UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

DECLARATION OF JAMES L. MULLINS, PH.D.

Petitioner Microsoft Corporation - Ex. 1066, p. 1

TABLE OF CONTENTS

Page
L. INTRODUCGTION ...ttt ettt st 1
II. BACKGROUND AND QUALIFICATIONSoooitiiieiiiieiee et 1
HI. PRELIMINARIESo 3
IV. OPINION REGARDING INDIVIDUAL DOCUMENTScccceoeinieanen. 19
CONCLUSION ...ttt ettt ettt sttt et e st esaaeeeaees 39

Petitioner Microsoft Corporation - Ex. 1066, p. 2

I, James L. Mullins, hereby declare under penalty of perjury:

I. INTRODUCTION

1. I have knowledge of the facts and opinions set forth in this declaration,
I believe them to be true, and if called upon to do so, I would testify competently to
them. I have been warned that willful false statements and the like are punishable by
fine or imprisonment, or both.

2. I am a retired academic librarian working as the Founder and Owner of
the firm Prior Art Documentation Librarian Services, LLC at 106 Berrow,
Williamsburg, VA 23188. Attached as Appendix A is a true and correct copy of my
Curriculum Vitae describing my background and experience. Further information
about my firm, Prior Art Documentation Librarian Services, LLC (PADLS), is

available at www.priorartdoclib.com.

3. I have been retained by Sidley Austin LLP to authenticate and establish
the dates of public accessibility of certain documents for use in one or more inter
partes review proceedings. For this service, I am being paid my usual hourly fee of
$185/hour. My compensation in no way depends on the substance of my testimony

or the outcome of the proceeding.

II. BACKGROUND AND QUALIFICATIONS

4. Presently, I am the Dean of Libraries Emeritus and Esther Ellis Norton

Professor Emeritus, Purdue University.

Petitioner Microsoft Corporation - Ex. 1066, p. 3

5. I was previously employed as follows:

. Dean of Libraries and Professor & Esther Ellis Norton Professor,
Purdue University, West Lafayette, IN, 2004-2017.

. Assistant/Associate Director for Administration, Massachusetts
Institute of Technology Libraries, Cambridge, MA, 2000-2004.

. University Librarian and Director, Falvey Memorial Library, Villanova
University, Villanova, PA, 1996-2000.

. Director of Library Services, Indiana University South Bend, South
Bend, IN, 1978-1996. Part-time instructor, School of Library and
Information Science, Indiana University, Bloomington, IN, 1979-1996.

. Associate Law Librarian, and associated titles, Indiana University
School of Law, Bloomington, IN, 1974-1978.

. Catalog Librarian, Assistant Professor, Georgia Southern College (now
University), Statesboro, GA, 1973-1974.

6. Over the course of my career as a librarian, instructor of library science,
author of scholarly publications, and presenter at national and international
conferences, I have had experience with catalog records and online library
management systems built around Machine-Readable Cataloging (MARC)
standards.

7. In the course of more than forty-four years as an academic librarian and
scholar, I have been an active researcher. In my years as a librarian I have facilitated
the research of faculty colleagues either directly or through the provision of and
access to the requisite print and/or digital materials and services at the universities |

worked. I have kept current on the professional library science literature and served

Petitioner Microsoft Corporation - Ex. 1066, p. 4

on the editorial board of the most prominent library journal, College and Research
Libraries. This followed service as the chair of the Research Committee of the
Association of College and Research Libraries (ACRL), a division of the American
Library Association (ALA). As an academic library administrator I have had
responsibility to insure that students were educated to identify, locate, assess and

integrate information garnered from library resources.

III. PRELIMINARIES

8. Scope of this declaration. 1 am not a lawyer and I am not rendering an
opinion on the legal question of whether any particular document is, or is not, a
“printed publication” under the law.

0. [am, however, rendering my expert opinion on the authenticity of the
documents referenced herein and on when and how each of these documents was
disseminated or otherwise made available to the extent that persons interested and
ordinarily skilled in the subject matter or art, exercising reasonable diligence, could
have located the documents no later than September 11, 2007.

10. Materials considered. In forming the opinions expressed in this
declaration, I have reviewed the documents and attachments referenced herein.
These materials are records created in the ordinary course of business by publishers,
libraries, indexing services, and others. From my years of experience, I am familiar

with the process for creating many of these records, and I know these records are

Petitioner Microsoft Corporation - Ex. 1066, p. 5

created by people with knowledge of the information in the record. Further, these
records are created with the expectation that researchers and other members of the
public will use them. All materials cited in this declaration and its attachments are
of a type that experts in my field would reasonably rely upon and refer to in forming
their opinions.

11. Persons of ordinary skill in the art. 1 have been informed by counsel
that a person of ordinary skill in the art in the field of U.S. Patent Nos. 7,225,324
(“324 Patent”) and 7,620,800 (“800 Patent™) in the 2002 time frame would have had
an advanced degree in electrical or computer engineering, or computer science with
substantial study in computer architecture, hardware design, and computer
algorithms, and at least three years’ experience working in the field. Alternatively,
that person would have had a bachelor’s degree covering those disciplines and at
least four years working the field. Such a person would have been knowledgeable
about the programming, design and operation of computer systems based on
reconfigurable components such as FPGAs (field programmable gate arrays) and
CPLDs (complex programmable logic devices), including computer systems for
performing systolic and data driven calculations. That person would also have been
familiar with hardware description languages such as VHDL that could be used to
configure FPGAs and CPLDs that serve as components of reconfigurable computer

systems. Finally, such a person would also have been familiar with various other

Petitioner Microsoft Corporation - Ex. 1066, p. 6

areas of technology that by 2002 had relied on high performance and parallel
computing systems.

12. I am told that Patent Owner claims a priority date of October 31, 2002.
By that date, a person of ordinary skill would have had access to a vast array of long-
established print resources in the field of field programmable gate array based
systems and to a rich and fast changing set of online resources providing indexing
information, abstracts, and full text services for persons interested in field
programmable gate array based systems.

Library Catalog Records

13. Some background on MARC (Machine-Readable Cataloging)
formatted records, OCLC, and WorldCat is helpful to understand the library catalog
records discussed in this declaration. I am fully familiar with the library cataloging
standard known as the MARC standard, which is an industry-wide standard method
of storing and organizing library catalog information.! MARC practices have been
consistent since the MARC format was developed by the Library of Congress in the
1960s, and by the early 1970s became the U.S. national standard for disseminating

bibliographic data. By the mid-1970s, MARC format became the international

' The full text of the standard is available from the Library of Congress at

http://www.loc.gov/marc/bibliographic/.

Petitioner Microsoft Corporation - Ex. 1066, p. 7

standard, and persists through the present. A MARC-compatible library is one that
has a catalog consisting of individual MARC records for each of its items. Today,
MARC is the primary communications protocol for the transfer and storage of
bibliographic metadata in libraries.” The MARC practices discussed below were in
place during the mid to late 1990s timeframe relevant to the documents referenced
herein.

14. Similarly, OCLC practices have been consistent since the 1970s
through the present, and the OCLC practices discussed below were in place during
the mid to late 1990s timeframe relevant to the documents referenced herein. The

OCLC was created “to establish, maintain and operate a computerized library

2 Almost every major library in the world is MARC-compatible. See, e.g., MARC
Frequently Asked Questions (FAQ), LIBRARY @ OF CONGRESS,

https://www.loc.gov/marc/fag.html (last visited January 24, 2018) (“MARC is the

acronym for MAchine-Readable Cataloging. It defines a data format that emerged
from a Library of Congress-led initiative that began nearly forty years ago. It
provides the mechanism by which computers exchange, use, and interpret
bibliographic information, and its data elements make up the foundation of most
library catalogs used today.”). MARC is the ANSI/NISO Z39.2-1994 (reaffirmed

2009) standard for Information Interchange Format.

Petitioner Microsoft Corporation - Ex. 1066, p. 8

network and to promote the evolution of library use, of libraries themselves, and of
librarianship, and to provide processes and products for the benefit of library users
and libraries, including such objectives as increasing availability of library resources
to individual library patrons and reducing the rate of rise of library per-unit costs, all
for the fundamental public purpose of furthering ease of access to and use of the
ever-expanding body of worldwide scientific, literary and educational knowledge

993

and information.”” Among other services, OCLC and its members are responsible

for maintaining the WorldCat database (http://www.worldcat.org/), used by

independent and institutional libraries throughout the world.

15. A complementary library organization, Research Library Group (RLG)
was formed in 1974 by several major research universities including Yale, New
York Public, Columbia, and Harvard as an alternative to OCLC. RLG created a
database of bibliographic records and holdings identified as RLIN that used the
MARC format in creating its OPAC and holding records at member institutions.
RLG merged with OCLC in 2006 to form one unified library bibliographic, member

driven utility.

3 Third Article, Amended Articles of Incorporation of OCLC Online Computer

Library Center, Incorporated (available at http://www.oclc.org/en-

US/councils/documents/amended _articles.html).

Petitioner Microsoft Corporation - Ex. 1066, p. 9

16. Libraries world-wide have used the machine-readable MARC format
for catalog records. MARC formatted records have provided a variety of subject
access points based on the content of the document being cataloged. A MARC record
comprises several fields, each of which contains specific data about the work. Each
field is identified by a standardized, unique, three-digit code corresponding to the
type of data that follows. For example, a work’s title is recorded in field 245, the
primary author of the work is recorded in field 100, an item’s International Standard
Book Number (“ISBN”) is recorded in field 020, an item’s Library of Congress call
number is recorded in field 050, and the publication date is recorded in field 260
under the subfield “c.” If a work is a periodical, then its publication frequency is
recorded in field 310, and the publication dates (e.g., the first and last publication)
are recorded in field 362, which is also referred to as the enumeration/chronology
field.

17. The MARC Field 040, subfield a, identifies the library or other entity
that created the original catalog record for a given document and transcribed it into
machine readable form. The MARC Field 008 identifies the date when this first
catalog record was entered on the file. This date persists in all subsequent uses of the
first catalog record, although newly-created records for the same document, separate

from the original record will show a new date. It is not unusual to find multiple

Petitioner Microsoft Corporation - Ex. 1066, p. 10

catalog records for the same document, typically this is the result of the merger of
RLG and OCLC.

18. MARC records also include several fields that include subject matter
classification information. An overview of MARC record fields is available through

the Library of Congress at http://www.loc.gov/marc/bibliographic/. For example,

6XX fields are termed “Subject Access Fields.”* Among these, for example, is the
650 field; this is the “Subject Added Entry — Topical Term” field. See

http://www.loc.gov/marc/bibliographic/bd650.html. The 650 field is a “[s]ubject

29

added entry in which the entry element is a topical term.” Id. These entries “are
assigned to a bibliographic record to provide access according to generally accepted
thesaurus-building rules (e.g., Library of Congress Subject Headings (LCSH),
Medical Subject Headings (MeSH)).” Id. Thus, a researcher might discover
material relevant to his or her topic by a search using the terms employed in the
MARC Fields 6XX.

19. The 9XX fields are not part of the standard MARC 21 format.> OCLC

has defined these 9XX fields for use by the Library of Congress and for internal

OCLC use: 936, 938, 956, 987, 989, and 994. 955 is used by the Library of Congress

4 See http://www.loc.gov/marc/bibliographic/bd6xx.html.

> See https://www.oclc.org/bibformats/en/9xx.html.

Petitioner Microsoft Corporation - Ex. 1066, p. 11

to track the progress of a new acquisition from the time it is submitted for Cataloging
in Publication (CIP) review until it is published and fully cataloged and available for
use within the Library of Congress. Fields 901-907, 910, and 945-949 have been
defined by OCLC for local use and will pass OCLC validation. Fields 905 or 910
are often used by an individual library for internal processing purposes, for example
the date of cataloging and the initials of the cataloger.

20. Further, MARC records include call numbers, which themselves
include a classification number. For example, the 050 field is the “Library of
Congress Call Number.”® A defined portion of the Library of Congress Call Number
is the classification number, and “source of the classification number is Library of
Congress Classification and the LC Classification-Additions and Changes.” Id.
Thus, included in the 050 field is a subject matter classification. Each item in a
library has a single classification number. A library selects a classification scheme
(e.g., the Library of Congress Classification scheme just described or a similar
scheme such as the Dewey Decimal Classification scheme) and uses it consistently.
When the Library of Congress assigns the classification number, it appears as part

of the 050 field. If a local library assigns the classification number, it appears in a

6 See http://www.loc.gov/marc/bibliographic/bd050.html.

Petitioner Microsoft Corporation - Ex. 1066, p. 12

090 field. In either scenario, the MARC record includes a classification number that
represents a subject matter classification.

21. WorldCat is the world’s largest public online catalog, maintained by
the Online Computer Library Center, Inc., or OCLC, and built with the records
created by the thousands of libraries that are members of OCLC. OCLC has
provided bibliographic and abstract information to the public based on MARC
records through its OCLC WorldCat database. WorldCat requires no knowledge of
MARC tags and code and does not require a log-in or password. WorldCat is easily
accessible through the World Wide Web to all who wish to search it; there are no
restrictions to be a member of a particular community, etc. The date a given catalog
record was created (corresponding to the MARC Field 008) appears in some detailed
WorldCat records as the Date of Entry but not necessarily all. Whereas WorldCat
records are widely available, the availability of MARC formatted records varies
from library to library and when made available will be identified as MARC record
or librarian/staff view.

