (1980) has chapters on camera lenses, aspherics, automatic de
sign, and image quality. Volume 10 (1987) contains an extensiv:e 
chapter on afocal systems. Milton Laikin's Lens Design, Marcel 
Dekker, 1991, is a volume similar to this one, with prescriptions and 
lens drawings. Its format differs in that no aberration plots are in
cludes:l; instead, modulation transfer function (MTF) data for a specific 
focal length andfnumber are given. Now out of print, Arthur Cox'sA 
System of Optical Design, Focal Press, 1964, contains a complete, if 
unique, approach to lens design, plus prescriptions and aongitudilial) 
aberration plots for many lens design patents. 

This book has several primary aims. It is intended as a source book 

1 
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2 Chapter One 

for a variety of designed lens types which can serve as suitable start
ing points for a lens designer's efforts. A study of the comparative 
characteristics of the annotated designs contained herein should also 
illustrate the application of many of the classic lens design principles. 
It is also intended as a handy, if abridged, reference to many of the 
equations and relationships which find frequent use in lens design. 
Most of these are contained in the Formulary at the end of the book. 
And last, but not least, the text contains extensive discussions of de
sign techniques which are appropriate to modern optical design with 
an automatic lens design computer program. 

The book begins with a discussion of automatic lens design pro
grams and how to use them. The merit function, optimization, vari
ables, and the various techniques which are useful in connection with 
a program .. are covered. Chapter 3 details many specific improvement 
strategies which may be applied to .an existing design to improve its 
performance. The evaluation of a design is discussed from the stand
point of ray and wave aberrations, and integrated with such standard 
measures as MTF and Strehl ratio. The sample lens designs follow. 
Each presents the prescription data, a drawing of the lens with mar· 
ginal and chief rays, and an aberration analysis consisting of ray in· 
tercept plots for three field angles, longitudinal plots of spherical ab
erration and field curvature, and a plot of distortion. A discussion of 
the salient features of each design accompanies the sample designs, 
and comments (in some cases quite extensive) regarding the desjgn 
approach are given for each class of lens. The Formulary, intended as 
a convenient reference, concludes the book. 

The design of the telescope objective is covered in Chap. 6, begin
ning with the classic forms and continuing with several possible mod
ifications which can be used to improve the aberration correction. 
These are treated in considerable detail because they represent tech
niques which are generally applicable to all types of designs. For sim
ilar reasons, Chap. 8 deals with the basic principles of airspaced 
anastigmats in a rather extended treatment. The complexities of the 
interrelationships involved in the Cooke triplet anastigmat are impor
tant to understand, as are the (almost universal) relationships be
tween the vertex length of an ordinary anastigmat lens and its capa
bilities as regards speed and angular coverage. 
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Chapter 

2 
Automatic Lens Design: 

2.1 The Merit Function 

Managing the 
Lens Design Program 

What is usually referred to as automatic lens design is, of course, noth
ing of the sort. The computer programs which are so described are ac
tually optimization programs which drive an optical design to a local 
optimum, as defined by a merit function (which is not a true merit 
function, but actually a defect function). In spite of the preceding dis
claimers, we will use these commonly accepted terms in the discus
sions which follow. 

Broadly speaking, the mei:it function can be described as a combi
nation or function of calculated characteristics, which is intended to 
completely describe, with a single number, the value or quality of a 
given lens design. This is obviously an exceedingly difficult thing to 
do. The typical merit function is the sum of the squares of many image 
defects; usually these image defects are evaluated for three locations 
in the field of view (unless the system covers a very large or a very 
small angular field). The squares of the defects are used so that a neg
ative value of one defect does not offset a positive value of some other 
defect. 

The defects may be of many different kinds; usually most are re
lated to the quality of the image. However, any characteristic which 
can 'be calculated may be assigned a target value and its departure 
from that target regarded as a defect. Some less elaborate programs 
utilize the third-order (Seidel) aberrations; these provide a rapid and 
efficient way of adjusting a design. These cannot be regarded as opti
mizing the image quality, but they do work well in correcting ordi
nary lenses. Another type of merit function traces a large number of 

3 
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4 Chapter Two 

rays from an object point. The radial distance of the image plane in
tersection of the ray from the centroid of all the ray intersections is 
then the image defect. Thus the merit function is effectively the sum 
of the root-mean-square (rms) spot sizes for several field angles. This 
type of merit function, while inefficient in that it requires many rays 
to be traced, has the advantage that it is both versatile and in some 
ways relatively foolproof. Some merit functions calculate the values of 
the classical aberrations, and convert (or weight) them into their 
equivalent wavefront deformations. (See Formulary Sec. F-12 for the 
conversion factors for several common aberrations.) This approach is 
very efficient as regards computing time, but requires careful design 
of the merit function. Still another type of merit function uses the 
variance of the wavefront to define the defect items. The merit func
tion used in the various David Grey programs is of this type, and is 
certainly one of the best of the commercially available merit functions 
in producing a good balance of the aberrations. 

Characteristics which do not relate to image quality can also be con
trolled by the lens design program·. Specific construction parameters, 
such as radii, thicknesses, spaces, and the like, as well as focal length, 
working distance, magnification, numerical aperture, required clear 
apertures, etc., can be controlled. Some programs include such items 
in the merit function along with the image defects. There are two 
drawbacks which somewhat offset the neat simplicity of this ap
proach. One is that if the first-order characteristics which are targeted · 
are not initially close to the target values, the program may correct 
the image aberrations without controlling these first-order character
istics; the result may be, for example, a well-corrected lens with the 
wrong focal length or numerical aperture. The program often finds 
this to be a local optimum and is unable to move away from it. The 
other drawback is that the inclusion of these items in the merit func
tion has the effect of slowing the process of improving the image qual
ity. An alternative approach is to use a system of constraints outside 
the merit function. Note also that many of these items can be con
trolled by features which are included in almost all programs, namely 
angle-solves and height-solves. These algebraically solve for a radius 
or space to produce a desired ray slope or height. 

In any case, the merit function is a summation of suitably weighted 
defect items which, it is hoped, describes in a single number the worth 
of the system. The smaller the value of the merit function, the better 
the lens. The numerical value of the merit function depends on the 
construction of the optical system; it is a function of the construction 
parameters which are designated as variables. Wit1iout getting into 
the details of the mathematics involved, we can realize that the merit 
function is an n-dimensional space, where n is the number of the vari-
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Automatic Lens Design s 

able constructional parameters in the optical system. The task of the 
design program is to find a location in this space (i.e., a lens prescrip
tion or a solution vector) which minimizes the size of the merit func
tion. In general, for a lens of reasonable complexity there will be many 
such locations in a typical merit function space. The automatic design 
program will simply drive the lens design to the nearest mini.mum in 
the merit function. 

2.2 Optimization 

The lens design program typically operates this way: Each variable 
parameter is changed (one at a time) by a small increment whose size 
is chosen as a compromise between a large value (to get good numer
ical accuracy) and a small value (to get the local differential). The 
change produced in every item in the merit function is calculated. The 
result is a matrix of the partial derivatives of the defect items with 
respect to the parameters. Since there are usually many more defect 
items than variable parameters, the solution is a classical least .. 
squares solution. It is based on the assumption that the relationships 
between the defect items and the variable parameters are linear. 
Since this is usually a false assumption, an ordinary least-squares so
lution will often produce an unrealizable lens or one which may in fact 
be worse than the starting design. The damped least-squares solution, 
in effect, adds the weighted squares of the parameter changes to the 
merit function, heavily penalizing any large changes and thus limit
ing the size of the changes in the solution. The mathematics of this 
process are described in Spencer, "A Flexible Automatic Lens Correc
tion Program/ 1 Applied Optics, vol. 2, 1963, pp. 1257-1264, and by 
Smith in W. Driscoll (ed.), Handbook of Optics, :fy.IcGraw-Hill, New 
York, 1978. 

If the changes are small, the nonlinearity will not ruin the process, 
and the solution, although an approximate one, will be an improve
ment on the starting design. Continued repetition of the process will 
eventually drive the design t.o the nearest local optimum. 

One can visualize the situation by assuming that there are only two 
variable parameters. Then the merit function space can be compared 
to a landscape where latitude and longitude correspond to the vari
ables and the elevation represents the value of the merit function. 
Thus the starting lens design is represented by a particular location in 
the landscape and the optimization routine will move the lens design 
downhill until a minimum elevation is found. Since there may be 
many depressions in the terrain of the landscape, this optimum may 
not be the best there is; it is a local optimum and there can be no as
surance (except in very simple systems) that we have found a global 
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6 Chapter Two 

optimum in the merit function. This simple topological analogy helps 
to understand the dominant limitations of the optimization process: 
the program finds the nearest minimum in the merit function, and 
that minimum is uniquely determined by the design coordinates at 
which the process is begun. The landscape analogy is easy for the hu
man mind to comprehend; when it is extended to a 10- or 20-
dimension space, one can realize only that it is apt to be an extremely 
complex neighborhood. 

2.3 Local Minima 

Figure 2.1 shows a contour map of a hypothetical two-variable merit 
function, with three significant local minima at points A, B, and C; 
there are also three other minima at D, E, and F. It is immediately 
apparent that if we begin an optimization at point Z, the minimum at 
point B is the only one which the routine can find. A start at Yon the 
ridge at the lower left will go to the minimum at C. However, a start 

Figure 2:1 Topography of a hypothetical two-variable merit function, with three signif'.
icant minima .CA, B, C) and three trivial minima (D, E, F). The minimum to which a 
design program will go depends on the point at which the optimization process is 
started. Starting points X, Y, and Z each lead to a different design minimum; other 
starting points can lead to one of the trivial minima. 

Apple v. Corephotonics Page 18 of 88 Apple Ex. 1006



Automatic Lens Design 7 

at X, which is only a short distance away from Y, will find the best 
minimum of the three, at point A If we had even a vague knowledge 
of the topography of the merit function, we could easily choose a start
ing point in the lower right quadrant of the map which would guar
antee finding point A. Note also that a modest change in any of the 
three starting points could cause the program to stagnate in one of the 
trivial minima at D, E, or F. It is this sort of minimum from which one 
can escape by '~olting" the design, as described below. 

The fact that the automatic design program is severely limited and 
can find only the nearest optimum emphasizes the need for a knowl
edge of lens design, in order that one can select a starting design form 
which is close to a good optimum. This is the only way that an auto
matic program can systematically find a good design. If the program 1s 
started out near a poor local optimum, the result is a poor design. 

The mathematics of the damped least-squares .solution involves the 
inversion of a matrix. In spite of the damping action, the process can 
be slowed or aborted by either of the following conditions: (1) A vari
able which does not change (or which produces only a very small 
change in) the merit function items. (2) Two variables which have the 
same, nearly the same, or scaled effects on the items of the merit func
tion. Fortunately, these conditions are rarely met exactly, and they 
can be easily avoided. 

If the program settles into an unsatisfactory optimum (such as those 
at D, E, and F in Fig. 2.1) it can often be jolted out of it by manually 
introducing a significant change in one or more parameters. The trick 
is to make a change which is in the direction of a better design form. 
(Again, a knowledge of lens .designs is virtually a necessity.) Some
times simply freezing a variable to a desirable form can be sufficient 
to force a move into a better neighborhood. The difficulty is that too 
big~ change may cause rays to miss surfaces or to encounter total in
ternal reflection, and the optimization process may break down. Con
versely, too small a change may not be sufficient to allow the design to 
escape from a poor local optimum. Also, one should remember that if 
the program is one which adjusts (optimizes) the clamping factor, the 
factor is usually made quite small near an optimum, because the pro
gram is taking small steps and the situation looks quite linear; after 
the system is jolted, it is probably in a highly nonlinear region and a 
big damping factor may be needed to prevent a breakdown. A manual 
increase of the damping factor can often avoid this problem. 

Another often-encountered problem is a design which persists in 
moving to an obviously undesirable form (when you know that there is 
a much better, very different one-the one that you want). Freezing 
the form of one part of the lens for a few cycles of optimization will 
often allow the rest of the lens to settle into the neighborhood. of the 
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desired optimum. For example, if one were to try to convert a Cooke 
triplet into a split front crown form, the process might produce either 
a form which is like the original triplet with a narrow airspaced crack 
in the front crown, or a form with rather wild meniscus elements. A 
technique which will usually avoid these unfortunate local optima in 
this case is to freeze the front element to a piano-convex form by fixing 
the seconci surface to a plane for a few cycles of optimization. Again, 
one must know which lens forms are the good ones. 

2.4 Types of Merit Functions 

Many programs allow the user to define the merit function. This can 
be a valuable feature because it is almost impossible to design a truly 
universal merit function. As an example, consider the design of a sim
ple Fraunhof er telescope objective: a merit function which controls the 
spherical and chromatic aberrations of the axial marginal ray and the 
coma of the oblique ray bundle (plus the focal length) is all that is nec
essary. If the design complexity is increased by allowing the airspace 
to vary and/or adding another element, the merit function may then 
profitably include entries which will control zonal spherical, 
spherochromatism, and/or fifth-order coma. But as long as the lens is 
thin and in contact with the aperture stop, it would be foolish to in
clude in the merit function entries to control field curvature and astig
matism. There is simply no way that a thin stop-in-contact lens can 
have any control over the inherent large negative astigmatism; the 
presence of a target for this aberration in the merit function will sim
ply slow down the solution process. It would be ridiculous to use a 
merit function of the type required for a photographic objective to .de
sign an ordinary telescope objective. (Indeed, an attempt to correct the 
field curvature may lead to a compromise design with a severely 
undercorrected axial spherical aberration which, in combination with 
coma, may fool the computer program into thinking that it has found 
a useful optimum.) 

There are many design tasks in this category, where the require
ments are effectively limited in number and a simple, equally limited 
merit function is clearly the best choice. In such cases, it is usually 
obvious that some specific state of correction will yield the best re
sults; there is no need to balance the correction of one aberration 
against another. 

More often, however, the situation is not so simple; compromises 
and balances are required and a more complex, suitably weighted 
merit function is necessary. This can be a delicate and somewhat 
tricky matter. For example, in the design of a lens with a significant 
aperture and field, there is almost always a (poor) local optimum in 
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Automatic Lena Design 9 

which (1) the spherical aberration is left quite undercorrected, (2) a 
compromise focus is chosen well inside the paraxial focus, (3) the 
Petzval fie~d is made inward-curving, and (4) overcorrected oblique 
spherical aberration is introduced to ''balance" the design. A program 
which relies on the rms spot radius for its merit function is very likely 
to fall into this trap. A better design usually results if the spherical 
(both axial and oblique) aberrations are corrected, the Petzval curva
ture is reduced, and a small amount of overcorrected astigmatism is 
introduced. When one recognizes this sort of situation, it is a simple 
matter to adjust the weighting of the appropriate targets in the merit 
function to force the design into a form with the type of aberration bal
ance which is desired. Another way to avoid this problem is to force 
the system to be evaluated/designed at the paraxial focus rath~r than 
at a compromise focus, i.e., to not allow defocusing. As can be seen, the 
design of a general-purpose merit function which will optimally bal
ance a wide variety of applications is not a simple matter. 

Although it is not always necessary, there are occasions when it is 
helpful to begin the design process by controlling only the first-order 
properties (image size, image location, spatial limitations, etc.). Then 
one proceeds to control the chromatic and perhaps the Petzval aberra
tions. (Things may even go better if the first~order and the chrom~tic 
are fairly completely worked out by hand before submitting the sys
tem to an automatic design process.) The next step in the sequence ~ 
to correct the primary aberrations (spherical, coma, astigmatism, anq 
distortion), either directly or by using the Seidel coefficients, and· fi. 
nally proceed to balancing and correcting the higher-order residuals. 
This sort of ordered approach is sometimes useful (or even necessary) 
when one is exploring terra incognita, and, of course, it requires a 
user-defined merit function if it is to be implemented. 

