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Immunomodulation by thalidomide and
thalidomide analogues

Laura G Corral, Gilla Kaplan

Tumour necrosis factor a. (TNFa), a key
cytokine involved in the host immune re
sponse, also contributes to the pathogenesis of
both infectious and autoimmunediseases. To
ameliorate the pathology resulting from TNFa
in theseclinical settings, strategies for the inhi-
bition of this cytokine have been developed.
Our previous work has shown that the drug
thalidomideis a partial inhibitor ofTNFe pro-
duction in vivo. For example, when leprosy
patients suffering from erythema nodosum
leprosum (ENL)are treated with thalidomide,
the increased serum TNFa concentrations
characteristic of this syndrome are reduced,
with a concomitant improvement in clinical
symptoms. Similarly, we have found that in
patients with tuberculosis, with or without HIV
infection, short-term thalidomide treatment
reduces plasma TNFu levels in association
with an accelerated weight gain. In vitro, we
have also shown that thalidomide partially
inhibits TNFa produced by human peripheral
blood mononuclearcells (PBMC) responding
to stimulation with lipopolysaccharide (LPS),
Recently, we found that thalidomide can also
act as a costimulatory signal for T cell
activation in vitro resulting in increased
production of interleukin 2 (IL2) and inter-
feron y (IFNy). We also observed a bi-
directional effect onIL12 production: IL12
production is inhibited by thalidomide when
PBMCare stimulated with LPS, however,
IL12 productionis increased in the presenceof
the drug whencells are stimulated via the T cell
receptor. The latter effect is associated with
upregulation of T cell CD40 ligand (CD40L)
expression. Thus, in addition to its monocyte
inhibitory activity, thalidomide exerts a co-
stimulatory or adjuvant effect on T cell
responses. This combination of effects may
contribute to the immunomodulating proper-
ties of the drug.

To obtain drugs with increased anti-TNFa
activity that have reduced or absent toxicities,
novel TNFo inhibitors were designed using
thalidomide as template. These thalidomide
analogues were found to be up to 50 000 times
moreactive than thalidomide. The compounds
comprise two different types of TNFa inhibi-
tors. One class of compounds, shown to be
potent phosphodiesterase 4 (PDE4) inhibitors,
are selective TNFa inhibitors in LPS stimu-
lated PBMC andhaveeither noeffect or a sup-
pressive effect on T cell activation. The other
class of compoundsalso inhibit TNFa produc-
tion, but do not inhibit PDE4 enzyme. These
eamnoannas are alen natent inhihitare af cavaral

stimulate the anti-inflammatory cytokine IL10.
Similarly to thalidomide, these drugs that do
not inhibit PDE4 act as costimulators of T cells

but are much more potent than the parent
drug. The distinct immunomodulatoryactivity
of these new TNFainhibitors may potentially
allow them to be used in the clinic for the

treatment of a wide variety of immunopatho-
logical disorders of different aetiologies.

TNFis a key player in the immune
response

TNFa is a pleiotropic cytokine produced
primarily by monocytes and macrophages, but
also by lymphocytes and NKcells. TNFaplays
a central part in the host immuneresponseto
viral, parasitic, fungal and bacterial infections.
The importance of TNFu and TNFusignal-
ling through its receptors in the host immune
response to disease has become clearer as a
result of a number of seminal studies. For

example, mice genetically deficient in TNFa
have a significantly reduced humoral immune
response to adenovirus infection.’ In Leishma-
nia major infection, TNFa signalling is impor-
tant for protection as mice lacking TNFa p35
receptor (TNFR-p55) show delayed elimina-
tion of the parasites compared with controls
and thelesions formed failed to resolve.” Mice
deficient in TNFR-p55 are also significantly
impaired in their ability to clear infection with
Candida albicans and readily succumb to the
infection. TNFu signalling is also crucial in
resisting Streptococcus pneumoniae infections in
mice.’ In addition, TNFa is essential for
protection against murine tuberculosis.
TNFR-p55 deficient mice have been shown to
be more susceptible to tuberculosis infection.
When TNFzwasneutralised in vivo by mono-
clonal antibodies impaired protection against
mycobacterial infection was observed.'’ The
data from both models also established that
TNFa and the TNFR- p55 are essential for
production of reactive nitrogen intermediates
by macrophagesearly in infection.

TNFa contributes to disease pathogenesis
Although TNFa is crucial to the protective
immuneresponse, it also plays a part in the
pathogenesis of both infectious and autoim-
mune diseases. Increased concentrations of
TNFu have been shown to trigger the lethal
effects of septic shock syndrome.” TNF« has
also been implicated in the development of
cachexia, the state of malnutrition that compli-
cates the course of chronic infections and many
eancere ’ In rheumatoid arthritis, TNFa is a

ALVOGEN, Exh. 1055, p. 0216
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Recently, it has been shownthattreatment of
patients with neutralising anti-TNFa. antibod-
ies produces a dramatic reduction in disease
activity in this condition.® Similarly, it has been
shown that in inflammatory bowel disease,
neutralisation of TNFa results in a profound
amelioration of clinical symptoms.’ !° Reduc-
tions in TNFulevels havealso been linked with
a significant reductionofclinical symptomsin
leprosy patients with ENL, including fever,
malaise, and arthritic and neuritic pain." In
tuberculosis patients, reduction of TNFa levels
was associated with accelerated weightgain.”

Thalidomide inhibits TNFa production
by monocytes
The pathology associated with TNFu produc-
tion is profound and in manydiseases leads to
significant morbidity and mortality. This has
led to a concerted effort to discover drugs that
will down regulate the production of this
cytokine. Agents conventionally used in these
diseases may inhibit TNFa production, but are
also often broadly immunosuppressive (for
example, cyclosporin A and corticosteroids)
and therefore associated with extensive side
effects." Drugs that are potentially more
specific in inhibiting TNFu are under active
investigation and development. Our previous
work has shown that the drug thalidomide
(u-N-phthalimidiglutarimide) is a relatively
selective inhibitor of TNFa production by
human monocytes in vivo. This property of
thalidomide was first described in leprosy
patients with ENL, an acute inflammatory
complication of lepromatous leprosy that is
accompanied by increased serum TNFalevels.
Thalidomide treatment of patients with ENL
was shown to induce a prompt reduction of
TNFa serum levels with a concomitant abro-
gation ofclinical symptoms."! Furthermore, in
patients with tuberculosis, with or without
concomitant HIV infection, thalidomidetreat-
ment was found to both decrease plasma
TNF« protein levels as well as monocyte
TNFa mRNAlevels. This decrease was associ-
ated with an accelerated weight gain.” In a
rabbit model of mycobacterial meningitis, tha-
lidomide treatment combined with antibiotics
produced a marked reduction in TNFalevels,
leucocytosis, and brain disease." In addition,
thalidomide inhibited TNFa serum levels in
mice challenged with LPS thus partially
protecting the animals from septic shock.'®

In vitro, we have found that thalidomide
selectively reduces the production of TNFu by
human monocytescultured in the presence of
both LPS and mycobacterial products,'* How-
ever, this inhibition was only partial (50% to
70%) possibly because ofthe instability of the
drug in aqueous solutions."” The mechanism
by which thalidomide reduces TNFa produc-
tion is still unclear. The drug seemsto inhibit
TNFu production by human monocytes in
vitro in association with enhanced degradation
of TNFu mRNA."It also inhibits the activa- 

Corral, Kaplan

Thalidomide has T cell costimulatory
properties

Recently, we reported that thalidomidealso has
a hitherto unappreciated immunomodulatory
effect: the drug was shown to costimulate
humanTcells in vitro, synergising with stimu-
lation via the T cell receptor complex to
increase IL2 mediated T cell proliferation and
T cell IFNy production.” Optimal T cell acti-
vation requires two signals.”' Thefirst signal or
signal | is delivered by clustering of the T cell
antigen-receptor-CD3 complex through en-
gagementofspecific foreign peptides bound to
MHC molecules on the surface of an antigen
presenting cell (APC). Signal 1 can be
mimicked by crosslinking the T cell receptor
(TCR) complexes with anti-CD3 antibodies.
Signal 2 (or costimulation) is antigen inde-
pendent and may be provided by cytokines or
by surface ligands on the APC that interact
with their receptors on the T cell. Costimula-
tory signals are essential to induce maximal T
cell proliferation and secretion of cytokines,
including IL2, which ultimately drive T cell
clonal expansion. As antigenic stimulation in
the absence of costimulatory signals leads to T
cell anergy or apoptosis, costimulationis criti-
cally important in the induction and regulation
of cellular immunity.

Thalidomide appears to act as a costimulator
to T cells that have received signal 1 via the
TCR.”In our experimentsin vitro, stimulation
ofpurified T cells with anti-CD3 antibodies, in
the absence ofsignal 2, induced only minimal
T cell proliferation. However, the addition of
thalidomideto this cell culture system resulted
in a concentration dependent increase in
proliferative responses.”The thalidomide
mediated costimulation of T cell proliferation
was accompanied byincreases in IL2 and IFNy
production,It is noteworthy that in the absence
of anti-CD3, there was no T cell proliferative
response to thalidomide, indicating that the
drug is not mitogenic in itself. It is also
interesting to note that in these experiments,
thalidomide did not inhibit TNFa production
by purified T cells stimulated by anti-CD3
antibodies. This is in contrast with the effects
of the drug on TNFu produced by monocytes.
As already described above, thalidomide inhib-
its monocyte TNFu production. The costimu-
latory effect of thalidomide was greater on the
CD8+ T cells than on the CD4+ T cell
subset.”