22. When an OCLC member institution acquires a work, it creates a MARC
record for this work in its computer catalog system in the ordinary course of its
business. MARC records created at the Library of Congress were historically tape-
loaded into the OCLC database through a subscription to MARC Distribution

Services daily or weekly. Once the MARC record is created by a cataloger at an

Petitioner Microsoft Corporation - Ex. 1066, p. 13

OCLC member institution or is tape-loaded from the Library of Congress, the
MARC record is then made available to any other OCLC members online, and
therefore made available to the public. Accordingly, once the MARC record is
created by a cataloger at an OCLC member institution or is tape-loaded from the
Library of Congress or another library anywhere in the world, any publication
corresponding to the MARC record has been cataloged and indexed according to its
subject matter such that a person interested in that subject matter could, with
reasonable diligence, locate and access the publication through any library with
access to the OCLC WorldCat database or through the Library of Congress.

23. When an OCLC member institution creates a new MARC record,
OCLC automatically supplies the date of creation for that record. The date of
creation for the MARC record appears in the fixed field (008), characters 00 through
05. The MARC record creation date reflects the date on which the item was first
acquired or cataloged. Initially, field 005 of the MARC record is automatically
populated with the date the MARC record was created in year, month, day format
(YYYYMMDD) (some of the newer library catalog systems also include hour,
minute, second (HHMMSS)). Thereafter, the library’s computer system may
automatically update the date in field 005 every time the library updates the MARC
record (e.g., to reflect that an item has been moved to a different shelving location

within the library).

Petitioner Microsoft Corporation - Ex. 1066, p. 14

24. Once one library has cataloged and indexed a publication by creating a
MARC record for that publication, other libraries that receive the publication do not
create additional MARC records—the other libraries instead rely on the original
MARC record. They may update or revise the MARC record to ensure accuracy,
but they do not replace or duplicate it. This practice does more than save libraries
from duplicating labor. It also enhances the accuracy of MARC records. Further, it
allows librarians around the world to know that a particular MARC record is
authoritative (in contrast, a hypothetical system wherein duplicative records were
created would result in confusion as to which record is authoritative).

25. The date of creation of the MARC record by a cataloger at an OCLC
member institution reflects when the underlying item is accessible to the public.
Upwards of two-thirds to three-quarters of book sales to libraries come from a jobber
or wholesaler for online and print resources. These resellers make it their business
to provide books to their customers as fast as possible, often providing turnaround
times of only a single day after publication. Libraries purchase a significant portion
of the balance of their books directly from publishers themselves, which provide
delivery on a similarly expedited schedule. In general, libraries make these
purchases throughout the year as the books are published and shelve the books as

soon thereafter as possible in order to make the books available to their patrons.

Petitioner Microsoft Corporation - Ex. 1066, p. 15

Thus, books are generally available at libraries across the country within just a few
weeks of publication.

Monograph Publications

26. Monograph publications are written on a single topic, presented at
length and distinguished from an article and include books, dissertations, and
technical reports. A library typically creates a catalog record when the monograph
is acquired by the library. First, it will search OCLC to determine if a record has
already been created by the Library of Congress or a contributing member library.
If the record is found in OCLC, the record is downloaded into the library’s LMS
(Library Management System) that includes typically the acquisitions, cataloging,
and circulation integrated functions. Once the item is downloaded into the library’s
LMS, the library adds its identifier to the OCLC database so when a search is
completed on WorldCat, the library will be indicated as an owner of the title. With
the creation of the record in the LMS it is searchable and viewable through the library
Online Public Access Catalog (OPAC), by author, title, and subject heading, at the
library and from anywhere in the world through the internet. The OPAC also
connects with the circulation function of the library which typically indicates
whether the book, dissertation, tech report is available, in circulation, etc., with its
call number and location in a specific departmental/disciplinary library. The OPAC

not only provides immediate bibliographic access on site, it also facilitates

Petitioner Microsoft Corporation - Ex. 1066, p. 16

interlibrary loan of items, that is, the loan of an item from one library to another to
meet a research need.

Ownership and Date Stamp

27. Every library sets its own practice or policy on whether-or-not to date
stamp, but all will have an ownership stamp somewhere in the publication —
typically on the cover page, verso of the cover page, or a designated page within the
publication, but sometimes even on the top, side, or bottom edge of the monograph.
The ownership and date stamp can also vary from one library to another when the
date stamp is entered on the monograph. It could occur when received in acquisitions
after shipment to the library, or it could be at time of cataloging. Therefore, there
could be instances when the date of receipt precedes the cataloging date or vice
versa.

Periodicals, Indexes, and Citation Sources

a. Publications in Series: Conference Proceedings/Technical Report
publications

28. A library typically creates a MARC catalog record for a series of
closely related publications, such as the proceedings of an annual conference or a
technical report when the library receives its first issue and assumes there will be
annual or succeeding issues/volumes/reports. When the institution receives
subsequent issues/volumes/reports of the series, the issues/volumes/reports are

checked in (sometimes using a date stamp), added to the institution’s holdings

Petitioner Microsoft Corporation - Ex. 1066, p. 17

records, and made available very soon thereafter—normally within a few days of
receipt or (at most) within a few weeks of receipt. The initial series record may not
reflect all subsequent changes in publication details (including minor variations in
title, etc.).

b. Indexing

29. A researcher may discover material relevant to his or her topic in a
variety of ways. One common means of discovery is to search for relevant
information in an index of periodical and other publications. Having found relevant
material, the researcher will then normally obtain it online, look for it in libraries, or
purchase it from the publisher, a bookstore, a document delivery service, or other
provider. Sometimes, the date of a document’s public accessibility will involve both
indexing and library date information. Date information for indexing entries is,
however, often unavailable. This is especially true for online indices. Indexing
services use a wide variety of controlled vocabularies to provide subject access and
other means of discovering the content of documents. The formats in which these
access terms are presented vary from service to service.

30. Online indexing services commonly provide bibliographic information,
abstracts, and full-text copies of the indexed publications, along with a list of the
documents cited in the indexed publication. These services also often provide lists

of publications that cite a given document. A citation of a document is evidence that

Petitioner Microsoft Corporation - Ex. 1066, p. 18

the document was publicly available and in use by researchers no later than the
publication date of the citing document.

31. IEEE Xplore Digital Library. The Institute of Electrical and Electronics

Engineers is the world’s largest organization for the advancement of technology,
with some 430,000 members in 160 countries. Known by its acronym IEEE, it has
created IEEE Xplore Digital Library, which provides access to the contents of over
170 journals, more than 1,400 conference proceedings, some 5,100 technical
standards, 2,000 eBooks, and 400 educational courses. More than 3 million
documents, dating from 1872, are searchable and available either through
subscription or individual purchase.

32. Wiley Online Library. Produced by John Wiley & Sons, Wiley Online

Library is a collection of online resources covering life, health and physical sciences,
the social sciences, and the humanities. It provides access to over 6 million articles
from over 1,500 journals and over 19,000 online books.

C. Citation Sources

33. Web of Science. Like its print predecessors Science Citation Index,

Social Science Citation Index, and Arts and Humanities Citation Index, Web of
Science provides thorough coverage of a broad set of disciplines. A Thomson

Reuters product, Web of Science indexes 1,700 arts and humanities journals from

Petitioner Microsoft Corporation - Ex. 1066, p. 19

1975 to the present, 8,500 scientific journals from 1900 to the present, and some 300
social science journals from 1900 to the present.

34. Science Direct. Science Direct, provided by the major publisher

Elsevier, is a database of abstracts and articles in the physical sciences and
engineering, the life and health sciences, and the social sciences and humanities. It
has over 12 million items from 3,500 journals and 34,000 books.

35. Scopus. Produced by Elsevier, a major publisher, Scopus is the largest
database of abstracts and citations of peer-reviewed literature. Its scope includes the
social sciences, science, technology, medicine, and the arts. It includes 60 million
records from more than 21,500 titles from some 5,000 international publishers.
Coverage includes 360 trade publications, over 530 book series, more than 7.2
million conference papers, and 116,000 books. Records date from 1823.

36. Google Scholar. Google Scholar indexes the texts and metadata of

scholarly publications across a wide range of disciplines. It includes most peer-
reviewed online academic journals, conference papers, theses, technical reports, and
other material. Google does not publish the size of the Google Scholar database, but
researchers have estimated that it contained approximately 160 million items in 2014
(Enrique Oduna-Malea, et al., “About the size of Google Scholar: playing the
numbers,” Granada: EC3 Working Papers, 1B: 23 July 2014, available at

https://arxiv.org/ftp/arxiv/papers/1407/1407.6239 .pdf.

Petitioner Microsoft Corporation - Ex. 1066, p. 20

IV. OPINION REGARDING INDIVIDUAL DOCUMENTS

Document 1: Carl Ebeling, et al.,, “Mapping Applications to the RaPiD
Configurable Architecture,” IEEE Symposium on FPGAs for Custom
Computing Machines. April 16-18, 1997 Napa Valley, California: 106-115.

Authentication

37. Document 1 is an article by Carl Ebeling, et al., titled “Mapping
Applications to the RaPiD Configurable Architecture” presented at the IEEE
Symposium on FPGAs for Custom Computing Machines, published in the
Proceedings: IEEE Symposium on FPGAs for Custom Computer Machines, held on
April 16-18, 1997 Napa Valley, California.

38. Attachment 1A was provided to me by Wisconsin TechSeach (WTS)
from the Library of Congress. In includes the cover, title page, verso of the title
page, table of contents and the article by Carl Ebeling, et al., “Mapping Applications
to the RaPiD Configurable Architecture.” On the title page is the ownership stamp
of the Library of Congress with the check-in date of October 9, 1997. On the verso
of the title page is the call number hand written of: TK7895.G36 135 1997.

39. Attachment 1B, downloaded by me, includes Document 1 in PDF

format from IEEE Xplore through Purdue University Libraries: https://ieeexplore-

leee-org.ezproxy.lib.purdue.edu/document/624610/.

40. Attachment 1A is in a condition that creates no suspicion about its
authenticity. Specifically, Attachment 1A is not missing any intermediate pages, the

text on each page appears to flow seamlessly from one page to the next, and there

Petitioner Microsoft Corporation - Ex. 1066, p. 21

are no visible alterations to the document. Attachment 1A was found within the
custody of a library, the Library of Congress — a place where, if authentic, it would
likely be found.

41. Based on finding Attachment 1A in a library and Document 1
(Attachment 1B) online at IEEE Xplore, I conclude that Document 1 is an authentic
document and that Attachment 1A is an authentic copy of Document 1.

Public Accessibility

42. Attachment 1C is the WorldCat record. This record shows that
Document 1 is held by 207 libraries world-wide as of July, 2018. Subject access is
possible through subject headings: Field Programmable Data Arrays — Congresses;
Computer Engineering — Congresses; and Computer Engineering. Library of
Congress is listed as one of the holding libraries among the 207 as of July, 2018.

43. Attachment 1D is the Library of Congress MARC record for Document
1. In MARC field 955 is the record of the processing of Document 1. MARC field
955 is used by the Library of Congress to track the progress of a new acquisition
from the time it is submitted for Cataloging in Publication (CIP) review until it is
published and fully cataloged and available for use within the Library of Congress.
In Attachment 1D, MARC field 955 contains the phrase “pb23 11-18-97 to cat,”
which indicates that a Library of Congress librarian noted that Document 1 was sent

to cataloging on November 18, 1997. In addition, MARC field 955 in Attachment

Petitioner Microsoft Corporation - Ex. 1066, p. 22

D contains the phrase “jg00 11-26-97.” That field further indicates that a librarian
noted that Document 1 was sent to the Library of Congress stacks November 26,
1997.

44, Attachment 1E is the Library of Congress Online Catalog (OPAC)
record. On page 2, this OPAC record indicates that there are two copies of
Document 2 available, locatable by call numbers TK7895.G36 I35 1997 or
TK7895.G36 135 1997 FT MEADE. That record states that copy 1, call number
TK7895.G36 135 1997 (the same call number written on Attachment 1A), is
available upon request in the Jefferson or Adams Building Reading Rooms. From
my familiarity with the Library of Congress’ procedures, I would expect that based
on this record, any person could request Document 1 be brought to one of the reading
rooms for review. A request for photocopies or scans could be made from Document
1. Items do not circulate outside the Reading Rooms except to Members of
Congress. I conclude from the information in Attachments 1D and 1E that
Document 1 would have been publicly accessible by interested persons at the Library
of Congress no later than the date it was sent to the stacks, on November 26, 1997.

45. Attachment 1F is a paper by Darren C. Cronquist et al., “Specifying and
Compiling Applications for RaPiD” from the Proceedings, IEEE Symposium on
FPGAs for Custom Computing Machines, April 17, 1998 pp. 116-125. Number 2

of the References on page 116 is Document 1. Downloaded by me on July 5, 2018,

Petitioner Microsoft Corporation - Ex. 1066, p. 23

from IEEE Xplore through Purdue University Libraries: https://ieeexplore-ieee-

org.ezproxy.lib.purdue.edu/stamp/stamp.jsp?tp=&arnumber=707889.

