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AMINO-SUBSTITUTED THALIDOMIDE ANALOGS: POTENT INHIBITORS OF
TNF-o. PRODUCTION

George W. Muller,” Roger Chen," Shaei-Yun Huang," Laura G. Corral,“Lu Min Wong,* Rebecca T. Patterson,"
Yuxi Chen,” Gilla Kaplan,” and David I. Stirling."

“Celgene Corporation, 7 Powder Horn Drive, Warren, NJ 07059, U.S.A.
Rockefeller University, 1230 York A venue, New York, N¥ 1002] , USA,

Received 31 March 1999: accepted 30 April 1999

Abstract: Thalidomide, (1), is a knowninhibitor of TNF-c release in LPS stimulated human PBMC. Herein
we describe the TNF-c inhibitoryactivity of amino substituted analogs of thalidomide (1) andiis isoindolin-1-
one analog, EM-12 (2). The 4-amino substituted analogs were found to be potent inhibitors of TNF-a release inLPS stimulated human PBMC. © 1999 Elsevier Science Ltd. Alll rights reserved,

Introduetion: Thalidomide (2-(2,6-dioxo-3-piperidy)isoindoline-1,3-dione), (1) was developed as a sedative
without the side effects of barbiturates in the 1950’s by Chemie Grunenthal.! Thalidomide quickly became a
popular sedative in Europe and Australia and was subsequently used for the treatment of morning sickness in
pregnant women. However, thalidomide was removed from the marketplace whenits use was linked to birth
defects. Thalidomide’s teratogenic properties made the drug infamous and catalyzed the development of the
current drug approval regulations. A serendipitous discovery in 1965 by Sheskin while treating erythema
nodosum leprosum (ENL), an acute inflammatory condition associated with lepromatous leprosy led to the
discovery that thalidomide possesses immunomodulatory properties.” Since this initial discovery, thalidomide
has been foundto afford clinical benefit in a variety of autoimmune and inflammatory disease states?

Oo
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Thalidomide(1) EM-12 (2)

In 1991 it was reported that thalidomide was a selective inhibitor of tumornecrosis factor-c. (TNF-a)
over production in stimulated human monocytes.’ TNF-c: is a key cytokine in the inflammatory cascade and
elevated TNF-a levels are associated with inflammatory diseases.> Recent successful clinical trials in
rheumatoid arthritis and inflammatory bowel disease with TNF-c antibodies and soluble TNF-c. receptors have
validated the inhibition of TNF-a. as a clinical treatment.°

The clinical activity of thalidomide and the importance of TNF-ct inhibitionled us to initiate a progran
to improve the TNF-a inhibitory activity of thalidomide by structural modification. We have previously

9960-894X/99/S - see front matter © 1999 Elsevier Science Ltd, All rights reserved.
PH: $0960-894X(99)00250-4
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1626 GW. Muller et al. / Bioorg. Med. Cheni. Lett. 9 (2999) 1625-1630

reported a series ofthalidomide analogs derived from §-amino-B-arylpropanoic acid derivatives that are potent
inhibitors of TNF-c.’ Further studies revealed these compounds to be potent inhibitors of phosphodiesterase
type 4 (PDE4),* The PDE4 inhibitory potency for most of these compounds has correlated with their TNF-c
inhibitoryactivity. PDE4 is the major PDE isoenzyme present in monocytes and macrophages, key producers of
TNF-a. PDE enzymes control the levels of cyclic adenosine monophosphate (cAMP) by hydrolysis of cAMP to
3°-AMP. Inhibition of PDE4 in stimulated monocytes has been demonstrated to elevate levels of cAMP and
inhibit of TNF-c production,’

In further studies to improve the TNF-o inhibitory activity of thalidomide, we prepared a series of
amino-phthaloyl substituted analogs of thalidomide (1) and its isoindoline-1-one analog, EM-12 (2). Some
amino substituted thalidomide analogs have previously been reported but were not assayed for their TNF-c
inhibitory activity." EM-12 (2) has been reported to be a more potent teratogen than thalidomidein rabbis, rats,
and monkeys.'’ When 2 was evaluated for TNF-o: inhibitory activity in LPS stimulated human PBMC it was
found to have similar activity to thalidomide. The isoindolinone replacementof the phthaloy! ring increases the
stability of the molecule and maylead to increased bioavailability. Herein, we report the structure-activity
relationships of amino substitution of the phthaloy! ring of thalidomide and isoindolinone ring of EM-12 onthe
TNF-c inhibitoryactivity in LPS stimulated human PBMC.

Scheme1

Oy
a,b yoN

Cbz-L-glutamine —-—» g} HN ~< =0

3

P oH
c, d ps ON
3 Boo ONS =O

KO a,
ms oO

 
4a X = 4-NO, 5a X = 4-NH,
4b X = §-NO, Sb X = §-NH,

Reagents: (a) CDI, THF, reflux; (b) H,, 10% Pd/C, EtOAc/4N HCI;
{c) 3, ACOH,reflux; (d) 10% Pd/C, acetone,

Chemistry. The amino substituted analogs of thalidomide were prepared asillustrated in Scheme 1.'* The

aminothalidomide analogs were prepared via the condensation of 3-aminopiperidine-2,6-dione hydrochloride,
(3). Compound3 wasprepared in two steps from commercially available Cbz-L-glutamine. Treatment of Cbz-
L-glutamine with carbonyl diimidazole (CDI) in refluxing THF afforded Cbz-aminoglutarimide. The Cbz
protecting group was readily removed by hydrogenolysis under 50-60 psi of hydrogeninthe presence of 10%
Pd/C in a mixture of ethyl acetate and 4 N HCl. The hydrochloride (3) was used directly in the anhydride

ALVOGEN, Exh. 1055, p. 0092
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GW. Mulleret al. /Bioorg. Med, Chem. Lett. 9 (1999) 1625-1630 1627

condensation reaction without purification. Treatment of 3 with 3- or 4-nitrophthalic anhydrides in reiluxing
acetic acid affordedthe 4- and 5-nitro substituted thalidomide analogs 4a and 4h, respectively, in goodyields.

The nitro groups of 4a and 4b were reduced by hydrogenation in a Parr shaker under 50-60 psi of hydrogen in
the present of 10% Pd/C to afford the desired 4- and 5-amino substituted thalidomide analog 5a and Sb,
respectively. The amino substituted isoindolinone analogs were prepared as illustrated Scheme 2.'* Treatment
of3 with the appropriately substituted nitro substituted methy] 2-(bromomethy!)benzoates, 6a-d yielded the four

isomeric nitro EM-12 analogs 7a-d. The nitro groups were hydrogenated to the desired amino compound as
described above to afford 8a-d. The four isomeric nitro substituted methyl 2-(bromomethyl)benzoates (6a-d)

were prepared by benzylic bromination of the corresponding commercially available nitro substituted methyl 2-
methylbenzoates.