2.5 Stagnation 

Sometimes the automatic design process will stagnate and the conver
gence toward a solution will become so slow as to be imperceptible. 
This can result from being· in a very flat and broad optimum in the 
merit function. It can also result from an ill"designed merit funct~on. 
Often first-order properties which are specified in the merit function 
are the cause of the problem. It is only too easy to require contradic
tory 'or redundant characteristics. This is especially true for zoom 
lenses or multiconfiguration systems, which can be confusingly com
plex. When stagnation occurs, or convergence is slower than you know 
it should be, it is wise to stop and examine the merit function for prob" 
lems. Look critically at every item in the merit function and consider 
what it is intended to be doing and what it actually does. Eliminate 
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redundancies and tcy to make each entry in the merit function explic
itly control its intended characteristic. Stagnation may also result 
from a starting design which is so far from a solution that differential 
changes to the variables have a negligible effect. 

2.6 Generalized Simulated Annealing 

The discussions above have centered on the standard damped least
squares program, or its equivalent. There have been several versions 
of random search programs proposed in the past. The most recent of 
these is quite sophisticated and is called generalized simulated an
nealing. In this, the computer ranaomly selects the lens dimensions 
(within a limited range and according to some probability distribu
tion) and evaluates the resulting lens prescription. If the new version 
is better than the old, it is unconditionally accepted. If it is worse, it 
may be accepted, on the basis of random chance, weighted by a prob
ability function which reduces the chance of acceptance in proportion 
to the amount that the lens is worse than the original form. This sort 
of approach obviously allows the program an easy escape from the lo
cal minima described with Fig; 2.1, but it equally obviously requires a 
vecy large number of trials before a random chance can find a good 
combination of dimensions for the lens. Nonetheless, it· does work, but 
not rapidly. Perhaps as computers increase in speed, a program of this 
sort will displace or supplement the damped least-squares as the rou
tine of choice for automatic lens design. 

2. 7 Considerations about Variables for 
Optimization 

The potential variables for use in optimization include: the surface 
curvatures, conic constants, and asphericities; the surface spacings; 
and the refractive characteristics of the materials involved. Occasion
ally tilts and decentrations are also included as variables. 

Materials 

Although the material characteristics are not continuous variables, 
for optical glasses at least, the index and dispersion (or V value) can 
be varied within the boundaries of the glass map (Fig. 2.2) as if they 
were. The real glass nearest the optimized values can be substituted 
for the optimized glass to achieve nearly the same resultant design af
ter another cycle or two of optimization with the real glass. Note that 
this is not true for partial dispersions, since there are relatively few 
glasses with partial dispersions unusual enough to be useful in the 
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12 Chapter Two 

correction of secondary spectrum. Obviously, for applications outside 
the spectral regions where optical glass is usable, one cannot treat the 
refractive characteristics as variables, since the available materials 
tend to be few and far between. 

In many of the simpler types of designs it is essential to allow the 
glass characteristics to vary. In the Cooke triplet for example, the re
lationship between the V values of the crown and flint elements de
termines the overall length of the lens. As described in Sec. 8.3, the 
length of a triplet (and that of most anastigmats) determines the 
amount of higher-order spherical aberration and astigmatism; these 
in turn determine the aperture and field coverage capabilities of the 
lens. If these types of lenses are to be optimized to suit the application 
at hand, the glass characteristics must be allowed to vary. 

Some optimization programs have difficulty with the bounds of the 
glass map; if this is a problem, the optimization process is often facil
itated by starting the variable glass well away from the boundary, 
so that it can find its best value before encountering the boundary 
problem. 

It is often better to vary the flint glasses than to vary the crowns. 
This is because the crowns usually tend to go to the upper left corner 
(high index, high V value) of the glass map. Flints head for the lower 
right corner, and are then, of course, constrained to lie on the glass 
line. The glasses along the glass line are numerous, inexpensive, and 
almost universally well behaved. On the other hand, the crown 
glasses in the upper left corner include in their number many which 
are expensive and/or easily attacked by the environment. Thus one 
might be willing to accept the computer's choice of a glass along the 
glass line, but would prefer to make a more discriminating selection 
from among the others. 

Curvatures 

In general, one would expect to want to make use of every available 
variable. This is almost always true regarding the curvatures, all of 
which, unless there is a reason to constrain the shape of an element, 
are usually allowed to vary. 

Airspaces 

Ordinarily, airspaces may be regarded in the same light as curva
tures, since they are continuously variable and are very effective vari
ables. 

Defocusing 

Although the distance by which the design image plane departs from the 
paraxial focus is usually an airspace, and can be regarded as a variable, 
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Automatic Lena Design 13 

its effects can be insidious. If the image surface is allowed to depart from 
the paraxial focus from the beginning of the optimization process, an un
fortunate lens may result. .In some lenses, and with some optimization 
merit functions, the tendency is to produce a lens with: 

1. The image plane well inside the paraxial focus 

2. A large undercorrected spherical aberration 

3. A strongly inward-curving field 

4. A heavy overcorrecting oblique spherical 

Although this combination occupies a local optimum in the merit 
function, this is usually not the best state of correction. It fools the op
timization program because the undercorrected spherical causes the 
best axial focus to lie to the left of the paraxial focus and the 
overcorrected oblique spherical causes the best off-axis focus to lie to 
the right of the inward-curving field; the net result is that, to the pro
gram, the field seems flat. One can usually avoid this pitfall by not 
allowing any defocus in the early stages of the optimization and/or 
putting a heavy penalty on the defocusing. Note that for some lenses, 
such as non-diffraction-limited systems used with detectors, the cor
rection described above may in fact be a good one. See the comments 
on aberration balance in Sec. 3.8. 

Thickness 

Element thicknesses must be regarded quite differently than air
spaces. They must of cours~ Qe bounded by the necessity for a practical 
edge thickness for the positive elements and a reasonable center 
thickness for the negative elements. In many designs, element thick
ness is an insignificant and ineffective variable (and one whose effects 
are easily duplicated by an adjacent airspace). In· this circumstance 
one can arbitrarily select a thickness on the basis of economy or ease 
of fabrication. The elements in such designs are typically quite thin; 
see, for example, a telescope objective or an ordinary Cooke triplet. 

There are, however, many systems in which the element thickness 
is not only an effective variable, but one which is essential to the suc
cess of the design type. The older meniscus lenses (Protar, Dagor, etc.) 
and the double-Gauss forms depend on the separation of the concave 
and t:onvex surf aces of their thick meniscus components to control the 
Petzval curvature and, in many instances, the higher-order aberra
tions. In lenses of this type it is absolutely essential that these glass 
thicknesses be allowed to vary. 

One must be wary of and skeptical toward a thickness variable 
which is very weakly effective. Occasionally an optimization program 
will produce a design with an overly thick element, where the large 
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thickness produces only a very small improvement (which is not worth 
the added cost of producing the thick element). This occurs because 
the optimization routine will seek out any improvement that it can 
get, no matter how small, and without concern as to the cost. It is wise 
to test the value of a thick element if there is any doubt about its util
ity. This is readily accomplished with another optimization run which 
fixes the thickness in question to a smaller value. Very often the per
formance of the thin version will·not be noticeably different from that 
of the "optimum" thicker version. Although most significant with re
spect to lens thickness, this same rationale obvjously applies to air
spaces as well. 

Aspheric surfaces 

Surface aspherity can be an extremely effective (if sometimes expen
sive) variable, but it is one that often requires a bit of finesse. On oc
casion, one may be ill-advised to begin an optimization with the conic 
constant and all the aspheric deformation coefficients used simulta
neously as variables. The conic constant and the fourth-order defor
mation coefficient both affect the third-order aberrations in exactly 
the same way. Thus they are at least partially redundant, but more 
significantly, identical variables have an undesirable effect ·on the 
mathematics of the optimization process. It is often advisable to vary 
one or the other, but not both. A safe practice is to vary only the conic 
constant (or the fourth-order term) at first, and then add the higher
order terms (sixth, eighth, tenth) one at a time, as necessary. The 
tenth-order term is, in many systems, totally unnecessary, adding lit
tle or nothing to the quality of the system; in fact, the eighth-order 
term is often something that ean be done without. 

A surface defined by a tenth-order polynomial can cause the spher
ical aberration to be corrected exactly to zero at four· ray heights. If 
there are only four axial rays in the merit function, their ray intercept 
errors may all be brought to zero; the danger is that, between these 
rays, the residual aberration may be unacceptably large. A tenth
order surface can be a rather extreme shape. Thus the use of an ~ 
aspheric surface sometimes calls for more rays in the merit function 
than one might otherwise expect to need. With a program which al
lows wavefront deformation or optical path difference (OPD) targets 
in the merit function, the severity of this problem can be lessened. 

2.8 How to Increase the Speed or Field of a 
System and Avoid Ray Failure Problems 

Very often, the lens designer is faced with the necessity of increasing 
the speed (i.e., relative aperture, numerical aperture, etc.) and/or the 
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field of view of an existing optical system. There are two common rea
sons why this may be desirable. One may want to adapt an existing 
design (such as those in this book) to an application which requires a 
larger aperture or wider field than that for which the original lens has 
been configured. The other common situation is simply the creation of 
an entirely new system with a relatively large aperture and/or field. 
In either case, the difficulty which can arise is that the rays which are 
needed to design the system may not be able to get through the initial 
lens prescription. 

There are two reasons that a ray may not be able to get through. 
One reason is that the height of the ray at a surface may be greater 
than the radius of the surface; the ray simply misses the surface en
tirely and its path obviously cannot be calculated any further. The 
second reason is that the ray may encounter total internal reflection 
(TIR) in passing from a higher index to a lower; again, the ray path 
cannot be calculated. Each of these conditions represents a boundary 
which, if crossed, causes failure of the ray trace. Note also that, as 
these boundaries are approached, the situation rapidly becomes very 
unstable. This is because, close to the boundary, the angle of incidence 
(for the case of the ray approaching the value of the radius) or the an
gle of refraction (for the case of the ray approaching TIR) is very near 
to 90°. Near this angle, Snell's law of refraction (n sin I= n' sin I') 
becomes very nonlinear, producing a highly unstable situation which 
often explodes as the lens construction parameters are incremented in 
the course of the optimization. 

A good way of dealing with this situation is simply to back off from 
the aperture and/or field requirement that is causing the problem. 
Many design programs have the capability to easily adjust or scale the 
aperture and field angle. If a change is made to smaller values of ap
erture or field, the rays will no longer be so near to the failure bound
ary. If the lens is now optimized, the program is very likely to adjust 
the lens parameters so as to reduce the angles of incidence, because 
this is usually a factor which causes the aberrations to be reduced. 
The optimizing changes can thus be expected to pull the problem sit
uation in the system further away from the ray failure boundary, if 
this is possible. 

After the optimization has relaxed the problem, the field and/or the 
aperture can usually be adjusted (scaled) to a moderately larger value 
withdllt again encountering the failure boundary. Depending on just 
how sensitive the system is to the problem, an increase of about 10 to 
50 percent may be appropriate. Now another cycle of optimization will 
strongly tend to again reduce the troublesome angles of incidence. 

This process of adjusting (scaling) the field or the aperture to larger 
values and then optimizing is continued until the desired aperture or 
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field is attained without ray failures. This works well, provided that 
this desired result is possible for the lens configuration which is under 
study. It may be necessary to choose another configuration, usually 
one with more elements. When this is necessary, a drawing of the lens 
and rays (of the last design form which has successfully passed all the 
rays) will usually indicate which rays and which surfaces are causing 
the problem. One simply looks for angles of incidence or refraction 
which are large (and often near 90°). Then the offending element can 
be split into two (or more) elements which are shaped to reduce these 
angles. The scale-and-optimize process can now be repeated with a 
much improved chance of success. Note that, in general, the examina
tion of the critical ray paths (typically those of the marginal rays) for 
large angles of incidence or refraction is a technique which will often 
indicate the source of a design problem. 

2.9 Test Plate Fits, Melt Fits, and 
Thickness Fits 

When the deletetious effects of fabrication tolerances become too large 
to bear, a. technique commonly used to reduce these effects is to fit the 
lens design to the known values for the radius tooling and/or to the 
measured glass indices. The former is called a test plate (or test glass 
or tooling) fit; the latter is called a melt fit. 

The test plate fit is begun by first obtaining a list of the available 
test plate radii from the shop which is scheduled to fabricate the lens. 
It is wise to ascertain that the radius values of the list are not just 
nominal values, but are based on accurate and recent measurements 
of the test plates, since there is often a significant difference between 
the two . 

. The fit is carried out as follows: A surface is selected at which to 
begin the process. This selection is based on one of the following 
criteria: (1) the surface most sensitive to change,* (2) the surface with 
the shortest radius, (3) the strongest surface [i.e., with the largest sur
face power (n' - n )/r], or (4) the surface which shows the largest cur
vature difference from the nearest available test plate radius. Very of
ten all four of these criteria will indicate the same surface; if not, the 
choice of which one to use is almost a matter of taste. The nearest ra
dius on the test plate list is substituted for the selected surface and the 
lens is reoptimized, allowing all the variable parameters to change 

*Note that the relative sensitivity of any dimension of the system can be determined 
quite easily by making an incremental change in the dimension and noting the effect it 
produces on the merit function. This, of course, assumes a merit function which accu
rately represents the quality of the image. 
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(except of course, the radius which has been set to the test plate 
value). 

Another surface is then chosen and fixed to the nearest test plate 
radius; the lens is reoptimized again. This process is repeated until all 
the surfaces have been fitted to test plates. It is usually wise to avoid 
fitting both surfaces of a singlet (or all surfaces of a component) until 
all components have at least one fitted surface each. This allows the 
unfitted surface to vary and adjust for power, chromatic, and Petzval 
aberrations and the like for as long as possible. 

With a reasonably complete test plate list, all radii can usually be 
fitted without significa.D.tly degrading the image quality (i.e., the 
merit function). In fact, the merit function is often slightly improved 
by this process, because of the additional cycles of optimization which 
have been performed. If the test plate list is limited or has a gap in it, 
it may not be possible to fit all the design radii to test plates without 
degrading the performance. In such a case, one must either fabricate 
new tooling and test plates, or seek a new vendor for the parts. 

A melt fit reoptimizes the lens design by using measured data for 
the material indices instead of the nominal values from the glass cat
alog. This measured data comes in the form of what is called a melt 
sheet provided by the glass manufacturer or supplier. For noncritical 
applications, this data is usually sufficient. A worthwhile elaboration 
of the process is to determine the difference between the measured, in
dex values and the catalog values. These differences are then plotted 
against wavelength. This plot should be a smooth, relatively level 
line. A data point which does not plot smoothly is suspect; the mea
sured data may well be _in _error. Next, a smoothly drawn curve 
through the points is used to determine improved values for the index 
differences. These differences are then applied to the catalog values to 
arrive at better values for the measured melt data, and the improved 
values are used in the melt fit reoptimization. The smoothed curve of 
differences can also be used to determine the index for wavelengths 
which are not included in the melt sheet. 

An ordinary melt sheet will list the indices for the wavelengths of d, 
e, C, F, and g light. These are usually not individually measured. In
stead, the index is measured for d light and the index difference be
tween C and F light is measured. These two measurements are fed 
into a computer program which uses the known characteristics of the 
glass'type to calculate the indices fore, C, F, and g light. This, while 
not ideal, is adequate for many, even most, applications. However, for 
some critical applications, and for all applications in which an attempt 
has been made to reduce or correct the secondary spectrum, it is usu
ally quite unsatisfactory. For an additional charge, the glass manu
facturer can provide what is usually called a precision melt· sheet, for 
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which the indices have been measured individually, and to a greater 
precision. Index values for wavelengths specific to the application can 
also be measured. It is, of course, wise to subject even this data to the 
difference test and smoothing proce.ss described in the preceding para
graph. 

We called the last of these fits a thickness fit in the heading for this 
section. This is a process which is carried out during the final assem
bly of the lens. In sum, one reoptimizes the lens by varying the air
spaces of the system, using accurately mea8ured data for the radii, 
thicknesses, and indices of the fabricated elements. If the melt data 
and the test plate data are available, this just amounts to adding the 
measured element thicknesses and reoptimizing. 