Conclusion

46. Based on the evidence presented here I conclude that Attachment 1A is
an authentic copy of Document 1, which is an article published in the Proceedings:
IEEE Symposium on FPGAs for Custom Computer Machines, held on April 16-18,
1997 Napa Valley, California. Based on the Library of Congress’s records showing
the receipt of this document on October 9, 1997, the cataloguing and availability of
this document at the end of November of 1997, and the fact this this document was
cited in a published article in 1998, it is my opinion that Document 1 was publicly
accessible to and in actual use by ordinarily skilled researchers as early as the first
part of December, 1997.

Document 2: Michael Rencher and Brad L. Hutchins, “Automated Target

Recognition on Splash 2,” IEEE Symposium on FPGAs for Custom Computing
Machines. April 16-18, 1997 Napa Valley, California: 192-200

Authentication

47. Document 2 is an article by Michael Rencher and Brad L. Hutchins
titled “Automated Target Recognition on Splash 2” presented as a paper at the IEEE
Symposium on FPGAs for Custom Computing Machines held on April 16-18, 1997
Napa Valley, California.

48. Attachment 2A a true and accurate copy of Document 2 including the

cover page, title page, verso of the title page, and table of contents for the 1997 IEEE

Petitioner Microsoft Corporation - Ex. 1066, p. 24

Symposium, and the article comprising Document 2. On the cover is the ownership
and date stamp of the British Library’s Boston Spa facility, November 10, 1997
indicating the date that the British Library received Document 2. Attachment 2A
was supplied to me by the Wisconsin TechSearch (WTS) on July 2, 2018.

49. Attachment 2B of Document 2 was downloaded by me through Purdue

University Libraries online through IEEE Xplore https://ieeexplore-ieee-

org.ezproxy.lib.purdue.edu/stamp/stamp.jsp?tp=&arnumber=624619.

50. Attachment 2A is in a condition that creates no suspicion about its
authenticity. Specifically, Attachment 2A is not missing any intermediate pages, the
text on each page appears to flow seamlessly from one page to the next, and there
are no visible alterations to the document. Attachment 2A was found within the
custody of a library (the British Library) — a place where, if authentic, it would likely
be found.

51. Based on finding Attachment 2A in a library, the British Library, and
locating Document 2 online at IEEE Xplore, I conclude that Document 2 is an
authentic document and that Attachment 2A is an authentic copy of Document 2.

Public Accessibility

52. Attachment 2C is the WorldCat record that shows British Library,
Boston Spa as one of the libraries holding Document 2. The record shows that

Document 2 is held by 207 libraries world-wide as of July 2018. Subject access is

Petitioner Microsoft Corporation - Ex. 1066, p. 25

possible through subject headings: Field Programmable Data Arrays — Congresses;
Computer Engineering — Congresses; and Computer Engineering.

53. Attachment 2D is the British Library MARC and OPAC records for
Document 2. Attachment 2D indicates through MARC field 260 that Document 2
has a copyright date of 1997, meaning that a librarian noted that the Document 2
claimed to have been copyrighted in the year 1997. Since there are no special notes
in this record to indicate otherwise, I would expect that this document was
catalogued and sent to the stacks for public access within a few weeks of receipt by
the British Library. Thus, based on the date stamp of November 10, 1997 included
on Attachment 2A and the records shown in Attachment 2D, I conclude that
Attachment 2A would have been available in the stacks of the British Library no
later than the end of November, 1997. As additional evidence, I further note that
since Document 1 and Document 2 are from the same monograph, the processing
identified by the Library of Congress MARC record in Attachment 1D should apply
as well as Document 2. Since Document 1 was sent to cataloging on November 18,
1997 and went to the Library of Congress stacks November 26, 1997, I would expect
the same of Document 2.

54. Attachment 2E is a true and accurate copy of a paper by John Villasenor
and Brad Hutchings, “The Flexibility of Configurable Computing” IEEE Signal

Processing Magazine, September 1998: 67-84. Number 35 of the References on page

Petitioner Microsoft Corporation - Ex. 1066, p. 26

94 is Document 2. Typically, due to the requirements of editing and processing, an
article will have been completed approximately 1 year prior to its publication date.
Thus, I would expect that Document 2 would have been available to the authors of
Attachment 2E no later than the end of November, 1997, for it to appear as an article
published in September of 1998.

Conclusion

55. Based on the evidence presented here, I conclude that Attachment 2A
is an authentic copy of Document 2, which is an article published in Proceedings:
IEEE Symposium on FPGAs for Custom Computer Machines, held on April 16-18,
1997 Napa Valley, California. Based on the British Library’s records showing the
receipt of this document on November 10, 1997, the lack of special notes in the
document’s records, and the fact this this document was cited in a published article
in September of 1998, it is my opinion that Document 2 was publicly accessible to
and in actual use by ordinarily skilled researchers no later than the end of November
1997.

Document 3: Jean-Luc Gaudiot, “Data Driven Multicomputers in Digital
Signal Processing.” Proceedings of the IEEE, 1987, vol. 75, no. 9: 1220-1234.

Authentication

56. Document 3 is an article by Jean-Luc Gaudiot titled “Data Driven
Multicomputers in Digital Signal Processing,” 1987, IEEE, Proceedings, volume 75,

number 9, pages 1220-1234.

Petitioner Microsoft Corporation - Ex. 1066, p. 27

57. Attachment 3A includes the cover of the September 1987 issue of IEEE
Proceedings: table of contents and Document 3. On the cover of the issue is the
stamp that identifies it as the property of Linda Hall Library, and the date October
23, 1987, indicating when it was checked-in by the Linda Hall Library. Attachment
3A was provided to me by the Wisconsin TechSearch (WTS).

58. Document 3 is available on-line through IEEE Xplore. Attachment 3B
is a download I completed of Document 3 from IEEE Xplore on June 30, 2018
through the Purdue University Libraries: https://ieeexplore-ieee-
org.ezproxy.lib.purdue.edu/stamp/stamp.jsp?tp=&arnumber=1458142.

59. Attachment 3A is in a condition that creates no suspicion about its
authenticity. Specifically, Attachment 3A is not missing any intermediate pages, the
text on each page appears to flow seamlessly from one page to the next, and there
are no visible alterations to the document. Attachment 3A was found within the
custody of a library, the Linda Hall Library — a place where, if authentic, it would
likely be found. The text of the article is also consistent in Attachment 3A and 3B.
I see no reason to question the authenticity of the cover and its stamp or other
preliminary pages in Attachment 3A.

60. Based on finding Attachment 3A in a library, on finding Document 3
online at IEEE Xplore, I conclude that Document 3 is an authentic document and

that Attachment 3A is an authentic copy of Document 3.

Petitioner Microsoft Corporation - Ex. 1066, p. 28

Public Accessibility

61. Attachment 3C is the WorldCat record for Document 3 it shows that it
is held by 789 libraries world-wide as of July 2018 and one of those 789 is the Linda
Hall Library. Subject access is possible through subject headings: Elektronik;
Elektrotechnik; and Institute of Electrical and Electronics Engineers.

62. Attachment 3D is the Linda Hall Library OPAC and MARC records for
Document 3. The OPAC record documents that the Linda Hall Library holds
Volume 75 (1987). This is indicated toward the bottom on the record under heading:
Holdings Information — Issues: v51(1963) — 85(1997) indicates all volumes and
issues are held from volume 51 - 1963 through volume 85 - 1997, thereby indicating
that volume 75 — 1987 is held by the Linda Hall Library. Since there are no special
notes in this record to indicate otherwise, I would expect that Document 3D was
catalogued and sent to the stacks for public access within a week to ten days after
receipt by the Linda Hall Library. Thus, based on the date stamp of October 23,
1987 included on Attachment 3A and the records shown in Attachment 3D, I
conclude that Attachment 3A would have been available in the stacks of the Linda
Hall Library, no later than early November 1987.

63. Attachment 3E is a true and accurate copy of a paper by Edward
Ashford Lee and Jeffery C. Bier, “Architecture for Statically Scheduled Dataflow”

published in the Journal of Parallel and Distributed Computing, Volume 10, issue 4,

Petitioner Microsoft Corporation - Ex. 1066, p. 29

December 1990: 333-348. On page 347, in References, citation number 21 is
Document 3.

Conclusion

64. Based on the evidence presented here, I conclude that Attachment 3A
is an authentic copy of Document 3, which is an article by Jean-Luc Gaudiot titled
“Data Driven Multicomputers in Digital Signal Processing,” 1987, IEEE,
Proceedings, volume 75, number 9:1220-1234. Based on the Linda Hall Library’s
records showing the receipt of this document on October 23, 1987, the lack of special
notes in the document’s records, and the fact this this document was cited in a
published article in December of 1990, it is my opinion that Document 3 was
publicly accessible to and in actual use by ordinarily skilled researchers no later than
early November 1987.
Document 4: D. Roccatano et al., “Development of a Parallel Molecular
Dynamics Code on SIMD Computers: Algorithm for Use of Pair List Criterion”

Journal of Computational Chemistry. Volume 19, number 7 (May 1998): 685 —
694

Authentication

65. Document 4 is an article by D. Roccatano, et al., titled “Development
of a Parallel Molecular Dynamics Code on SIMD Computers Algorithm for Use of
Pair List Criterion” published in the Journal of Computational Chemistry, volume

19, number 7 (May 1998): 685-694.

Petitioner Microsoft Corporation - Ex. 1066, p. 30

66. Attachment 4A includes the cover of the May 1998 issue of the Journal
of Computational Chemistry, the title page, table of contents and Document 4. This
information was provided to me by the Wisconsin TechSearch (WTS) from the
Linda Hall Library. On the first page of Document 4 is the ownership and date stamp
of the Linda Hall Library indicating that it processed this issue into its collection on
April 28, 1998.

67. Document 4 is available on-line through Wiley Online Library

https://onlinelibrary-wiley-

com.ezproxy.lib.purdue.edu/doi1/10.1002/%28SI1CI1%291096-

987X%28199805%2919%3A7%3C685%3A%3AAID-JCC1%3E3.0.CO%3B2-

MIEEE. Attachment 4B is a download I made from Wiley Online Library through
Purdue University Libraries on June 30, 2018.

68. Attachment 4A is in a condition that creates no suspicion about its
authenticity. Specifically, Attachment 4A is not missing any intermediate pages, the
text on each page appears to flow seamlessly from one page to the next, and there
are no visible alterations to the document. Attachment 4A was found within the
custody of a library (the Linda Hall Library) — a place where, if authentic, it would
likely be found. The text of the article is also consistent in Attachment 4A and 4B.

I see no reason to question the authenticity of the cover and its stamp or other

Petitioner Microsoft Corporation - Ex. 1066, p. 31

preliminary pages in Attachment 4A. There are no missing pages and the text of the
article flows seamlessly from one page to the next.

69. Based on finding Attachment 4A in a library, on finding Document 4
online at Wiley Online Library, [conclude that Document 4 is an authentic
document and that Attachment 4A is an authentic copy of Document 4.

Public Accessibility
70. Attachment 4C is the WorldCat record that shows Linda Hall Library

as holding the Journal of Computational Chemistry. The record shows that the
Journal of Computational Chemistry is held by 812 libraries world-wide as of July,
2018 among those libraries is the Linda Hall Library. Subject access is possible
through subject headings: Chemistry — Data Processing — Periodicals; Chemistry —
Methods; and Computer Simulation.

71. Attachment 4D is the Linda Hall Library OPAC record for Journal of
Computational Chemistry. The OPAC record documents that the Linda Hall Library
holds the 1988 volume in the “Holdings Information™: Issues: v.l:no. 1 (1980-
Spring), v.4 (1983) — v.34, issue 31/32 (2013) indicates that the Linda Hall Library
has holdings that are inclusive from v.4 (1983) — v.34 (2013) with no missing
volumes or gaps, hence, volume 19, 1998 is held by the Linda Hall Library. Since
there are no special notes in this record to indicate otherwise, I would expect that

this document was catalogued and sent to the stacks for public access within a few

Petitioner Microsoft Corporation - Ex. 1066, p. 32

weeks of receipt by the Linda Hall Library. Thus, based on the date stamp of April
28, 1998 included with Attachment 4A and the records shown in Attachment 4D, 1
conclude that Attachment 4A would have been available in the stacks of the Linda
Hall Library, no later than the middle of May 1998.

72. Attachment 4E is a paper by G. Chillemi et al., “The Role of Computer
Technology in Applied Computational Chemical-Physics.” Computer Physics
Communication, Volume 139, Issue 1 (1 September 2001): 1-19. On page 18,
References, citation number 9 is for Document 4.

Conclusion

73. Based on the evidence presented here, I conclude that Attachment 4A
is an authentic copy of Document 4, which is an article by D. Roccatano et al., titled
“Development of a Parallel Molecular Dynamics Code on SIMD Computers
Algorithm for Use of Pair List Criterion” published in the Journal of Computational
Chemistry, volume 19, number 7 (May 1998): 685-694. Based on the Linda Hall
Library record showing the receipt of this document was on April 28, 1998, the lack
of special notes in the document’s records, and the fact this this document was cited
in a published article in September of 2001, it is my opinion that Document 4 was
publicly accessible to and in actual use by ordinarily skilled researchers no later than

the middle of May 1998.