Scheme 2

 

 
t i 7 PQ yw
ye ‘ cSom RH PN

f> | as bc i oN S=0
aa Bie NLSON |

2 Br Xx 4

6a 3-NO, 7a X = 4-NO, 8a X= 4-NH,
Sb 4-NO, 7b X = 5-NO, 8b X= 5-NH,
6c 5-NO, 7c X = 6-NO, 8c X= 6-NH,
6d 6-NO, 7d X = 7-NO, 8d X= 7-NH,

Reagents:(a) light, NBS, CCl,, reflux; (b) 3, EL,N, DMF, 80 °C; (d) H,, 10% Pd/C, MeOH

The R and 8 isomers of 5a were prepared starting from the S- and R-isomers of glutamine /-buty! ester
(Scheme 3). The nitro substituted Nef’s reagent analog, 10 was prepared bytreatment of 3-nitrophthalimide

with ethyl chloroformate.'* Nef’s reagent is a reagent commonly usedin the preparationofchiral N-phthaloy!

 
protected amino acids. Treatment of 10 with the single isomers of t-butyl glutamine afforded the phthaloy!
glutamine derivatives, (S)- and (R)- 11. The t-butyl group was removed using standard acidic conditions to

afford (S)- and (R)- 12. To avoid racemization, the ring closure was accomplished using the methodreported by
Casini and Ferappi'* for the synthesis of the single isomers of thalidomide to afford (R)- and (S)- of 4a." The
nitro groups were reduced as described earlier in acetone to afford the single isomers of Sa.

 

Scheme 3
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(S)- and (R)- 12 R=H (S)- and (R)- 8a X = NH,

Reagents: (a) Et,N, (R) or (S) t-butyl glutamine HCI; (b) HCI, CH,Cl,; (c) SOCI,, pyr/Et,N; (d) Hz, 10% Pd/C, acetone.
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The 4-amino-c.-methy! analog (14) ofthalidomide was prepared from a-methylglutamic acid (Scheme
4). Bystandard chemistry a-methylglutamic acid was converted to Cbz-o-methylglutamie acid anhydride (15),
Treatment ofthe anhydride with ammonia afforded a mixture of a- and y-amides, 16, This mixture was cyclized
with CDI to the Cbz-protected aminoglutarimide 17. The Cbz-group was removed by hydrogenation under
acidic conditions to afford aminoglutarimide hydrochloride 18, Condensation with 3-nitrophthalic anhydride
followed byreductionof the nitro group afforded 14,

Scheme 4

  
a Sy O #/ B a,b,c /| de /—NZHN A po XA ;f=O tee ( JO

48 17 X= Z-NH

18 X= ClH,N 19X=NO,
14 = NH,

Reagents: (a) NH,, CH,Cl,; (b) CDI, THF: (c) H,, 10% Pd/C, ELOH/4N HCE
{d) 3-NO,-phthalic anydride, AcOH, reflux: (e) H,, Pd/C, acetone.

Biological Assays. TNF-« inhibitory activity was measured in lipopolysacharide (LPS) stimulated PBMCas
previouslyreported.’ The human whole blood TNF-a inhibition assay was run in a similarfashion to the PBMC
assay except heparinized fresh human whole blood was plated directly into microtiter plates. The assay was then
continued as previously reported for the PBMC assay. The assay for PDE4 enzyme inhibition was ran as
previously described,*

Results and Discussion. Thalidomide has been reported to be a selective inhibitor of TNF-c. in LPS stimulated
human monocytes.” Thalidomide has a TNF-c [Cs9 of ~200 uMin LPSstirnulated PBMC.’ Previous research
with thalidomide analogs suggested that phthaloyl substitution could lead to increasesinactivity. Although the
amino substitution had been previously described, these analogs had not beentested for their ability to inhibit
TNF-c production (Table 1). The 5-amino analog, Sb, was found to have a TNF-c ICso of ~100 uM. No
imhibitory activity was observed at the lower concentrations tested (less than or equal to 10 uM). The 4-amino
analog, Sa, wassignificantly more potent with an ICs9 of 13 nM. Thus,this compound was ~15,000 times more
potent than thalidomide as a TNF-c inhibitor in vitro. The novel isomeric amino-substituted EM-12 analogs
were then prepared and tested. Unlike thalidomide where there are only two regio isomers, there are four
possible regio isomers, Sad, Onlythe 4-amino analog 8a potently inhibited TNF-c. production (ICsp less than
100 4M). Compound 8a was found to have an ICsq of 100 nM (Table 1). This substitution correlates with the
amino substitution on 5a and demonstrated that the amino group needed to be opposite to the carbonyl ofthe
isoindolinone for optimal activity. The S- and R-isomers of Sa were prepared and evaluated. The S-isomerof 5a
was found to be the more active isomer with a TNF-c ICso of 3.9 nM. The R-isomer was ~20-fold less active
with a TNF ICso of 94 nM, Although (2)-Sa’s optical purity was greater than 95% ee, some activity was
probablydue to residual (S)-isomerin the sample.
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The o-methyl analog of thalidomide, 13, has also been reported to demonstrate similar TNF-c inhibitory
activity to thalidomide.'® This compounddoes not contain the racemizable chiral center found in thalidomide.
The 4-amino analog 14 was a potent inhibitor of TNF-a with an ICso of 44 nM. Work is iN progress to prepare
the single isomers of 14 and will be reported onin the future,

Compounds Sa, 8a, and 14 were evaluated for PDE4 inhibitoryactivity using PDE4 enzymeisolated
from U937 cells.® All three compounds were inactive (<50% inhibition) at 100 1M, the highest concentration
assayed. These results strongly suggested that these compounds do not act by PDE4 inhibition. The three active
analogs, 5a, 8a, and 14 were evaluated for their ability to inhibit TNF-c: levels LPS stimulated human whole
blood to mimic their activity in vivo. The compounds had only modest declines in activity in this assay. (Table
1):

Table 1 TNF-o Inhibition in LPS Stimulated Human PBMCand Whole Blood
     

  