In addition to its effects on T cell prolifera-
tion and T cell cytokine production, we
observed that thalidomide induced the up-
regulation of CD40L expression on activated T
cells.” °° CD40L/CD40 interaction occurs
early in the sequence of signalling events
between T cells and antigen presenting cells
(APC). Signalling through CD40 has been
shownto activate APC and to induce expres-
sion of costimulatory molecules such as B7, as
well as stimulating production of IL12.2">
Thus, CD40signalling results in a stimulatory ALVOGEN, Exh. 1055,p. 0217
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tial for the survival of CD8+ T cells and thatin birth defects.” In addition, thalidomide treat-
its absence these cells die or become anergic.” mentis often accompanied by a numberofside

These studies show that in addition to its_effects, including peripheral neuropathy.”
inhibitory effect on the production of mono- Therefore, the use of thalidomide requires
cyte cytokines, thalidomideexerts a costimula- strict monitoringofall patients.” Thus, there is
tory or adjuvanteffect on T cell responses. The a pressing need to develop drugs with increased
immune modulating effects of the drug in TNFa inhibitory activity and reduced or
patients may thus beattributable to a balance_absenttoxicities. Towards this end, structural
between the inhibition of production of mono- analogues of thalidomide have been designed
cyte cytokines, including TNFa, and the and synthesised at Celgene Corporation (War-
costimulation of T cell activity. The effects of ren, New Jersey) and screenedfor inhibition of
thalidomide in vivo in HIV infected patients TNFa production. A large number of potent
seem to reflect the costimulatory activity of the novel TNFa inhibitors were thus identified.
drug.” In a placebo controlled study to evalu- Recently, some of these compounds were
ate the effects of in vivo immunomodulation  described.2” *“° On a molar basis, the more
with thalidomide, the drug was administered potent of these thalidomide analogues were
for four weeks to HIV infected patients. found to be up to 50 000-fold more potent
Thalidomide treatment did not affect TNFa than thalidomide at inhibiting TNFa produc-
levels in these patients. In contrast, thalidomide tion by human PBMCstimulated by LPS in
treatment resulted in significant immune vitro. Furthermore, we have shown that some
stimulation. This was reflected by increases in_of these compoundsretain high activity in LPS
DTHresponses and increased plasma levels of stimulated human whole blood.In vivo,
T cell activation markers such as soluble IL2 several of these new compounds showed
receptor (sIL2R) and soluble CD8antigen. An improved activity in reducing LPS induced
earlier study of tuberculosis patients treated TNFa levels in mice” and in inhibiting the
with thalidomide showed increased plasma developmentofadjuvantarthritis in rats."
levels of IFNy suggesting an immunostimula-
tory effect of the drug.” Recently, patients suf-
fering from sarcoidosis have shown consistent Thalidomide analogues comprise two
increases in sIL2R plasmalevels after thalido- distinct classes of molecules
mide treatment (Oliver ez al, manuscript in A group of thalidomide analogues, selected for
Preparation). In the same study, thalidomide_their capacity to potently inhibit TNFa pro-
treatment increased theproliferation of sarcoid duction by LPS stimulated PBMC,wasfurther
patient T cells in response to concanavalin Ain investigated (fig 1). When tested for their effect
vitro. These results Strongly suggest that in vitro on LPS induced cytokines, different
thalidomide directly stimulates T cells in vivo patterns of cytokine modulation were shown.”
in patients, corresponding to the T cell Oneclass of compounds, class I or ImiDs
costimulatory properties of the drug observed (mmunomodulatory Imide Drugs) showed
in vitro in T cells from normal donors,”as not only potent inhibition of TNFa but also
well as in the T cells of HIV infected patients.” marked inhibition of LPS induced monocyte

, ILIB and IL12 production. LPS induced IL6
Thalidomide analogues are improved was also inhibited by these drugs, albeit
TNFainhibitors partially. These drugs were potent stimulators
In addition to being the drug of choice for the Of LPSinduced IL10,increasing IL10 levels by
treatment of ENL, thalidomide has been 2090-300%. In contrast,the other class of com-
shownto be useful in a numberofclinical situ- pounds, class II or SelCiDs (Selective Cytokine
ations including rheumatoid arthritis, HIV Inhibitory Drugs), while still potently inhibit-
associated aphthous ulcers and chronic graft ing ‘TNFa production, had a more modest
versus host disease.However, thalidomide inhibitory effect on LPS induced ILIB and
i 4 potent teratogen andingestion of the drug 1112; anddid eeeieeemeana pr -. concentrations. -recatastrophic a more modest ILIO stimulation (20-50%

Thalidomide increases). In all of these characteristics, SelC-
iDs were more similar to thalidomide than

oO ImiDs.'*

Further characterisation of the SelCiDsrT showed that they are potent PDE4inhibitors.”
j . PDE4is one of the major phosphodiesterasemes O =— isoenzymes found in human myeloid and lym-

o°CHs onCh, phoid lineage cells.“ The enzyme plays ao 9 Q . . . . «aa N O-cH o-cy, crucial part in regulating cellular activity byvt N Q p ° 9 * degrading the ubiquitous second messenger
nlp Ons i cAMP and maintaining it at low intracellularNH, 9 NH,

2 iS H. NHNH, 2 levels. Inhibition of PDE4 results in increased
0 0 9° cAMPlevels leading to the modulation of LPS

N of? Yo" induced cytokines including inhibition ofCot ON on TNFu.” Increasing intracellular cAMPlevels
HN = have been shownto inhibit TNFu productionALVOGEN, Exh. 1055, p. 0218 : tas
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regulated. Interestingly, the IMiDs and tha-
lidomide were found notto inhibit PDE4.”

In addition to the differential modulation of
LPS induced monocyte cytokines, the two
classes of compounds showed distinct effects
on T cell activation. SelCiDs, the PDE4
inhibitors, hadlittle effect on T cell activation
causing onlyaslight inhibition of T cell prolif.
eration. This effect was not unexpected asit is
well established that increasing cAMPlevels in
T cells during the early phase of mitogen or
antigen activation results in a decrease in
proliferative potential.’ On the other hand,
IMiDs, the non-PDE4 inhibitors, were potent
costimulators of T cells and increased cell pro-
liferation dramatically in a dose dependent
manner.” Similarly to thalidomide, these com-
poundshada greater costimulatory effect on
the CD8+ T cell subset than on the CD4+ T
cell subset (Corral e¢ al, unpublished observa-
tion). IMiDs, when added to anti-CD3 stimu-
lated T cells, also caused marked increases in
the secretion of IL2 and IFNy and induced the
up-regulation of CD40L expression on T
cells.” These findings show thatin addition to
their strong anti-inflammatory properties,
IMiDsefficiently costimulate T cells with 100
to 1000 times the potency ofthe parent drug.
The molecular target of these co-stimulatory
cytokine modulating drugsis as yet unknown.

Thalidomide and IMiDs modulate
cytokines differently accordingto cell
type and stimulation pathway
As described above, thalidomide has been
shown to inhibit IL12 production by LPS
stimulated monocytes in vitro. *° In vivo,
however, thalidomide treatment of HIV
infected” and M tuberculosis infected patients
induced increases in plasma IL12 levels
(Bekker et al, submitted data). Thalidomide
treatment also resulted in increases in plasma
IL12 levels in patients with scleroderma and
sarcoidosis (Oliver et al, manuscripts in prepa-
ration). These dual and opposite effects of tha-
lidomide may be explained by the differential
modulation of cytokines according to target
cell type and specific pathways of cellular
stimulation.

IL12 is produced primarily by APC
(monocytes/macrophages and dendritic cells)
and is regulated by both T cell dependent and
T cell independent pathways. LPS directly
induces T cell independent IL12 production
by APC,whichis inhibited by thalidomide. In
the T cell dependent pathway, on the other
hand, the production of IL12 by the APC is

Corral, Kaplan

induced primarily by the interaction of CD40
on the surface of the APC with CD40L onthe
surface of activated T cells.” When Tcells
were stimulated by anti-CD3, thalidomide and
IMiDs treatment causedasignificant stimula-
tion of IL12 production.” Thalidomide and
IMiDs also induced an up-regulation of
CD40L onthe surface of T cells.” ° Blockade
of this pathway inhibits the production of IL12
and abolishes the stimulatory effect of
thalidomide.” Interestingly, in HIV infected
patients, the consistent increases in plasma
IL12 levels induced by thalidomide treatment
lagged behindtheincreases in T cell activation
markers.** This observation suggested that
IL12 production was augmented as a conse-
quence of drug inducedTcell activation.

The dichotomous nature of thalidomide
cytokine modulation may explain the seem-
ingly opposite effects observed in different
clinical situations. When patients with Behcet’s
syndromearetreated with thalidomide, healing
of inflammatory aphthousulcers occurs, but is
sometimes accompanied by exacerbation of
erythema nodosum.” Similarly, the paradoxi-
cal worseningofgraft versus host disease" and
toxic epidermalnecrolysis”reported in clinical
trials of thalidomide may be a manifestation of
the unsuspected immune stimulatory effect of
this drug.