Petitioner Microsoft Corporation - Ex. 1066, p. 33

Document 5. Buell, Duncan, et al., Splash 2: FPGAs in a Custom Computing
Machine. Vol. 9. Wiley-IEEE Computer Society Press, 1996.

Authentication

74. Document 5 is a monograph edited by Duncan Buell and others with
the title of “Splash 2: FPGAs in a Custom Computing Machine.” Volume 9
published by Wiley-IEEE Computer Society Press in 1996. Attachment 2A is a scan
of Document 2 provided to me by the Wisconsin TechSearch (WTS) of the book
held by the Massachusetts Institute of Technology (MIT) Library.

75. Attachment 5A includes a scan of the cover; inside front cover (with
ownership stamp of Massachusetts Institute of Technology Libraries & inventory
label indicating MIT Libraries); two blank facing introductory pages; introductory
title page; trademark statement page; full title page identifying the editors as Duncan
A. Buell, Jeffrey M. Arnold, and Walter J. Kleinfelder; Published by IEEE
Computer Society Press, Los Alamitos, California; verso of the title page which
provides the Cataloging in Publication (CIP) information and copyright date of 1996.
The verso of the title page also has the stamp of the MIT Libraries and the check-in
date of August 8, 1996. Written in pencil by hand is the call number: QA76.8. S65
B84 1996. The Contents section follows and the last page is the back cover.

76. Attachment 5B is and true and accurate copy of Document 5 that was
provided to me by Counsel. Attachment 5B is in a condition that creates no

suspicion about its authenticity. Specifically, Attachment 5B is not missing any

Petitioner Microsoft Corporation - Ex. 1066, p. 34

intermediate pages, the text on each page appears to flow seamlessly from one page
to the next, and there are no visible alterations to the document. I have been informed
by counsel that Attachment 5B was found within the custody of a library (the Library
of Congress) — a place where, if authentic, it would likely be found.

77. Based on the information that Attachments 5SA and 5B were found in a
library and on finding library catalog and online index records for Document 5, I
conclude that Document 5 is an authentic document and that Attachment 5B is an
authentic copy of Document 5. After a thorough review of the cover, title page,
verso of title page, and table of contents of Attachments 5A and 5B, I conclude that
Attachment 5B is the same publication that was identified in Attachment 5A.

Public Accessibility

78. Attachment 5C is a download of the WorldCat record for Document 2.
As discussed above WorldCat is the most comprehensive catalog that documents the
bibliographic information about books, journals, tech reports, dissertations, etc., that
are available in libraries world-wide. Attachment 2B indicates that Document 2 was
accessible by title: Splash 2: FPGAs in a custom computing machine; by authors:
Duncan A. Buell, Jeffrey M. Arnold, and Walter J. Kleinfelder. Document 2 was
also accessible by subject headings: Splash 2 (Computer); Electronic digital

computers — Design and construction; Field programmable gate arrays.

Petitioner Microsoft Corporation - Ex. 1066, p. 35

79. The WorldCat record indicates, as of August 4, 2018, that 83 libraries
around the world hold this monograph among these is the MIT Libraries.

80. Attachment 5D is a download from the Online Public Access Catalog
(OPAC) of the MIT Libraries. This OPAC records indicates the book was available
at the MIT Libraries with the call number: QA76.8.565.B84 1996 in the Barker
Engineering Library Stacks.

81. Attachment 5E is a download from the Online Public Access Catalog
(OPAC) of the MIT Libraries that provides the MARC record for Document 5. The
fields indicate through the MARC format title, author, publisher, etc. In the 910
field MIT has a unique practice of inserting the initials of the cataloger and the date
the book was cataloged (this practice was observed by me during my years at MIT
Libraries). The 910 field in this record reads: “tn961003” indicating the cataloger
with the initials of tn cataloged Document 1 on October 3, 1996, in sequence from
the date it was checked into the MIT Libraries by acquisitions as evidenced above
by the date: August 8, 1996. The catalog information would have been entered into
the GEAC Library Management System (LMS) then in use at the MIT Libraries, and
would have been immediately available in the OPAC (called Barton). Thus, based
on the date stamp of August 8, 1996 included with Attachment 5A and the records

shown in Attachment 5E (cataloging date of October 3, 1996), I conclude that

Petitioner Microsoft Corporation - Ex. 1066, p. 36

Document 5 would have been available in the stacks of the MIT Libraries no later
than the middle of October 1996.

Conclusion

82. Based on the evidence presented here, I conclude that Attachments SA
and 5B are authentic copies of Document 5, which is a book by Duncan Buell and
others with the title of “Splash 2: FPGAs in a Custom Computing Machine.” Volume
9 published by Wiley-IEEE Computer Society Press in 1996. Based on the MIT
Library’s records showing the receipt of this document (through Attachment 5A) on
August 8, 1996, the MARC records in Attachment 5E indicating that the book was
catalogued on October 3, 1996, it is my opinion that Document 5 was publicly
accessible to and in actual use by ordinarily skilled researchers no later than the
middle of October 1996.
Document 6: Yong-Jin Jeong and Wayne P. Burlson, “VLSI Array Algorithms
and Architectures for RSA Modular Multiplication,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems. Volume 5, Number 2 (June
1997): 211-217.

Authentication

83. Document 6 is an article by Yong-Jin Jeong and Wayne B. Burlson
titled “VLSI Array Algorithms and Architectures for RSA Modular Multiplication,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems. Volume 5,
Number 2 (June 1997): 211-217.

84. Attachment 6A includes the June 1997 issue of IEEE Transactions on

Very Large Scale Integration (VLSI) Systems. Volume 5, Number 2: cover/title-

Petitioner Microsoft Corporation - Ex. 1066, p. 37

page/table of contents, publication details, page 161, and Document 6 (pages 211 —
217). On page 161 is the stamp of the Library of Congress, Copyright Office and the
date of receipt, September 22, 1997. Attachment 6A was provided to me by the
Wisconsin TechSearch (WTS) from the Library of Congress.

85. Document 6 is available on-line through IEEE Xplore. Attachment 6B
is a download from IEEE Xplore through Purdue University Libraries on August 29,

2018 at https://ieeexplore-ieee-

org.ezproxy.lib.purdue.edu/stamp/stamp.jsp?tp=&arnumber=585224.

86. Attachment 6A is in a condition that creates no suspicion about its
authenticity. Specifically, Attachment 6A is not missing any intermediate pages, the
text on each page appears to flow seamlessly from one page to the next, and there
are no visible alterations to the document. Attachment 6A was found within the
custody of a library, the Library of Congress — a place where, if authentic, it would
likely be found. The text of the article is also consistent in Attachment 6A and 6B.
I see no reason to question the authenticity of the cover and its stamp or other
preliminary pages in Attachment 6A. There are no missing pages and the text of the
article flows seamlessly from one page to the next.

87. Based on finding Attachment 6A in a library, on finding Document 6
online at IEEE Xplore, I conclude that Document 6 is an authentic document and

that Attachment 6A is an authentic copy of Document 6.

Petitioner Microsoft Corporation - Ex. 1066, p. 38

Public Accessibility

88. Attachment 6C is the WorldCat record for IEEE Transactions on Very
Large Scale Integration (VLSI) Systems. The WorldCat record shows that the IEEE
Transactions on Very Large Scale Integration (VLSI) Systems is held by 530
libraries world-wide as of August 2018 among these is the Library of Congress.

89. Attachment 6D is the Library of Congress OPAC (public catalog)
record for IEEE Transactions on Very Large Scale Integration (VLSI) Systems. The
OPAC record documents that the Library of Congress subscribed from volume 1,
no. 1 (March 1993) —to the present. Toward the end of the record, is a section titled
“Older Receipts” in which it states holdings “v.1-v.14 (1993-2006:May). It also
shows subject access through subject headings: Integrated circuits — Very large scale
integration-Design and construction — Periodicals; Integrated circuits — Very large
scale integration-Design and construction; and VLSI.

90. Attachment 6E is the MARC record available for IEEE Transactions on
Very Large Scale Integration (VLSI) Systems from the Library of Congress. The
MARC record indicates the “Unbound” (current) issues are shelved in the
Newspaper & Current Periodical Reading Room (Madison LM133), when this issue
was current (unbound) it would have been available in Madison LM133. Since there
are no special notes in this record to indicate otherwise, I would expect that this

document was checked-in and sent to the Newspaper & Current Periodical Reading

Petitioner Microsoft Corporation - Ex. 1066, p. 39

Room for public access within a few days of receipt by the Library of Congress.
Thus, based on the date stamp of September 22, 1997 included with Attachment 6A
and the records shown in Attachment 6D & 6E, I conclude that Attachment 6A
would have been available in the Newspaper & Current Periodical Reading Room
of the Library of Congress no later than the end of September 1997.

91. Attachment 6F is a paper by William L. Freking and Keshab K. Parhi,
“Ring-Planarized Cylindrical Arrays with Application to Modular Multiplication,”
Proceedings IEEE International Conference on Application-Specific Systems,
Architectures, and Processors, Boston, MA, USA, (July 10-12, 2000): 497-506. On
page 504, References, citation number 10 is for Document 6.

Conclusion

92. Based on the evidence presented here, I conclude that Attachment 6A
is an authentic copy of Document 6, the article by Yong-Jin Jeong and Wayne B.
Burlson titled “VLSI Array Algorithms and Architectures for RSA Modular
Multiplication,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems. Volume 5, Number 2 (June 1997): 211-217. Based on the Library of
Congress record showing the receipt of this document on September 22, 1997, the
lack of special notes in the document’s records, and the fact this this document was

cited in a paper presented in July 2000, it is my opinion that Document 6 was

Petitioner Microsoft Corporation - Ex. 1066, p. 40

publicly accessible to and in actual use by ordinarily skilled researchers no later than
the end of September 1997.

CONCLUSION

93. I reserve the right to supplement my opinions in the future to respond
to any arguments that Patent Owner or its expert(s) may raise and to take into account
new information as it becomes available to me.

94. Ideclare that all statements made herein of my knowledge are true, and
that all statements made on information and belief are believed to be true, and that
these statements were made with the knowledge that willful false statements and the

like so made are punishable by fine or imprisonment, or both, under Section 1001 of

Title 18 of the United States Code.

Executed this 30" day of August, 2018
in Williamsburg, Virginia

James L. Mullins, Ph.D.

39
Petitioner Microsoft Corporation - Ex. 1066, p. 41

APPENDIX A

JAMES L. MULLINS
Prior Art Documentation Librarian Services, LLC
106 Berrow, Williamsburg, VA 23188
Jlmullins@priorartdoclib.com

ph. 765 479 4956

Petitioner Microsoft Corporation - Ex. 1066, p. 42

Experience:

2018-present Dean of Libraries Emeritus and Esther Ellis Norton Professor
Emeritus.

2011-2017 Dean of Libraries & Esther Ellis Norton Professor.

2004-2011 Dean of Libraries & Professor Purdue University, West
Lafayette, IN.

2000-2004 Assistant/Associate Director for Administration, MIT Libraries,
Massachusetts Institute of Technology, Cambridge, MA.

1996-2000 University Librarian & Director, Falvey Memorial Library.
Villanova University, Villanova, PA.

1978-1996 Director of Library Services, Indiana University South Bend.

1974-1978 Associate Librarian, Indiana University Bloomington, School
of Law.

1974-1978 Instructor/Catalog Librarian. Georgia Southern College (now
University).

Teaching Experience:

1977-1996 Associate Professor (part-time), School of Library and
Information Science, Indiana University. Subjects taught:
Cataloging, Management, and Academic Librarianship.

Education:

The University of lowa. Honors Bachelor of Arts in History, Religion and Political
Science.

The University of [owa. Master of Arts in Library Science.

Indiana University. Doctor of Philosophy. Concentration: Academic Library
Administration. Emphasis: Legal Librarianship.

Awards and Recognition:

2017 Wilmeth Active Learning Center/Library of Engineering and Science, Grand
Reading Room, was announced by President Mitch Daniels, Purdue University,

Petitioner Microsoft Corporation - Ex. 1066, p. 43

that it would be re-named the James L. Mullins Reading Room to honor his
leadership and reputation in the academic library profession. September 2017.
Portrait unveiled December 2017.

2017 Distinguished Alumnus Award by the School of Informatics and Computing,
Indiana University, Bloomington. Given June 25, 2017.

2016 Hugh C. Atkinson Memorial Award, jointly sponsored by the four divisions
of the American Library Association (ALA), June 27, 2016.

2015 ACRL Excellence in University Libraries Award, April 23, 2015.

Named Esther Ellis Norton Professor of Library Science by Purdue Trustees,
December 11, 2011.

International Review Panel to evaluate the University of Pretoria Library, February
20 —24, 2011. Pretoria, South Africa.

Publications: (selected)

A Purdue Icon: creation, life, and legacy, edited by James L. Mullins, Founder’s
Series, Purdue University Press, 138pp., August 2017.

“The policy and institutional framework.” In Research Data Management,
Practical Strategies for Information Professionals, edited by Ray, J M. Purdue
University Press, pp.25-44, 2014.

“DataCite: linking research to data sets and content.” In Benson, P and Silver, S.
What Editors Want: An Author’s Guide to Scientific Journal Publishing.
University of Chicago Press, pp. 21-23, December 2012.