~CompdTNF-aInhibit.TNF-a
At 100pM ICso TNE-o [Cp

5a 95% 13 nM 25 nM

Sb 55% - ~100.000 nM ND

8a 74% 100 nM 480 nM

8b 15% ND ND

8e 12% ND ND

8d 18% ND ND

14 98% 44 nM 216 nM

(S)-5a 99% 3.9 nM 14 nM

(2)-5a 85% 93 nM 73 nM
 

In summary, we have discovered three high potency inhibitors of TNF-c by 4-amino substitution of
thalidomide, EM-12, and a-methylthalidomide. The (S)-4-amino substituted analog of 5a was found to be
~50,000 times more potent than thalidomideat inhibiting TNF-o levels in LPS stimulated human PBMC, None
the three compounds showed significant activity as a PDE4 inhibitor, A recent publication reported 14 to
enhance TNF-o productionin 12-O-tetradecanoyl-phorbol 13-acetate stimulated humanleukemia HL-60 cells.!”
These discordantresults are possibly related to our use of primary humancells stiraulated with LPSin contrast
to the other investigators use of the HL-60 cell line stimulated with TPA, Further, we have demonstrated that
these compoundsretain high activity in the milieu of whole human blood. We are presently investigating the
structure-activity relationships of other substituted phthaloyl and isoindolinone analogsof thalidomide and EM-
i2 and will be publishing on the biological profiles of Sa, 8a, and 14,8
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Abstract: Thalidomide, (1), is a known inhibitor of TNF-c~ release in LPS stimulated human PBMC. Herein 
we describe the TNF-c~ inhibitory activity of amino substituted analogs of thalidomide (1) and its isoindolin-1- 
one analog, EM-12 (2). The 4-amino substituted analogs were found to be potent inhibitors of TNF-c~ release in 
LPS stimulated human PBMC. © 1999 Elsevier Science Ltd. All rights reserved. 

Introduction: Thalidomide (2-(2,6-dioxo-3-piperidyl)isoindoline-l,3-dione), (1) was developed as a sedative 

without the side effects of barbiturates in the 1950's by Chemie GmnenthalJ Thalidomide quickly became a 

popular sedative in Europe and Australia and was subsequently used for the treatment of morning sickness in 

pregnant women. However, thalidomide was removed from the marketplace when its use was linked to birth 

defects. Thalidomide's teratogenic properties made the drug infamous and catalyzed the development of the 

current drug approval regulations. A serendipitous discovery in 1965 by Sheskin while treating erythema 

nodosum leprosum (ENL), an acute inflammatory condition associated with lepromatous leprosy led to the 

discovery that thalidomide possesses immunomodulatory properties} Since this initial discovery, thalidomide 

has been found to afford clinical benefit in a variety of autoimmune and inflammatory disease states, s 

o o .  

o 

Thalidomide (1) EM-12 (2) 

In 1991 it was reported that thalidomide was a selective inhibitor of tumor necrosis factor-c~ (TNF-cg 

over production in stimulated human monocytes. 4 TNF-c~ is a key cytokine in the inflammatory cascade and 

elevated TNF-c~ levels are associated with inflammatory diseases. 5 Recent successful clinical trials in 

rheumatoid arthritis and inflammatory bowel disease with TNF-c~ antibodies and soluble TNF-c~ receptors have 

validated the inhibition of TNF-c~ as a clinical treatment. 6 

The clinical activity of thalidomide and the importance of TNF-c~ inhibition led us to initiate a program 

to improve the TNF-cc inhibitory activity of thalidomide by structural modification. We have previously 

0960-894X/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. 
PIh S0960-894X(99)00250-4 
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reported a series of thalidomide analogs derived from 13-amino-13-arylpropanoic acid derivatives that are potent 

inhibitors of TNF-~. 7 Further studies revealed these compounds to be potent inhibitors of phosphodiesterase 

type 4 (PDE4). 8 The PDE4 inhibitory potency for most of these compounds has correlated with their TNF-ct 

inhibitory activity. PDE4 is the major PDE isoenzyme present in monocytes and macrophages, key producers of 

TNF-ct. PDE enzymes control the levels of cyclic adenosine monophosphate (cAMP) by hydrolysis of cAMP to 

5'-AMP. Inhibition of PDE4 in stimulated monocytes has been demonstrated to elevate levels of cAMP and 

inhibit of TNF-ct production. 9 

In further studies to improve the TNF-ct inhibitory activity of thalidomide, we prepared a series of 

amino-phthaloyl substituted analogs of thalidomide (1) and its isoindoline-l-one analog, EM-12 (2). Some 

amino substituted thalidomide analogs have previously been reported but were not assayed for their TNF-ct 

inhibitory activity, l° EM-12 (2) has been reported to be a more potent teratogen than thalidomide in rabbits, rats, 

and monkeys. 11 When 2 was evaluated for TNF-ct inhibitory activity in LPS stimulated human PBMC it was 

found to have similar activity to thalidomide. The isoindolinone replacement of the phthaloyl ring increases the 

stability of the molecule and may lead to increased bioavailability. Herein, we report the structure-activity 

relationships of amino substitution of the phthaloyl ring of thalidomide and isoindolinone ring of EM-12 on the 

TNF-ct inhibitory activity in LPS stimulated human PBMC. 

Scheme 1 

%H 
Cbz-L-glutamine a, b }. CI H 3 N ~ O  

3 

O O O H 

O2N O X O 

4a X = 4-NO 2 5a X = 4-NH 2 
4b X = 5-NO 2 5b X = 5-NH 2 

Reagents: (a) CDI, THF, reflux; (b) H 2, 10% PdlC, EtOAcI4N HCI; 
(c) 3, AcOH, reflux; (d) 10% PdlC, acetone. 

Chemistry. The amino substituted analogs of thalidomide were prepared as illustrated in Scheme 1.12 The 

amino thalidomide analogs were prepared via the condensation of 3-aminopiperidine-2,6-dione hydrochloride, 

(3). Compound 3 was prepared in two steps from commercially available Cbz-L-glutamine. Treatment of Cbz- 

L-glutamine with carbonyl diimidazole (CDI) in refluxing THF afforded Cbz-aminoglutarimide. The Cbz 

protecting group was readily removed by hydrogenolysis under 50-60 psi of hydrogen in the presence of 10% 

Pd/C in a mixture of ethyl acetate and 4 N HC1. The hydrochloride (3) was used directly in the anhydride 
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condensation reaction without purification. Treatment of 3 with 3- or 4-nitrophthalic anhydrides in refluxing 

acetic acid afforded the 4- and 5-nitro substituted thalidomide analogs 4a and 4b, respectively, in good yields. 

The nitro groups of 4a and 4b were reduced by hydrogenation in a Parr shaker under 50-60 psi of hydrogen in 

the present of 10% Pd/C to afford the desired 4- and 5-amino substituted thalidomide analog 5a and 5b, 

respectively. 13 The amino substituted isoindolinone analogs were prepared as illustrated Scheme 2.12 Treatment 

of 3 with the appropriately substituted nitro substituted methyl 2-(bromomethyl)benzoates, 6a-d yielded the four 

isomeric nitro EM-12 analogs 7a-d. The nitro groups were hydrogenated to the desired amino compound as 

described above to afford 8a-d. The four isomeric nitro substituted methyl 2-(bromomethyl)benzoates (6a-d) 

were prepared by benzylic bromination of the corresponding commercially available nitro substituted methyl 2- 

methylbenzoates. 