Potential clinical applications of
thalidomide and thalidomide analogues
The thalidomide analogues discussed here
seem to have retained different properties of
the parent drug (table 1). The distinct
immunomodulatory activities of these two
classes of drugs suggest they may haveapplica-
tions in different immunopathological disor-
ders. SelCiDs, which inhibit PDE4, may be
used in clinical situations in which PDE4inhi-
bition and selective TNFu inhibition are
beneficial. Therapeutic increase ofintracellular
cAMP levels by PDE4 inhibitors has anti-
inflammatoryeffects, which may afford conse-
quent benefits in a variety of discases such as
asthma,” atopic dermatitis’ and rheumatoid
arthritis.” Indeed, in an animal model of adju-
vant arthritis, thalidomide derived PDE4
inhibitors have shown efficacy in suppressing
the development of disease as measured by
ankle swelling, hind limb radiographic changes
and weight gain."* The suppression ofarthritis
was accompanied by a reduction in TNFu and
IL2 mRNAlevels in the ankle joints of treated
rats,

Table 1 Tumunomodulatory profiles of thalidomide and thalidomide analogues

Thalidomide IMiDs SelCIDs
eee

Inhibits LPS induced inflammatory Strongly inhibit LPS induced inflammatory Strongly inhibit LPS inducedcytokines TN]« and IL12

Stimulates LPS induced

Costimulates T cell activation
arer

cytokines: TNFu, IL1B, IL6 and JL12

Strongly stimulate LPS induced
anti-inflammatory cytokine IL1O anti-inflammatory cytokine IL10

Stronelv costimulate T cell activatian

inflammatory cytokines TNFu and 1L12

Stimulate LPS induced
anti-inflammatory cytokine IL10

Inhibit or have no effect on Tcell|ALVOGEN, Exh. 1055, p. 0219
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Other known selective PDE4 inhibitors,
such as rolipram, have been reported to have
dose limiting side effects, such as nausea and
vomiting, which limit the therapeutic use of
these drugs.” * These side effects may be pro-
duced by the lack of specificity of these
drugs—that is, the compoundsinhibit one or
more PDE isoenzymes in non-target tissues.
For example, it is probable that the emetic
activity of PDE4inhibitorsis attributable to an
action of the drugs in the CNS.Intensive
effort is being directed towards identifying
compounds with improved therapeuticratios.
Preliminary results with thalidomide derived
PDEinhibitors indicate that these novel drugs
are selective inhibitors of PDE4 and may be
better tolerated than other PDE4inhibitors, as
they have not shown evidence of emesis in ani-
mals. One of these drugs has been recently
shown to be well tolerated in a small human
safety trial in the United Kingdom (D Stirling,
personal communication).

The IMiDs, as thalidomide, are anti-
inflammatory drugs that do not target PDE4.
These compounds, in addition to their poten-
tial use to decrease inflammation, could also be
useful in clinical settings wherethereis a defect
in T cell function, as in HIV disease. HIV
infection is accompanied by deficiencies in the
production of IL12 and in the up-regulation of
CD40L.” ” IL12 has been shown to restore
HIVspecific cell mediated immunity in vitro™
and to increase HIV specific CTL responses in
vitro® and in vivo. Also, deficient IL12
responses in HIV infected patients can be
restored in vitro by CD40L and IFNy,” the
same costimulatory factors induced by thalido-
mide and IMiDs. Thus, these drugs may even-
tually be used to restore or stimulate IL12 pro-
duction in immunedeficient patients.

IL12 has also been shown to exhibit potent
anti-tumouractivity in murine tumour models
through various mechanisms including the
stimulation of naturalkiller cell activity,” activa-
tion of CD8+ cytotoxic T cells” and increased
IFNy mediated anti-angiogenesis.** Thalido-
midehas also recently been reported to exhibit
anti-tumouractivity through the inhibition of
angiogenesis in vivo.°*** However, this anti-
angiogenic effect does not seem to be mediated
by TNFainhibition. Although these studies did
not determine the mechanism ofthalidomide’s
anti-angiogenic activity, it is conceivable that
stimulation of IFNy/IL12 levels maybe atleast
partly responsible. One report indicates that
thalidomide may haveanti-angiogenicactivity in
multiple myeloma in humans.”

In summary,ourrecentfindings that thalido-
mide and IMiDs preferentially costimulate
CD8+ T cells and induce T cell dependent
1L12 production suggest possible applications
of these drugs in the control of viral
infections” ” or in boosting anti-tumour
immunity.” ” Also, there are anecdotalreports
ofthe efficacy of thalidomidein treating refrac-
tory inflammatory bowel disease.’*”* Recently,
preliminary findings were announced from a
pilot study with patients with Crohn’s disease
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lando, FL). In this study, two third of the
patients experienceda significant improvement
in their condition. This therapeutic effect may
be a combination of TNFa inhibition and
CD8+Tcell stimulation.” ”

Conclusions

In several disease conditions such as septic
shock, chronic infections and cancer, overpro-
duction of TNFa is accompanied by severe
toxicities. Thalidomide inhibits TNFa produc-
tion in different diseases without causing the
immunosuppression often associated with
standard agents such as glucocorticoids and
cyclosporin A. Our results indicate that the
immunomodulating effects of thalidomide may
occur via the inhibition of TNFa production
and/or the stimulation of T cell responses,
withoutthe suppression of host immunity.

Recentefforts have concentrated on develop-
ing TNFo inhibitors that are efficient, safe and
specific. The collaboration between Rockefeller
University and Celgene Corporation scientists
has led to the discovery of two different classes
of immunomodulators derived from thalido-
mide and selected for their potent anti-TNFa
inhibitory activity. Preliminary results indicate
that at least some of these new compoundsare
non-toxic and non-teratogenic.”” The two
classes of thalidomide analogues, however, pos-
sess distinct properties. IMiDs are potent
inhibitors of monocyte inflammatory cytokine
production and also are strong costimulators of
T cell activity. SelCiDs, on the other hand, are
potent PDE4inhibitors and thus, moreselective
inhibitors of TNFa. Unlike IMiDs, these
compounds do not costimulate T cells but
inhibit T cell activity. Thus, the two classes of
compounds may prove to be useful in different
clinical settings according to their immu-
nomodulatory properties. The thalidomide ana-
logues are being used as investigational tools in
animal disease models to define mechanismsof
pathogenesis and to continue to elucidate the
mechanismsofdrug action.

We thank Dr Victoria Freedman and Dr George Muller for
helpful and patient review of this manuscript, Marguerite Nulty
for typing the manuscript and DrPatrick Haslettforcritical dis-
cussions during the preparation ofthis report.
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Immunomodulation by thalidomide and
thalidomide analogues

Laura G Corral, Gilla Kaplan

Tumour necrosis factor á (TNFá), a key
cytokine involved in the host immune re-
sponse, also contributes to the pathogenesis of
both infectious and autoimmune diseases. To
ameliorate the pathology resulting from TNFá
in these clinical settings, strategies for the inhi-
bition of this cytokine have been developed.
Our previous work has shown that the drug
thalidomide is a partial inhibitor of TNFá pro-
duction in vivo. For example, when leprosy
patients suVering from erythema nodosum
leprosum (ENL) are treated with thalidomide,
the increased serum TNFá concentrations
characteristic of this syndrome are reduced,
with a concomitant improvement in clinical
symptoms. Similarly, we have found that in
patients with tuberculosis, with or without HIV
infection, short-term thalidomide treatment
reduces plasma TNFá levels in association
with an accelerated weight gain. In vitro, we
have also shown that thalidomide partially
inhibits TNFá produced by human peripheral
blood mononuclear cells (PBMC) responding
to stimulation with lipopolysaccharide (LPS).
Recently, we found that thalidomide can also
act as a costimulatory signal for T cell
activation in vitro resulting in increased
production of interleukin 2 (IL2) and inter-
feron ã (IFNã). We also observed a bi-
directional eVect on IL12 production: IL12
production is inhibited by thalidomide when
PBMC are stimulated with LPS, however,
IL12 production is increased in the presence of
the drug when cells are stimulated via the T cell
receptor. The latter eVect is associated with
upregulation of T cell CD40 ligand (CD40L)
expression. Thus, in addition to its monocyte
inhibitory activity, thalidomide exerts a co-
stimulatory or adjuvant eVect on T cell
responses. This combination of eVects may
contribute to the immunomodulating proper-
ties of the drug.

To obtain drugs with increased anti-TNFá
activity that have reduced or absent toxicities,
novel TNFá inhibitors were designed using
thalidomide as template. These thalidomide
analogues were found to be up to 50 000 times
more active than thalidomide. The compounds
comprise two diVerent types of TNFá inhibi-
tors. One class of compounds, shown to be
potent phosphodiesterase 4 (PDE4) inhibitors,
are selective TNFá inhibitors in LPS stimu-
lated PBMC and have either no eVect or a sup-
pressive eVect on T cell activation. The other
class of compounds also inhibit TNFá produc-
tion, but do not inhibit PDE4 enzyme. These
compounds are also potent inhibitors of several
LPS induced monocyte inflammatory cy-
tokines. Also, the latter compounds markedly

stimulate the anti-inflammatory cytokine IL10.
Similarly to thalidomide, these drugs that do
not inhibit PDE4 act as costimulators of T cells
but are much more potent than the parent
drug. The distinct immunomodulatory activity
of these new TNFá inhibitors may potentially
allow them to be used in the clinic for the
treatment of a wide variety of immunopatho-
logical disorders of diVerent aetiologies.