As can be seen, all of the above procedures are designed to almost 
completely eliminate the effects of the fabrication tolerances on the 
performance of the system. What is left, instead of the tolerances, is 
the uncertainty or inaccuracy of the various measurements on which 
the fits are based. The effect is usually quite modest and, therefore, 
acceptable. However, these uncertainties are, in fact, the exact equiv
alent of tolerances in determining the performance of the fabricated 
system. 

2.1 o Spectral Weighting 

In any ray-tracing process, the index of refraction of the material is, of 
necessity, that corresponding to a single specific wavelength. Most 
lens design programs allow the use of only three wavelengths to rep
resent the spectral bandpass for which the system is to be designed. 
Several analysis programs allow the use of five or ten suitably 
weighted wavelengths in calculating such things as MTF, point 
spread functions, radial energy distributions, and the like. 

In either case, the question becomes, "What wavelengths should i 
use, and how should they be weighted?" For visual systems and just 
three wavelengths, the classical answer is to use d (or e), C, and F 
light, with weightings typically set at 1.0, 0.5, and 0.5 respectively. 
For other applications, this approximately corresponds to using the 
central wavelength and the wavelengths 25 percent from the extreme 
edges of the passband. If the results of an image analysis need not be 
especially precise, three wavelengths may be sufficient. For calcula
tions done in the midst of the design process, this is often good enough 
to enable a judgment as to the relative merit of, or the rate of improve
ment between, two stages in the design process. 

However, what should one do in general? To immediately dispose of 
the obvious, it is apparent that the more wavelengths that are used, 
the more accurate the results can be. That said, how do we select the 
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wavelengths to be used? There are three obvious choices. In order to 
assess the full effects of the chromatic aberrations, one would like to 
include the extreme long and short wavelengths. One would also prob
ably like to consider dividing the spectral weighting .function into in
crements of equal power or response, so that each wavelength would 
represent an equally weighted sector. But if this is done, the extremes 
of the spectral passband are not included. Another possible option is to 
choose wavelengths which are evenly distributed across the spectral 
band, and to weight them according to the spectral response function. 
One might choose an even distribution on a wavelength scale, or what 
might be a bit better, an even distribution on a wave number (recip
rocal wavelength) scale. 

From this it should be apparent that most wavelength and weight
ing choices are based on some sort of compromise. Often the outer two 
wavelengths are chosen to be fairly close to the ends of the passband 
and the intermediate wavelengths and weights are a compromise be
tween an even power distribution and an even wavelength spacing. If 
there are peaks or bumps in the spectral response function, wave
lengths are often selected to be at or near the peaks. Note that, to a 
limited extent, one's choices will partially control the design process: 
heavier weighting at the ends of the spectrum will obviously empha
size both primary and secondary chromatic aberration, sphero
chromatism, and the like; heavy weights on the central wavelengths 
will emphasize the monochromatic aberrations at the expense of the 
chromatic. 

2.11 How to Get Started 

Experienced designers are often asked questions such as "How do you 
know where to start?" or "How did you decide that a (name of a design 
type) could meet the specs?" or "Why did you shift the components 
around?'' 

The answer to these questions is almost always· "Experience," which 
probably means that the full answer is different for every problem. It 
would be foolhardy to pretend to be able to give a complete, definitive 
answer or set of answers to such questions, but there are a few guide
lines which should b~ reasonably dependable. 

Figure 2.3 is, in effect, a compilation of some of that experience. If 
the system to be designed roughly corresponds to a photographic ob
jective or to one of the other types indicated, the figure can b~ used as 
an easy guide to the selection of an appropriate form. In this plot the 
areas corresponding to various combinations of field and aperture are 
labeled to indicate the type of system which is commonly used there. 
Obviously the boundary of each area is fuzzy and ill-defined. In a pre-
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Figure 2.3 Map showing the design types which are commonly used for 
various combinations of aperture and field of view. 

sentation of this type there is also an implied level of performance 
within each area, which is presumably typical of each particular lens 
type. In general, the performance (image quality, resolution, or what
ever) is better when a given lens type is optimized for a smaller field 
and/or smaller aperture, that is, for a combination closer to the origin 
of the plot. Thus one can select the design type from Fig 2.3 corre
sponding to the field-aperture combination required with reasonable 
assurance that it is an appropriate choice. But should the performance 
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prove inadequate for the application at hand, one can move up to the 
form which is above and to the right on the plot, which should have a 
greater performance capability. Of course, if the required level of per
formance is known in advance to be relatively high, one would select 
the more capable type to begin with. The same selection approach can 
be applied to the components of a more complex system. There are 
many design types and applications which are not represented on this 
necessarily abbreviated chart. However, many of these are presented 
in the lens designs included in this book; the reader may wish to mark 
up Fig. 2.3 to add the types which are of particular interest. 

For a complex system, the approach must start on a more funda
mental level. The first step is to collect and tabulate the requirements 
to be met; these may include such things as: 

Resolution or performance (versus diffraction limit) 

Wavelength 

Fields of view 

Image size 

Aperture, numerical aperture (NA), and f number 

Vignetting or illumination uniformity 

Focal lengths or magnifications 

Space limitations 

The next step is to make a first-order layout of the system which 
will satisfy the requirements. ·The first-order layout is simply an ar
rangement of component powers (or focal lengths) and spacings which 
will produce an image in the required location, in the required orien
tation, and of the required size. At this stage, no consideration is given 
to the design type of each component; one is concerned only with its 
power, aperture, and field as first-order, i.e., paraxial, characteristics. 
For systems (or portions of systems) which consist of two components, 
the equations of Sec. F. 7 can be extremely useful. For more complex 
systems, the component by component ray-tracing equations of Sec. 
F.6 may be used. A general approach is to trace rays which will define 
the required characteristics. The ray-trace results (ray heights, ray 
slope~, intersection lengths, etc.) can be expressed as equations with 
the component powers and spacings as unknowns to be solved for. An 
important facet of this stage is that one should try to find a layout 
which minimizes the component powers, or minimizes (or equalizes) 
the "work" (ray height times component power). Doing this will al
most always produce a system with less abeITation residuals, one 
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which is less expensive to fabricate and less sensitive to fabrication 
and alignment errors. 

Sometimes one can leap directly from the first-order layout to choos
ing the component design types, and thence to the optimization stage. 
However, if this is not the case, the next step is usually to analyze 
and/or correct the chromatic aberrations. Equations F.9.6 and F.10.7 
can be used for the whole system, or the components can be individu
ally achromatized. To this end, the element powers for a thin achro
matic doublet are given by 

4>A = (VA - VB)F 
(2.1) 

VB 1 
4>B = (VB - VA)F = F - 4>4 (2.2) 

and the element surface curvatures are determined from 

(2.3) 

At this point a sketch of the system is often helpful. Simply make a 
scale drawing, showing each element as either a piano-convex or an 
equi-convex form (or piano-concave or equi-concave for negative ele
ments). If the elements look too fat, they should be split into two or 
more elements. Be sure that the element diameters are sized properly 
for the rays that they must pass. At this stage the system should begin 
to look like a good lens. 

The next step is to give some consideration to the Petzval curvature. 
Choosing suitable anastigmat types for the components is one way to 
handle this. Another is to use a field flattener in an appropriate loca
tion (i.e., near an image) in the system. And, of course, the usual de
vice of configuring the system or component with separated positive 
and negative elements or surfaces to reduce the Petzval sum can al
ways be utilized if a new design must be created from scratch. 

Often many of these steps can be handled conveniently and expedi
tiously by the automatic design program. The first-order layout can be 
done with zero-thickness plano-convex or plano-concave elements, al
lowing the spaces and the curvatures of the curved surfaces (but not 
the plano surfaces) to vary. The merit function is a simple one, config
ured to define the required first-order characteristics. Note well the 
comments in Sec. 2.5 regarding stagnation and contradictory or re
dundant first-order entries in the merit function. 

Since the chromatic aberrations and the Petzval curvature depend 
on element power and not on element shape, the lens design program 
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can also be used to find a layout which is a preliminary solution with 
the chromatic and Petzval adjusted to desired, reasonable values, 
which typically should be small and negative. 

Sometimes it is useful as a next step to allt>w the elements to bend, 
and to correct the third-order aberrations. This can be done by putting 
an angle-solve on the second surface of each element so that the axial 
ray slope is maintained. More often than not, however, the next step 
will skip over the third-order and go directly to a full-dress thick lens 
optimization run. 

And, of course, in the best of all worlds, one simply sets up what seems 
to be a likely layout and proceeds directly to the automatic lens design 
program, which promptly turns out an excellent design. "Experience!" 
Lots of luck! 

, 
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Chapter 

3 
Improving a Design 

3.1 Standard Improvement Techniques 

There are several classic design modification techniques which can be 
reliably used to improve an existing lens design. They are: 

1. Split an element into two (or more) elements 

2. Compound a singlet into a doublet (or triplet) 

3. Raise the index of the positive singlets 

4. Lower the index of the negative singlets 

5. Raise the index of the elements in general 

6. Aspherize a surface (or surfaces) 

7. Split a cemented doublet 

8. Use unusual partial dispersion glasses to reduce secondary spec
trum (see Chap. 6, "Telescope Objectives") 

The simple, straightforward application of these techniques is no 
guarantee of improvement in a lens, in that they do not automatically 
correct the defects that they are intended to address. In general, these 
changes tend to reduce the aberration contributions of the modified 
components; in order to take full advantage of this, the aberrations of 
the balance of the system must be reduced as well. The operative prin
ciple is this: if large amounts of aberrations are corrected or balanced 
by equally large amounts of aberrations of opposite sign, then the re
siduai aberrations also tend to be large. Conversely, if the balancing 
aberrations are both small, then the residuals tend to be correspond
ingly small. 

3.2 Glass Changes: Index and VValue 

The refractive characteristics of the materials used in a lens are obvi
ously significant and important to the design. In general, for a posi-

2s 
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tive element, the higher the index the better. The higher index re
duces the inward Petzval curvature which plagues most lenses. It also 
tends to reduce most of the other aberrations as well. As an example, 
see Fig. 3.1, which clearly indicates the effect of higher index in re
ducing the spherical aberration of a single element. This sort of reduc
tion is primarily a result of the fact that the surface curvature re
quired to produce a given element power is inversely proportional to 
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Figure 3.1 The angular spherical aberration blur of a single lens element as a 
function of lens shape, for various values of the index of refraction; <I> is the ele
ment power and y is the semiaperture. The angµlar blur can be converted to lon
gitudinal spherical aberration by LA = 2B/y$2, or to transverse aberration by 
TA = - 2B/<!>. (The object is at infinity.) 

Apple v. Corephotonics Page 38 of 88 Apple Ex. 1006



Improving a Design 27 

(n - 1). The improvement also results from the reduction of the angles 
of incidence at the surfaces of the element. 

In a negative element, the situation is less clear. From the stand
point of the Petzval correction, a low index would increase the over
correcting contribution of a negative element. This can help to offset 
the (inward) undercorrection which is a major problem in most lenses. 
On the other hand, a higher index would reduce the surface curva
tures and have a generally desirable effect on the overall state of 
correction. The situation is usually resolved with the negative ele
ments made from a glass along the glass line boundary of the glass 
map (Fig. 2.2). 

A high V value for the positive element and a low V value for the 
negative element of an achromatic doublet reduce the element powers; 
this is ordinarily desirable. In lenses (such as the Cooke triplet) where 
the relative V values of separated elements control the element spac
ing or the system length, this desideratum may be overridden by other 
concerns. 

Note that, as usual, when you are dealing with components of neg
ative focal length, many of the considerations outlined above are re
versed. In a negative achromatic doublet, the negative element is 
often made of crown glass and the positive is made of flint. Here a 
high-index (flint) positive element will reduce the inward Petzval cur
vature, as will a low-index (crown) negative element. 

3.3 Splitting Elements 

Splitting an element into two (or more) approximately equal parts 
whose total power is equal to the power of the original element can 
reduce the aberration contribution by a significant factor. The reason 
that this reduces aberrations is that it allows the angles of incidence 
to be reduced; the nonlinearity of Snell's law means that smaller an
gles introduce less aberration than do large ones. This technique is of
ten used in high-speed lenses to reduce the zonal spherical residual 
and in wide-angle lenses to control astigmatism, distortion, and coma. 

Figure 3.2 shows the thin lens third-order spherical aberration for 
spherical-surfaced positive elements which are shaped (or bent) to 
minimize the undercorrected spherical. The upper plot shows the 
spherical as a function of the index of refraction for a single element 
with a distant object. The curve labeled i = 2 shows the spherical for 
two elements whose total power is equal to that of the single element. 
The best split is 50-50-i.e., the split elements have equal power; this 
minimizes the spherical. (The same is true for a split into more than 
two elements, i.e., three, four, etc., as shown in the curves labeled 
i = 3 and i == 4.) The improvement produced by splitting an element in 
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Figure 3.2 The spherical aberration of one, two, three, and four thin positive 
elements, each bent for minimum spherical aberration, plotted as a function 
of the index of refraction, and showing the reduction in the amount of aber· 
ration produced by splitting a single element into two or more elements (of 
the same total power). Each plot is labeled with i, the number of elements in 
the set. (The object is at infinity.) 

two can be seen to be a factor of about 5 for lenses of index equal to 
1.5. The higher the index, the greater the reduction; for an index of 
1.8, the factor is about 7. At an index of 2.5 or higher, the spherical 
can be brought to zero or even overcorrected with just two positive el
ements. Most other aberrations are similarly affected by splitting, al
though it should be obvious that neither Petzval nor chromatic is 
changed by splitting. 

In high-speed lense~ this technique is frequently used to reduce the 
residual zonal spherical; the positive elements are split. This illus
trates the basic idea. If the residual zonal spherical is negative 
(undercorrected), one splits a positive element; in the rare event that 
the zonal is positive (overcorrected), one would split a negative ele
ment. A similar philosophy can be applied for troublesome residuals of 
the other aberrations as well. 

The choice of which element to split is often less apparent. The log
ical candidate would obviously seem to be the element which contrib
utes most heavily to the problem aberration. (An examination of the 
third- and fifth-order surface contributions can often locate the source 
of the aberration.) However, other considerations often become signif
icant. For example, in the Cooke triplet, the rear element is the prime 
candidate for the split, and such a split is quite effective in reducing 

' 
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the zonal spherical, as Figs. 14.1 and 14.2 will attest. But the· better 
choice for the split is the front element, not because it does a better job 
of reducing the zonal spherical, but because the resulting lens is bet
ter corrected for the other aberrations. Figure 14.3 shows the simple 
split-front triplet. This is the ancestor of the Ernostar family of lenses; 
Figs. 14.10 through 14.15 illustrate designs which can be considered 
as descendants from the split-front triplet. Although they have been 
largely superseded by the more powerful double-Gauss form, they are 
nonetheless excellent design types. 

Many retrofocus and wide-angle lenses which use strong outer me
niscus negative elements illustrate the use of this technique for the 
control of coma, astigmatism, and distortion by splitting these nega
tive elements. 

The implementation of this technique with an automatic design pro
gram is often far from easy. For example, if one decides to split one of 
the crowns of a Cooke triplet and simply replaces one crown with two, 
after the computer optimization has run its course, the resultant lens 
may look like an ordinary triplet with a narrow cracklike airspace in 
the split element (a cracked crown triplet). The performance of the lens 
is the same as the original triplet; the split has not improved a thing. 
This is because the original lens was in a local optimum of the merit 
function. Aberrations other than the zonal spherical dominated the 
design; this caused the program to return the lens to its original de
sign configuration. What is necessary in this situation is to force the 
split elements into a configuration which will accomplish the desired 
result. 