S c h e m e  2 

0 0 

0 / ~. 0 / a b,c~_ N O 

O2N 02 Br X 4 

6a 3-NO 2 7a X = 4-NO 2 8a X= 4-NH 2 

6b 4-NO 2 7b X = 5-NO 2 8b X= 5-NH 2 

6c 5-NO 2 7c X = 6-NO 2 8c X= 6-NH 2 

6d 6-NO 2 7d X = 7-NO 2 8d X= 7-NH 2 

Reagents: (a) light, NBS, CCI 4, reflux; (b) 3, EtaN, DMF, 80 °C; (d) H2, 10% Pd/C, MeOH 

The R and S isomers of 5a were prepared starting from the S- and R-isomers of glutamine t-butyl ester 

(Scheme 3). The nitro substituted Nefs  reagent analog, 10 was prepared by treatment of 3-nitrophthalimide 

with ethyl chloroformate. 14 Nef's reagent is a reagent commonly used in the preparation of chiral N-phthaloyl 

protected amino acids. Treatment of 10 with the single isomers of t-butyl glutamine afforded the phthaloyl 

glutamine derivatives, (S)- and (R)- 11. The t-butyl group was removed using standard acidic conditions to 

afford (S)- and (R)- 12. To avoid racemization, the ring closure was accomplished using the method reported by 

Casini and Ferappi 15 for the synthesis of  the single isomers of thalidomide to afford (R)- and (S)- of 4a. 13 The 

nitro groups were reduced as described earlier in acetone to afford the single isomers of 5a. 

S c h e m e  3 

ONco  t 
• , ~ccd ~ N ~ ) - - O  

0 2 X O 
O 

(S)- and (R)- 11 R = t-Butyl 
(S)- and (R)- 12 R = H 

NO 2 

10 (S)- and (R)- 4a X = NO 2 

(S)- and (R)- 5a X = NH 2 

Reagents: (a) EtaN, (R) or (S) t-butyl glutamine HCI; (b) HCI, CH2CI2; (c) SOCI 2, pyr/Et3N; (d) H 2, 10% Pd/C, acetone. 
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The 4-amino-ct-methyl analog (14) of thalidomide was prepared from ct-methylglutamic acid (Scheme 

4). By standard chemistry ct-methylglutamic acid was converted to Cbz-c~-methylglutamic acid anhydride (15). 

Treatment of the anhydride with ammonia afforded a mixture of ct- and ,/-amides, 16. This mixture was cyclized 

with CDI to the Cbz-protected aminoglutarimide 17. The Cbz-group was removed by hydrogenation under 

acidic conditions to afford aminoglutarimide hydrochloride 18. Condensation with 3-nitrophthalic anhydride 

followed by reduction of the nitro group afforded 14. 

Scheme 4 
O O H 

Z H N ~ - O  a, b, c:,.. X ~ - ~ O  

15 17 X = Z-NH 
18 X = CI H3N 

d, e 

X O 
19 X = NO= 
14 X = NH 2 

Reagents: (a) NH3, CH2CI2; (b) CDI, THF; (c) H2, 10% Pd/C, EtOH/4N HCI; 
(d) 3-NO2-phthalic anydride, AcOH, reflux; (e) H2, Pd/C, acetone. 

Biological Assays. TNF-~ inhibitory activity was measured in lipopolysacharide (LPS) stimulated PBMC as 

previously reported. 7 The human whole blood TNF-cc inhibition assay was run in a similar fashion to the PBMC 

assay except heparinized fresh human whole blood was plated directly into microtiter plates. The assay was then 

continued as previously reported for the PBMC assay. The assay for PDE4 enzyme inhibition was run as 

previously described. 8 

Results and Discussion. Thalidomide has been reported to be a selective inhibitor of TNF-c~ in LPS stimulated 

human monocytes. 4 Thalidomide has a TNF-ct ICso 0 f -200  p.M in LPS stimulated PBMC. 8 Previous research 

with thalidomide analogs suggested that phthaloyl substitution could lead to increases in activity. 8 Although the 

amino substitution had been previously described, these analogs had not been tested for their ability to inhibit 

TNF-ct production (Table 1). The 5-amino analog, 5b, was found to have a TNF-c~ IC50 o f - 1 0 0  p.M. No 

inhibitory activity was observed at the lower concentrations tested (less than or equal to 10 p.M). The 4-amino 

analog, 5a, was significantly more potent with an IC50 of 13 nM. Thus, this compound was -15,000 times more 

potent than thalidomide as a TNF-ct inhibitor in vitro. The novel isomeric amino-substituted EM-12 analogs 

were then prepared and tested. Unlike thalidomide where there are only two regio isomers, there are four 

possible regio isomers, 8a-d. Only the 4-amino analog 8a potently inhibited TNF-et production (IC50 less than 

100 p.M). Compound 8a was found to have an IC50 of 100 nM (Table 1). This substitution correlates with the 

amino substitution on 5a and demonstrated that the amino group needed to be opposite to the carbonyl of the 

isoindolinone for optimal activity. The S- and R-isomers of 5a were prepared and evaluated. The S-isomer of 5a 

was found to be the more active isomer with a TNF-ct IC50 of 3.9 nM. The R-isomer was -20-fold less active 

with a TNF IC50 of 94 nM. Although (R)-5a's optical purity was greater than 95% ee, some activity was 

probably due to residual (S)-isomer in the sample. 
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The a-methyl analog of thalidomide, 13, has also been reported to demonstrate similar TNF-a inhibitory 

activity to thalidomide.16 This compound does not contain the racemizable chiral center found in thalidomide. 

The 4-amino analog 14 was a potent inhibitor of TNF-a with an IC50 of  44 nM. Work is in progress to prepare 

the single isomers of 14 and will be reported on in the future. 

Compounds 5a, 8a, and 14 were evaluated for PDE4 inhibitory activity using PDE4 enzyme isolated 

from U937 cells. 8 All three compounds were inactive (<50% inhibition) at 100 p.M, the highest concentration 

assayed. These results strongly suggested that these compounds do not act by PDE4 inhibition. The three active 

analogs, 5a, 8a, and 14 were evaluated for their ability to inhibit TNF-a levels LPS stimulated human whole 

blood to mimic their activity in vivo. The compounds had only modest declines in activity in this assay. (Table 

1). 