TNFá is a key player in the immune
response
TNFá is a pleiotropic cytokine produced
primarily by monocytes and macrophages, but
also by lymphocytes and NK cells. TNFá plays
a central part in the host immune response to
viral, parasitic, fungal and bacterial infections.
The importance of TNFá and TNFá signal-
ling through its receptors in the host immune
response to disease has become clearer as a
result of a number of seminal studies. For
example, mice genetically deficient in TNFá
have a significantly reduced humoral immune
response to adenovirus infection.1 In Leishma-
nia major infection, TNFá signalling is impor-
tant for protection as mice lacking TNFá p55
receptor (TNFR-p55) show delayed elimina-
tion of the parasites compared with controls
and the lesions formed failed to resolve.2 Mice
deficient in TNFR-p55 are also significantly
impaired in their ability to clear infection with
Candida albicans and readily succumb to the
infection. TNFá signalling is also crucial in
resisting Streptococcus pneumoniae infections in
mice.3 In addition, TNFá is essential for
protection against murine tuberculosis.
TNFR-p55 deficient mice have been shown to
be more susceptible to tuberculosis infection.
When TNFá was neutralised in vivo by mono-
clonal antibodies impaired protection against
mycobacterial infection was observed.4 5 The
data from both models also established that
TNFá and the TNFR- p55 are essential for
production of reactive nitrogen intermediates
by macrophages early in infection.

TNFá contributes to disease pathogenesis
Although TNFá is crucial to the protective
immune response, it also plays a part in the
pathogenesis of both infectious and autoim-
mune diseases. Increased concentrations of
TNFá have been shown to trigger the lethal
eVects of septic shock syndrome.6 TNFá has
also been implicated in the development of
cachexia, the state of malnutrition that compli-
cates the course of chronic infections and many
cancers.7 In rheumatoid arthritis, TNFá is a
critical mediator of joint inflammation and
therefore an important therapeutic target.
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Recently, it has been shown that treatment of
patients with neutralising anti-TNFá antibod-
ies produces a dramatic reduction in disease
activity in this condition.8 Similarly, it has been
shown that in inflammatory bowel disease,
neutralisation of TNFá results in a profound
amelioration of clinical symptoms.9 10 Reduc-
tions in TNFá levels have also been linked with
a significant reduction of clinical symptoms in
leprosy patients with ENL, including fever,
malaise, and arthritic and neuritic pain.11 In
tuberculosis patients, reduction of TNFá levels
was associated with accelerated weight gain.12

Thalidomide inhibits TNFá production
by monocytes
The pathology associated with TNFá produc-
tion is profound and in many diseases leads to
significant morbidity and mortality. This has
led to a concerted eVort to discover drugs that
will down regulate the production of this
cytokine. Agents conventionally used in these
diseases may inhibit TNFá production, but are
also often broadly immunosuppressive (for
example, cyclosporin A and corticosteroids)
and therefore associated with extensive side
eVects.13 Drugs that are potentially more
specific in inhibiting TNFá are under active
investigation and development. Our previous
work has shown that the drug thalidomide
(á-N-phthalimidiglutarimide) is a relatively
selective inhibitor of TNFá production by
human monocytes in vivo. This property of
thalidomide was first described in leprosy
patients with ENL, an acute inflammatory
complication of lepromatous leprosy that is
accompanied by increased serum TNFá levels.
Thalidomide treatment of patients with ENL
was shown to induce a prompt reduction of
TNFá serum levels with a concomitant abro-
gation of clinical symptoms.11 Furthermore, in
patients with tuberculosis, with or without
concomitant HIV infection, thalidomide treat-
ment was found to both decrease plasma
TNFá protein levels as well as monocyte
TNFá mRNA levels. This decrease was associ-
ated with an accelerated weight gain.12 In a
rabbit model of mycobacterial meningitis, tha-
lidomide treatment combined with antibiotics
produced a marked reduction in TNFá levels,
leucocytosis, and brain disease.14 In addition,
thalidomide inhibited TNFá serum levels in
mice challenged with LPS thus partially
protecting the animals from septic shock.15

In vitro, we have found that thalidomide
selectively reduces the production of TNFá by
human monocytes cultured in the presence of
both LPS and mycobacterial products.16 How-
ever, this inhibition was only partial (50% to
70%) possibly because of the instability of the
drug in aqueous solutions.17 The mechanism
by which thalidomide reduces TNFá produc-
tion is still unclear. The drug seems to inhibit
TNFá production by human monocytes in
vitro in association with enhanced degradation
of TNFá mRNA.18 It also inhibits the activa-
tion of the nuclear factor êB (NfêB),19 20 a pro-
moter for the transcription of TNFá as well as
transcription of HIV-1.21 22

Thalidomide has T cell costimulatory
properties
Recently, we reported that thalidomide also has
a hitherto unappreciated immunomodulatory
eVect: the drug was shown to costimulate
human T cells in vitro, synergising with stimu-
lation via the T cell receptor complex to
increase IL2 mediated T cell proliferation and
T cell IFNã production.23 Optimal T cell acti-
vation requires two signals.24 The first signal or
signal 1 is delivered by clustering of the T cell
antigen-receptor-CD3 complex through en-
gagement of specific foreign peptides bound to
MHC molecules on the surface of an antigen
presenting cell (APC). Signal 1 can be
mimicked by crosslinking the T cell receptor
(TCR) complexes with anti-CD3 antibodies.
Signal 2 (or costimulation) is antigen inde-
pendent and may be provided by cytokines or
by surface ligands on the APC that interact
with their receptors on the T cell. Costimula-
tory signals are essential to induce maximal T
cell proliferation and secretion of cytokines,
including IL2, which ultimately drive T cell
clonal expansion. As antigenic stimulation in
the absence of costimulatory signals leads to T
cell anergy or apoptosis, costimulation is criti-
cally important in the induction and regulation
of cellular immunity.

Thalidomide appears to act as a costimulator
to T cells that have received signal 1 via the
TCR.23 In our experiments in vitro, stimulation
of purified T cells with anti-CD3 antibodies, in
the absence of signal 2, induced only minimal
T cell proliferation. However, the addition of
thalidomide to this cell culture system resulted
in a concentration dependent increase in
proliferative responses.23 25 The thalidomide
mediated costimulation of T cell proliferation
was accompanied by increases in IL2 and IFNã
production. It is noteworthy that in the absence
of anti-CD3, there was no T cell proliferative
response to thalidomide, indicating that the
drug is not mitogenic in itself. It is also
interesting to note that in these experiments,
thalidomide did not inhibit TNFá production
by purified T cells stimulated by anti-CD3
antibodies. This is in contrast with the eVects
of the drug on TNFá produced by monocytes.
As already described above, thalidomide inhib-
its monocyte TNFá production. The costimu-
latory eVect of thalidomide was greater on the
CD8+ T cells than on the CD4+ T cell
subset.23

In addition to its eVects on T cell prolifera-
tion and T cell cytokine production, we
observed that thalidomide induced the up-
regulation of CD40L expression on activated T
cells.25 26 CD40L/CD40 interaction occurs
early in the sequence of signalling events
between T cells and antigen presenting cells
(APC). Signalling through CD40 has been
shown to activate APC and to induce expres-
sion of costimulatory molecules such as B7, as
well as stimulating production of IL12.27 28

Thus, CD40 signalling results in a stimulatory
feedback mechanism in which the activated
APC amplifies the T cell response.29 It has also
been suggested that CD40L function is essen-
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tial for the survival of CD8+ T cells and that in
its absence these cells die or become anergic.30

These studies show that in addition to its
inhibitory eVect on the production of mono-
cyte cytokines, thalidomide exerts a costimula-
tory or adjuvant eVect on T cell responses. The
immune modulating eVects of the drug in
patients may thus be attributable to a balance
between the inhibition of production of mono-
cyte cytokines, including TNFá, and the
costimulation of T cell activity. The eVects of
thalidomide in vivo in HIV infected patients
seem to reflect the costimulatory activity of the
drug.26 In a placebo controlled study to evalu-
ate the eVects of in vivo immunomodulation
with thalidomide, the drug was administered
for four weeks to HIV infected patients.
Thalidomide treatment did not aVect TNFá
levels in these patients. In contrast, thalidomide
treatment resulted in significant immune
stimulation. This was reflected by increases in
DTH responses and increased plasma levels of
T cell activation markers such as soluble IL2
receptor (sIL2R) and soluble CD8 antigen. An
earlier study of tuberculosis patients treated
with thalidomide showed increased plasma
levels of IFNã suggesting an immunostimula-
tory eVect of the drug.12 Recently, patients suf-
fering from sarcoidosis have shown consistent
increases in sIL2R plasma levels after thalido-
mide treatment (Oliver et al, manuscript in
preparation). In the same study, thalidomide
treatment increased the proliferation of sarcoid
patient T cells in response to concanavalin A in
vitro. These results strongly suggest that
thalidomide directly stimulates T cells in vivo
in patients, corresponding to the T cell
costimulatory properties of the drug observed
in vitro in T cells from normal donors,23 25 as
well as in the T cells of HIV infected patients.26

Thalidomide analogues are improved
TNFá inhibitors
In addition to being the drug of choice for the
treatment of ENL, thalidomide has been
shown to be useful in a number of clinical situ-
ations including rheumatoid arthritis, HIV
associated aphthous ulcers and chronic graft
versus host disease.31–34 However, thalidomide
is a potent teratogen and ingestion of the drug
by a pregnant woman can lead to catastrophic

birth defects.35 In addition, thalidomide treat-
ment is often accompanied by a number of side
eVects, including peripheral neuropathy.36

Therefore, the use of thalidomide requires
strict monitoring of all patients.37 Thus, there is
a pressing need to develop drugs with increased
TNFá inhibitory activity and reduced or
absent toxicities. Towards this end, structural
analogues of thalidomide have been designed
and synthesised at Celgene Corporation (War-
ren, New Jersey) and screened for inhibition of
TNFá production. A large number of potent
novel TNFá inhibitors were thus identified.
Recently, some of these compounds were
described.20 38–40 On a molar basis, the more
potent of these thalidomide analogues were
found to be up to 50 000-fold more potent
than thalidomide at inhibiting TNFá produc-
tion by human PBMC stimulated by LPS in
vitro. Furthermore, we have shown that some
of these compounds retain high activity in LPS
stimulated human whole blood.40 In vivo,
several of these new compounds showed
improved activity in reducing LPS induced
TNFá levels in mice17 and in inhibiting the
development of adjuvant arthritis in rats.40a