Consider the split-front triplet. There are two ways to get to a de
sign like Fig. 14.3. One approach is to make the lens so fast that the 
zonal spherical is by far the single dominant aberration in the merit 
function. Then the program will probably choose a form which reduces 
the zonal spherical; the lens shapes in Fig. 14.3 are a likely result. A 
difficulty with this approach may be that you aren't interested in a 
very fast lens, or if you are, the rays may miss the surfaces of the ini
tial design completely, or encounter TIR. The. alternative approach -is 
to constrain the front elements to a configuration in which the spher
ical is minimized. Simply fixing the first element to a plano-convex 
form (by not allowing the piano surface curvature to vary) or holding 
the s~cond to an aplanatic meniscus shape is usually sufficient to ob
tain a stable design which is enough different from the cracked crown 
triplet. When this has been accomplished the constraint can be re
leased and the automatic design routine allowed to find what is (one 
hopes) a new and better local optimum. The problem here is that this 
approach presupposes a knowledge of the configuration which will 
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produce a good result. Obviously a knowledge of both aberration the
ory and of successful design forms is a useful tool to the designer. 

3.4 Separating a Cemented Doublet 

Airspacing a cemented doublet can provide two additional degrees of 
freedom: two bendings instead of one, plus an airspace. While this 
technique does not have tlie inherent aberration reduction capability 
that many other modifications possess, the extra variables may indi
rectly make a design improvement possible. A difficulty in imple
menting this is that the refraction at the cemented surface is apt to 
become much more abrupt when it is split into two glass-air interfaces 
than when it was a cemented surface; in fact rays may encounter TIR 
if a simple split is attempted without a concomitant reduction of the 
angle of incidence. Manual intervention in the form of adjusting the 
radii to reduce the angle of incidence is often necessary. 

3.5 Compounding an Element 

Compounding a singlet to a doublet can be ~ewed in two different 
ways: 

1. As a way of simulating a desirable but nonexistent glass type 

2. As a way of introducmg a cemented interface into the element in 
order to control the ray paths 

Note that in almost all examples of Tessar-type lenses (and other 
types which utilize compounded elements), the doublets have positive 
elements with high index and high V values, while the negative ele
ment of the doublet has both a lower index and V value. See Chap. 12 
for examples. 

The longitudinal axial chromatic of a singlet is given by 
~ = - f!V. Thus a fully achromatized lens (with~= 0.0) has 
the chromatic characteristic of a lens made from a material with a V 
value of infinity; a partially achromatized doublet acts like a singlet 
with a very high V value. 

The Petzval radius of a singlet is given by p = - nf, where n is its 
index. An old achromat with a low-index crown and a higher-index 
flint has a shorter Petzval radius than a singlet of the crown glass. For 
example, an achromat of BK7 (517:649) and SFl (717:295) has a 
Petzval radius p = - 1.37{; in other words, in regard to Petzval field 
curv~ture, it behaves like a singlet with an index of 1.37. A new 
achromat has a high-index crown and a lower-index flint. A new 
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achromat of SSKN5 (658:509) and LF5 (581:409) has a Petzval radius 
p := - 2.19{ and a Petzval curvature which is characteristic of a 
singlet with an index of 2.19. 

Thus an achromatized (or partially achromatized) doublet with a 
high-index positive element and a low-index negative element has 
many of the characteristics of a lens made of a high-index, high-V
value crown glass. (Note that for a negative focal length doublet, the 
reverse is true.) Both conditions are usually to be desired, in order to 
flatten the Petzval field and to achieve achromatism. 

Figure 3.3 shows a singlet, an old achromat, and a new achromat, 
each with the same focal length. The equivalent V value of each 
achromat is, of course, equal to infinity. The Petzval radius for each is 
given in the figure caption. 

The cemented interface of the doublet can be used for specific con
trol of specific rays. In a lens such as the Tessar, where the doublet is 
located well away from the aperture stop, the upper and lower rim 
rays of the oblique fan have very different angles of incidence at the 
cemented surface. In Fig. 3.4 it can be seen that the angle of incidence 
at this surface is much larger for the upper ray than for the Iower. In 
this type of lens the cemented surface is typically a convergent one, 
and the (trigonometric) nonlinear characteristic of Snell's law means 
that the upper ray is, in this case, refracted downward more than it 
would be were the refraction linear with angle. Thus the upper ray is 
deviated in such a way as to reduce any positive coma of this ray. This 

~ ~ ~ 

Figure 3.3 Three lenses, each with the same focal length f. (a) 
A singlet of BK7 (517:642) glass; Petzval radius equals 
-1.52{. (b) An old achromat of BK7 (517:642) and SFl (717: 
295) glasses; Petzval radius equals -1.37{. (c) A new 
achromat of SSKN5 (658:509) and LF5 (581:409); Petzval ra
dius is -2.19{. 
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Figure 3.4 The upper and lower 
rim rays have significantly dif
ferent angles of incidence at the 
cemented interface in the rear 
doublet of this Tessar design. 
Properly handled, this differ
ence can be used to modify the 
correction of the coma-type ab
errations. 

illustrates the manner in which a cemented surface can be used for an 
asymmetrical effect on an oblique beam. 

The Merte surface 

A strongly curved, collective cemented surface with a small index 
break (to the order of 0.06) has an effect which can be used to reduce 
the undercorrected zonal spherical aberration. The central doublet of 
the Hektor lens shown in Fig. 3.5 illustrates this principle. The ce-

30 
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-0.5 0 
SPHERICAL 

ABERRATION 

Figure 3.S The cemented surface in the center dou
blet of this Hektor lens is what is called a Merte sur
face. The index break (n 1 

- n) across the surface is 
small, but at the margin of the aperture the angle of 
incidence for the axial ray becomes quite large. This 
combination produces an undercorrecting seventh
order spherical aberration which, as the plot shows, 
dominates the spherical aberration at the margin of 
the aperture, causing the marginal spherical to be 
negative rather than the usual positive value. 
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mented surface is a collective one (in that [n' - n]/r is positive) and 
contributes undercorrected spherical aberration. For rays near the 
axis, the spherical aberration contribution of the surface is modest. 
However, when the ray intersection height increases and the angle of 
incidence becomes large, as shown in Fig. 3.5, the trigonometric 
nonlinearity of Snell's law causes the amount of ray deviation to be 
disproportionately increased. This causes the undercorrection from 
this surface to dominate the spherical aberration. The result is a 
spherical aberration characteristic like that shown in Fig. 3.5. The 
spherical in the central part of the aperture appears quite typical: the 
undercorrected third-order dominates close to the axis and the over
correcting fifth-order causes the plot to curve back as the ray height 
increases. However, toward the edge of the aperture the under
correction of the Merle surface becomes dominant and the aberration 
plot reverses direction again. The net result is the equivalent of a re
duced zonal spherical aberration. 

It is rare to see as extreme an example of the Merte surface as that 
illustrated in the Hektor of Fig. 3.5. Such a surface is very sensitive to 
fabrication errors and is thus expensive to make. It is also often be~t 
used close to the aperture stop because, if it is located away from the 
stop, the asymmetrical effects described two paragraphs above can be
come quite undesirable. However, it is well worth noting that an or
dinary collective cemented surface has a tendency to behave as a mild 
Merte surf ace and to reduce the spherical zonal, at least somewhat. 

3.6 Vignetting and Its Uses 

Vignetting, which is simply the mechanical limitation or obstruction 
of~ oblique beam, is usually regarded primarily as something which 
reduces the off-axis ill'!-lmination in the image. However, vignetting 
often plays an essential role in determining the off-axis image quality 
as well as the illumination. Of course there are many applications for 
which vignetting cannot be tolerated; the illumination must be as uni
form as possible across the entire field of view. The complexity of the 
iens design, therefore, must be sufficient to produce the required im
age quality at full aperture over the full field. 

But for many applications, vignetting is, in fact, quite tolerable. In 
commercial applications the clear apertures may well be established 
so as to be just sufficient to pass the full aperture rays for the axial 
image. It is not at all unusual for vignetting to exceed 50 percent at 
the edge of the field. For a camera lens, this vignetting will, of course, 
completely disappear when the iris of the lens is stopped down to an 
aperture below the vignetting level. Since camera lenses are most of-
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ten used at less than full aperture, the vignetting is not as significant 
as it is in a lens which is always used at full aperture, such as a mi
croscope or projection lens. 

The benefit of vignetting is that it cuts off the upper and/or lower 
rim rays of the oblique tangential fan. Since these are ordinarily the 
most poorly behaved rays, the image quality may well be improved by 
their elimination. Most lenses which cover a significant field are af
flicted with oblique spherical aberration, a fifth-order aberration 
which looks like third-order spherical aberration, but which varies as 
the square of the field angle. And since its magnitude is different for 
sagittal than for tangential rays, it can be seen to have characteristics 
of both astigmatism and spherical aberration. Oblique spherical aber
ration usually causes the rays at the edge of the oblique bundle to 
show strongly overcorrected spherical aberration; vignetting is a sim
ple way to block these aberrant rays from the image. 

Another factor favoring the use of vignetting is that it results from 
lens elements with small diameters. In general, one can count on a 
smaller-diameter lens being less costly to fabricate. 

For a camera lens, one must be certain that the iris diaphragm is 
located centrally in the oblique beam so that, when the iris is closed 
down, the central rays of the beam are the ones which are passed. 
These are usually the best-corrected rays of the oblique beam. Also 
this location assures that the vignetting will be eliminat.ed at the 
largest possible aperture. 

3. 7 Eliminating a Weak Element; the 
Concentric Problem 

Occasionally an automatic design program will produce a design with 
an element of very low power. Frequently this means that the element 
can be removed from the design without adversely affecting the qual
ity of the design. Often a straightforward removal will not work; the 
design process may simply "blow up.11 An approach which usually 
works (if anything will) is to add the thickness and the surface curva
tures of the element to the merit function with target values of zero, 
allowing them to continue as variable parameters. Sometimes target
ing the difference between the two curvatures is also useful. Usually, 
if the element isn't necessary to the design, a few cycles of optimiza
tion, possibly with gradually increasing weights on these targets, will 
change the element to a very thin, nearly plane parallel plate, which 
can then be removed without severe trauma to the design. If your 
design program will not accept curvatures and thicknesses as targets, 
an alternative technique is to remove the curvatures and the thick
ness as variables and to gradually weaken the curvatures and reduce 
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the .thickness (by hand) while continuing to optimize with the other 
variables. 

An unfortunate form of the "weak" element is a fairly strongly bent 
meniscus, which the computer uses for a relatively important design 
function, such as the correction of spherical aberration or the reduc
tion of the Petzval curvature. It is rarely possible to eliminate such an 
element because it is an integral part of the design. The unfortunate 
aspect of this situation is that, if the surfaces of the meniscus element 
are concentric or nearly so, the customary centering process used in 
optical manufacture is impossible or impractical, and the element is 
costly to fabricate. This situation can be ameliorated by forcing the 
centers of curvature of the surfaces apart by a distance sufficient to 
allow the use of ordinary centering techniques. Again, including the 
required center-to-center spacing in the merit function and 
reoptimizing will usually modify the offending element to a more 
manufacturable form without any significant damage to the system 
performance. 

3.8 Balancing Aberrations 

The optimum balance pf the aberrations is not always the same in ev
ery case; the best balance varies with the application and depends on 
the size of the residual aberrations. In general, for well-corrected 
lenses, the aberrations should be balanced so as to minimize the OPD, 
i.e., the wavefront variance, but there are significant exceptions. 

Spherical aberration 

If a lens is well-corrected and the high-order residual spherical aber
ration is small, so that the OPD is to the order of a half-wave or less, 
then the best correction is almost always that with the marginal 
spherical corrected to zero, as illustrated in Fig. 3.6b. However, when 
the zonal spherical is large, there are two situations where one may 
want to depart from complete correction of the marginal spherical. 

If the lens will always be used at full aperture (as a projection lens, 
for example), and if the spherfoal aberration residual is large (say to 
the order of a wave or so), the diffraction effects will be small when 
compared to the aberration blur; then the spherical aberration should 
be c0rrected to minimize the size of the blur spot rather than to min
imize the OPD. This will produce the best contrast for an image with 
relatively coarse details, i.e., for a resolution well below the diffraction 
limit. As an example, at a speed of f/1.6, a 16-mm projection lens has 
a diffraction cutoff frequency of about 1100 line pairs per mil1imeter 
(lpm). But its performance is considered quite good if it resolves 100 
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(a) (b) (CJ 

Figure 3.6 Three states of correction of spherical aberration are shown. Each has the 
same amount of fifth-order spherical, but different amounts of third-order. (a) Spherical 
aberration balanced to give the smallest possible size blur spot. This correction may be 
optimum when the aberration is large and the required level of resolution is low com· 
pared to the diffraction limit. (b) Spherical aberration balanced for minimum OPD. This 
is optimum when the system is diffraction-limited. (c) Spherical aberration balanced to 
minimize the focus shift as the lens aperture is stopped down. This correction is used in 
camera lenses when the residual spherical is.large. The upper row is longitudinal spher
ical versus ray height; th~ lower row is transverse ray intercept plots. 

lpm, an order of magnitude less than the diffraction limit. Such a lens 
can advantageously be corrected for the minimum diameter geometri· 
cal blur spot. This state of correction occurs (for third- and fifth-order 
spherical) when LAz = 1.5~ or T~ = l.O?TAm; the result is a 
high-contrast, but low-resolution, image. This correction is illustr~ted 
in Fig. 3.6a. See also the comments on defocusing in Secs. 2.4 and 2. 7. 

For a lens which is used at varying apertures, as is a typical camera 
lens, it is important that the best focus position not shift as the size of 
the aperture stop is changed. If the spherical aberration is corrected at 
the margin of the aperture, or corrected as described in the paragraph 
above, the position of the best focus will shift as the aperture is 
changed. The best focus will move toward the paraxial focus as the ap
erture is reduced. The state of correction which is often used in such a 
case is overcorrection of the marginal spherical, as shown on Fig. 3.6c 
(assuming an undercorrect.ed zonal residual). The result is a design in 
which the focus is quite stable as the· lens is stopped down. The reso
lution is better than it would be otherwise, but, at full aperture, the 
contrast in the image is quite low. This works out reasonably well in a 
high-speed camera lens because camera lenses are only infrequently 
used at full aperture. Typically, photogra~hs are taken with the lens 
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stopped down well below the full aperture, and, when the camera is 
stopped down, this state of correction yields a much better photograph. 

The three correction states shown in Fig. 3.6 also indicate the man
ner in which the spherical aberration is changed when the third-order 
aberration is changed. This is a typical situation often encountered in 
lens design: the fifth- (and higher-) order aberrations are relatively 
stable and difficult to change, but the third order is easily modified (by 
bending an element, for example). In the figure, all three illustrations 
have exactly the same amount of fifth-order spherical; the difference 
is solely in the amount of third-order. Note that, in the (upper) longi
tudinal plots, the change from one illustration to the next varies asy2, 

whereas in the (lower) transverse plots the differences vary as y3 • 

Chromatic aberration and 
spherochromatlsm 

Here the question is how to balance the spherochromatism, which typ
ically causes the spherical aberration at short (blue) wavelengths to 
be overcorrected and that at the long (red) wavelengths to be 
undercorrected. If the aberration is small (diffraction-limited), the 
best correction is probably with the chromatic aberration corrected at 
the 0. 7 zone of the aperture. This means that the central half of the 
aperture area is undercorrected for color and the outer half of the ap
erture is overcorrected, as shown in Fig. 3.7a. But if the amount of the 
aberration is large, the spherical overcorrection of the blue marginal 
ray causes a blue flare and a low contrast in the image. Jn these cir
cumstances the correction zone can advantageously be moved to (or 
toward) the marginal zone, as shown in Fig. 3. 7b. This will probably 
reduce the resolution somewhat, because it increases the size of the 
core of the image blur, but it improves the contrast significantly and 
yields a more pleasing image, free of the blue flare and haze. This 
state of correction is a~complished by increasing the undercorrection 
of the chromatic aberration of the paraxial rays. 