“Library Publishing Services: Strategies for Success,” with R. Crow, O. Ivins, A.
Mower, C. Murray-Rust, J. Ogburn, D Nesdill, M. Newton, J. Speer, C.
Watkinson. Scholarly Publishing and Academic Resources Coalition (SPARC),
version 2.0, March 2012.

“The Changing Definition and Role of Collections and Services in the University
Research Library.” Indiana Libraries, Vol 31, Number 1 (2012), pp.18-24.

“Are MLS Graduates Being Prepared for the Changing and Emerging Roles that
Librarians must now assume within Research Libraries?” Journal of Library
Administration. Volume 52, Issue 1, 2012, p. 124-132

Petitioner Microsoft Corporation - Ex. 1066, p. 44

Baykoucheva, Svetla. What Do Libraries Have to Do with e-Science?: An
Interview with James L. Mullins, Dean of Purdue University Libraries. Chem. Inf.
Bull. [Online] 2011, 63 (1), 45-49.
http://www.acscinf.org/publications/bulletin/63-1/mullins.php (accessed Mar 16,
2011).

“The Challenges of e-Science Data-set Management and Scholarly
Communication for Domain Sciences and Technology: a Role for Academic
Libraries and Librarians,” chapter in, The Digital Deluge: Can Libraries Cope with
e-Science?” Deanna B. Marcum and Gerald George, editors, Libraries
Unlimited/Teacher Ideas Press, 2009. (a monograph publication of the combined
proceedings of the KIT/CLIR proceedings).

“Bringing Librarianship to e-Science,” College and Research Libraries. vol. 70,
no. 3, May 2009, editorial.

“The Librarian’s Role in e-Science” Joho Kanri (Journal on Information
Processing and Management), Japan Science and Technology Agency (formerly
Japan Information Center of Science and Technology), Tokyo, Japan. Translated
into Japanese by Taeko Kato. March 2008.

The Challenge of e-Science Data-set Management to Domain Sciences and
Engineering: a Role for Academic Libraries and Librarians,” KIT (Kanazawa
Institute of Technology)/CLIR (Council of Library and Information Resources)
International Roundtable for Library and Information Science, July 5-6, 2007.
Developments in e-science status quo and the challenge, The Japan Foundation,
2007.

“An Administrative Perspective,” Chapter 14, Proven Strategies for Building an
Information Literacy Program, Susan Curzon and Lynn Lampert, editors, Neal-
Schuman Publishers, Inc., New York, 2007. pp. 229-237.

Library Management and Marketing in a Multicultural World, proceedings of the
IFLA Management and Marketing (M&M) Section, Shanghai, China, August 16-
17,2006, edited. K.G. Saur, Munchen, Germany, June 2007. 390 pp.

Top Ten Assumptions for the Future of Academic Libraries and Librarians: a
report from the ACRL Research Committee, with Frank R. Allen and Jon R.
Hufford. College & Research Libraries, April 2007, vol.68, no.4. pp.240-241, 246.

To Stand the Test of Time: Long-term Stewardship of Digital Data Sets in Science
and Engineering. A report to the National Science Foundation from the ARL

Petitioner Microsoft Corporation - Ex. 1066, p. 45

Workshop on New Collaborative Relationships: the Role of Academic Libraries in
the Digital Data Universe. September 26-27, 2006, Arlington, VA. p.141.
http://www.arl.org/bm~doc/digdatarpt.pdf.

“Enabling Interaction and Quality in a Distributed Data DRIS,” Enabling
Interaction and Quality: Beyond the Hanseatic League. 8th International
Conference on Current Research Information Systems, with D. Scott Brandt and
Michael Witt. Promoted by euro CRIS. Leuven University Press, 2006. pp.55-62.
Editors: Anne Garns Steine Asserson and Eduard J. Simons.

“Standards for College Libraries, the final version approved January 2000,”
prepared by the ACRL College Libraries Standards Committee (member), C&RL
News, March 2000, p.175-182.

“Standards for College Libraries: a draft,” prepared by the ACRL College
Libraries Section, Standards Committee (member), C&RL News, May 1999, p.
375-381.

“Statistical Measures of Usage of Web-based Resources,” The Serials Librarian,
vol. 36, no. 1-2 (1999) p. 207-10.

“An Opportunity: Cooperation between the Library and Computer Services,” in
Building Partnerships: Computing and Library Professionals. Edited by Anne G.
Lipow and Sheila D. Creth. Berkeley and San Carlos, CA, Library Solutions Press,
1995. p. 69-70.

“Faculty Status of Librarians: A Comparative Study of Two Universities in the
United Kingdom and How They Compare to the Association of College and
Research Libraries Standards,” in Academic Librarianship, Past, Present, and
Future: a Festschrift in Honor of David Kaser. Englewood, Colorado; Libraries
Unlimited, 1989. p. 67-78. Review in: College & Research Libraries, vol. 51, no.
6. November 1990, p. 573-574.

Presentations: (representative)

“How Long the Odyssey? Transitioning the Library and Librarians to Meet the
Needs and Expectations of the 21st Century University,” David Kaser Lecture,
School of Informatics & Computing, Indiana University, Bloomington, IN,
November 16, 2015.

Presentation at University of Cape Town, Cape Town, South Africa, August 20,
2015.

Petitioner Microsoft Corporation - Ex. 1066, p. 46

“The Challenge of Discovering Science and Technology Information,” Moderator,
International Federation of Library Associations (IFLA) Science and
Technological Libraries Section Program, Cape Town, South Africa, August 18,
2015.

“An Odyssey in Data Management: Purdue University,” International Federation
of Library Associations (IFLA) Research Data Management: Finding Our Role — A
program of the Research Data Alliance, Cape Town, South Africa, August 17,
2015.

Presentation at University of Pretoria, Pretoria, South Africa, August 11, 2015.

Co-Convener with Sarah Thomas, Harvard University, at the Harvard Purdue
Symposium on Data Management, Harvard University, Cambridge, MA, June 15-
18, 2015.

“Strategic Communication,” panel discussion on the Director’s role and
perspective on library communications at Committee on Institutional Cooperation
(CIC) Center for Library Initiatives (CLI) Annual Conference, University of
[llinois Urbana-Champaign, May 20, 2015.

“Issues in Data Management,” panel discussion moderated by Catherine Woteki,
United States Undersecretary for Research, Education & Economics at 20th
Agriculture Network Information Collaborative (AgNIC) Annual Meeting in the
National Agricultural Library, Beltsville, MD, May 6, 2015.

“Active learning/IMPACT & the Active Learning Center at Purdue University,”
Florida Institute of Technology, Melbourne, FL, February 11, 2015.

“Sciencetart=creativity: libraries and the new collaborative thinking,” panel
moderator, International Federation of Library Associations (IFLA) 80th General
Conference and Assembly, Lyon, France, August 19, 2014.

“Purdue University The Active Learning Center—A new concept for a library,”
Association of University Architects 59th Annual National Conference, University
of Notre Dame, South Bend, IN, June 23, 2014.

“Big Data & Implications for Academic Libraries,” keynote speaker, Greater
Western Library Alliance (GWLA) Cyber-infrastructure Conference, Kansas City,
MO, May 28, 2014.

Petitioner Microsoft Corporation - Ex. 1066, p. 47

“Research Infrastructure,” panel moderator, Association of Research Libraries
(ARL) 164th Membership Meeting, Ohio State University, Columbus, OH, May 7,
2014.

“An Eight Year Odyssey in Data Management: Purdue University,” International
Association of Scientific and Technological University Libraries (IATUL) 2013
Workshop Research Data Management: Finding Our Role, University of Oxford,
UK, December 2013.

“Purdue University Libraries & Press: from collaboration to integration,” Ithaka
Sustainable Scholarship, The Evolving Digital Landscape: New Roles and
Responsibilities in Higher Education, libraries as publishers, New York, New
York, October 2013.

“Tsinghua and Purdue: Research Libraries for the 21st Century,” Tsinghua
University, Tsinghua, China, August 2013.

“Purdue Publishing Experience in the Libraries Publishing Coalition,” Association
of American University Presses Annual Meeting, Press-Library Coalition Panel,
Boston, Massachusetts, June 21, 2013.

“Indiana University Librarians Day: Purdue University Libraries Ready for the
21st Century,” Indiana University Purdue University Indianapolis (IUPUI), June 7,
2013.

“Purdue University Libraries and Open Access; CNI Project Update,” Coalition for
Networked Information, San Antonio, TX, April 5, 2013.

Memorial Resolution, honoring Joseph Brannon, to the Board of the Association of
College & Research Libraries, Seattle, WA, January 2013.

“An overview of sustaining e-Science collaboration in an Academic Research
Library—the Purdue experience,” Duraspace e-Science Institute webcast, October
17,2012.

“The Role of Libraries in Data Curation, Access, and Preservation: an International
Perspective, ““ Panel Moderator, 78th General Conference and Assembly,
International Federation of Library Associations, Helsinki, Finland, August 15,
2012.

Petitioner Microsoft Corporation - Ex. 1066, p. 48

“21st Century Libraries,” moderator of First Plenary Session, International
Association of Technological University Libraries 33rd Annual Conference,
Singapore, June 4, 2012.

“Planning for New Buildings on Campus,” panel presenter, University of Calgary
Building Symposium on Designing Libraries for the 21st Century, Calgary,
Alberta, Canada, May 17, 2012.

“Data Management and e-Science, the Purdue Response.” Wiley-Blackwell
Executive Seminar-2012, Washington, DC, March 23, 2012.

“An overview of Sustaining e-Science Collaboration in Academic Research
Libraries and the Purdue Experience.” Leadership & Career Development Program
Institute, Association of Research Libraries (ARL). Houston, TX, March 21, 2012.

“An overview of Data Activities at Purdue University in response to Data
Management Requirements.” Coalition for Academic Scientific Computation

(CASC). Arlington, VA, September 8, 2011.

“Getting on Track with Tenure,” Association of College and Research Libraries
(ACRL) Research Program Committee. Washington, DC, June 26, 2011.

“Integration of the Press and Libraries Collaboration to Promote Scholarly
Communication,” Association of Library Collections & Technical Services
(ALCTS) Scholarly Communication Interest Group — American Library
Association, New Orleans, Louisiana, June 25, 2011.

“Cooperation for improving access to scholarly communication,” with N. Lossau
(Germany), C. Mazurek (Poland), J. Stokker (Australia), panel moderator and
presenter, Second Plenary Session, International Association of Scientific and
Technological University Libraries (IATUL) 32nd Conference 2011, Warsaw,
Poland. May 29-June 2, 2011.

“Riding the Wave of Data,” STM Annual Spring Conference 2011. Trailblazing &
transforming scholarly publishing 2011. Washington, D.C., April 28, 2011.

“Confronting old assumptions to assume new roles: physical and operational
integration of the Press and Libraries at Purdue University,” keynote speaker, 2011
BioOne Publishers & Partners Meeting. Washington, D. C., April 22, 2011.

Petitioner Microsoft Corporation - Ex. 1066, p. 49

“Are MLS Graduates Being Prepared for the Changing and Emerging Roles that
Librarians must now assume within Research Libraries?”” University of Oklahoma
Libraries Seminar, March 4, 2011, Oklahoma City, Oklahoma.

“The Future Role of University Librarians,” the University of Cape Town, South
Africa, February 25, 2011.

“New Roles for Librarians: the Application of Library Science to
Scientific/Technical Research — Purdue University — a case study. International
Council for Science and Technology (ICSTI); Ottawa, Canada. June 9, 2009.

“Reinventing Science Librarianship: Models for the Future,” Association of
Research Libraries / Coalition for Networked Information. October 16-17th, 2008,
Arlington, VA. Moderator and convener of Data Curation: Issues and Challenges.

“Practical Implementation and Opportunities Created at Purdue University,”
African Digital Curation Conference, Pretoria, South Africa, (live video
transmission), February 12, 2008.

Keynote speaker. “Scholarly Communication & Academe: The Winter of Our
Discontent,” XXVII Charleston Conference on Issues in Book and Serial
Acquisition, Charleston, South Carolina. November 8, 2007.

Keynote speaker. “Enabling Access to Scientific & Technical Data-sets in e-
Science: a role for Library and Archival Sciences,” Greater Western Library
Alliance (GWLA), Tucson, Arizona. September 17, 2007. A meeting of library
directors and vice presidents for research of member institutions.

“The Challenge of e-Science Data-set Management to Domain Sciences and
Engineering: a Role for Academic Libraries and Librarians,” KIT (Kanazawa
Institute of Technology)/CLIR (Council of Library and Information Resources)
International Roundtable for Library and Information Science, July 5-6, 2007.
Invited to participate by the Deputy Librarian of Congress.

International Association of Technological University Libraries (IATUL),
Stockholm, Sweden. June 8, 2007. Invited paper, Enabling International Access to
Scientific Data-sets: creation of the Distributed Data Curation Center (D2C2).

“A New Collaboration for Librarians: The Principles of Library and Archival
Sciences Applied to the Curation of Datasets,” Symposium of the Libraries and the
College of Engineering, University of Louisville, April 6, 2007.

Petitioner Microsoft Corporation - Ex. 1066, p. 50

“Purdue University Libraries: Through Pre-eminent Innovation and Creativity,
Meeting the Challenges of the Information Age,” Board of Trustees, Purdue
University, February 15, 2007.