Thalidomide analogues comprise two
distinct classes of molecules
A group of thalidomide analogues, selected for
their capacity to potently inhibit TNFá pro-
duction by LPS stimulated PBMC, was further
investigated (fig 1). When tested for their effect
in vitro on LPS induced cytokines, diVerent
patterns of cytokine modulation were shown.25

One class of compounds, class I or ImiDs
(Immunomodulatory Imide Drugs) showed
not only potent inhibition of TNFá but also
marked inhibition of LPS induced monocyte
IL1â and IL12 production. LPS induced IL6
was also inhibited by these drugs, albeit
partially. These drugs were potent stimulators
of LPS induced IL10, increasing IL10 levels by
200–300%. In contrast, the other class of com-
pounds, class II or SelCiDs (Selective Cytokine
Inhibitory Drugs), while still potently inhibit-
ing TNFá production, had a more modest
inhibitory eVect on LPS induced IL1â and
IL12, and did not inhibit IL6 even at high drug
concentrations. In addition, SelCiDs produced
a more modest IL10 stimulation (20–50%
increases). In all of these characteristics, SelC-
iDs were more similar to thalidomide than
ImiDs.16 17

Further characterisation of the SelCiDs
showed that they are potent PDE4 inhibitors.39

PDE4 is one of the major phosphodiesterase
isoenzymes found in human myeloid and lym-
phoid lineage cells.41 The enzyme plays a
crucial part in regulating cellular activity by
degrading the ubiquitous second messenger
cAMP and maintaining it at low intracellular
levels. Inhibition of PDE4 results in increased
cAMP levels leading to the modulation of LPS
induced cytokines including inhibition of
TNFá.42 Increasing intracellular cAMP levels
have been shown to inhibit TNFá production
in monocytes as well as in lymphocytes,41 43

although it is not clear how this inhibition isFigure 1 Chemical structures of thalidomide and selected thalidomide analogues.
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regulated. Interestingly, the IMiDs and tha-
lidomide were found not to inhibit PDE4.40

In addition to the diVerential modulation of
LPS induced monocyte cytokines, the two
classes of compounds showed distinct eVects
on T cell activation. SelCiDs, the PDE4
inhibitors, had little eVect on T cell activation
causing only a slight inhibition of T cell prolif-
eration. This eVect was not unexpected as it is
well established that increasing cAMP levels in
T cells during the early phase of mitogen or
antigen activation results in a decrease in
proliferative potential.44 On the other hand,
IMiDs, the non-PDE4 inhibitors, were potent
costimulators of T cells and increased cell pro-
liferation dramatically in a dose dependent
manner.25 Similarly to thalidomide, these com-
pounds had a greater costimulatory eVect on
the CD8+ T cell subset than on the CD4+ T
cell subset (Corral et al, unpublished observa-
tion). IMiDs, when added to anti-CD3 stimu-
lated T cells, also caused marked increases in
the secretion of IL2 and IFNã and induced the
up-regulation of CD40L expression on T
cells.25 These findings show that in addition to
their strong anti-inflammatory properties,
IMiDs eYciently costimulate T cells with 100
to 1000 times the potency of the parent drug.
The molecular target of these co-stimulatory
cytokine modulating drugs is as yet unknown.

Thalidomide and IMiDs modulate
cytokines diVerently according to cell
type and stimulation pathway
As described above, thalidomide has been
shown to inhibit IL12 production by LPS
stimulated monocytes in vitro.25 45 In vivo,
however, thalidomide treatment of HIV
infected26 and M tuberculosis infected patients
induced increases in plasma IL12 levels
(Bekker et al, submitted data). Thalidomide
treatment also resulted in increases in plasma
IL12 levels in patients with scleroderma and
sarcoidosis (Oliver et al, manuscripts in prepa-
ration). These dual and opposite eVects of tha-
lidomide may be explained by the diVerential
modulation of cytokines according to target
cell type and specific pathways of cellular
stimulation.

IL12 is produced primarily by APC
(monocytes/macrophages and dendritic cells)
and is regulated by both T cell dependent and
T cell independent pathways. LPS directly
induces T cell independent IL12 production
by APC, which is inhibited by thalidomide. In
the T cell dependent pathway, on the other
hand, the production of IL12 by the APC is

induced primarily by the interaction of CD40
on the surface of the APC with CD40L on the
surface of activated T cells.28 46 When T cells
were stimulated by anti-CD3, thalidomide and
IMiDs treatment caused a significant stimula-
tion of IL12 production.25 Thalidomide and
IMiDs also induced an up-regulation of
CD40L on the surface of T cells.25 26 Blockade
of this pathway inhibits the production of IL12
and abolishes the stimulatory eVect of
thalidomide.26 Interestingly, in HIV infected
patients, the consistent increases in plasma
IL12 levels induced by thalidomide treatment
lagged behind the increases in T cell activation
markers.26 This observation suggested that
IL12 production was augmented as a conse-
quence of drug induced T cell activation.

The dichotomous nature of thalidomide
cytokine modulation may explain the seem-
ingly opposite eVects observed in diVerent
clinical situations. When patients with Behçet’s
syndrome are treated with thalidomide, healing
of inflammatory aphthous ulcers occurs, but is
sometimes accompanied by exacerbation of
erythema nodosum.47 Similarly, the paradoxi-
cal worsening of graft versus host disease48 and
toxic epidermal necrolysis49 reported in clinical
trials of thalidomide may be a manifestation of
the unsuspected immune stimulatory eVect of
this drug.

Potential clinical applications of
thalidomide and thalidomide analogues
The thalidomide analogues discussed here
seem to have retained diVerent properties of
the parent drug (table 1). The distinct
immunomodulatory activities of these two
classes of drugs suggest they may have applica-
tions in diVerent immunopathological disor-
ders. SelCiDs, which inhibit PDE4, may be
used in clinical situations in which PDE4 inhi-
bition and selective TNFá inhibition are
beneficial. Therapeutic increase of intracellular
cAMP levels by PDE4 inhibitors has anti-
inflammatory eVects, which may aVord conse-
quent benefits in a variety of diseases such as
asthma,50 atopic dermatitis51 and rheumatoid
arthritis.52 Indeed, in an animal model of adju-
vant arthritis, thalidomide derived PDE4
inhibitors have shown eYcacy in suppressing
the development of disease as measured by
ankle swelling, hind limb radiographic changes
and weight gain.40a The suppression of arthritis
was accompanied by a reduction in TNFá and
IL2 mRNA levels in the ankle joints of treated
rats.

Table 1 Immunomodulatory profiles of thalidomide and thalidomide analogues

Thalidomide IMiDs SelCIDs

Inhibits LPS induced inflammatory
cytokines TNFá and IL12

Strongly inhibit LPS induced inflammatory
cytokines: TNFá, IL1â, IL6 and IL12

Strongly inhibit LPS induced
inflammatory cytokines TNFá and IL12

Stimulates LPS induced
anti-inflammatory cytokine IL10

Strongly stimulate LPS induced
anti-inflammatory cytokine IL10

Stimulate LPS induced
anti-inflammatory cytokine IL10

Costimulates T cell activation Strongly costimulate T cell activation Inhibit or have no eVect on T cell
activation

Does not inhibit PDE4 Do not inhibit PDE4 Strongly inhibit PDE4
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Other known selective PDE4 inhibitors,
such as rolipram, have been reported to have
dose limiting side eVects, such as nausea and
vomiting, which limit the therapeutic use of
these drugs.53 54 These side eVects may be pro-
duced by the lack of specificity of these
drugs—that is, the compounds inhibit one or
more PDE isoenzymes in non-target tissues.
For example, it is probable that the emetic
activity of PDE4 inhibitors is attributable to an
action of the drugs in the CNS.55 Intensive
eVort is being directed towards identifying
compounds with improved therapeutic ratios.
Preliminary results with thalidomide derived
PDE inhibitors indicate that these novel drugs
are selective inhibitors of PDE4 and may be
better tolerated than other PDE4 inhibitors, as
they have not shown evidence of emesis in ani-
mals. One of these drugs has been recently
shown to be well tolerated in a small human
safety trial in the United Kingdom (D Stirling,
personal communication).

The IMiDs, as thalidomide, are anti-
inflammatory drugs that do not target PDE4.
These compounds, in addition to their poten-
tial use to decrease inflammation, could also be
useful in clinical settings where there is a defect
in T cell function, as in HIV disease. HIV
infection is accompanied by deficiencies in the
production of IL12 and in the up-regulation of
CD40L.56 57 IL12 has been shown to restore
HIV specific cell mediated immunity in vitro58

and to increase HIV specific CTL responses in
vitro59 and in vivo.60 Also, deficient IL12
responses in HIV infected patients can be
restored in vitro by CD40L and IFNã,61 the
same costimulatory factors induced by thalido-
mide and IMiDs. Thus, these drugs may even-
tually be used to restore or stimulate IL12 pro-
duction in immune deficient patients.