Astigmatism and Petzval field curvature 

In a typical anastigmat lens the fifth-order astigmatism tends to be
come significantly undercorrected (i.e., negative) as the field .angle is 
incrbased. In order to minimize the astigmatism over the full field, the 
third-order astigmatism is made enough overcorrected to balance the 
undercorrected fifth-order astigmatism. The result is the typical field 
curvature correction with the sagittal focal surface located inside the 
tangential focal surface in the central part of the field because of the 
overcorrected third-order astigmatism, and the reverse arrangement 
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Figure 3.7 Spherochromatism. (a) Chromatic aberration 
balanced so that the outer half of the aperture is over-
corrected and the inner half is undercorrected. This may be 
best if the amount of aberration is small. (b) Chromatic ab-
erration balanced so that it is corrected at the margin. If the 
aberration is large, this correction eliminates the blue flare 
which can result from the type of correction in (a). Note that 
the state of correction is more easily perceived in the upper, 
longitudinal aberration plots, whereas the effect on the blur 
spot size and flare is much more apparent in the lower 
transverse ray intercept plots. 

in the extreme outer portions. The field angle at which the s and t 
fields cross (i.e., where the astigmatism is zero) is called the node. 
Usually the two fields separate very rapidly outside the node, and the 
image quality quickly deteriorates, often suddenly. The Petzval cur
vature is usually made somewhat negative, so that both fields are 
slightly inward-curving and the effective field is as flat as possible. A 
typical state of correction is shown in Fig. 3.8. 

Note that a field correction with the s and t focal surfaces spaced 
equally on either side of the focal plane (so that the compromise 
"smallest circle of confusion" focal surface is flat) is definitely not the 
best state of correction. In considering the correction of the field cur
vature, one should bear in mind that the oblique spherical aberration 
(a fifth-order aberration which varies as the cube of the aperture and 
the square of the field angle) typically goes overcorrected with in
creasing field angle. In addition, the oblique spherical is usually more 
significant for the tangential fan of rays than for the sagittal. Thus 
the effective field curvature for the full fan of rays is usually more 
backward-curving than the x8 and ~ field curves indicate. These 
curves indicate the imagery of a very small bundle of rays close to the 
principal ray, and do not take the oblique spherical of the full aperture 
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Figure 3.8 This is the typical 
balance of astigmatism and 
Petzval curvature in the pres
ence of undercorrecting fifth
order astigmatism and over
coi'recting high-order Petzval 
curvature. This is achieved by 
leaving the third-order Petzval 
slightlyinward-curvingandover
c6rrecting the third-order astig
matism by a small amount. This 
is the usual aberration balance 
for most anastigmats. 

into account. Thus, for most designs, the astigmatism and field curva
ture are usually arranged somewhere between the state at which the 
s and t curves are superimposed (i.e., zero astigmatism) and that at 
which the t field is approximately flat. Often a through-focus MTF 
plot which includes both on-axis and off-axis plots will indicate quite 
clearly the effective field curvature, which is, of course, more informa
tive than the X S and xt curves. 

Note well that these discussions have assumed the type of higher
order residual aberrations which one ordinarily finds: overcorrected 
fifth-order spherical aberration, undercorrected fifth-order astigma
tism, and overcorrected spherochromatism for the shorter wave
lengths. Although rare, the reverse iS sometimes encountered. In such 
circumstances the obvious move is to apply the above advice in re
verse. 

As an additional consideration, note that the undercorrection of ei
ther the chromatic aberration or the Petzval curvature has the usu
ally desirable side effect of reducing the power of the elements of the 
lens system. Thus a secondary benefit of this undercorrection is the 
reduction of residual aberrations in general, because a lower-power el
ement produces less aberration, which means that there is less higher
order residual aberration left when the aberrations are balanced out. 

3.9 The Symmetrical Prlnclple 

When an optical syste~ has mirror symmetry about the aperture stop 
(or a pupil), as shown in Fig., 3.9, the system is free of coma, distortion, 
and lateral color. This results from the fact that the components on 
one side of the stop have aberrations which exactly cancel the aberra
tions from the components on the other side of the stop. Obviously, to 
have mirror symmetry, the system must work at unit magrpfication, 
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Figure 3.9 A fully (left to right) symmetrical system is completely free of coma, dis
tortion, and lateral color, because the aberration in one half of the system exactly can
cels out the aberration in the other half. 

with eque.1 object and image distances. For the symmetry to be abso
lutely c01nplete, the object and image surfaces must be identical in 
shape; this then would imply separately curved sagittal and tangen
tial surfaces at both object and image. However, the third-order coma, 
distortion, and lateral color are completely removed by symmetry, 
even with flat object and image surfaces. 

Of course, most systems do not operate at unit magnification, an~ 
therefore a symmetrical construction of the lens will not completely 
eliminate these aberrations. However, even for a lens with an infi
nitely distant object, these aberrations are markedly reduced by sym
metry, or even by an approximately symmetrical construction. This is 
why so many optical systems which cover a significant angular field 
display a rough symmetry of construction .. Consider the Cooke triplet: 
it has outer crown elements which are similar, but not identical in 
shape, and the center flint, while not equi-concave, is bi-concave, and, 
except for slow-speed triplets, the airspaces are quite similar in size. 
The benefit of this is that the higher-order residuals of coma, distor
tion, and lateral coldr are markedly reduced by this symmetry. This is 
espec; ally true for wide-angle lenses when good distortion correction 
is important. · 

3.1 O Aspherlc Surfaces 

Many designs can be improved by the use of one or more aspheric sur
faces. Except for the case of a molded or diamond-turned element, an 
aspheric surface is many times more expensive to fabricate than a 
spherical surface. A conic aspheric is easier to test than a general 
aspheric and is therefore somewhat less costly. For many systems, 
e.g., mirror objectives, aspheric surfaces are essential to the desigil 
and cannot be avoided. 

One technique for introducing an aspheric into an optical system is 
to first vary only the conic constant. (Note that the conic constant and 
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the fourth-order deformation term have exactly the same effect on the 
third-order aberrations. Thus, allowing both to vary in an automatic 
design program may cause a slowing of the convergence or, in extreme 
cases, a failure of the process. Occasionally the difference between the 
effect of the conic and the fourth-order term on the fifth- and higher
order aberrations may be useful in a design, but more often than not 
the . two are redundant.) If the effect of varying the conic constant 
alone is inadequate, one can then allow the sixth-order term to vary, 
then the eighth-order, etc. Some designs have aspherics specified to 
the tenth-order term when just the sixth or eighth would suffice. It is 
a good idea to calculate the surface deformation caused by the highest
order. term used; if it is a fraction of a wave at the edge of the surface 
aperture, its utility may well be totally imaginary. 

Occasionally one encounters a design specification or print in which 
the aspheric is specified by a tabulation of sagittal heights instead of 
an equation. The optimization program can be used to fit the con
stants of the standard aspheric surface equation to the tabulated data. 
The specification table is entered in the merit function as the sag of 
the intersections of (collimated) rays at the appropriate heights. The 
surface coefficients are allowed to vary, and the result is a least
squares fit to the sag table. 

The equations of Sec. F.11 indicate the effects of a conic or a fourth-· 
order aspheric term on the third-order aberrations. Several points are 
worthy of note. The conic has no effect on the Petzval curvature or on 
axial or lateral chromatic. Further, if. the conic is located at the aper
ture stop or at a pupil, then the principal.ray height, yP, is zero and the 
conic has no effect on third-order coma, astigmatism, or distortion; it 
can only affect third-order spherical. In the Schmidt camera the 
aspheric surface is located at the stop because the coma and astigma
tism are already zero, because the stop is at the center of curvature of 
the spherical mirror; the purpose of the aspheric is. to change only the 
spherical aberration. Conversely, if the purpose of an aspheric is to 
affect the coma, astigmatism, or distortio:p., then it must be located a 
significant distance from the aperture stop. . 

It is also worth noting that the primary effect of the conic, or fourth
order, deformation term is on the third-order aberrations. The pri
mary effect of the sixth-order deformation term is on the fifth-order 
aber;ations, etc., etc. 
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Chapter 

4 
Eva I uation: 

How Good Is This Design? 

4.1 The Uses of a Preliminary Evaluation 

At some point in the process of designing an optical system, the designer 
must decide whether the design is good enough for the application at 
hand. With modern computing power, it is not a difficult matter to cal
culate the MTF or the point spread function (PSF), and to accurately in
clude the effects of diffraction in the calculations. The process does con
sume a finite amount of time, however (which, on a slow computer, may 
be a significant amount), and it is useful to be able to make a reasonable 
estimate of the system performance from a more limited amount of data. 
A good estimate can avoid wasting time and computer paper in evaluat
ing a clearly deficient design, or it can signal an appropriate point at 
which to conduct a full-dress evaluation. 

4.2 OPD versus Measures of Performance 

The distribution of illumination in the point spread function, particu
larly in the diffraction pattern of a reasonably well-corrected lens,. is 
often used as a measure of image quality. The Strehl ratio (or Strehl 
definition ) is the ratio of the illumination at the center of an 
(aberrated) point image to the illumination at the center of the point 
image formed by an aberration-free system. Figure 4.1 illustrates the 
concept. Another measure of image quality uses the percentage of the 
total energy in the point image which is contained within the diame
ter of the Airy disk. This diameter remains relatively constant in size 
for small amounts of aberrations. The table of Fig. 4.2 gives the rela
tionships between the wavefront deformation (or OPD), the Strehl ra
tio, and the energy distribution. 

43 
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ABERRATION-FREE POINT IMAGE 

0.8 
ABERRATED POINT IMAGE 

.,,.. 
I 

I 
I 0 .6 
I 
I 

: l 
STREHL RATIO 

0.2 

0 0.61 ~ 
N SIN U 

Z --+ 

Figure 4.1 The Strehl ratio is the illumination at 
the center of the diffraction pattern of an aberrated 
image, relative to that of an aberration-free image. 

Relation of Image Quality Measures to OPD 

% energy in 

P-V OPD RMS OPD Strehl Ratio Airy Disk Rings 

0.0 0.0 1.00 84 16 
0.25RL = ~./16 0.018>-. 0.99 83 17 
0.5RL = 'A/8 0.036>-. 0.95 80 20 
l.ORL = A/4 o.on. 0.80 68 32 
2.0RL = 'A/2 0.14'>-. 0.4* 40 60 
3.0RL = 0.75A. 0.2H 0.1>:< 20 80 
4.0RL = A. 0.29'>-. 0.01.· 10 90 

.;.The smaller values of the Strehl ratio do not correlate well with image quality. 

Figure 4.2 Tabulation of the Strehl ratio and the energy distribution as a function of 
the wavefront deformation. RL means the Rayleigh limit of one·quarter·wavelength 
peak-to-valley OPD. 
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Another commonly utilized measure of performance is the modula
tion tr.ansfer function, which describes the image modulation or con
trast as a function of the spatial frequency of the object or image. The 
MTF of a perfect, aberration-free system is given by 

MTF(u) = 2 
(4> - cos 4> sin <f>) 

1T 
(4.1) 

where 

<P. = arccos (2~A) (4.2) 

This is plotted as curve A in Figs. 4.3 and 4.4. Figure 4.3 shows the 
effect on the MTF of defocusing an otherwise aberration-free lens. The 
spatial frequency in these plots is normalized to the cutoff frequency 

2NA 1 u - - - ------
0 - A - A(fnumber) (4.3) 

Figure 4.4 shows the effect of simple third-order spherical aberration 
on the MTF. Note that, although the curves of Figs. 4.3 and 4.4 are not 
identical, they are quite similar. This similarity of effect is the basis 
for the common rule of thumb that a given amount of OPD will de-

1.0 

Vo: 2 ~.A. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 . 1.0 
vlv0 ..... 

Figure 4.3 The effect of defocusing on the modulation 
transfer function of an aberration-free system. 
(A ) In focus OPD = zero 
(B) D~ocus = A./2n sin2 U OPD = 'J../4 
(C) Defocus = A.In sin2 U 1 OPD = >..!2 
(D) Defocus = 3'A/2n sin2 U OPD = 3X/4 
(E) Defocus = 2Xln sin2 U OPD = 'A 
(F) Defocus = 4'A/n sin2 U OPD = 2'A 
(Curves are based on diffraction effects- not on a geo
metric calculation.) 
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1.0 

2NA 
vo=T 

oL___J_~~t::=:t:::::=J,,~~~~~~ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

vlv0~ 

Figure 4.4 The effect of third-order spherical aberration 
on the modulation transfer function. 
(A) LAM = zero OPD = 0 
(B) LAM = 4X/n sin2 U OPD = 'A./4 
(C) LAM = BA.In sin2 U OPD = 'A./2 
(D) LAM = 16A/n sin2 U OPD = A. 

grade the image by the same amount regardless of what type of aber-
ration produced the OPD. · 

When the OPD is large (say more than one or two waves), the fol
lowing geometrical approximation (derived from the geometric 
defocusing expression) can be used to calculate the MTF with reason
able accuracy: 

J1 [8'TTn0PD(v/v0)] 

MTF(v) = 4'TTn0PD (v/v
0

) 
(4.4) 

where v0 is the cutoff frequency (Eq. 4.3), n is the index of the image 
medium, OPD is the peak-to-valley wavefront deformation in waves, 
and 

x (x/2)a (x/'.J,)5 
Ji[x] = 2 - 122 + 12223 - ··· 

The relationships between the basic aberrations and the OPD are 
given in Sec. F.12, as are the relationships between rms OPD and 
peak-to-valley OPD and between rms OPD and the Strehl ratio. 

A convenient relationship to remember is that a quarter-wave of 
OPD corresponds to a transverse spherical aberration (either mar
ginal or zonal) of about 

TA= 4A 
NA (4.5) 

This is a useful way to make a quick and dirty evaluation from just 
the ray intercept plots. 
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4.3 Blur Spot Size versus Certain 
Aberrations 

Many times, the system characteristic of interest is the size of the blur 
produced as the image of a point source. There are a few simple rela
tionships which are useful in this regard: 
Third-order spherical at best focus (three/fourths of the way from 
paraxial to marginal focus): 

B = 0.5 LAm tan Um = 0.5TAm (4.6) 

Third- and fifth-order spherical (with the marginal spherical cor
rected, focused at 0..42 LAz from the paraxial focus): 

B = 0.84 LAZ tan um= 0.59 TAZ (4.7) 

Third- and fifth-order spherical (corrected so that LAz = 1.5 LA,,µ or 
TAm = 1.06 TAz, and focused at 0.88 LAz from the paraxial.focus; this 
correction yields the smallest-diameter blur spot for a given amount of 
fifth-order spherical): 

B = 0.5 Ll\n tan Um= O.STAm 

(4.8) 

Note that the above are based on the idea of the smallest spot contain
ing 100 percent of the energy in the image of a point. For many appli
cations this concept is valid and useful, but for best image quality 
there is usually another focus or correction at which the image has a 
smaller, brighter core and a larger flare; this is usually judged to be 
better for definition and pictorial purposes. 

The effect of a large amount of defocusing on a well-corrected image 
is to produce a uniformly illuminated .blur disk with a diameter of 

defocus 
B = 2(defocus) tan Um~ f b num er 

(4.9) 

Astigmatism and field curvature can be evaluated by applying Eq. 4.9 
separately in the sagittal and tangential meridians. · 

Although ordinary axial chromatic is also defocusing, the blur it 
produces is not uniformly illuminated, but has the energy centrally 
concentrated. At the midway focus point, the diameter of the blur con
taining 100 percent of the energy is 

I 

B = ~h tan Um = TJ\m (4.10) 

However, the central concentration leads to a situation where 7 5 to 90 
percent of the energy is in a spot only half this size, and 40 to 60 per
cent is in a spot one-quarter as large. (The smaller percentages apply 
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for a uniform spectral response distribution and the larger for a trian
gular spectral distribution.) 

For third-order coma, the blur is the typical comet shape, and has a 
height equal to the tangential coma and a width (in the sagittal direc
tion) two-thirds this size. Note, however, that some 50 to 60 percent of 
the energy in the coma patch is in the point of the figure, whose size 
equals one-third the tangential coma. 