Table 1 TNF-a Inhibition in LPS Stimulated Human PBMC and Whole Blood 

Compd TNF-a  Inhibit.  TNF-cz Whole Blood 
At 100 jxM ICs0 TNF-a  ICs0 

5a 95% 13 nM 25 riM 

5b 55% -100,000 nM ND 

8a 74% 100 nM 480 nM 

8b 15% ND ND 

8e 12% ND ND 

8d 18% ND ND 

14 98% 44 nM 216 nM 

(S)-5a 99% 3.9 nM 14 nM 

(R)-5a 85% 93 nM 73 nM 

In summary, we have discovered three high potency inhibitors of TNF-a by 4-amino substitution of 

thalidomide, EM-12, and a-methylthalidomide. The (S)-4-amino substituted analog of 5a was found to be 

-50,000 times more potent than thalidomide at inhibiting TNF-c~ levels in LPS stimulated human PBMC. None 

the three compounds showed significant activity as a PDE4 inhibitor. A recent publication reported 14 to 

enhance TNF-a production in 12-O-tetradecanoyl-phorbol 13-acetate stimulated human leukemia HL-60 cells.17 

These discordant results are possibly related to our use of primary human cells stimulated with LPS in contrast 

to the other investigators use of the HL-60 cell line stimulated with TPA. Further, we have demonstrated that 

these compounds retain high activity in the milieu of  whole human blood. We are presently investigating the 

structure-activity relationships of  other substituted phthaloyl and isoindolinone analogs of thalidomide and EM- 

12 and will be publishing on the biological profiles of 5a, 8a, and 14.18 
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Immunomodulation by thalidomide and
thalidomide analogues

Laura G Corral, Gilla Kaplan

Tumour necrosis factor á (TNFá), a key
cytokine involved in the host immune re-
sponse, also contributes to the pathogenesis of
both infectious and autoimmune diseases. To
ameliorate the pathology resulting from TNFá
in these clinical settings, strategies for the inhi-
bition of this cytokine have been developed.
Our previous work has shown that the drug
thalidomide is a partial inhibitor of TNFá pro-
duction in vivo. For example, when leprosy
patients suVering from erythema nodosum
leprosum (ENL) are treated with thalidomide,
the increased serum TNFá concentrations
characteristic of this syndrome are reduced,
with a concomitant improvement in clinical
symptoms. Similarly, we have found that in
patients with tuberculosis, with or without HIV
infection, short-term thalidomide treatment
reduces plasma TNFá levels in association
with an accelerated weight gain. In vitro, we
have also shown that thalidomide partially
inhibits TNFá produced by human peripheral
blood mononuclear cells (PBMC) responding
to stimulation with lipopolysaccharide (LPS).
Recently, we found that thalidomide can also
act as a costimulatory signal for T cell
activation in vitro resulting in increased
production of interleukin 2 (IL2) and inter-
feron ã (IFNã). We also observed a bi-
directional eVect on IL12 production: IL12
production is inhibited by thalidomide when
PBMC are stimulated with LPS, however,
IL12 production is increased in the presence of
the drug when cells are stimulated via the T cell
receptor. The latter eVect is associated with
upregulation of T cell CD40 ligand (CD40L)
expression. Thus, in addition to its monocyte
inhibitory activity, thalidomide exerts a co-
stimulatory or adjuvant eVect on T cell
responses. This combination of eVects may
contribute to the immunomodulating proper-
ties of the drug.

To obtain drugs with increased anti-TNFá
activity that have reduced or absent toxicities,
novel TNFá inhibitors were designed using
thalidomide as template. These thalidomide
analogues were found to be up to 50 000 times
more active than thalidomide. The compounds
comprise two diVerent types of TNFá inhibi-
tors. One class of compounds, shown to be
potent phosphodiesterase 4 (PDE4) inhibitors,
are selective TNFá inhibitors in LPS stimu-
lated PBMC and have either no eVect or a sup-
pressive eVect on T cell activation. The other
class of compounds also inhibit TNFá produc-
tion, but do not inhibit PDE4 enzyme. These
compounds are also potent inhibitors of several
LPS induced monocyte inflammatory cy-
tokines. Also, the latter compounds markedly

stimulate the anti-inflammatory cytokine IL10.
Similarly to thalidomide, these drugs that do
not inhibit PDE4 act as costimulators of T cells
but are much more potent than the parent
drug. The distinct immunomodulatory activity
of these new TNFá inhibitors may potentially
allow them to be used in the clinic for the
treatment of a wide variety of immunopatho-
logical disorders of diVerent aetiologies.

TNFá is a key player in the immune
response
TNFá is a pleiotropic cytokine produced
primarily by monocytes and macrophages, but
also by lymphocytes and NK cells. TNFá plays
a central part in the host immune response to
viral, parasitic, fungal and bacterial infections.
The importance of TNFá and TNFá signal-
ling through its receptors in the host immune
response to disease has become clearer as a
result of a number of seminal studies. For
example, mice genetically deficient in TNFá
have a significantly reduced humoral immune
response to adenovirus infection.1 In Leishma-
nia major infection, TNFá signalling is impor-
tant for protection as mice lacking TNFá p55
receptor (TNFR-p55) show delayed elimina-
tion of the parasites compared with controls
and the lesions formed failed to resolve.2 Mice
deficient in TNFR-p55 are also significantly
impaired in their ability to clear infection with
Candida albicans and readily succumb to the
infection. TNFá signalling is also crucial in
resisting Streptococcus pneumoniae infections in
mice.3 In addition, TNFá is essential for
protection against murine tuberculosis.
TNFR-p55 deficient mice have been shown to
be more susceptible to tuberculosis infection.
When TNFá was neutralised in vivo by mono-
clonal antibodies impaired protection against
mycobacterial infection was observed.4 5 The
data from both models also established that
TNFá and the TNFR- p55 are essential for
production of reactive nitrogen intermediates
by macrophages early in infection.

TNFá contributes to disease pathogenesis
Although TNFá is crucial to the protective
immune response, it also plays a part in the
pathogenesis of both infectious and autoim-
mune diseases. Increased concentrations of
TNFá have been shown to trigger the lethal
eVects of septic shock syndrome.6 TNFá has
also been implicated in the development of
cachexia, the state of malnutrition that compli-
cates the course of chronic infections and many
cancers.7 In rheumatoid arthritis, TNFá is a
critical mediator of joint inflammation and
therefore an important therapeutic target.