ARL Workshop on New Collaborative Relationships: The Role of Academic
Libraries in the Digital Data Universe, September 26-27, 2006, Arlington, VA.
Invited participant.

NARA and SDSC: A partnership. A panel before the National Science Foundation,
June 27, 2006. Arlington, VA. Invited participant.

“Kaleidoscope of Scientific Literacy: fusing new connections,” with Diane Rein,
American Library Association, Association of College and Research Libraries,
Science & Technology Section, Annual Conference, New Orleans, June 26th,
2006.

“Leadership for Learning: Building a Culture of Teaching in Academic Libraries —
an administrative perspective,” American Library Association, Association of
College and Research Libraries, Instruction Section, Annual Conference, New
Orleans, June 25th, 2006.

“Building an interdisciplinary research program in an academic library: how the
Libraries’ associate dean for research makes a difference at Purdue University,”

International Association of Technological University Libraries (IATUL), Porto,
Portugal, May 23rd, 2006.

“Enabling Interaction and Quality in a Distributed Data DRIS,” Enabling
Interaction and Quality: Beyond the Hanseatic League. 8th International
Conference on Current Research Information Systems, with D. Scott Brandt and
Michael Witt. Promoted by euro CRIS, Bergen, Norway, May 12th, 2006, Brandt
and Witt presented in person

“Interdisciplinary Research,” with D. Scott Brandt, Coalition for Networked
Information (CNI) Spring Meeting: Project Briefing, Washington, D.C., April 3rd,
2006.

“An Interview with Purdue’s James Mullins,” a podcast submitted by Matt
Pasiewicz, on Educause Connect,
http://connect.educause.edu/James L _Mullins_Interview CNI_2005.

Petitioner Microsoft Corporation - Ex. 1066, p. 51

“Managing Long-Lived Digital Data-sets and their Curation: Interdisciplinary
Policy Issues,” Managing Digital Assets Forum, Association of Research Libraries
(ARL), Washington, D.C., October 28th, 2005.

“The Odyssey of a Librarian.” Indiana Library Federation (ILF), District 2
Meeting, South Bend, Indiana. October 4th, 2005.

“New College Library Standards,” Standards Committee Presentation, ALA,
Chicago, July 7, 2000.

SUNY Library Directors, Lake George, New York. “The College Library
Standards: a Tool for Assessment.” April 5, 2000.

Tri-State College Library Association, Finding You Have Talents You Never Knew
You Had, Penn State Great Valley, March 25, 2000.

Using Web Statistics, American Library Association, New Orleans, June 24, 1999.

Keynote speaker at the JSTOR Workshop, January 29, 30, 1999. University of
Pennsylvania, Philadelphia, PA.

“The New Standards for Electronic Resources Statistics,” Society of Scholarly
Publishers, Washington, D.C., September 17, 1998.

“Evaluating Online Resources: Now that you’ve got them what do you do?,” joint
presenter with Chuck Hamaker, LSU, at the NASIG Conference, Boulder,
Colorado. June 1998.

“What Employers Are Looking for in New Librarians?”” Pennsylvania Library
Association, Philadelphia. September 26, 1997.

“The Theory of Matrix Management” panel presentation of the Comparative
Library Organization Committee of the Library Organization and Management
Section of the Library Administration and Management Association, a division of
the American Library Association, Annual Meeting, Chicago, June 24, 1990.

Professional Involvement: (summary of recent emphasis)

The focus for my professional involvement and research has moved recently
toward managing massive data-sets. This has resulted in working with faculty in
the sciences and technology to determine how librarians can collaborate in
managing, curating, and preserving data-sets for future access and documentation.
This has included various speaking opportunities as well as participation in

Petitioner Microsoft Corporation - Ex. 1066, p. 52

planning with the National Science Foundation (NSF) on ways in which librarians
can be integrated more completely into the funded research process. Participation
in the Kanazawa Institute of Technology/Council of Library Resources Roundtable
was particularly rewarding and provided new opportunities to share with
international colleagues the issues surrounding data-set management. I was the
champion for the creation of the Distributed Data Curation Center (D2C2) at
Purdue University (http://d2¢2.lib.purdue.edu/).

Throughout my career, beginning with my dissertation, I have been actively
involved with assessing and evaluating libraries. In the fall of 1999, I contacted
twenty-two academic library directors to determine whether the need was also felt
by others. The response was overwhelmingly affirmative. This resulted in a
meeting at ALA Midwinter, January 2000. A formal meeting followed at Villanova
University in April 2000. As convener, | helped to form the University Libraries
Group (ULG), modeled after the Oberlin Group for college libraries. The ULG is
made up of university libraries that support diverse wide-ranging programs through
doctoral level and have a level of support that places them in the top tier of
academic institutions. A few of the member libraries, along with Villanova, are
William and Mary, Wake Forest, Lehigh, Carnegie-Mellon, Tufts, Marquette,
Miami of Ohio, and Southern Methodist.

In 1994 appointed to the Standards Committee, College Section, Association of
College and Research Libraries. During the next six years, the Committee
concentrated on changing the focus of the standards from quantitative analysis of
input and output factors to emphasis on assessment of the outcome. Culmination of
the work was a re-issue of the Standards for College Libraries in 2000. The
knowledge gained through my work experience enabled me to formulate the
changes needed in the standards. This work allowed for close collaboration with
accrediting agencies, both professional and regional.

During this same time another focus emerged, the impact of digital resources.
Through my work on the JSTOR Statistics Task Force, standards were developed
on the collection of use of electronic databases. This Standard was later adopted in
1998 by the International Consortium of Library Consortia (ICOLC).

In 2002, the American Library Association appointed me to serve as the liaison to
the Marketing and Management Section of the International Federation of Library
Associations (IFLA).

Professional Service: (representative list)

Petitioner Microsoft Corporation - Ex. 1066, p. 53

Nominations Committee, Association of Research Libraries (ARL), 2016.

Steering Committee, Scholarly Publishing and Academic Resources Coalition
(SPARC), 2016 —2017.

“Excellence in Library Services,” Chair, Review Team, University of Hong Kong,
Hong Kong, August 24-27, 2015.

Chair, Management Advisory Board, 2015-2017; Member, Scientific Advisory
Board, arXiv, Cornell University, 1/1/2013 — present.

Advisory Board for the Wayne State University School of Library and Information
Science, July 2012 — present.

Advisory Board for Microsoft Academic Search, 2012 —2015. Redmond, WA.

Transforming Research Libraries, a Strategic Direction Steering Committee of the
Association of Research Libraries (ARL), 2012-2015.

Science and Technology section, representing ARL, International Federation of
Library Associations (IFLA), Chair, 2013 —2017; Member, 2011 to present.

Member of University of Pretoria, South Africa, Library Review Committee.
August 2013.

Co-chair, Local Arrangements Planning Committee for 2013 Conference,
Association of College and Research Libraries (ACRL), a division of the American
Library Association (ALA).

Association of Research Libraries Leadership & Career Development Program
Mentor, 2011-2017.

e-Science Task Force, Association of Research Libraries. July 2006 — present.
Chair, October 2011 — October 2012.

Board of Directors, International Association of Technological University
Libraries (IATUL). January 2008 — December 2014.

Midwest Collaborative for Library Services (MCLS); Board Member, October
2010 — December 2012.

Chair, Library Directors, Committee on Institutional Cooperation (CIC), July 2010
— June 2012.

Petitioner Microsoft Corporation - Ex. 1066, p. 54

Board of Directors, Association of Research Libraries (ARL); October 2008 —
October 2011.

Scholarly Communication Steering Committee, Association of Research Libraries
(ARL)

2008-2011.

Editorial Board, College and Research Libraries, Association of College and
Research Libraries, American Library Association. January 2008 — December
2014.

Chair, Organizing Committee for [ATUL Conference 2010, June 21-24, 2010,
Purdue University, West Lafayette, Indiana/Chicago, Illinois.

Conference Planning Committee for National Conference of the Association of
College and Research Libraries, 2009, Seattle, Washington.

Research Committee, Association of College and Research Libraries, ACRL,
division of ALA. 2002-2007, chair, 2005-2007.

Association of Research Libraries, Search and Screen Committee, Executive
Director. March — January 2008.

Center for Research Libraries, Board of Directors. April 2006 — April 2012.

Academic Libraries of Indiana, Board of Directors, 2004 — present. Vice-president,
2005-2007. President, 2007- 2009.

ALA Representative to the International Federation of Library Associations
(IFLA), Marketing and Management (M&M) Section, initial term 2003-2007, re-
appointed for second term, 2007-2011.

Invited to represent Research Libraries at the ACRL/3M Wonewok Retreat to
assess Marketing of Academic Libraries, October 2002.

Hugh A. Atkinson Award Committee, LAMA Representative, ALA, 2001-2005.

Program Committee, Library Administrators and Management Association
(LAMA), a division of ALA. 1996-2001.

ACRL, Standards and Accreditation Committee, a division of ALA. Liaison to
RBMS Section of ACRL. 1997-2002.

Petitioner Microsoft Corporation - Ex. 1066, p. 55

Elected to the Executive Committee of LAMA, LOMS, a division of the American
Library Association, 1998-2000. Nominated as Chair/Elect for 2003 — 2005.

Columbia University Press Advisory Committee. 1996 - 2000.

LITA/LAMA Conference Evaluation Committee, Pittsburgh, Pennsylvania,
October 1996.

“New Learning Communities,” Coalition for Networked Information, Indianapolis.
November 19-21, 1995. Facilitator for invitational, national conference committed
to developing collaborative learning and teaching techniques, involving librarians.

Planning Committee-Evaluation. LITA/LAMA 1996 Conference, Pittsburgh. This
first conference, to be held jointly between two divisions of ALA, will focus on
new technologies within libraries.

Indiana Cooperative Library Services Authority (InCoLSA), elected to Executive
Committee, April 1991, served as President in 1993-94. InCoLSA is a statewide
network of academic, public, school and special libraries that supports library
cooperation for cataloging, interlibrary loan, collection development and
application of new technologies.

Governor’s Conference on Libraries and Information Services. Served on Planning
Committee, Academic Libraries Representative, appointed by the Governor to
represent academic libraries in Indiana, Chair, Finance Committee, April 1989-
July 1991.

Indiana Library Endowment Foundation Board, 1984-92. Charter Member, 1984,
President, 1988-1992. 2004-2005.

University Service: (summary)

Served on search and screen committees for senior positions including chancellor,
dean and directors; most recently I have been asked to serve on the search
committee for the provost of Purdue University. At MIT service included the
Library Council & appointment to the Administrative Council by President Vest,
2001-2003 & Member of the Faculty Committee on the Library System. At Purdue
appointed by the President to the Search Committee for the Provost, October 2007
to May 2008; member of the Capital Projects Committee, and IT Operational
Oversight Committee as senior academic dean, 2008-2014;

Global Council, Global Policy Institute, 2012 — 2016.

Petitioner Microsoft Corporation - Ex. 1066, p. 56

Academic Program Excellence and Rankings (APER) project team, 2014.

Representative of the Academic Deans on the Re-engineering Business Operations,
Purdue University, 2016 —

Academic Deans Council chaired by Provost — 2004 —2017.
University Promotion and Tenure Committee — 2006 — 2017.

“Outstanding Team Award, Electronic Reserve Project,” served as Chair,
recognition awarded by the President of Villanova University to one team who
made an outstanding contribution to the operations of the University, selected by a
committee of administrators, faculty, and staff. Awarded September 9, 1999.

Nominated for the [IUSB Lundquist Award, 1995 & 1996. The Lundquist award is
given to faculty who have “exhibited excellence in teaching, scholarly or artistic
achievement, and diversified relevant service...”

Petitioner Microsoft Corporation - Ex. 1066, p. 57

Attachment 1A

Petitioner Microsoft Corporation - Ex. 1066, p. 58

Proceedings

IEEE Symposium on

+GHs foR
CUSTUM
CUMPUTING
MACRHINES

April 16-18, 1997
Napa Valley, California

Edited by Kenneth L. Pocek and Jeffrey Amold

Sponsored by the IEEE Computer Society Technical Committee on Computer Architecture

lEEE

COMPUTER S
SOCIETY

Petitioner Microsoft Corporation - Ex. 1066, p. 59

FCCM’97

Petitioner Microsoft Corporation - Ex. 1066, p. 60

Copyright © 1997 by The Institute of Electrical and Electronics Engineers, Inc,

All rights reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit fo the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that
carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, [EEE
Service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They
reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and
without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society, or the Institute of Electrical and Electonics Engineers, Inc.