4.4 MTF-The Modulation Transfer 
Function 

The interpretation of an MTF plot is often problematical; it is not the 
easiest thing in the world to decide how good an image is on the basis 
of an examination of its MTF plot. 

The limiting resolution is easily determined if the system sensor 
can be characterized by an aerial image modulation (AIM) curve. This 
is a plot of the threshold, or minimum, modulation required in the im
age for the sensor to produce a response. When plotted against spatial 
frequency, the intersection of the AIM curve and the MTF plot clearly 
indicates the limiting resolution, as shown in Fig. 4.5. 

t l.O 
z 
Q 
t-

:3 0.5 
;:) 

0 
0 
2 -

MINIMUM 
DETECTABLE 
MODULATION 
LEVEL 

---

1

'AIM
11 

CURVE --0 - FREQUENCY (Nl
(UNES PER MILLIMETER) 

Figure 4.5 The intersection of the AIM curve 
and the MTF curve indicates the limiting reso
lution of the system. 

A criterion f~r excellent performance (one which is often used as a 
design goal for top-of-the-line professional motion picture camera 
lenses) is to look for a 50 percent MTF at 50 lpm. Another criterion 
which has been presented for commercial 35-mm camera lenses is 20 
percent MTF at 30 lpm over 90 percent of the field. Both criteria are 
applied at full aperture. These will give some idea of the range of the 
MTF values which are more or less standard for this type of work. 
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5 
Lens Design Data 

5.1 About the Sample Lenses 

One of the features of this volume is a fairly large set of lens designs, 
their prescriptions, and their aberration plots. This set is not intended 
to be a complete or extensive collection of all or even most of the pub
lished lens designs. We happily leave that to others. The set is in
tended to be a selection of lens designs which will serve two primary 
purposes. These are to serve as a set of suitable starting designs and to 
serve as a set of designs which illustrate to the reader the principles 
and techniques of successful lens designs. 

The designs in this book were drawn from many sources. A signifi
cant number are from the original version of OPTICS TOOLBOX.• 
(All of the designs in this text, plus many others which were consid
ered but not chosen for inclusion, have been incorporated in the War
ren J. Smith Lens Library. t) Many are derived from the patent liter
ature, or books which include patent references. Some of the designs 
are from the technical literature, such as journals, proceedings, or 
other books about lenses. Some have never been published previously. 

In most cases the published designs .~ave been modified to some ex
tent. For the majority of the designs, we have specified the optical 
glass as one of those from the Schott (Schott Glass Technologies, Inc.) 
catalog. We have chosen what we feel is the nearest Schott glass to 
that indicated in our source for the lens data. Occasionally this may 
constitute a significant change, but we have attempted to stay as close 
to the original data\ as possible. In a few designs, non-Schott glasses 
have been used. 

*OPTICS TOOLBOX is a product of Genesee Optics Software, Inc. 

tWarren J. Smith Lens Library is a trademark of Genesee Optics Software, Inc., and 
is incorporated in their optical design software products. 

49 
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The aperture and field which are indicated for any given lens design 
are more a matter of taste than anything else. What constitutes an ac
ceptable level of aberration depends mostly on the application to which 
the lens is to be put. Thus the values for field and aperture which accom
pany each design in this book have often been selected somewhat arbi-
trarily to yield a level of correction which we thought reasonable. . 

The choice of the clear apertures for the lens elements is equally ar
bitrary. Obviously, the clear aperture of an element cannot be so large 
that the edge thickness at that diameter becomes negative or 
impractically thin. We have selected what .seemed to be r:easonable 
values for the clear apertures, based on both edge thickness consider
ations and the choice of a vignetting factor which allows a reasonably 
sized oblique beam through the lens and also trims the oblique beam 
to eliminate the worst-behaved rays. 

5.2 Lens Prescriptions, Drawings, and 
Aberration Plots 

The lens design data and the associated graphics for this book hS:ve 
' been produced by computer. While data input errors and other 

glitches are always possible, by producing the lens data table, the lens 
drawing, and the aberration plots all from the same lens data file, we 
hope to prevent most of the errors which have afllicted some other ef
forts of this type. The design examples have all been scaled to focal 
lengths which are within a few percent of 100 units in order that com
parisons can be easily made. So that the details of the aberration cor
rection will be readily apparent, the computer was programmed .. to se
lect the scale of each aberration plot to make the plot fill the available 
space. This does, of course, have the disadvantage that each lens and 
its aberrations may be plotted to a different scale. In order to mini
mize this disadvantage we have limited the scales used to decimal fac
tors of 2, 5, and 10. 

Lens prescription 

A sample is shown in Fig. 5.1. The lens construction data are tabu
lated in a quite straightforward way. The columns are headed radius, 
thickness, mat'l, index, V-no, and sa (for semiaperture); the meanings 
should be apparent. The radius value follows the usual sign conven
tion that a positive radius has its center of curvature to the right of 
the surface. Plano surfaces (i.e., with infinite radius) are indicated by 
a blank entry in the radius column. The thickness and material fol
lowing a surface are presented on the same line as the surface radius, 
and have the same number. 
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F/4.5 25.2deg TRIPLET US 1,987 ,878/1935 SCHNEIDER 

~ tbic~aass ma1'.1 iru1a! Y.:aQ .sa 
26.160 4.916 LAK12 1.678 55.2 11.7 

1201.700 3.988 air 11.7 
·83.460 1.038 SF2 1.648 33.8 10.2 
25.670 4.000 air 10.2 

6.925 air 9.2 
302.610 2.567 LAK22 1.651 55.9 10.3 
-54.790 81.433 air 10.3 

EFL = 98.56 ~ EFFECTIVE FOCAL LENGTH 
8FL :81.'!3 : . BACK FOCAL 1.ENGTH 
NA = ·0.1127 (F/4.4) = NUMERICAL APERTURE ( f'-NUMBER) 
GIH =46.33(HF0V=25.17) :: IMAGE HEIGHT (HALF FIELD IN DEGREES) 
PTZ/F = ·2.831 : (PETZVAL RADlUS)/EFL 
Vl : 23.43 = VERTEX LENGTH 
OD infinite conjugate = OBJf-CT DISTANCE 

Figure 5.1 Sample lens prescription. 

With few exceptions, the material names are those of Schott Glass 
Technologies, Inc. The index and V . number values correspond to the 
wavelengths given with the ray intercept plot (e.g., see Fig. 5.3); for 
most lenses we have used the d, F, and C lines. The location of the 
aperture stop is indicated by a blank in the radius column with air on 
both sides of the surface. Aspheric surfaces are specified by the conic 
constant kappa and/or the aspheric deformation coefficients. The 
equation for the surface is 

. 2 

x = cy + ADy' + AEv6 + AFy8 + J\Gy10 (5.1) 
1 + (1 - (1 t K)c2y2]112 'J 

The data below the prescription tabulation has the following 
meanings: 

EFL 
BFL. 

NA 

GIH 

PTZ/F 

VL 

OD 
, 

Effective focal length 
Back focal length (the distance from the last surface to the 
paraxial focal point) 
Numerical aperture (the corresponding f number is in parenthe
ses) 
Gaussian (paraxial) image height (half-field in degrees i$ in pa
rentheses) 

Petzval radius as a fraction of EFL 
Vertex length from first to last surface 

Object distance 

Lens drawing 

A sample lens drawing is shown in Fig. 5.2. The scale of the lens draw
ing is indicated by the dimensioned length of the line immediately be
low the lens sketch. The two rays in the sketch are the marginal and 
principal rays corresponding to the aperture and field angle which are 
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APERTURE STOP 

50mm 

Figure 5.2 Sample lens drawing. 

tabulated with the lens data. The aperture stop location is indicated 
by the point at which the principal ray cro.sses the optical axis. The 
lens elements are drawn to the clear apertures given in the prescrip
tion table as sa, the semiaperture. 

Additional rays can·easily be added to the. lens drawing if desired, 
by using a technique which is exact only for paraxial rays, but which 
is often accurate enough for use in estimating or drawing ray paths.° A 
ray may be scaled by simply multiplying the heights at which it 
strikes the surf aces by a scaling constant. Also, rays may be added by 
adding their intersection heights together. In each case the result is a 
reasonable approximation to the path of another ray. Obviously, two 
rays can be scaled and then added. Thus any desired third ray can be 
draWn by determining its intersection heights from 

Y3 = AY1 + BY2 (5.2) 

where A and B are scaling factors and Y1 arid Y 2 are the ray heights 
of the rays in the lens drawing. If one defines the desired third ray by 
its intersection with any two surfaces (which may include the object or 
image surface), then a simultaneous solutfon. for A and B may be 
found from the two equations which result when the appropriate val
ues of Y1, Y 2, and Y3 are substituted into the equation above. 

Aberration plots 

A sample aberration plot is shown in Fig. 5.3. The aberration plots in
clude both tangential and sagittal ray intercept plots (sometimes 
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Figure 5.3 Sample aberration plot. 

called H-tan U curves) for the axis, 0.7 field, and full field. The ray 
displacements are plotted vertically, as a function of the position of the 
ray in the aperture. The vertical scale is given at the lower end of the 
vertical bar for the axial plot; the number given is the half-length (i.e., 
from the origin to the end) of the vertical line in the plot. The hori
zontal scale is proportional to the tangent of the ray slope angle. Fol
lowing the usual convention, the upper ray of the ray fan is plott.ed to 
the right. In the sagittal plots, the solid line is the transverse aberra
tion in the z, or sagittal, direction and the dashed line is the ray dis
placement in they direction (which is sagittal coma). 

In addition to the ray intercept plots (which are, in general, proba
bly the most broadly useful presentation of the aberration character
istics 'of a design), two aberrations are also presented as longitudinal. 
plots. The longitudinal representations of spherical aberration and 
field curvature have been the classical, conventional presentation for 
decades, despite the fact that they give a very incomplete picture of 
the state of correction of the lens. However, a longitudinal plot of the 
spherical aberration in three wavelengths does allow a much clearer 
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understanding of the spherochromatism, as well as the secondary 
spectrum. The scale factor for this plot is the number given at the 
right end of the horizontal axis; the number is the half length of the 
horizontal line. The vertical dimension of the plot is the height of 
the ray at the pupil; the f number is given at the top of the plot. This 
is the f number of the imaging cone and is equal to l/2NA. The longi:
tudinal field curvature plots yield an excellent picture of the correc
tion of the Petzval curvature and the astigmatism. The scale for X 8 

and X t is given at the right end of the horizontal axis; again the num
ber is the half length of the horizontal line. The solid line is Xt and the 
dashed line is )(8 • The vertical scale is the fraction of the gaussian im
age height (GIH); the half field angle is given at the left side of the 
distortion plot. The scale for distortion is in percent, and the number 
is the half-length of the horizontal line. 

5.3 Estimating the Potential of a Design 

It is relatively easy to estimate the effects of a modest redesign on the 
aberration plots of an existing design by applying a knowledge of 
third-order aberration theory. This is because the third-order aberra
tions of a lens are easily adjusted by changing the spaces or the ~hapes 
of the elements, whereas the amount of higher-order aberration tends 
to be quite stable and resistant to change. 

Equations 5.3 and 5.4 are a power series expansion of the relation
ships between the ray intersection with the image plane (y', z') as a 
function of the object height h and the ray position in the pupil (de
fined in polar coordinates s and 6), as shown in Fig. 5.4. 

y' = A 1s cos 6 + A 2h + B 1s
8 cos 0 + B<zS2h(2 + cos 20) 

+ (3B3 + B4)sh2 cos 9 + B 6h
8 + C1s5 cos 6 + (C2 + C3 cos 26)s4h 

+ (C4 + C6 cos29)s3h 2 cos 6 + (C7 + C8 cos 20)s2h 3 + C1oSh4 cos 0 

z' = A 1s sin 6 + B 1s3 sin 0 + BzS2h sin 20 

+ (B3 + B 4)sh2 sin 6 + C1s6 sin 0 + C3s
4h sin 29 

+ (C5 + C6 cos26)s3h2 sin 9 + C9s2h3 sin 26 + C~1sh4 sin 6 

+ D iS 7 sin e + ... 

(5.3) 

(5.4) 

Notice that, in the A terms, the exponents of sand hare unity. In 
the B terms; the exponents total 3, as in s3

, s2h, sh2
, and h3• In the C 
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INTERSECTION OF RAY 
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I z 

Figure 5.4 A ray from the pointy = h, z = 0.0 in the object passes through the ap· 
erture of the optical system at a point defined by its polar coordinates (s, 0), and in· 
tersects the image sur face at point y', z'. 

terms, the exponents total 5, and in the D terms, 7. These are referred 
to as the first-order , third-order, and fifth-order terms, etc. There are 2 
first-order terms, 5 third-order, 9 fifth-order, and [(n + 3)(n + 5)/ 
8 - 1] nth-order terms. In an axially symmetrical system there are no 
even-order terms; only odd-order terms may exist (unless we depart 
from symmetry as, for example, by tilting a surface or introducing a 
toroidal or other nonsymmetrical surface). 

It is apparent that the A terms relate to the paraxial (or first-order) 
imagery. A 2 is simply the ·magnification (h'/h), andA1 is a measure of 
the distance from the paraxial focus to our "image plane." All the 
other terms in Eqs. 5.3 and 5.4 are called transverse aberrations. They 
represent the distance by which the ray misses the ideal image point 
as described by the paraxial imaging equations. 

The B terms are called the third-order, or Seidel, or primary aber
ratio,ns. B1 is spherical aberration, B2 is coma, B3 is astigmatism, B4 is 
Petzval, and B 5 is distortion. Similarly, the C terms are called the 
fifth-order or secondary aberrations. C1 is fifth-order spherical aberra
tion; C2 and C3 are linear coma; C4, C6 , and C6 are oblique spherical 
aberration; C7, C8, and C9 are elliptical coma; C10 and C11 are Petzval 
and astigmatism; and C 12 is distortion. 
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The 14 terms in Dare the seventh-order or tertiary aberrations; D1 is 
the seventh-order spherical aberration. A similar expression for OPD, 
the wavefront deformation, is given in Sec. 5.4 (Eqs. 5.5 and 5.6). 

The terms with the B coefficients are the transverse third-order ab
errations. The longitudinal aberrations are equal to the transverse ab
errations divided by - uk'; since uk' is a direct function of the r~y 
height s, one can convert these into longitudinal aberrations by reduc
ing the exponent of s by 1 (and adjusting the coefficients). 

Thus one can assume that if the spherical aberration is adjusted so 
as to correct it at a given aperture, the change in the longitudinal ab
erration will be proportional to the square of the ray heights. For ex
ample, if the spherical at ray height Y1 is to be changed by dLA11 then 
at ray height Y2 it will change by dLA2 = dLA1(Y2/Y1)

2
• The change 

of the transverse spherical will vary as a cubic function, so that the 
transverse change dTA2 = dTA1(Y2/Y1)

3
• Figure 3.6 shows the effect 

of changing the third-order spherical (assuming a constant fifth-order 
spherical). 

If the axial chromatic is changed, the ray intercept plots for the clif
f erent colors will simply rotate with respect to each other. The second
ary spectrum and spherochromatism will change very little, so tha'.t 
one can readily estimate the ray intercept plots which will result from 
a simple change in the axial chromatic. Figure 3. 7 shows two different 
b8.lances of axial chromatic and spherochromatism. Similarly, a lat
eral chromatic change will change the relative heights of the different 
color ray plots, and the amount of the height change will be propor
tioned to the image height. 

The change in the longitudinal astigmatism and field clirvature is 
proportionai to the square of the image height or field angle. Thus if 
the field curvature is changed by dX1 at image height H1, the change 
at H 2 is dX2 = dX1(H2/H1)

2
. The change in the tangential field curva

ture Xt is three times the change in the sagittal field curvature X 8 if 
the change is produced by changing the amount of the astigmatism. 
However, if the change results from a change in the Petzval curva
ture, both Xs and Xt are shifted by the same distance. Note that the 
slope of the ray intercept plot ( dH' Id tan U) at the principal ray is 
equal to the tangential field curvature (Xe) (or X 8 for the sagittal plot). 