Ann Rheum Dis 1999;58:(Suppl I) I107–I113 I107
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Recently, it has been shown that treatment of
patients with neutralising anti-TNFá antibod-
ies produces a dramatic reduction in disease
activity in this condition.8 Similarly, it has been
shown that in inflammatory bowel disease,
neutralisation of TNFá results in a profound
amelioration of clinical symptoms.9 10 Reduc-
tions in TNFá levels have also been linked with
a significant reduction of clinical symptoms in
leprosy patients with ENL, including fever,
malaise, and arthritic and neuritic pain.11 In
tuberculosis patients, reduction of TNFá levels
was associated with accelerated weight gain.12

Thalidomide inhibits TNFá production
by monocytes
The pathology associated with TNFá produc-
tion is profound and in many diseases leads to
significant morbidity and mortality. This has
led to a concerted eVort to discover drugs that
will down regulate the production of this
cytokine. Agents conventionally used in these
diseases may inhibit TNFá production, but are
also often broadly immunosuppressive (for
example, cyclosporin A and corticosteroids)
and therefore associated with extensive side
eVects.13 Drugs that are potentially more
specific in inhibiting TNFá are under active
investigation and development. Our previous
work has shown that the drug thalidomide
(á-N-phthalimidiglutarimide) is a relatively
selective inhibitor of TNFá production by
human monocytes in vivo. This property of
thalidomide was first described in leprosy
patients with ENL, an acute inflammatory
complication of lepromatous leprosy that is
accompanied by increased serum TNFá levels.
Thalidomide treatment of patients with ENL
was shown to induce a prompt reduction of
TNFá serum levels with a concomitant abro-
gation of clinical symptoms.11 Furthermore, in
patients with tuberculosis, with or without
concomitant HIV infection, thalidomide treat-
ment was found to both decrease plasma
TNFá protein levels as well as monocyte
TNFá mRNA levels. This decrease was associ-
ated with an accelerated weight gain.12 In a
rabbit model of mycobacterial meningitis, tha-
lidomide treatment combined with antibiotics
produced a marked reduction in TNFá levels,
leucocytosis, and brain disease.14 In addition,
thalidomide inhibited TNFá serum levels in
mice challenged with LPS thus partially
protecting the animals from septic shock.15

In vitro, we have found that thalidomide
selectively reduces the production of TNFá by
human monocytes cultured in the presence of
both LPS and mycobacterial products.16 How-
ever, this inhibition was only partial (50% to
70%) possibly because of the instability of the
drug in aqueous solutions.17 The mechanism
by which thalidomide reduces TNFá produc-
tion is still unclear. The drug seems to inhibit
TNFá production by human monocytes in
vitro in association with enhanced degradation
of TNFá mRNA.18 It also inhibits the activa-
tion of the nuclear factor êB (NfêB),19 20 a pro-
moter for the transcription of TNFá as well as
transcription of HIV-1.21 22

Thalidomide has T cell costimulatory
properties
Recently, we reported that thalidomide also has
a hitherto unappreciated immunomodulatory
eVect: the drug was shown to costimulate
human T cells in vitro, synergising with stimu-
lation via the T cell receptor complex to
increase IL2 mediated T cell proliferation and
T cell IFNã production.23 Optimal T cell acti-
vation requires two signals.24 The first signal or
signal 1 is delivered by clustering of the T cell
antigen-receptor-CD3 complex through en-
gagement of specific foreign peptides bound to
MHC molecules on the surface of an antigen
presenting cell (APC). Signal 1 can be
mimicked by crosslinking the T cell receptor
(TCR) complexes with anti-CD3 antibodies.
Signal 2 (or costimulation) is antigen inde-
pendent and may be provided by cytokines or
by surface ligands on the APC that interact
with their receptors on the T cell. Costimula-
tory signals are essential to induce maximal T
cell proliferation and secretion of cytokines,
including IL2, which ultimately drive T cell
clonal expansion. As antigenic stimulation in
the absence of costimulatory signals leads to T
cell anergy or apoptosis, costimulation is criti-
cally important in the induction and regulation
of cellular immunity.

Thalidomide appears to act as a costimulator
to T cells that have received signal 1 via the
TCR.23 In our experiments in vitro, stimulation
of purified T cells with anti-CD3 antibodies, in
the absence of signal 2, induced only minimal
T cell proliferation. However, the addition of
thalidomide to this cell culture system resulted
in a concentration dependent increase in
proliferative responses.23 25 The thalidomide
mediated costimulation of T cell proliferation
was accompanied by increases in IL2 and IFNã
production. It is noteworthy that in the absence
of anti-CD3, there was no T cell proliferative
response to thalidomide, indicating that the
drug is not mitogenic in itself. It is also
interesting to note that in these experiments,
thalidomide did not inhibit TNFá production
by purified T cells stimulated by anti-CD3
antibodies. This is in contrast with the eVects
of the drug on TNFá produced by monocytes.
As already described above, thalidomide inhib-
its monocyte TNFá production. The costimu-
latory eVect of thalidomide was greater on the
CD8+ T cells than on the CD4+ T cell
subset.23

In addition to its eVects on T cell prolifera-
tion and T cell cytokine production, we
observed that thalidomide induced the up-
regulation of CD40L expression on activated T
cells.25 26 CD40L/CD40 interaction occurs
early in the sequence of signalling events
between T cells and antigen presenting cells
(APC). Signalling through CD40 has been
shown to activate APC and to induce expres-
sion of costimulatory molecules such as B7, as
well as stimulating production of IL12.27 28

Thus, CD40 signalling results in a stimulatory
feedback mechanism in which the activated
APC amplifies the T cell response.29 It has also
been suggested that CD40L function is essen-

I108 Corral, Kaplan
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tial for the survival of CD8+ T cells and that in
its absence these cells die or become anergic.30

These studies show that in addition to its
inhibitory eVect on the production of mono-
cyte cytokines, thalidomide exerts a costimula-
tory or adjuvant eVect on T cell responses. The
immune modulating eVects of the drug in
patients may thus be attributable to a balance
between the inhibition of production of mono-
cyte cytokines, including TNFá, and the
costimulation of T cell activity. The eVects of
thalidomide in vivo in HIV infected patients
seem to reflect the costimulatory activity of the
drug.26 In a placebo controlled study to evalu-
ate the eVects of in vivo immunomodulation
with thalidomide, the drug was administered
for four weeks to HIV infected patients.
Thalidomide treatment did not aVect TNFá
levels in these patients. In contrast, thalidomide
treatment resulted in significant immune
stimulation. This was reflected by increases in
DTH responses and increased plasma levels of
T cell activation markers such as soluble IL2
receptor (sIL2R) and soluble CD8 antigen. An
earlier study of tuberculosis patients treated
with thalidomide showed increased plasma
levels of IFNã suggesting an immunostimula-
tory eVect of the drug.12 Recently, patients suf-
fering from sarcoidosis have shown consistent
increases in sIL2R plasma levels after thalido-
mide treatment (Oliver et al, manuscript in
preparation). In the same study, thalidomide
treatment increased the proliferation of sarcoid
patient T cells in response to concanavalin A in
vitro. These results strongly suggest that
thalidomide directly stimulates T cells in vivo
in patients, corresponding to the T cell
costimulatory properties of the drug observed
in vitro in T cells from normal donors,23 25 as
well as in the T cells of HIV infected patients.26