[EEE Computer Society Order Number PR08159

T}‘(‘ :’I&_——‘ -
-
!) e S

e
o

G
on

ISBN 0-8186-8159-4
ISBN 0-8186-8160-8 (case) /927
ISBN 0-8186-8161-6 (microfiche)

IEEE Order Plan Catalog Number 97TB100186

IEEE Computer Society
Customer Service Center

10662 Los Vaqueros Circle

P.O. Box 3014

Los Alamitos, CA 90720-1314
Tel: +1-714-821-8380

Fax: + 1-714-821-4641

E-mail: cs.books@computer.arg

ISSN 1082-3409

Additional copies may be ordered from:

IEEE Service Center IEEE Computer Society IEEE Computer Society
445 Hoes Lane 13, Avenue de I’Aquilon Qoshima Building

P.0O. Box 1331 B-1200 Brussels 2-19-1 Minami-Aoyama
Piscataway, NJ 08855-1331 BELGIUM Minato-ku, Tokyo 107
Tel: + 1-908-981-1393 Tel: +32-2-770-2198 JAPAN

Fax: + 1-908-981-9667 Fax: + 32-2-770-8505 Tel: +81-3-3408-3118

mis.custserv@computer.org euro.ofc@computer.org Fax: + 81-3-3408-3553

tokyo.ofe@computer.org

Editorial production by Bob Werner

Cover art production Joe Daigle/Studio Productions

Printed in the United States of America by Technical Communication Services

IEEE (]

COMPUTER &

SOCIETY e

Petitioner Microsoft Corporation - Ex. 1066, p. 61

Table of Contents

Symposium on Field-Programmable Custom Computing Machines — FCCM'97

Introductmnlx
Program Committee P o oSt RSB s

Session 1: Device Architecture

An FPGA Architecture for DRAM-based Systolic Computations......,..‘,...u....m..‘,..,,.....‘...........,‘_..,..._. 2
N. Margolus

Garp: A MIPS Processor with a Reconfigurable Coprocessor..............__ S S 12
J. Hauser, J. Wawrzynek

A Time-Multiplexed FPGA gt S8 SRR et et e e s)
8. Trimberger, D. Carberry, A. Johnson, . Wong

Session 2: Communication Applications

An FPGA-Based Coprocessor for ATM Flrewalls 30
J. McHenry, P. Dowd, T. Carrozzi,
F. Pellegrino, W. Cocks

A Wireless LAN Demodulator in a Pamette: Design and Experience.................__ 40
T. McDermott, P, Ryan, M. Shand,
D. Skellern, T. Percival, N. Weste

Session 3: Run Time Reconfiguration

Incremental Reconfiguration for Pipelined Applications S 1935 A ST 47
H. Schmit

Compilation Tools for Run-Time Reconfigurable Demgns 56
W. Luk, N. Shirazi, P. Cheung

A Dynamic Reconfiguration Run-Time System i T R .
J. Burns, A. Donlin, J. Hogg, S. Singh, M. de Wit

Session 4: Architectures for Run Time Reconfiguration

The Swappable Logic Unit: A Paradigm for Virtual Hardware 77
G. Brebner

Petitioner Microsoft Corporation - Ex. 1066, p. 62

The Chimaera Reconfigurable WORTIOnal TIATE: oo msmimicssistissoisiinssmimms s oo da 87

S. Hauck, T. Fry, M. Hosler, J. Kao
Session 5: Architecture

Computing Kernels Implemented with a Wormhole RTR CCM
R. Bittner Jr., P, Athanas

Mapping Applications to the RaPiD Configurable Architecture................coooovv

C. Ebeling, D. Cronquist, P. Franklin,
J. Secosky, S. Berg

106

Defect Tolerance on the Teramac Custom COMPULEY ..o eeeeeeeese e 116

B. Culbertson, R. Amerson, R. Carter,
P. Kuekes, G. Snider

Session 6: Performance

Systems Performance Measurement on PCI PEDABEIE i csiiiiiimisisimimam st i od

L, Moll, M. Shand

The RAW Benchmark Suite: Computation Structures for
General Purpose Computing........

125

w134

J. Babb, M. Frank, V, Lee, E. Waingold, R. Barua,

M. Taylor, J. Kim, 8, Devabhaktuni, A. Agarwal

Session 7: Software Tools

Automated Field-Programmable Compute Accelerator Design using

Partial Evaluation...........cooooooiio
Q. Wang, D. Lewis

FPGA Synthesis on the XC6200 using IRIS and Trianus/Hades

... 145

(Or, from Heaven to Hell and back 8g8in) ... 155

High Level Compilation for Fine Grained FPGAS ... 165

M. Gokhale, E, Gomersall
Session 8: CAD Applications

Acceleration of an FPGA Router.......................
P. Chan, M, Schlag

Fault Simulation on Reconfigurable Hardware.... ..

M. Abramovici, P. Menon

vi

... 175

182

Petitioner Microsoft Corporation - Ex. 1066, p. 63

Session 9: Image Processing Applications

Automated Target Recognition on SPLASH 2. Eoatieiarmit e e ettt vt sedim sepnreissotscans 3 I
M. Rencher, B, Hutchings

Real-Time Stereo Vision on the PARTS Reconfigurable COMPUET ... e 201
J. Woodlfill, B. Von Herzen

Increased FPGA Capacity Enables Scalable, Flexible CCMs:
An Example from Image Processing.‘......,..‘.......‘.........‘...A..,..‘............‘ bt s S A A e snsranens L L
. Greenbaum, M. Baxter

Session 10: Arithmetic Applications

Comparison of Arithmetic Architectures for Reed-Solomon Decoders in
Reconfigurable Hardware219
C. Paar, M. Rosner

Implementation of Single Precision Floating Point Square Root on FPGAs.... . ey 2R
Y. Li, W. Chu

Poster Papers

Datapath-Oriented FPGA Mapping and Placement for
Configurable ORI, comseiiors s st oo T RS TNy HOT O OOE - 1 7
T. Callahan, . Wawrzynek

Mapping a Real-Time Video Algorithm to a Context-Switched il 2 Y. -
S. Kelem

A Parallel Hardware Evolvable Computer POLYP 238
U. Tangen, L. Schulte, J. McCashkill

Laser Defect Correction Applications to FPGA Based Custom Computers........ 240
G. Chapman, B, Dufort

Speech Recognition HMM Training on Reconfigurable Paralle] Processor.............. 249
H. Yun, A. Smith, H. Silverman

Efficient Implementation of the DCT on Custom Computers............. v 244
N. Bergmann, Y., Chung, B. Gunther

On Acceleration of the Check Tautology Logic Synthesis Algorithm using an

FPGA-based Reconfigurable Coprocessor246
J. Cong, J. Peck

Index of Authors 249
Vil

Petitioner Microsoft Corporation - Ex. 1066, p. 64

This material may be protected by Copyright law (Title 17 U.S. Code)

Mapping Applications to the RaPiD Configurable Architecture*

Carl Ebeling, Darren C. Crongquist, Paul Franklin, Jason Secosky, and Stefan G. Berg

Department of Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 08195-2350

Abstract

The goal of the RaPiD (Reconfigurable Pipelined
Datapath) architecture is to provide high per-
formance configurable computing for a range of
computationally-intensive applications that demand
special-purpose hardware. This is accomplished by
mapping the computation into a deep pipeline using
a configurable array of coarse-grained computational
units. A key feature of RaPiD is the combination
of static and dynamic control. While the underly-
ing computational pipelines are configured statically,
a limited amount of dynamic control is provided which
greatly increases the range and capability of applica-
tions that can be mapped to RaPiD. This paper illus-
trates this mapping and configuration for several im-
portant applications including a FIR. filter, 2-D DCT,
motion estimation, and parametric curve generation;
it also shows how static and dynamic control are used
to perform complex computations.

1. Introduction

Field-programmable custom computing machines
have attracted a lot of attention recently because of
their promise to deliver the high performance provided
by special purpose hardware along with the flexibil-
ity of general purpose processors, Unfortunately, the
promise of configurable computing has yet to be real-
ized in spite of some very successful examples [1, 9).
There are two main reasons for this,

First, configurable computing platforms are cur-
rently implemented using commercial FPGAs. These
FPGAs are necessarily very fine-grained so they can
be used to implement arbitrary circuits, but the over-
head of this generality exacts a high price in density
and performance. Compared to general purpose pro-
cessors (including digital signal processors), which use
bighly optimized functional units that operate in bit-
parallel fashion on long data words, FPGAs are some-
what inefficient for performing logical operations and

"This work was supported in part. by the Defense Advanced
Research Projects Agency under Contract DAAHO04-94-GO272. D,
Cronquist was supported in part by an IBM fellowship. P. Fennklin
was supported by an NSF fcﬁ’lcwship.

0-8186-8159-4/97 $10.00 © 1997 IEEE

106

even worse for ordinary arithmetic. FPGA-based com-
puting has the advantage only on complex bit-oriented
computations like count-ones, find-first-one, or com-
plicated bit-level masking and filtering.

Second, programming an FPGA-based configurable
computer is akin to designing an ASIC. The program-
mer either uses synthesis tools that deliver poor den-
sity and performance or designs the circuit manually,
which requires both intimate knowledge of the FPGA
architecture and substantial design time. Neither al-
ternative is attractive, particularly for simple compu-
tations that can be described in a few lines of C code.

Our response to these two problems is RaPiD, a
coarse-grained configurable architecture for construct—
ing deep computational pipelines. RaPiD is aimed at
regular, computation-intensive tasks like those found
in digital signal processing (DSP). RaPiD provides a
large number of ALUs, multipliers, registers and mem-
ory modules that can be configured into the appropri-
ate pipelined datapath. The datapaths constructed
in RaPiD are linear arrays of functional units com-
municating in mostly nearest-neighbor fashion. Sys-
tolic algorithms [4], for example, map very well into
RaPiD datapaths, allowing us to take advantage of
the considerable research on compiling computations
to systolic arrays [5, 7]. However, RaPiD is not limited
to implementing systolic algorithms; a pipeline can be
constructed which comprises different computations at
different stages and at different times.

We begin with an overview of the RaPiD architec-
ture; for a more detailed description see [3]. We then
give a general description of how computations map
to RaPiD using a FIR filter as an example, and then
present how the architectural features of RaPiD are
used to perform more complex computations found in
2-D DCT, motion estimation, and parametric curve
generation.

2 The RaPiD Datapath Architecture

RaPiD is a linear array of functional units which
is configured to form a mostly linear computational
pipeline. This array of functional units is divided into
identical cells which are replicated to form a complete
array. Figure 1 shows the cell used in RaPiD-1, the

Petitioner Microsoft Corporation - Ex. 1066, p. 65

first version of the RaPiD architecture. This cell com- ues. They can be used as additiona) multiplexers 1o

prises an integer multiplier, three integer ALUs, six simplify control; like any functional unit, the regis-
general-purpose “datapatl registers” and three small ters can be disabled. They are also nsed while routing
local memories, A typical single-chip RaPiD array RaPiD applications to connect bus segments in differ-
would contain between 8 and 32 of these cells. ent tracks and/or for additional pipeline delays,
In many applications, the data is partitioned into
Aathaat — . blocks which are loaded once, saved locally, rensed ag
registers G needed, and then discarded. The local memories pro-
= 3) 2 vided in each cell of the datapath serve this purpose.
A A A Each local memory has a specialized datapath regis-
i I i ter used as an addregs register; one of the bus inputs
1 ’_ [] to this address register is replacod by an incrementing
T 1T 0t HHH -+ 5 +r+ feedback path. Like the SILOs found in the Philips
J= N VSP [8], this supports the common case of sequential
= nemory accesses. More complex addressing patterns
o —r munnsl can be generated using registers and ALUs in the data-
BeTHRAL : . { path.
T {H-H- 1] Input and output data enter and exit RaPiD via
\ / 23 IR 1/0 streams at each end of the datapath. Each stream
bus connectors input muxes output drivers contains a FIFO flled with data required or with re-
sults produced by the computation. The datapath ex-
Figure 1: A basic RaPiD cell which ts replicated left to plicitly reads from an mpul stream Lo obtain the next
right to form a complete chip. RaPiD-1 contains 16 input data value and writes to an output stream to
cells similar to this one, with fourteen 16-bit buses. store a result,

External memory operations are carried out inde-
pendent. of the RaPiD array via three 1/O streams
by placing FIFOs between the array and a memory

2.1 Datapath Composition controller. In addition to carrying out the memory

The functional units are interconnected using a set 0pcra.tipns, the memory controller penerates ﬁl,;lr,ic:ally_
of segmented buses that run the length of the data- determined sequences of ﬂddl:ﬂﬁ.‘:‘f-_‘..“ for pach streaum. TIf
path, The functional units use a n : 1 multiplexer to the datapath reads a value from an cupty FIFO or
select their data inputs from one of the 7 — 2 bys seg- writes a value fo a full FIFO, the datapath is stalled
ments in the adjacent tracks. The additional inputs until the FIFQ is ready.
provide fixed zero or feedback lines, which can be used
to clear and hold register values, or to use an ALU as 2.2 Control Path
an accumulator. Each functional unit output includes
optional registers to accommodate pipeline delays and For the most part, the structure of A pipeline is stat-
a set of tristate drivers to drive their output onto one ically confignred. However, there are almost always
or more bus segments. some pipeline control signals that, must bhe dynamic,
The buses in different tracks are segmented into For example, constants are loaded into datapath regis-
different lengths to make the most efficient use of the ters during initialization but then remain unchanged,
connection resources. In some tracks, adjacent bus The load signals of the datapath registers thus take on
segments can be connected together by a bus connec- different values during initialization and computation,
tor as shown in Figure 1. This connection can be pro- More complex examples include donble-buffering the
grammed in either direction via a unidirectional buffer local memories and performing data-dependent calcu-
or pipelined with up to three register delays, allowing lations.
data pipelines to be built in the bus structure itself, The control signals are thus divided into static con-
RaPiD’s ALUs perform the usual logical and arith- trol signals provided by configuration memory as in
metic operations on one word of data, The ALUs ordinary FPGAs, and control signals which can be dy-
can be chained for wide-integer operations. The namically programmed on every cycle. RaPiD is pro-
multiplier inputs two single-word numbers and pro- grammed for a particular application by first mapping
duces a double-word result, shifted by a statically pro- the computation onto a datapath pipeline. The static
grammed amount to maintain a given fixed-point rep- programming bits arc used to construct this pipeline
resentation. Both words of the result are available as and the dynamie programming bits are used to sched-
separate outputs, ule the datapath operations over time. These dynamic
The datapath registers serve a variety of purposes control bits are provided by a small pipelined control
in RaPiD. These registers can be used to store con- path, not by the more typical local microprogrammed,
stants loaded during initialization and temporary val- SIMD, or VLIW control.
107

Petitioner Microsoft Corporation - Ex. 1066, p. 66

Dynamic control is implemented by inserting a few
“context” bits each cycle into a, pipelined control path
that parallels the datapath. This context contains
all the information required by the various pipeline
stages to compute their dynamic control signals. The
control path contains 1-bit segmented buses similar in
structure to the datapath buses, as shown in Figure 2,
(Signals which can be dynamic but do not need to
change during a particular computation are connected
to the static zero line.) Control values are inserted by
a global pipeline controller at one end of the control
path and are passed from Stage to stage where they
are applied to the appropriate control signals. Since
applications generally use only a few dynamic control
signals and use similar pipeline stages, the number of
control signals in the control path is relatively small.