Changes in the third-order coma produce a parabolic-shaped change 
in the ray intercept plot. If the plot is raised by an amount dH at the 
ends of the plot, it will be raised by (0. 7)2 dH = 0.5 dH at the 0. 7 zones 
of the aperture. The amount of the coma change for other field angles 
will vary directly with the field angle or image height. 

The change in percent distortion will vary with the square of the 
field angle. The change in the lateral color varies directly with 
the field an~le. 
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Thus one can look at the aberration plots for a given design and, by 
applying the techniques outlined above, easily visualize what they 
will look like after an adjustment has been made to fit the design to 
the application at hand. 

5.4 Scaling a Design, Its Aberrations, and 
Its MTF 

A lens prescription can be scaled to any desired focal length simply by 
multiplying all of its dimensions by the same constant. All of the lin
ear aberration measures will then be scaled by the same factor. Note 
however, that percent distortion, chromatic difference of magnifica
tion (CDM), the numerical aperture or f number, aberrations ex
pressed as angular aberrations, and any other angular characteristics 
remain completely unchanged by scaling: · 

The exact diffraction MTF cannot be scaled with the lens data. The 
diffraction MTF, since it includes diffraction effects which depend on 
wavelength, will not scale because the wavelength is not (ordinarily) 
scaled with the lens. A geometric MTF can be scaled by dividing the 
spatial frequency ordinate of the MTF plot by the scaling factor. Of 
course, because it neglects diffraction, the geometric MTF is quite in
accurate unless the aberrations are very large (and the MTF is corre
spondingly poor). 

A diffraction MTF can be scaled very approximately as follows: De
termine the OPD which corresponds to the MTF value of the lens for 
several spatial frequencies. This can be done by compa;ring the MTF 
plot for the lens to Figs. 4.3 and 4.4, which relate the MTF to OPD. 
Then multiply the OPD by the scaling factor and, again using Figs 4.3 
and 4.4, determine the MTF corresponding to these scaled OPD val
ues. Obviously the accuracy of this procedure depends on how well the 
simple relationships of Figs. 4.3 and 4.4 represent the usually complex 
mix of aberrations in a real lens. 

In the event that a proposed change of aperture or field is expected 
to produce a change in the amount of the aberrations, one can attempt 
to scale the MTF as affected by aberration. This is done by determin
ing the type of aberration which most severely limits the MTF, then 
scaling the OPD according to the way that this aberration scales with 
apert_ure or field, in a manner analogous to that described in Sec. 5.3. 
In general, OPD as a function of aperture varies as one higher expo
nent of the aperture than does the corresponding transverse aberra
tion. For example, the OPD for third-order transverse spherical 
(which varies as Y 3) varies as the fourth power of the ray height. In a 
form analogous to Eqs. 5.3 and 5.4, which indicate a power series ex
pansion of the transverse aberrations as a function of aperture and 
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field, Eq. 5.5 gives the relationship for OPD. As in Sec. 5.3, the terms 
of the equation. refer to Fig. 5.4. 

OPD = A'1s
2 + A '2sh cos 6 + B'1s

4 + B'2ft3h cos 0 

+ B'3s2h2 cos26 + B'4s2h2 + B'5sh3 cos 0 + C'1s6 + C'#6h cos 6 

+ C' 4s
4h2 + C'5s

4h2 cos26 + C'7s3h3 cos 9 + C'8s3h3 cos30 

+ C' 1~2h4 + C' 11s2h4 cos2 0 + C' 12sh" cos 0 + D' 1s
8 + · · · (5.5) 

Note that although the· constants here correspond to those in Eqs. 5.3 
and 5.4, they are not numerically the same. However, the expressions 
are related by 

y' = TA,. = l_ aOPD 
N oy 

and z' = TAa = l aOPD. (5.6) 
N oz 

where l is the pupil-to-image distance and N is the image space index. 
Note that the exponent of the semiaperture term s is larger by 1 in the 
wavefront expression than in the ray-intercept equations. 

5.5 Notes on the Interpretation of Ray 
Intercept Plots 

When the image plane intersection heights of a fan of meridional rays 
are plotted against the slope of the rays as they emerge from the lens, the 
resUltant curve is called a ray intercept curve, an H' - tan U' curve, or 
sometimes (erroneously) a rim ray curve. The shape of the intercept 
curve not only indicates the amount of spreading or blurring of the im
age directly, but also can serve to indicate which aberrations are present. 

In Fig. 5.5 an oblique fan of rays from a distant object point is 
b~ought to a perfect focus at point P. If the reference plane passes 
through P, it is apparent that the H' - tan U' curve will be a straight 
horizontal line. However, if the reference plane is behind P (as shown) 
then the ray intercept curve becomes a tilted straight line since the 
height, H', decreases as tan U' decreases. Thus it is apparent that 
shifting the reference plane (or focusing the system) is equivalent to a 
rotation of the H' - tan U' coordinates. A valuable feature of this type 
of aberration representation is that one can immediately assess the ef
fects of refocusing the optical system by a simple rotation of the ab
scissa of the figure. Notice that the slope of the line (111I' I '1 tan U') is 
equal to the distance 8 froin the refere~ce plane to the point of focus, 
so that for an oblique ray fan the tangential field curvature is equal to 
the slope of the ray intercept curve. 

Figure 5.6 shows a number of intercept curves, each labeled with 
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Figure 5.5 The ray intercept curve (H' versus -tan U') of 
an image point which does not lie in the.reference plane is a 
tilted straight line. The slope of the line (dH' Id tan U') is 
mathematically identical to the distance from the reference 
plane to the point P. Note that this distance is equal to X 11 
the tangential field curvature (if the reference plane is the 
paraxial focal plane). 
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the aberration represented. The generation of these curves can be 
readily understood by sketching the ray paths for each aberration and 
then plotting the intersection height 8.nd slope angle for each ray as a 
point of the curve. Distortjon is not shown in Fig. 5.6; it would be rep
resented as a vertical displacement of the curve from the paraxial im
age height h'. Lateral color would be represented ·by curves for two 
colors which were vertically displaced from each other. The ray inter
cept curves of Fig. 5.6 are generated by tracing a fan of meridional or 
tangential rays from an object point and plotting their intersection 
heights versus their slopes. The imagery in the other meridian can be 
examined by tracing a fan of rays in the sagittal plane (normal to the 
meridional plane) and plotting their z-coordinate intersection points 
against their slopes in the sagittal plane (i.e., the ray slope relative to 
the principal ray lying in the meridional plane). 

It is apparent that the ray intercept curves which are "odd" func
tions, that is, the curves which have a rotational or point symmetry 
about the origin, can be represented mathematically by an equation of 

. the form 
, 

y = a + bx + cx3 + dx5 
· + · · · 

or H' = a + b tan U' + c tan8 U' + d tan5 U' + · · · (5.7) 

All the ray intercept curves for axial image points are of this type. 
Since the curve for an axial image must have H ' = 0 when tan U' = 0, 
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(k) ON-AXIS PLOT FOR AN ACHROMATIC DOUBLET, 
SHOWING ZONAL SPHERICAL. SECONDARY 

(e) COMA THIRD ANO FIFTH ORDER SPECTRUM, AND SPHERO·CHROMATISM 

Figure 5.6 Sample ray intercept plots for various aberrations. The ordinate for each 
curve is the height at which the ray intersects the (paraxial) image _plane; usually His 
plot ted relative to the principal ray height, which is· set to zero. The abscissa is tan U, 
the final slope of the ray with respect to the opt ical axis. Note that, regardless of the 
sign convention for the ray slope, it is conventional to plot the ray through the top of the 
lens at the right of th~ figure, and that the curves for image points above the axis are 
usually shown. Observance of these conventions makes it much easier to interpret the 
plots. 
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it is apparent that the constant a must be a zero. It is also apparent 
that the constant b for this case represents the amount the reference 
plane is displaced from the paraxial image plane. Thus the curve for 
lateral spherical aberration plotted with respect to the paraxial focus 
can be expressed by the equation 

TA' == c tan3 U' + d tan6 U' + e tan7 U' + · · · (5.8) 

It is, of course, possible to represent the curve by a power series ex
pansion in terms of the final angle U', or sin U', or the ray height at 
the lens ( Y ), or even the initial slope of the ray at the object ( U0 ) in· 
stead of tan U'. The constants will, of course, be different for each. 

For simple uncorrected lenses, the first term of Eq. 5.8 is usually 
adequate to describe the aberration. For the great majority of cor
rected lenses the first two terms are dominant; in a few cases three 
terms (and rarely four) are necessary to satisfactorily represent the 
aberration. As examples, Figs. 5.6a and b can be represented by 
TA' = c tan3 U', and this type of aberration is called third-order 
spherical. Figure 5.6c however, would require two terms of the expan
sion to represent it adequately; thus TA' = c tan3 U' + d tan6. U'. The 
amount of aberration represented by the second term is called the 
fifth-order aberration. Similarly, the aberration represented by 
the third term of Eq. 5. 8 is called the seventh-order aberration. The 
fifth-, ·seventh-, ninth-, etc., order aberrations are collectively referred 
to as higher-order aberrations. 

The ray intercept plot is subject to a number of interesting interpre
tations. It is immediately apparent that the top-to-bottom extent of 
the plot gives the size of the image blur. Also, a rotation of the hori
zontal (abscissa) lines of the graph is equivalent to a refocusing of the 
image and can be used to determine the effect of refocusing on the size 
of the blur. 

Figure 5.5 shows that the ray intercept plot for a defocused images 
is a sloping line. If we consider the slope of the curve at any point on 
an H-tan U ray intercept plot, the slope is equal to the defocus of a 
small-diameter bundle of rays centered about the ray represented by 
that point. In other words, this would represent the focu.s of the rays 
passing through a pinhole aperture which was so positioned. as to pass 
the rays at that part of the H-tan U plot. Similarly, since shifting an 
aperture stop along the axis is, for an oblique bundle of rays, the 
equivalent of selecting one part or another of the ray intercept plot, 
one can understand why shifting the stop can change the field curva
ture. 

The OPD (optical path difference) or wavefront aberration can be 
derived from an H-tan U ray intercept plot. The area under the curve 
between two points is equal to the OPD between the two rays which 
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correspond to the two points. Ordinarily, the reference ray for OPD is 
either the optical axis or the principal ray (for an oblique bundle). 
Thus the OPD for a given ray is usually the area under the ray inter-
cept plot between the center point and the ray. . 

Mathematically speaking, then, the OPD is the integral of the H
. tan U plot and the defocus is the first derivative. The coma is related 
to the curvature or second derivative of the plot, as a glance at Fig. 
5.6d will show. 

It should be apparent that a ray intercept plot for a given object 
point can be considered as a power series expansion of the form 

H ' = h + a + bx + cx2 + dx8 + ex4 + fx6 + · · · (5.9) 

where h is the paraxial image height, a is the distortion, and x is the 
aperture variable (e.g., tan U'). Then the art of interpreting a ray in
tercept plot becomes analogous to decomposing the plot into its vari
ous terms. For example, cx2 and ex4 represent third- and fifth-order 
coma, while dx3 and fx5 are the third- and fifth-order spherical. The bx 
term is due to a defocusing from the paraxial focus and could be due to 
curvature of field. Note that the constants a, b, c, etc., will be different 
for points of differing distances from the axis. · · 
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10 
Telephoto Lenses 

10.1 The Basic Telephoto 

The arrangement shown in Fig. 10.1, with a positive component fol
lowed by a negative component, can produce a compact system with 

· an effective focal length F which is longer than the overall length L of 
the lens. The rat io of L!F is called the telephoto ratio, and a lens for 
which this ratio is less than unity is classified as a telephoto lens. The 
smaller the rat io, the more difficult the lens is to design. Note that 
many camera lenses which are sold as telephoto lenses are simply 
long-focal-length lenses and are not true telephotos. 

Many of the comments in Chap. 9 regarding retrofocus or reverse 
telephoto lenses are equally applicable to the telephoto lens. Equa
tions 9.1 and 9.2 may also be applied to the telephoto. The usual 
Petzval problem is with a backward-curving field, just as with the 
retrofocus, and the same glass choices are appropriate for the tele
photo. Since the system is unsymmetrical, each component must be in
dividually achromatized if both axial and lateral color are to be cor-

, - - o- - - --8----
------- L-- ---- ----

---------------F------- - --
Flgure 10.1 The basic power arrangement for a telephoto lens 
yields a compact lens with an overall length which is less 
than its effective focal length. 

169 
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rected. The aperture stop is usually at the front member or part way 
toward the rear. Since a telephoto lens usually covers only a relatively 
small angular field, coma, distortion, and lateral color {which in many 
lenses are reduced by an approximate symmetry about the stop) are 
not as troublesome as they would be with a wider field. 

10.2 Close-up or Macro lenses 

The correction of a long-focal-length unsynu~etrical lens is usually 
quite sensitive to a change in object distance, and, for most telephoto 
lenses, the image quality deteriorates severely when they are focused 
on nearby objects. Note that this effect varies inversely with the object 
distance expressed in focal length un.its; i.e., for a given design type, 
the image quality may remain acceptable as long as the object dis
tance exceeds some number of focal lengths. Thus, for a given object 
distance, this effect is more of a problem for a long-focal-length lens 
than for a short. Since retrofocus lenses tend to have short focal 
lengths, this problem is somewhat less frequently encountered, in 
spite of their asymmetry. " 

Many newer telephoto lenses and the specialized close-focusing 
lenses (called macro lenses) utilize a floating component or separately 
moving elements to maintain the aberration correction when the lens 
is focused at a close distance. For many le~ses, the spherical aberra
tion and the astigmatism become undercorrected at close conjugates, 
Thus a relative motion of the elements to increase the marginal ray 
height on a negative -(or overcorrecting) element/component can be 
used to stabilize the spherical. The astigmatism can be controlled by a 
motion which increases the height of the chief ray on a component 
which contributes overcorrected astigmatism, or which reduces it on 
an undercorrecting one. 

The design of such a system is carried out just like the design of a 
zoom lens. Two (or more) configurations are set up, one with a long 
(perhaps infinite) object conjugate distance and the other with a short 
one. The computer then uses the same lens elements with different 
spacings for each configuration and optimizes the merit function for 
both configurations simultaneously. 

Figures 19.3 to 19.6, and 20.5 show nontelephoto designs with 
macro features. 

10.3 Sample Telephoto Designs 

Figures 10.2 and 10.3 show two very basic telephoto lenses; each con
sists of just two cemented or closely airspaced achromatic doublets, 
about as simple a construction as possible. Figure 10.2 covers less 
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~------------~--------------1 - ------~ ------ ---* ---- -----
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Figure 10.2 
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·62.570 0.006 air 9.3 
·61.860 1.300 SF2 1.648 33.8 9.3 
60.450 11.450 air 9.3 

9.540 air 6.1 
-10.610 1.400 KF9 1.523 51.5 6.0 
-24.760 0.011 air 7 .0 
-24.250 2.400 SF1 1.717 29.5 7.0 
· 18.570 50.137 air 7.0 

EFL = 98.52 
BFL = 50.14 
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than 9° at f/5.6 and has a telephoto ratio of 0.85; it uses BK7 and F2 
glasses and was done as an illustrative design exercise. Figure 10.3, at 
the same speed, covers 3 times as large a field with a telephoto ratio of 
0.81. It utilizes heavier flint glasses (higher index and lower V value) 
to achieve a modestly improved performance. 

Figure 10.4 covers a 30° field at f/4.5 with excellent distortion cor
rection, illustrating the benefits derived from the added degrees of 
freedom gained by splitting the cemented doublets into wid~ly 
airspaced components. The large telephoto ratio of 0.91 and the mod
estly high-index glasses are also helpful. 