Thalidomide analogues are improved
TNFá inhibitors
In addition to being the drug of choice for the
treatment of ENL, thalidomide has been
shown to be useful in a number of clinical situ-
ations including rheumatoid arthritis, HIV
associated aphthous ulcers and chronic graft
versus host disease.31–34 However, thalidomide
is a potent teratogen and ingestion of the drug
by a pregnant woman can lead to catastrophic

birth defects.35 In addition, thalidomide treat-
ment is often accompanied by a number of side
eVects, including peripheral neuropathy.36

Therefore, the use of thalidomide requires
strict monitoring of all patients.37 Thus, there is
a pressing need to develop drugs with increased
TNFá inhibitory activity and reduced or
absent toxicities. Towards this end, structural
analogues of thalidomide have been designed
and synthesised at Celgene Corporation (War-
ren, New Jersey) and screened for inhibition of
TNFá production. A large number of potent
novel TNFá inhibitors were thus identified.
Recently, some of these compounds were
described.20 38–40 On a molar basis, the more
potent of these thalidomide analogues were
found to be up to 50 000-fold more potent
than thalidomide at inhibiting TNFá produc-
tion by human PBMC stimulated by LPS in
vitro. Furthermore, we have shown that some
of these compounds retain high activity in LPS
stimulated human whole blood.40 In vivo,
several of these new compounds showed
improved activity in reducing LPS induced
TNFá levels in mice17 and in inhibiting the
development of adjuvant arthritis in rats.40a

Thalidomide analogues comprise two
distinct classes of molecules
A group of thalidomide analogues, selected for
their capacity to potently inhibit TNFá pro-
duction by LPS stimulated PBMC, was further
investigated (fig 1). When tested for their effect
in vitro on LPS induced cytokines, diVerent
patterns of cytokine modulation were shown.25

One class of compounds, class I or ImiDs
(Immunomodulatory Imide Drugs) showed
not only potent inhibition of TNFá but also
marked inhibition of LPS induced monocyte
IL1â and IL12 production. LPS induced IL6
was also inhibited by these drugs, albeit
partially. These drugs were potent stimulators
of LPS induced IL10, increasing IL10 levels by
200–300%. In contrast, the other class of com-
pounds, class II or SelCiDs (Selective Cytokine
Inhibitory Drugs), while still potently inhibit-
ing TNFá production, had a more modest
inhibitory eVect on LPS induced IL1â and
IL12, and did not inhibit IL6 even at high drug
concentrations. In addition, SelCiDs produced
a more modest IL10 stimulation (20–50%
increases). In all of these characteristics, SelC-
iDs were more similar to thalidomide than
ImiDs.16 17

Further characterisation of the SelCiDs
showed that they are potent PDE4 inhibitors.39

PDE4 is one of the major phosphodiesterase
isoenzymes found in human myeloid and lym-
phoid lineage cells.41 The enzyme plays a
crucial part in regulating cellular activity by
degrading the ubiquitous second messenger
cAMP and maintaining it at low intracellular
levels. Inhibition of PDE4 results in increased
cAMP levels leading to the modulation of LPS
induced cytokines including inhibition of
TNFá.42 Increasing intracellular cAMP levels
have been shown to inhibit TNFá production
in monocytes as well as in lymphocytes,41 43

although it is not clear how this inhibition isFigure 1 Chemical structures of thalidomide and selected thalidomide analogues.
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regulated. Interestingly, the IMiDs and tha-
lidomide were found not to inhibit PDE4.40

In addition to the diVerential modulation of
LPS induced monocyte cytokines, the two
classes of compounds showed distinct eVects
on T cell activation. SelCiDs, the PDE4
inhibitors, had little eVect on T cell activation
causing only a slight inhibition of T cell prolif-
eration. This eVect was not unexpected as it is
well established that increasing cAMP levels in
T cells during the early phase of mitogen or
antigen activation results in a decrease in
proliferative potential.44 On the other hand,
IMiDs, the non-PDE4 inhibitors, were potent
costimulators of T cells and increased cell pro-
liferation dramatically in a dose dependent
manner.25 Similarly to thalidomide, these com-
pounds had a greater costimulatory eVect on
the CD8+ T cell subset than on the CD4+ T
cell subset (Corral et al, unpublished observa-
tion). IMiDs, when added to anti-CD3 stimu-
lated T cells, also caused marked increases in
the secretion of IL2 and IFNã and induced the
up-regulation of CD40L expression on T
cells.25 These findings show that in addition to
their strong anti-inflammatory properties,
IMiDs eYciently costimulate T cells with 100
to 1000 times the potency of the parent drug.
The molecular target of these co-stimulatory
cytokine modulating drugs is as yet unknown.

Thalidomide and IMiDs modulate
cytokines diVerently according to cell
type and stimulation pathway
As described above, thalidomide has been
shown to inhibit IL12 production by LPS
stimulated monocytes in vitro.25 45 In vivo,
however, thalidomide treatment of HIV
infected26 and M tuberculosis infected patients
induced increases in plasma IL12 levels
(Bekker et al, submitted data). Thalidomide
treatment also resulted in increases in plasma
IL12 levels in patients with scleroderma and
sarcoidosis (Oliver et al, manuscripts in prepa-
ration). These dual and opposite eVects of tha-
lidomide may be explained by the diVerential
modulation of cytokines according to target
cell type and specific pathways of cellular
stimulation.

IL12 is produced primarily by APC
(monocytes/macrophages and dendritic cells)
and is regulated by both T cell dependent and
T cell independent pathways. LPS directly
induces T cell independent IL12 production
by APC, which is inhibited by thalidomide. In
the T cell dependent pathway, on the other
hand, the production of IL12 by the APC is

induced primarily by the interaction of CD40
on the surface of the APC with CD40L on the
surface of activated T cells.28 46 When T cells
were stimulated by anti-CD3, thalidomide and
IMiDs treatment caused a significant stimula-
tion of IL12 production.25 Thalidomide and
IMiDs also induced an up-regulation of
CD40L on the surface of T cells.25 26 Blockade
of this pathway inhibits the production of IL12
and abolishes the stimulatory eVect of
thalidomide.26 Interestingly, in HIV infected
patients, the consistent increases in plasma
IL12 levels induced by thalidomide treatment
lagged behind the increases in T cell activation
markers.26 This observation suggested that
IL12 production was augmented as a conse-
quence of drug induced T cell activation.

The dichotomous nature of thalidomide
cytokine modulation may explain the seem-
ingly opposite eVects observed in diVerent
clinical situations. When patients with Behçet’s
syndrome are treated with thalidomide, healing
of inflammatory aphthous ulcers occurs, but is
sometimes accompanied by exacerbation of
erythema nodosum.47 Similarly, the paradoxi-
cal worsening of graft versus host disease48 and
toxic epidermal necrolysis49 reported in clinical
trials of thalidomide may be a manifestation of
the unsuspected immune stimulatory eVect of
this drug.