IL12 has also been shown to exhibit potent
anti-tumour activity in murine tumour models
through various mechanisms including the
stimulation of natural killer cell activity,62 activa-
tion of CD8+ cytotoxic T cells63 and increased
IFNã mediated anti-angiogenesis.64 Thalido-
mide has also recently been reported to exhibit
anti-tumour activity through the inhibition of
angiogenesis in vivo.65–68 However, this anti-
angiogenic eVect does not seem to be mediated
by TNFá inhibition. Although these studies did
not determine the mechanism of thalidomide’s
anti-angiogenic activity, it is conceivable that
stimulation of IFNã/IL12 levels may be at least
partly responsible. One report indicates that
thalidomide may have anti-angiogenic activity in
multiple myeloma in humans.69

In summary, our recent findings that thalido-
mide and IMiDs preferentially costimulate
CD8+ T cells and induce T cell dependent
IL12 production suggest possible applications
of these drugs in the control of viral
infections70 71 or in boosting anti-tumour
immunity.72 73 Also, there are anecdotal reports
of the eYcacy of thalidomide in treating refrac-
tory inflammatory bowel disease.74–76 Recently,
preliminary findings were announced from a
pilot study with patients with Crohn’s disease
refractory to standard treatments (Annual
Digestive Disease Meeting, May 1999, Or-

lando, FL). In this study, two third of the
patients experienced a significant improvement
in their condition. This therapeutic eVect may
be a combination of TNFá inhibition and
CD8+ T cell stimulation.77 78

Conclusions
In several disease conditions such as septic
shock, chronic infections and cancer, overpro-
duction of TNFá is accompanied by severe
toxicities. Thalidomide inhibits TNFá produc-
tion in diVerent diseases without causing the
immunosuppression often associated with
standard agents such as glucocorticoids and
cyclosporin A. Our results indicate that the
immunomodulating eVects of thalidomide may
occur via the inhibition of TNFá production
and/or the stimulation of T cell responses,
without the suppression of host immunity.

Recent eVorts have concentrated on develop-
ing TNFá inhibitors that are eYcient, safe and
specific. The collaboration between Rockefeller
University and Celgene Corporation scientists
has led to the discovery of two diVerent classes
of immunomodulators derived from thalido-
mide and selected for their potent anti-TNFá
inhibitory activity. Preliminary results indicate
that at least some of these new compounds are
non-toxic and non-teratogenic.20 The two
classes of thalidomide analogues, however, pos-
sess distinct properties. IMiDs are potent
inhibitors of monocyte inflammatory cytokine
production and also are strong costimulators of
T cell activity. SelCiDs, on the other hand, are
potent PDE4 inhibitors and thus, more selective
inhibitors of TNFá. Unlike IMiDs, these
compounds do not costimulate T cells but
inhibit T cell activity. Thus, the two classes of
compounds may prove to be useful in diVerent
clinical settings according to their immu-
nomodulatory properties. The thalidomide ana-
logues are being used as investigational tools in
animal disease models to define mechanisms of
pathogenesis and to continue to elucidate the
mechanisms of drug action.

We thank Dr Victoria Freedman and Dr George Muller for
helpful and patient review of this manuscript, Marguerite Nulty
for typing the manuscript and Dr Patrick Haslett for critical dis-
cussions during the preparation of this report.
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The role of angiogenesis in rheumatoid arthritis:
recent developments

Alisa Erika Koch

Rheumatoid arthritis (RA) is characterised by
synovial tissue leucocyte ingress and angiogen-
esis, or new blood vessel growth.1–8 The disease
is thought to occur as an immunological
response to an as yet unidentified antigen. Even
in early RA, some of the earliest histological
observations are blood vessels.9 A mononuclear
infiltrate characterises the synovial tissue along
with a luxuriant vasculature. Angiogenesis is
integral to formation of the inflammatory pan-
nus and without angiogenesis, leucocyte in-
gress could not occur.

Angiogenesis is regulated by a complex set of
inducers and inhibitors. In this paper we will
present representative examples of both angio-
genesis inducers and inhibitors that may regu-
late RA neovascularisation (fig 1). In inflam-
matory states like RA, angiogenesis inducers
outweigh angiogenesis inhibitors.

Angiogenesis inducers
ENDOGLIN AS AN ANGIOGENIC MEDIATOR

There are a number of angiogenesis inducers
that may play a part in RA. Among these are
endoglin, an endothelial glycoprotein, which

contains an arginine-glycine-aspartic acid
(RGD) motif, and also acts as an adhesion
molecule.10 11 Endoglin is a receptor for trans-
forming growth factor â. Mice lacking the
endoglin gene die from defective vascular
development.12 We have shown that endoglin is
upregulated in RA synovial endothelial cells
compared with normal synovial tissue endothe-
lial cells.13

VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF)

An angiogenic mediator that has attracted
much attention recently is VEGF, which is an
endothelial selective growth factor.14 VEGF
induces vascular permeability as well.15 In
human RA, several groups have described
VEGF in the joints and serum of RA
patients.16–23 VEGF is inducible by hypoxia,
which may occur in the inflamed joint.17 24

Hypoxia inducible factor-1 (HIF-1), which is
made of HIF-1á, and hydroxycarbon nuclear
translocator (ARNT), contols many transcip-
tional responses to hypoxia by binding to
hypoxia response elements of target genes like
the VEGF gene.25 In RA patients treated with
anti-tumour necrosis factor á (TNFá), vascu-
lar deactivation occurs so that serum levels of
VEGF fall along with clinical improvement.26 A
number of groups presented at the 1999
National American College of Rheumatology
(ACR) meeting on the regulation of VEGF
production by synovial fibroblasts, mainly from
patients with RA (fig 2).27–30 Not only do
cytokines like interleukin 1 (IL1) and TNFá
induce fibroblast expression of VEGF, but so
does engagement of CD 40 ligand. Bone mor-
phogenetic proteins (or BMPs), which induce
formation of cartilage and bone, and seem to
downregulate IL1 induced VEGF production.
VEGF induces endothelial decay accelerating
factor (DAF), which is cytoprotective against
activated complement and may regulate en-
dothelial proliferation and angiogenesis.

Similarly, the role of VEGF has been exam-
ined in animal arthritis models. In collagen
induced in rats, a reduction in arthritis disease
severity by angiogenesis inhibitors results in
reduced serum levels of VEGF.31 Administra-
tion of the fungal derivative TNP-470 in
rodent arthritis leads to attenuated arthritis
and serum VEGF production.32 Administra-
tion of the VEGF receptor soluble flt-1 in
mouse collagen induced arthritis results in
attenuated arthritis.33 These results indicate
that modulation of angiogenesis may alter
arthritis, at least in animal models. Hence,
VEGF is probably an important mediator of
angiogenesis in the RA joint.

Figure 1 Balance of angiogenesis inducers and inhibitors in inflammatory states such as
rheumatoid arthritis.
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Figure 2 Proposed mechanism of action of cytokines inducing angiogenesis via integrin
usage. Abbreviations are: decay accelerating factor (DAF), protein kinase C (PKC),
tumour necrosis factor á, (TNFá), transforming growth factor â (TGFâ), and bone
morphogenetic protein (BMP).
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THE MECHANISM OF ACTION OF SOME

ANGIOGENIC CYTOKINES: VIA ADHESION

MOLECULES LIKE INTEGRINS

The invasion, migration, and proliferation of
endothelial cells is regulated at least in part by
the integrin family of cell adhesion molecules.
Mice made deficient in áv integrins predomi-
nantly die in utero.34 However, 20% of animals
survive until term and die hours after birth of
extensive brain and intestinal vascular abnor-
malities and haemorrhaging. It is very interest-
ing that ávâ3 is minimally, if at all expressed on
resting or normal blood vessels but is highly
expressed in RA synovial blood vessels.35 Some
angiogenic factors like basic fibroblast growth
factor (bFGF) and TNFá may act via in-
tegrins.36 TNFá seems to act to mediate
angiogenesis via ávâ3 integrin (fig 3). Angiogen-
esis can be inhibited by using ávâ3 antagonists
that promote unscheduled programmed cell
death (apoptosis) of newly sprouting blood ves-
sels.37 VEGF or transforming growth factor á
appear to act via an alpha v beta 5 integrin
mechanism using protein kinase C (PKC). This
may turn out not to be a main mode of VEGF’s
action in RA as alpha v beta 5 integrin has been
reported to be expressed in normal and osteoar-
thritis (OA) synovial tissue, but not RA synovial
tissue.38 None the less, the mechanisms by which
some of these cytokines act to promote angio-
genesis are rapidly becoming identified.

ávâ3 has been targeted using animal arthritis
models. Administration of an ávâ3 antagonist
ameliorates angiogenesis and decreases arthri-
tis in a synovitis model in rabbits.39 At the ACR
meeting, there were several groups who have
studied the role of this molecule in angiogen-
esis. An oral non-peptide ávâ3 antagonist

ameliorates rat adjuvant induced arthritis, both
prophylactically and therapeutically.40 A proap-
optotic ávâ3 antagonist composed of an RGD
peptide linked to a heptapeptide dimer is
therapeutic in mouse collagen induced arthri-
tis.41 However, this antagonist selectively
homes to mouse arthritic versus normal joint
endothelium and versus control organs. In this
study, targeted apoptosis of synovial neovascu-
lature resulted in improvement of arthritis.
These studies indicate that this integrin can be
modulated in vivo with resultant improvement
in arthritis, possibly via eVects on angiogenesis.