Figure 10.5 illustrates the use of unusual partial dispersion glasses 
(as described in Chap. 6) to reduce the secondary spectrum. The term 
superachromat implies that at least four wavelengths are brought to a 
common focus, whereas the term apochromat indicates that three 
wavelengths are corrected. Notice, however, that the spherochroma
tism and zonal spherical aberration in this lens are much larger than 
the axial chromatic aberration; these are the aberrations which will 
determine the limiting performance of this lens. 

Figures 10.6, 10. 7, and 10.8 each have five ·elements and illustrate 
some of the different ways that the inherent capabilities of this con
figuration can be utilized. In Figs. 10.6 and 10.8, the crown element of 
the front doublet is split into two elements to reduce the zonal spher
ical aberration (among others). Figure 10.6 is the result of a classroom 
exercise which specified a 200-mm f/5.0 lens with a telephoto ratio of 
0.80 for a 35-mm camera. It uses quite ordinary glasses and achieves 
an excellent level of performance. Figure 10.7 uses high-index glass 
and a different arrangement to get to a speed of f/4.0, but falls a bit 
short in performance and telephoto ratio (at 0.91). Figure 10.8 uses 
unusual partial dispersion glasses and breaks the contact in the front 
doublet, to achieve what is (potentially) a high level of correction, al
though the telephoto ratio is only a modest 0.95. 

Figure 10.9 uses seven elements to produce a well-correctedf/5.6, 6° 
field lens with an extremely short telephoto ratio of 0.66. Notice the 
overcorrected Petzval field, with p/f = + 2.1; this is one reason that 
small telephoto ratios are troublesome. 

With a telephoto ratio of 1.06, Fig. 10.10 doesn't really qualify as a 
true telephoto, but at a speed of f/1.8 and a field of 18°, it is an inter
esting lens, even if it is difficult to classify. 

Figures 10.11and10.12 show an internal-focusing telephoto with a 
modest ratio of 0.92. The front component is fixed and the lens is fo
cused for close-ups by moving the rear component toward the image 
plane. This could be considered as a sort of macro-style lens. 
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VL : 47.03 
OD Infinite conjugate 

SAGITTAL LA I F/4. 5 
,/ 

I 
I 
I 
I 
\ 
\ 
\ 
\ 

\ \ 
\ \ 

\ \ 
\ \ 

.:ii.I 
12.7 
12.7 
12.7 
12.7 
7.9 

10.2 
12.2 
14.3 
14.3 

0.5 

Field Curvature 

---0. 5876 
------· 0. 486 1 
- ··--··- .. -0. 6563 

--- Del Z 
------· De 1 Y 

---XT 
------ · XS 

I 
\ 
\ 
\ 

\ 

' ', 
' ', 

' ' \ 
\ 
\ 
I 

Distortion 

t-4FOV• 15. 11 

0.-2 

0.2 
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Telephoto Lenses 175 

...... . ' ,,-... 

OOmm 

---------------------- ----
-<:::===-------------- ----------

SIGLER; SUPER ACHROMAT: TELEPHOTO EFL-254 

rad.lwi lbi~lsa~!il!il mar.I iD.W 
21.851 5.008 PK51 1.529 

·34.546 1.502 KZFS9 1.599 
108.705 1.127 air 

26.965 air 
·12.852 1.502 KZFS1 1.613 
19.813 5.008 BASF5 1.603 

·20.378 42.174 air 

EFL = 100 
BFL =42.17 
NA = ·0.0898 (F/5.6) 
GIH =8.75 
PTZ/F .. ·40.38 
VL "'41.11 
OD infinite conjugate 

MERIDIONAL 
1. 0 

SAGI TT AL 

---

0.7 

0.0 

---0. 5876 
-----· 0. 4861 
_ .. _ .. ____ .. _o. 6 s s 3 

----De 1 Z 
------- De 1 Y 

.. _ 
----XT 

0.05 
------·XS 

l!:nQ §.a 

77.0 9.5 
46.9 8.9 

8.3 
8.1 

44.3 6.3 
42.5 6.7 

7.4 

LA' F'/ ::i .e 

Field Curvotur e 

Distortion 

HF'OV- ::i.oo 

Figure 10.5 

o. s 

0 . 5 
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176 Chapter Ten 

--

MER IDIONAL 
, . 0 

0.7 

0.0 

----------- ---------
.... ::::::::::=--------

-----

50mm 

f/5 6deg TELEPHOTO 

radius lbi~Of!§§ ma1J ~ 
149.035 2.500 SK4 1.613 
·46.003 2.000 SF14 1.762 

-477.921 0.500 air 
26.522 2.500 SK4 1.613 

132.322 24.060 air 
·28.605 2-000 SK4 1.613 
22.989 1.050 air 
82.834 2.500 F5 1.603 

·36.911 42.897 air 

EFL .. 100 
BFL = 42.9 
NA = -0.1000 (F/5.0) 
GIH = 10.50 (HFOV=5.99) 
PTZJF "'7.68 
VL e37.11 
OD infinite conjugate 

SAGI TT AL 

I 
/ 

... / 

---0. 5876 
/ 

----------

~ 
58.6 
26.5 

58.6 

58.6 

38.0 

aa 
10.5 
10.5 
10.5 
10.5 
10.5 
7.6 
7.6 
7.6 
7.6 

LA' F/!l.O 
I ' 
I / 

: i 
I j 
\ f 
I ! 
I I \ : 

I \ 

\ ! 
1 l 

0 .2 

Field Curvature 

o. 1 

Distor tion 

,,,, .. / 
,.:.~.:...·~·::-:. __ , 

----- - · 0. 4861 
- -- ··- ··-··-0 . 6 5 6 3 

- --De l Z 
- -----· De 1 Y 

----XT 

0.02 
------· XS Hl"OV-5 . 99 --------i---------< 5.0 

Figure 10.6 
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---
----------------------- ------------_ .... 

........ ------.... ---
100mm 

J. EGGERT ET AL; USP 3388956; F/4 15 DEG. TELEPHOTO #1 

radW lbiC~D!!SS mat:! ~ 
42.156 6.676 LAKN6 1.642 

-88.214 1.945 SF10 1.728 
-1800.073 1.183 air 

-137.288 1.945 SF9 1.654 
-530.649 40.290 air 

11 .913 air 
34.202 2.234 LAF11 1.757 

117.496 3.859 air 
-31.069 0.526 BSF10 1.650 
69.782 20.320 air 

EFL = 99.99 
BFL = 20.32 
NA = -0.1256 (F/4.0) 
GIH = 13.16 (HFOV;7.50) 
PTZIF = 4.272 
VL = 70.57 
OD infinite conjugate 

MERIDIONAL 
1. 0 

SAGI TT AL 

------
··-··-··-··--' 

0.7 

--.__ _____ _ 

0.0 

---0. 5876 
------· 0. 486 1 
-··- ·--·--0. 6563 

Del z 
------ Del y 

XT 
------

·O. 1 
XS 

Figure 10.7 

~ 
58.0 
28.4 

33.7 

31.7 

39.1 

ia 
18.4 
18.2 
17.4 
17.3 
16.8 
5.4 
7.3 
7.3 
7.3 
7.5 

I 
I 
I 
\ 
\ 
\ 
I 
I 
I 
\ 
I 
\ 
I 
I 
I 

Field 

LA' F/4.0 \,i · 
\ 
\ 
\ 
\ 

" \ 

Curvature 

Distortion 

HFOV .. 7.30 

0.5 

1. 0 

5.0 

177 
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-----

\ 
100mm 

SEI MATSUI; USP 4338001; F/2.8 14 DEG. TELEPHOTO LENS #1 

cas1iu.s lllil:~Dli~5 .maI1 ~ 
54.585 6.667 FC01 1.497 

·77.813 1.1 11 air 
-76.698 2.056 LAFN7 1.750 
207.222 3.056 air 

43.208 5.111 BEDS 1.658 
134.444 50.667 air 
·19.462 1.111 K3 1.518 

·305.556 0.056 air 
121.887 2.222 TAF2 1.794 
-89.277 22.862 air 

EFL • 100 
BFL .. 22.86 
NA = -0.1790 (F/2.8) 
GIH • 12.28 (HFOI/: 7.00) 
PTZ/F • -9.12 
VL m 72.06 
OD infinite conjugate 

MER I DIONAL 
1 . 0 

0 . 7 
T 

0.0 

I I 
/ I 

.I ___ ,. 

SAGITTAL 

Y:nS2 
81.6 

34.9 

50.9 

59.0 

45.4 

--- 0. 5876 
------ 0. 486 1 
_ .. _ .. _, - . 0 . 6 5 6 3 

---Del Z 
- ----- Del Y 

--- XT 

o. 1 
------XS 

Figure 10.8 

178 

.5.il 
17.9 
17.7 
17.3 
17.0 
16.8 
16.2 
9.0 
9.5 
9.7 
9.8 

LA ' F/2 . 8 

\I ·, T 
\ I I 
\ I -I 
I I 

I + 

\ '\ I I 
\ . 
I I 
I 
I 

C.5 

F' ield Curvature 
\ 

' \ 
' ' \ 

' ' ' ' ' \ 
\ 

\ 
I 
I 

Distort i on 

T 

0. 1 

1 . 0 
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------------ --------- -------1 ----
--------

50mm 

MELVYN H. KREITZER; USP 4359272; 390 MM F/5.6 6 DEG. TEL. #1 

~ lbi!llsO!UIS m.ar.t ~ ~ 
33.072 2.386 C3 1.518 59.0 

·53.387 0.077 air 
27.825 2.657 C3 1.518 59.0 

·35.934 1.025 LAF7 1.749 35.0 
40.900 22.084 air 

1.794 FD110 1.785 25.7 
·16.775 0.641 TAFOS 1.835 43.0 
27.153 9.607 air 

· 120.757 1.035 CF6 1.517 52.2 
·12.105 4.705 air 

·9.386 0.641 TAF1 1.773 49.6 
-24.331 18.960 air 

EFL .. 100 
BFL = 18.96 
NA = -0.0892 (F/5.6) 
GIH = 5.24 
PTZ/F = 2.097 
VL = 46.65 
OD Infinite conjugate 

MERIDIONAL 
1 . 0 

SAGITTAL 

0.7 

0.0 

---0 . 5876 
------ 0. 486 1 
- ··-··- ·- .. -0. 6563 

Del z 
------ Del y 

XT 
------ XS 

0.05 

Figure 10.9 

~ 

8.9 
8.9 
6.4 
8.3 
7.8 
4.7 
4.6 
4.5 
4.8 
.4.8 
4.0 
4.1 

LA' r/5.6 
I ,.,.. 

i,,'"' ,. ,., 
I. 
\ 
\ 

\ 

\ 
\ 

0 . 2 

Field Curvature 

0.2 

Distortion 

Hf"OV-.3.00 

2.0 

179 
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180 Chapter Ten 

------

I 
I 
\ 

MERID IONAL 
1 . 0 

\ 
\ 
\ 

\ 

' \ ' , 

\ 
\ 

0.7 

'\::----
' .................... 

.. - ·· 

0.0 

0 . 05 

Figure 10.10 

j 

i 

100mm 

--------,,..-----------
YASUNORI ARAI; USP 4447137; F/1.6 TELEPHOTO #2 

~ tbi!<ISO~SS m.a.t1 i.a.d.ex Y:ll2 
52.892 9.556 SK16 1.620 60.3 

2978.662 0.074 air 
38.766 3.571 BASFS 1.723 37.9 
23.194 11.1 12 LAK14 1.697 55.5 
69.755 3.000 air 

341.551 6.052 SF5 1.673 32.1 
22.422 18.520 air 

6 .949 air 
-30.641 3.237 BSF07 1.702 41.2 
-29.652 5.069 air 
53.327 3.000 LAF11 1.720 46.0 

106.470 2.963 air 
184.198 2.963 LAF01 1.700 48.1 

11 16.126 30. 191 air 

EFL = 100 
BFL = 30.19 
NA = -0.2779 (F/1 .80} 
GIH "'16.20 (HFOV=9.20) 
PTZ/F .. -8.83 
VL = 76.09 
OD infinite conjugate 

SAGI TT AL L A' F/1. 80 

I 
I 
I 
\ 
\ 
\ 
I 

__.,-.?":"" 
_,.-~/ ...... 

/ 
\ 
\ 
\ 
·'·· '· ., 

\ _ 
\ 

fill 
28.9 
28.9 
25.6 
20.7 
19.7 
19.6 
14.5 
12.4 
12.5 
13.3 
15.4 
15.4 
15.6 
15.6 

o. 1 

F ie ld Curvature 

Distortion 

---0. 5876 
------ 0 . 486 1 
- · -·· "··- ·· 0 . 656 3 

---De 1 Z 
------ De 1 Y 

-----XT 
------ XS HFOV-9. 20 

1. 0 
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Telephoto Lenses 

--------------------- ----__ -:-.-_____________ _ 

1--_-_------~-=-~~_..,~-~-~-~-------~- 11------.;;::.::~-1 

100mm 

MOMIYAMA USP 4,037,935; F/4.5 (LONG EFL POSITION) 

w1llti tbiclsaess mal'.l ID.all ~ aa 
48.796 3.645 CAF 1.434 94.9 12.6 

· 168.096 0.140 air 12.6 
62.820 3.505 FK5 1.487 70.2 12.6 

-70.733 0.303 air 12.6 
-73.188 1.402 LASF3 1.806 40.9 12.6 
250.187 22.431 air 12.6 

25.150 air 7.9 
19.535 0.841 SF4 1.755 27.5 6.0 
27.456 0.701 LSF16 1.772 49.6 5.8 
14.524 34.173 air 5.7 

EFL e 112.2 
BFL .. 34.17 
NA - -0. 1099 (Fi'4.5) 
GIH =6.06 
PTZIF = -4.07 
VL = 58.12 
OD Infinite conjt.gate 

SAGI TT AL LA' MERIDIONAL 
1 . 0 / , '· 

I \ 

.. , 
·· .... ··- ··-·· . _ .. ; •' 

/ 
/ 

I 
/ 

I 
I 

I 
I 

I 
I 
I 

\ 
\ 
i 
i 
i 
i 
i 
l 
: 

0. 1 

0 . 7 Field Curvature 

' ··-. - - ·-··-· 

0. 1 

0 .0 Distortion 
---0. 5876 

, ,,, .. ,,,...-- ·; 
,.,..,,.·· / 

,..,,.··" / 

------· 0. 486 1 
- - ··- ··O . 6563 

---Del Z 
,.---............... 

-----""' -----· De 1 Y 

----XT 

0 . 01 
------· XS Hl"'OV- 3 . 09 

2.0 

Figure 10.11 
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182 Chapter Ten 

------------------------ ----------------- ---------------

100mm 

MOMIYAMA USP 4,037,935; F/4.5 (SHORT EFL POSITION) 

~ lbicl!.Ollll:i mall Jmal 
48.796 3.645 CAF 1.434 

-168.096 0.140 air 
62.820 3.505 FKS 1.487 

-70.733 0.303 air 
-73.188 1.402 LASF3 1.808 
250.187 22.431 air 

32.440 air 
19.535 0.841 SF4 1.755 
27.456 0.701 LSF16 1.772 
14.524 26.857 air 

EFL -100 
BFL · 26.66 
NA = --0.1139 (F/4.4) 
GIH .. s.93 
PTZJF - -4.605 
VL • 65.41 
00 ,. 2243.07 (MAG :: ·0.048) 

MERIDIONAL 
1 . 0 

SAGITTAL 

0.7 

---

o . o 
- --0 . !5876 
------ 0. 486 1 
- ··- ·-··- ··-0 . 6563 

- - -Del Z 
------ Del Y 

---XT 

0 . , - ----- XS 

Figure 10.12 

~ a.a 
94.9 12.6 

12.6 
70.2 12.6 

12.6 
40.9 12.6 

12.6 
7.9 

27.S 6.0 
49.6 5.8 

5.7 

., ·., 
\ 

\ 
\ 
\ 
\ 
\ 

o. 1 

Field Curvature 

0 . 5 

D i stortion 

HF'OV• .3 . 08 

2 . 0 
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