Potential clinical applications of
thalidomide and thalidomide analogues
The thalidomide analogues discussed here
seem to have retained diVerent properties of
the parent drug (table 1). The distinct
immunomodulatory activities of these two
classes of drugs suggest they may have applica-
tions in diVerent immunopathological disor-
ders. SelCiDs, which inhibit PDE4, may be
used in clinical situations in which PDE4 inhi-
bition and selective TNFá inhibition are
beneficial. Therapeutic increase of intracellular
cAMP levels by PDE4 inhibitors has anti-
inflammatory eVects, which may aVord conse-
quent benefits in a variety of diseases such as
asthma,50 atopic dermatitis51 and rheumatoid
arthritis.52 Indeed, in an animal model of adju-
vant arthritis, thalidomide derived PDE4
inhibitors have shown eYcacy in suppressing
the development of disease as measured by
ankle swelling, hind limb radiographic changes
and weight gain.40a The suppression of arthritis
was accompanied by a reduction in TNFá and
IL2 mRNA levels in the ankle joints of treated
rats.

Table 1 Immunomodulatory profiles of thalidomide and thalidomide analogues

Thalidomide IMiDs SelCIDs

Inhibits LPS induced inflammatory
cytokines TNFá and IL12

Strongly inhibit LPS induced inflammatory
cytokines: TNFá, IL1â, IL6 and IL12

Strongly inhibit LPS induced
inflammatory cytokines TNFá and IL12

Stimulates LPS induced
anti-inflammatory cytokine IL10

Strongly stimulate LPS induced
anti-inflammatory cytokine IL10

Stimulate LPS induced
anti-inflammatory cytokine IL10

Costimulates T cell activation Strongly costimulate T cell activation Inhibit or have no eVect on T cell
activation

Does not inhibit PDE4 Do not inhibit PDE4 Strongly inhibit PDE4
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Other known selective PDE4 inhibitors,
such as rolipram, have been reported to have
dose limiting side eVects, such as nausea and
vomiting, which limit the therapeutic use of
these drugs.53 54 These side eVects may be pro-
duced by the lack of specificity of these
drugs—that is, the compounds inhibit one or
more PDE isoenzymes in non-target tissues.
For example, it is probable that the emetic
activity of PDE4 inhibitors is attributable to an
action of the drugs in the CNS.55 Intensive
eVort is being directed towards identifying
compounds with improved therapeutic ratios.
Preliminary results with thalidomide derived
PDE inhibitors indicate that these novel drugs
are selective inhibitors of PDE4 and may be
better tolerated than other PDE4 inhibitors, as
they have not shown evidence of emesis in ani-
mals. One of these drugs has been recently
shown to be well tolerated in a small human
safety trial in the United Kingdom (D Stirling,
personal communication).

The IMiDs, as thalidomide, are anti-
inflammatory drugs that do not target PDE4.
These compounds, in addition to their poten-
tial use to decrease inflammation, could also be
useful in clinical settings where there is a defect
in T cell function, as in HIV disease. HIV
infection is accompanied by deficiencies in the
production of IL12 and in the up-regulation of
CD40L.56 57 IL12 has been shown to restore
HIV specific cell mediated immunity in vitro58

and to increase HIV specific CTL responses in
vitro59 and in vivo.60 Also, deficient IL12
responses in HIV infected patients can be
restored in vitro by CD40L and IFNã,61 the
same costimulatory factors induced by thalido-
mide and IMiDs. Thus, these drugs may even-
tually be used to restore or stimulate IL12 pro-
duction in immune deficient patients.

IL12 has also been shown to exhibit potent
anti-tumour activity in murine tumour models
through various mechanisms including the
stimulation of natural killer cell activity,62 activa-
tion of CD8+ cytotoxic T cells63 and increased
IFNã mediated anti-angiogenesis.64 Thalido-
mide has also recently been reported to exhibit
anti-tumour activity through the inhibition of
angiogenesis in vivo.65–68 However, this anti-
angiogenic eVect does not seem to be mediated
by TNFá inhibition. Although these studies did
not determine the mechanism of thalidomide’s
anti-angiogenic activity, it is conceivable that
stimulation of IFNã/IL12 levels may be at least
partly responsible. One report indicates that
thalidomide may have anti-angiogenic activity in
multiple myeloma in humans.69

In summary, our recent findings that thalido-
mide and IMiDs preferentially costimulate
CD8+ T cells and induce T cell dependent
IL12 production suggest possible applications
of these drugs in the control of viral
infections70 71 or in boosting anti-tumour
immunity.72 73 Also, there are anecdotal reports
of the eYcacy of thalidomide in treating refrac-
tory inflammatory bowel disease.74–76 Recently,
preliminary findings were announced from a
pilot study with patients with Crohn’s disease
refractory to standard treatments (Annual
Digestive Disease Meeting, May 1999, Or-

lando, FL). In this study, two third of the
patients experienced a significant improvement
in their condition. This therapeutic eVect may
be a combination of TNFá inhibition and
CD8+ T cell stimulation.77 78

Conclusions
In several disease conditions such as septic
shock, chronic infections and cancer, overpro-
duction of TNFá is accompanied by severe
toxicities. Thalidomide inhibits TNFá produc-
tion in diVerent diseases without causing the
immunosuppression often associated with
standard agents such as glucocorticoids and
cyclosporin A. Our results indicate that the
immunomodulating eVects of thalidomide may
occur via the inhibition of TNFá production
and/or the stimulation of T cell responses,
without the suppression of host immunity.

Recent eVorts have concentrated on develop-
ing TNFá inhibitors that are eYcient, safe and
specific. The collaboration between Rockefeller
University and Celgene Corporation scientists
has led to the discovery of two diVerent classes
of immunomodulators derived from thalido-
mide and selected for their potent anti-TNFá
inhibitory activity. Preliminary results indicate
that at least some of these new compounds are
non-toxic and non-teratogenic.20 The two
classes of thalidomide analogues, however, pos-
sess distinct properties. IMiDs are potent
inhibitors of monocyte inflammatory cytokine
production and also are strong costimulators of
T cell activity. SelCiDs, on the other hand, are
potent PDE4 inhibitors and thus, more selective
inhibitors of TNFá. Unlike IMiDs, these
compounds do not costimulate T cells but
inhibit T cell activity. Thus, the two classes of
compounds may prove to be useful in diVerent
clinical settings according to their immu-
nomodulatory properties. The thalidomide ana-
logues are being used as investigational tools in
animal disease models to define mechanisms of
pathogenesis and to continue to elucidate the
mechanisms of drug action.
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