CHEMOKINES AS ANGIOGENIC MEDIATORS

Among other important mediators of angio-
genesis are chemokines. Most chemokines are
low molecular weight (8 kDa to 10 kDa)
proteins that are predominantly known for
their ability to recruit leucocytes.42 Chemo-
kines are divided into the C-X-C, CC, and
C-X3-C families based on the presence or
absence of an amino acid, X, between a pair of
cysteine residues near the amino terminus of
the protein. In collaboration with Dr Robert
Strieter, Peter Polverini, and Steve Kunkel, our
group found that monocyte/macrophage de-
rived interleukin 8 (IL8), a prototype of the
C-X-C chemokine subfamily, was angiogenic.43

This factor seemed important in that synovial
tissue macrophage derived chemotactic activity
for endothelial cells in vitro and angiogenesis in
vivo was significantly decreased if IL8 was
immunodepleted. In general, chemokines like
IL8, of the C-X-C class containing the amino
acid E-L-R motif are angiogenic, while those
lacking this motif are angiostatic.44 Exceptions
to this generalisation exist in that the C-X-C
chemokine stem cell derived factor-1, which
lacks the E-L-R motif is angiogenic.45

We have recently shown that fractalkine is
the first chemokine described of the CX3C
class to mediate angiogenesis.46 47 Fractalkine is
termed for its fractal geometry and is the sole
member of the CX3C class of chemokines.48 It
contains a chemokine motif atop a mucin-like
stick, the so called chemokine on a stick (fig 4).
Factalkine is a unique chemokine in that it can
also act as an adhesion molecule when cell
bound. Fractalkine induces endothelial tube
formation on the matrix Matrigel in vitro.
Similarly fractalkine induces angiogenesis in
Matrigel plugs implanted in mice in vivo. When
fractalkine is immuodepleted from RA synovial
fluids, the ability of these synovial fluids to
chemoattract endothelial cells, a facet of the
angiogenic response in vitro, is decreased.
Hence, chemokines are probable contributors
to RA angiogenic activity.

SOLUBLE ADHESION MOLECULES AS ANGIOGENIC

MEDIATORS

Endothelial cells express soluble adhesion
molecules, particularly upon cytokine stimula-
tion. Cellular adhesion molecules can be shed
from the cell surface and secreted. The
function of these soluble adhesion molecules is
unclear. A prevailing paradigm was that these
molecules might serve an anti-inflammatory
role by binding leucocytes, thus preventing

Figure 3 Proposed regulation of vascular endothelial growth factor (VEGF) in the RA joint.
Abbreviations are protein kinase C (PKC) and matrix metalloproteinase-2 (MMP-2).

bFGF
TNFα

Angiogenesis

MMP-2PEX

–

Proteolysis

VEGF
TGFβ

 PKC

αvβ3 integrin 

αvβ5 integrin 

Figure 4 Structure of fractalkine, a CX3C chemokine. (Adapted from Rollins BJ. Blood
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them from adhering to endothelium and enter-
ing inflamed tissues. We proposed the converse
paradigm that these molecules may be proin-
flammatory in some cases. Our laboratory
found that the cellular adhesion molecules
sE-selectin and soluble vascular cell adhesion
molecule-1 (sVCAM-1) are angiogenic.49 50 It
is probable that activated cells in the synovial
milieu, such as endothelial cells, bear E-selectin
and VCAM-1, which they then shed into the
synovial fluid. These soluble adhesion mol-
ecules then interact with vascular endothelial
cells via sialyl Lex in the case of sE-selectin, and
VLA-4, in the case of sVCAM-1 to mediate
angiogenesis.49 50 Additionally, the soluble ad-
hesion molecules may bind other, as yet
unidentified, receptors on endothelial cells that
mediate angiogenesis. Interestingly, RA pa-
tients treated with monoclonal anti-TNFá
have an element of endothelial deactivation in
which treatment results in reduced levels of
soluble E-selectin. Hence, these findings may
be important clinically in RA.

GLYCOCONJUGATES AS ANGIOGENIC MEDIATORS

We have described another novel related
angiogenic mediator in our laboratory. This
antigen, termed 4A11, is an endothelial
selective, cytokine inducible, endothelial ang-
iogenic antigen.51 52 We first raised monoclonal
antibody (mAb) 4A11 by immunising mice
with adherent cells from human rheumatoid
synovial tissue. The mAb we produced recog-
nised endothelium in the synovium, thymus,
skin, and lymph node selectively, perhaps sug-
gesting a role in cell homing to these regions.
Moreover, the mAb was endothelial selective,
recognising endothelium and keratinocytes
only. This antigen is upregulated in RA
compared with normal synovial tissue and is
rapidly cytokine inducible in vitro, being stored
in cytoplasmic vessicles and upregulated on the
cell surface within 5 to 20 minutes of contact
with cytokines. We have obtained a partial
structure of the antigen recognised by mAb
4A11. The mAb detects Lewisy-6 and H-5–2
antigens (Ley/H). These structures are mainly
recognised for their function as blood group

antigens. Interestingly, these antigens are struc-
turally related to the E-selectin ligand sialyl
Lewisx. Because of the angiogenic properties of
soluble E-selectin, we hypothesised these
endothelial antigens were released by activated
endothelium and induced angiogenesis. Glu-
cose analogues of these molecules or the
glycolipids themselves induced a potent en-
dothelial chemotactic response. Moreover, the
glucose analogues are angiogenic in vivo in the
corneal bioassays. mAb 4A11 abrogated the
angiogenic responses. We reasoned that if these
molecules mediated angiogenesis, they could
be detected in clinical samples from RA
patients. We found that soluble 4A11 antigen is
increased in RA compared with OA serum and
synovial fluid. These results describe a novel
endothelium selective antigen that functions as
an angiogenic mediator. As with the E-selectin
and VCAM-1, it is probable that endothelial
cells exposed to cytokines bear the 4A11 anti-
gen, which is shed in the inflamed joint and
mediates angiogenesis (fig 5).

Glycoconjugates (glycoproteins/glycolipids)
have been known for some time to constitute
the chemical basis for several blood group sys-
tems in humans and to act as adhesion
molecules for microbial ligands, though no
physiological role has been shown for them
until recently.53 A mAb MIA-15–15, detecting
Ley/Lex/H, inhibited the motility of tumour
cells in vitro.54 As the potential of tumour cells
for invasion is closely associated with motility,
which seems to depend on specific glycosyla-
tion, it followed that patients bearing lung car-
cinomas identified by mAb MIA-15–15 had a
strikingly worse prognosis than those whose
tumours were MIA-15–15 negative.54 The
importance of glycoconjugates in the induction
of autoimmunity was recently underscored by
the finding that Helicobacter pylori, the microor-
ganism involved in gastritis, ulcers, adenocarci-
noma, and lymphoma of the stomach, ex-
presses Ley/Lex/H, which is also found in gastric
mucin.55 56 Mice bearing hybridomas making H
pylori induced anti-Le antibodies developed
gastritis, pointing to a mechanism by which H
pylori participates in “molecular mimicry”.
Hence, antibodies directed against H pylori Ley

result in gastritis via an autoimmune reaction
directed against gastric mucin Ley. In diseases
such as RA, the inciting agent is unknown.
Thus, it is possible that Ley/H may also trigger
a “molecular mimicry” immune reaction in
inflammatory angiogenic sites such as RA.

There exists a hypothesis that while endothe-
lium is quiescent for weeks or longer, endothe-
lial cells must also require a mechanism of
storage of “preformed” regulators of angiogen-
esis that are capable of inducing new capillary
growth within hours in response to angiogenic
stimuli, such as those found in a wound or an
inflamed synovial tissue.57 Despite this hypoth-
esis, with the possible exception of bFGF,
examples have not been describe for angiogen-
esis inducers. The rapid cell surface expression
of Ley/H may fit this paradigm. However, an
alternative scenario concerning the regulation
of angiogenesis by inducers and inhibitors may
be that “structural” mimicry plays a part.Figure 5 Proposed induction of angiogenesis in RA by soluble 4A11 antigen (Ley/H).
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Hence, for instance, a search based on crystal
structure revealed that the angiogenic inhibitor
endostatin was most homologous to the
angiogenic mediator E-selectin (Bjorn Olsen,
data presented at the Angiogenesis in Cancer
Meeting, Orlando, FL 24–28 January 1998). It
is probable that in an RA joint Ley/H may be
stored for expedient use during times of active
inflammation and subsequent angiogenesis.

Angiopoietins and ephrins control
vascular growth and development
Though as yet not examined in RA, the
angiopoietins are increasingly being recognised
as modulators of vascular development that may
eventually play a part in vascular targeting.
Angiopoietin-1 participates in the maturation of
blood vessels while angiopoietin-2 is a natural
antagonist of angiopoietin-1.58–60 Interestingly,
both angiopoietin-1 and -2 bind the tyrosine
kinase receptor Tie2. In vascular development,
membrane bound ephrin-B2 marks future arte-
rial cells and its Eph-B4 receptor marks future
venous cells.61 62 If either the angiopoietin-1 gene
or the ephrin-B2 gene are deleted in mice, ang-
iogenic remodelling is preturbed.58 61 A new
aspect of angiogenesis has recently been ex-
plored. Angiopoeitin-1 overexpressing mice
form blood vessels that are not leaky.58 59 63 This
is in sharp contrast with VEGF overexpressing
mice, who form leaky vessels. Moreover, overex-
pression of angiopoietin-1 results in resistance to
leakage caused by inflammatory agents in mice.
As we learn more about the process of vessel
growth and development, it is tempting to
speculate that in the future certain types of ang-
iogenic factors may be used to “harden” vessels
against the eVects of inflammatory mediators.

Angiogenesis inhibitors
PARADIGM OF INHIBITORS RESIDING WITHIN

LARGER PROTEINS

The regulation of angiogenesis is likely to result
from a delicate balance of angiogenesis induc-
ers and inhibitors (fig 1).64 Currently, a number
of angiogenesis inhibitors have been identified,
some of which fit neatly into emerging
paradigms. One paradigm mentioned above is
that angiostatic activity often resides in por-
tions of larger common proteins that may or
may not themselves be angiostatic.57 Examples
of this include many molecules thought to play
a part in RA pathogenesis, like thrombospon-
din, fibronectin and propeptides of type II col-
lagen, platelet factor IV, and fragments of
epidermal growth factor. Other mediators
fitting this paradigm are: the 29 kDa fragment
of fibronectin, the 16 kDa fragment of prolac-
tin, and angiostatin (a fragment of plasmino-
gen), among others.65–68

THROMBOSPONDIN AS AN ANGIOGENESIS INHIBITOR

The idea that endothelium is quiescent for long
periods of time and yet can be induced to
sprout new capillaries in a matter of hours in
response to an angiogenic stimulus, suggested
that angiogenesis regulators might be stored for
expedient use. The first indication of this para-
digm was described by Dr Noel Bouck and
coworkers, who found that a non-tumorigenic
hamster cell line became tumorigenic with a

mutation that inactivated a tumour supressor
gene.69 The inhibitory activity was found to be
a fragment of the adhesive glycoprotein
thrombospondin-1 whose expression was
linked to the presence of a tumour suppressor
gene. Thrombospondin seems to act via induc-
ing endothelial cell apoptosis.70 Recently metal-
lospondins have been found using molecular
techniques, and are even more potent ang-
iogenic inhibitors than thrombospondin.71 We
were unable to show an eVect of inhibiting
arthritis or angiogenesis in a rat model of adju-
vant induced arthritis.71 72

ANGIOSTATIN AS AN ANGIOGENESIS INHIBITOR

Another inhibitor of angiogenesis termed
“angiostatin” has been identified in some very
elegant studies by Dr Judah Folkman’s
group.66 73–77 This factor is a potent inhibitor of
tumour growth. Angiostatin is a fragment of
the clotting factor plasminogen. Plasminogen
itself is not angiostatic. This factor acts by
depleting energy required for blood vessel
growth by binding ATP-synthase and induces
endothelial cell apoptosis by activating focal
adhesion kinase.76–78 The role of angiostatin in
RA has not yet been defined.

ENDOSTATIN AS AN ANGIOGENESIS INHIBITOR

Likewise, endostatin, an angiogenesis inhibitor
produced by mouse haemangioendothelioma
cells, is a fragment of collagen type XVIII.79

Thus, the fact that abundant components of
the circulatory system such as fibrinonectin
and plasminogen can be converted to potent
angiostatic factors suggests a new form of
regulation by proteases, such as serine pro-
teases to specifically release these molecules
from their parent molecules. One might
envision that in the case of RA, these inhibitors
might be present, but downregulated.

Can angiogenesis regulation help us in
the treatment of patients with RA?
ANGIOGENESIS INHIBITORS RELEVANT TO THE

RHEUMATIC DISEASES

Some of the endogenous and exogenous inhibi-
tors of angiogenesis that have been identified to
date include: a cartilage derived factor, troponin,
angiostatic corticosteroids, minocycline, fumig-
illin, thalidomide, choloroquine, sulfapyridine,
methotrexate, penicillamine, thiol containing
compounds such as gold compounds, taxol, tha-
lidomide, 2-methoxyestradiol, and cyclooxy-
genase-2 (COX-2) inhibitors.

Interestingly, cartilage is avascular as well as
relatively tumour resistant. So, it is reasonable
that among the earliest described inhibitors of
neovascularisation were cartilage derived inhibi-
tors. Inhibitors of angiogenesis have been
purified from various types of cartilage.80–84

Shark cartilage contains a potent inhibitor of
angiogenesis, accounting for its popularity in
some circles as an unorthodox treatment for
cancer.85 A cartilage derived inhibitor from
bovine scapula has been described that is also an
inhibitor of collagenase. Recently, a human car-
tilage derived angiogenesis inhibitor has been
shown to be troponin I, a protein responsible for
regulation of muscle contractions.80 81 86 Like
angiostatin, tropinin I acts by binding ATPase,
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thus depleting energy needed for blood vessel
growth. Regardless of the source, it is intriguing
that cartilage, which lies in juxtaposition to the
inflamed RA synovium, may hold a key to the
understanding of how one might inhibit the
angiogenic process in the joint.

Fumagillin is an angiostatic compound
discovered as a fungal contaminant on an
endothelial culture dish that inhibited endothe-
lial growth.87–90 Derivatives of this compound
termed AGM-1470 or TNP-470 inhibit both
angiogenesis and arthritis in rodent models.90 91

Interestingly, angiogenesis may also play a part
in bone formation. TNP-470 inhibited ectopic
bone formation induced by bone morphoge-
netic protein in mice.92 Fumagillin may be a
potential therapeutic agent inhibiting arthritis
and angiogenesis in RA.

Several angiogenesis modulating agents have
recently been tried in rodent models of arthritis.
These include taxol, thalidomide, and
2-methoxyestradiol. Thalidomide is an inhibitor
of both angiogenesis, which may account for its
teratogenic eVects on limb bud formation, and
TNFá.78 93 Thalidomide suppressed rat collagen
induced arthritis but not via inhibition of the
angiogenic cytokines TNFá or VEGF.94 Taxol, a
chemotherapeutic agent, inhibited collagen in-
duced arthritis in rats and inhibited synovial
angiogenesis.95 2-methoxyestradiol treatment of
collagen induced arthritis in mice resulted in a
decrease in arthritis. In vitro, this compound
inhibited proliferation of endothelial cells.96

Prostaglandins, such as prostaglandin E2 are
potent mediators of angiogenesis.97 COX-2
inhibitors have recently been released and used
for the treatment of RA. Not surprisingly, they
have been shown to inhibit angiogenesis mainly
in tumour models.22 98–101 It is quite possible
that these modulators are also eVective in
reducing RA angiogenesis.

Sulfasalazine is commonly used in the treat-
ment of a variety of diseases including RA. The
active metabolite of sulfasalazine may be
sulfapyridine. In one study, while sulfapyridine
inhibited endothelial proliferation, sulfasala-
zine and 5 aminosalicylic acid metabolites did
not.102 We have recently shown that sulfasala-
zine and sulfapyridine reduce endothelial pro-
liferation as well as chemotaxis.103 Sulfapyrid-
ine can also inhibit phorbol myristate acetate
(PMA) induced endothelial tube formation in
vitro. We have also shown that sulfapyridine
may mediate this eVect by reducing endothelial
IL8 production.

Therapeutic considerations
CAN ANGIOGENIC MARKERS HELP GUIDE

TREATMENT IN RA?

Recently soluble CD 146, an endothelial cell
adhesion molecule involved in leucocyte-
endothelial interactions, was found to be
upregulated in synovial fluids from patients
with RA compared with traumatic injury.104

Patients with early RA had the highest values of
this marker in their synovial fluid. Soluble CD
146 correlated significantly with the degree of
morning stiVness, the number of tender joints,
and the number of swollen joints.

In papers presented at the ACR meeting
VEGF and bFGF were shown to be increased in
RA compared with normal serum, especially in
early erosive RA and in patients who had
antibodies to Sa, an endothelial antigen, as well
as to collagen.105 Serum VEGF is increased in
early RA.106 Early RA synovial fluid VEGF and
matrix metalloproteinase (MMP)-9 correlate
with each other and with arthroscopic synovitis
and vascularity scores.107 Evidence is mounting
that markers of angiogenesis may help us assess
early RA.

CAN ANGIOGENIC MARKERS PREDICT RA DISEASE

OUTCOME?

Also at the ACR, meeting preliminary data
using the Euridiss cohort study indicated that
sVCAM-1 and CD 31 can predict disability
and radiological changes in RA.108 Serum
VEGF was associated with greater disease
activity and soluble selectins were associated
with increased disability. Hence, it is tempting
to speculate that angiogenic markers may help
guide us in RA treatment in the future.

WHAT DOES THE FUTURE HOLD IN ANGIOGENESIS

MODULATION?

One might envision vascular targeting strate-
gies. For targeting to be eVective, it will be nec-
essary to develop markers to assess the synovial
vasculature. In addition to clinical markers of
disease activity described above, various imag-
ing techniques are being assessed for evaluating
synovial vascularity. One such technique used
in rat adjuvant induced arthritis is the use of a
radiolabelled E-selectin binding peptide.109

Some imaging techniques already tried in
humans include gadolinium-DTPA enhanced
magnetic resonance imaging of RA joints,
which correlates with blood vessel density as
determined by synovial tissue histology.110 High
resolution ultrasound is also new technique
that has been tried for RA joint imaging.111

Using this technique, the investigators found
that inactive versus active RA patients had
increased vascularity.

Once strategies are developed for monitoring
vascular therapies, and if vascularity is shown
to be reflective of disease activity, it is probable
that vascular targeting may become a reality.
Possible strategies include viral vector targeted
antiangiogenic gene treatment, as has been
tried in animal models of tumour growth with
angiostatin, the VEGF receptor flt-1, and the
Tie2 angiopoietin-1 and 2 endothelial
receptor.78 112–114 One may envision strategies
like gene treatment with dominant negative
VEGFR-1 mutants that prevent VEGF medi-
ated eVects on the vasculature. Another thera-
peutic avenue might be gene treatment with
modulation of hypoxia response elements that
become selectively activated under hypoxic
conditions. Methods aimed at inducing vascu-
lar proliferation, perhaps by induction of apop-
tosis may be another potential strategy to
disease modification.
Funding: support for this work was provided by NIH grants
AI40987 and HL58695, the Veteran’s Administration Research
Service, and the Gallagher Professorship for Arthritis Research.
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