. alu

input input

MR mux Status alu
zel sel control

A I i
TT

—H

Figure 2. Dynamic control generation for part of a
RaPiD cell; these control buses are one bit wide.

Each dynamic control signal is derived from the in-
formation contained in the control path. Usually the
signal is simply comnected to one of the bits in the
control path, but in more complex cases lookup-tables
embedded in the control path are used to compute
the control signal based on more information includ-
Ing bits in the control path, status from ALUs in the
datapath, or feedback when implementing simple FSM
controllers. The generation of dynamic control is il-
lustrated in detail in the applications that follow,

2.3 RaPiD-1 Design Features

Most of the design and layout of the RaPiD-1 chip,
the first implementation of the RaPiD architecture,
is complete. This section presents those details of
RaPiD-1 useful in understanding the performance re-
sults discussed for each application presented in the
following sections.

RaPiD-1's datapath is based on 16-bit fixed-point
integers; to accommodate this, the multipliers can be
statically programmed to shift their 32-bit output ar-
bitrarily. Each RaPiD-1 cell contains three ALUs,
one multipliers, and three 32-word local memories.
Fourteen tracks are provided for the segmented data

buses, which are supplemented by the zero and feed-
back inputs available to each functional input, The
16 cells each have the functional units shown in Fig-
ure 1, in addition to control logic and up to 15 control
buses. The RaPiD-1 array 1s designed to be clocked
at 100MHz, and reconfiguration time for the array ig
conservatively estimated to be 2000 cycles,

3 Programming Model

Mapping applications to RaPiD involves designing the
underlying datapath and providing the dynamic con-
trol required for the different parts of the computa-
tion. The control design can be complicated because
control signals are generated at different times and
travel at different rates. We have desi gned the RaPiD
B programming language to accommodate these con-
trol patterns. Our RaPiD B compiler which produces
@ placed and routed implementation along with the
dynamic control program is nearly complete. This sec-
tion first describes a FIR (Finite Impulse Respanso)
filter, a simple application useful for illustrating some
of the basic features of RaPiD. It then briefly presents
the timing models used by RaPiD B and by the re-
mainder of this paper,

3.1 FIR Filter Computation

Digital FIR filters are used in many signal processing
applications, typically for eliminating unwanted fre-
{quency components from a signal. Figure 3a, gives a
specification for a FIR filter with NumT'aps taps and
NumX inputs. The filter weights are stored in the W
array, the input in the X array, and the output in the
Y aray (starting at array location NumTaps — 1).
Figure 3b shows the entire computation required for a
single output of a 4-tap FIR filter.

for i ;.= Num laps-T T Numis-1
Y[il := 0
for j := U to Numlaps-1

Y= Y+ X
pud

(a)

..... X9 X8 X7 X6, X5, X4 e X2 X1 X ——
x x x *
WooW w2 w3

53

Figure 3: FIR filter. (a) Algorithm, (b) Computation
for NumTaps=4 and i=6.

(b)

The circuit in Figure 4a performs the entire compu-
tation for one output value in a single cycle; it is easily
obtained by unrolling the inner loop of the program

Petitioner Microsoft Corporation - Ex. 1066, p. 67

in Figure 3a. Unfortunately, the circuit shown in Fig-
ure 4a has poor performance characteristics (note the
combinational path through all of the adders, which
scales linearly with the number of weights), A retimed
version of this circuit is shown in Figure 4b; the re-
timed circuit performs substantially better than the
original, particularly for larger computations.

X4

Dw_;

Ao

il

ﬂﬁﬂ' =

i
] ¥
[

nhilg
)

our

(b)

Figure 4; Schematic diagrams for four-tap FIR filter
(2) as viewed in RaPiD B, grouping related compu-
tation and (b) as a high-performance pipelined imple-
mentation.

Specifying this retimed circuit directly is difficult
because of the complexity of the relative timing of the
internal data and control signals. It is much easier to
specify the computation somewhat najvely as in Fig-
ure 4a, knowing that retiming can transform it into
a high-performance, pipelined circuit. Thig becomes
particularly evident in circuits with more complicated
control, and when more aggressive steps, such as using
the pipeline stage available in RaPiD’s multiplier, are
needed to achieve the desired performance. Therefore,
the RaPiD B compiler retimes the resulting netlist
based on [6].

All of the applications presented in the following
sections have been specified in a preliminary ver-
sion of RaPiD B and simulated to validate the im-
plementations described and the accompanying cy-
cle count. For ease of explanation, the computations
shown throughout this paper are shown before the full
retiming performed by the RaPiD B compiler. A pre-
liminary version of the RaPiD B toolset is nearly com-
plete, including compilation, retiming, control synthe-
sis, and full placement and routing of the resulting
RaPiD circuit.

108

4 FIR Filter Implementation

4.1 Simple Case

As with most applications, there are & variety of ways
to map a FIR filter to RaPiD. The choice of mapping
is driven by the parameters of both the RaPiD ar-
ray and the application. For example, if the number
of taps is less than the number of RaPiD multipliers,
then each multiplier is assigned to multiply a specific
weight. The weights are first preloaded into datapath
registers whose outputs drive the input of a specific
multiplier. Pipeline registers are used to stream the
X inputs and ¥ outputs. Since each ¥ output must
see NumTaps inputs, the X and ¥ buses must be
pipelined at different rates. Figure 5a shows one cell
of the FIR filter (several stages are shown in Figure 4b)
with the X input bus doubly pipelined and the YV in-
put bus singly pipelined.

S
}(W,
_Cell

From —
Previvug

‘,::lm__ *
i

Weiphts anil X values stream in

BEE = NIRRTl 7 3 alues siream il
Cantml |
(a)
i
— 2 T ouT
Nt m—T .
(b)
Figure 5: (a) Netlist for one cell of the simple FIR
filter. (b) One tap of the FIR filter mapped to the
RaPiD array (this is replicated to form more taps).

This implementation maps easily to the RaPiD ar-
ray, as shown for one tap in Figure 5b, For clarity, all
unused functional units are removed, and used buses
are highlighted. The bus connectors from Figure 1 are
left open to represent no connection and boxed to rep-
resent a register. The control for this mapping consists
of two phases of execution: loading the weights and
computing the output results. In the first phase, the
weights are sent down the IV double pipeline along
with a singly pipelined control bit which connects the

Petitioner Microsoft Corporation - Ex. 1066, p. 68

input of each datapath register to the IN bus. When
the final weight is inserted, the control bit is switched,
and the input is connected to the feedback line. Since
the control bit travels twice as fast as the weights,
each datapath register will hold a unique weight. No
special signals are required to begin the computation;
the second phase implicitly starts when the control bit
goes low,

4.2 Increasing the Number of Taps

If the number of taps exceeds the number of RaPiD
multipliers, the multipliers must be time-shared be-
tween several taps. This can be achieved in RaPiD
by using a local memory to store several weights per
stage. Figure 6 shows our implementation for this
mapping. Unlike the simple case, we make the arbi-
trary choice for doubly pipelining the ¥ output values
and singly pipelining the X input values.

Right RAM balds intermediate
¥ output values hat shill dawn
until hey are sent i next sluge

RAM
’D‘il ALU]— e, B

Tn
S ARE

Figure 6: Netlist for one cell of extended FIR fil-
ter. The top pipelined bus streams in the X inputs
(the weights during initialization) while the bottom bus
streams out the intermediate Y values.

Left RAM holds weights i be
tmliiplied with X inputs.

Fom _—E Weighily amil X valucs stream 10

Previouy)
Cell Intermeitiaie ¥ walics streain oal

As a new X is read from external memory, the first
stage replicates it and presents it to the input data-
path for several cycles. Each stage can multiply this
X by its weights in turn and add it to one of its stored
intermediate values. At this point a new X value will
be fetched from memory and the cycle repeats.

There are the same number of intermediate values
as there are weights per stage. These intermediate val-
ues are stored in a second local memory. Let's exam-
ine the stage holding weights Wss, W4, Wsa, and Wy,
(four taps per stage). A new input value Xy appears
on the input datapath. In four cycles the partial sums
for ¥75, Y44, Yr3, and Yo will be computed. These
are stored in that order in the local memory holding
the intermediate values. At this point, Xop moves to
the next pipeline stage followed by the intermediate
value Y75, The next input, Xy, appears on the input,
datapath along with the intermediate value Y7¢ from
the previous stage. Now the partial sums for Y76, Y5,
Y74, and Y33 are computed.

4,3 FIR Performance

When the number of taps is a multiple of 16 the
weights can be partitioned evenly across the stages

110

and the allocated functional units are fully utilized.
RaPiD-1 (Section 2.3) can therefore operate at very
near its peak performance of 1.6 GOPS (where GOPS
is a billion multiply-accumulates per second),

5 Discrete Cosine Transform

The discrete cosine transform (DCT) is used fre-
quently in signal processing and graphics applications.
For example, the 2-D DCT is used in JPEG/MPEG
data compression to convert an image from the spatial
domain to the frequency domain. A 2-D DCT can be
decomposed into two sequential 1-D DCTs. We first
describe how the 1-D DCT can be computed on RaPiD
and then show how two 1-D DCTs can be composed
to perform a 2-D DCT,

5.1 1-D DCT

An N-point 1-D DCT partitions an input vector A4 into
N-clement sub-vectors, and for each resulting sub-
vector 4, computes

N—=1 .
meL
Uhi = f?“ﬂ Qpy COS 5_7\;(2” +1) (1)

for 0 < i < N —1, where ap, is the n-th element, of
sub-vector Ay (and the (RN +n)-th clement of vector
A).! The N? cosine terms are constant over all sub-
vectors and hence can be read once as precomputed
weights W where w,,; = cos 2% (2n + 1). This reduces
Equation 1 to)

N-1
Yni = Z QpntWni,

n=0

(2)

for 0 < i < N —1. By viewing input vector A and
weights W as matrices A and W, Equation 2 reduces
to the matrix multiply ¥ = A x W. Thus, to compute
a 1-D DCT, RaPiD performs a matrix multiply.

To implement an 8 point 1-D DCT on an 8 x 8
input matrix A (ie. a 64-element vector), the entire
8 x 8 weight matrix W is stored in RaPiD’slocal mem-
ories, one column per cell. Each cell of the resulting
pipeline is configured as shown in Figure 7. The A ma-
trix is passed through the array in row-major order.
Within each cell, the local memory address is incre-
mented each cycle, and a register accumulates the dot
product of the stored column and the incoming row.
When a cell receives the last element of a row, the
resulting product is passed down an output pipeline,
the address is cleared, and the cell is ready to compute
the product of the next row on the next cycle. This
effectively computes the matrix multiply of A x W.

*To produce the final DCT result each Yni muat be multiplied
by v/ & E; where E; = % ifi =10 and B; = 1 otherwise. For our
p;lrpusas we ignore this scaling factor and focus on the computation
of yhi.

Petitioner Microsoft Corporation - Ex. 1066, p. 69

{nlumn of mairix W is read from RAM

f
N [T

O

From _ﬂ Row 1L ialiis A\ streams in
Previmus Memt

colt | D‘u_' el
Foow il i resnibiing product sticams iy

Figure 7: Netlist for one cell of a matriz multiply.
The top pipelined bus streams in the A matriz (in
row-major order) while the bottom bus streams out
the resulting matriz product (also in row-major order).
The top bus also streams the W columns into the local
memories prior to the computation.

5.2 2-D DCT

An N x N 2-D DCT partitions an input matrix into
sub-matrices of size N x N, and for each resulting
sub-matrix A, computes

N—1N-1 i ﬂ_j
Z Z Qmp COS 2_}\7(2m + 1) cos 2—1\?(271. +1)
m=0 n=0

: , (3)
for0 <i,j < N-1.2 As with the 1-D DCT, Equation

3 is reduced using the N? precomputed W weights,
yielding

Vii

N—1N-1

Yji = Z Z UrmnWmiWy,

m=0 n=0

(4)

for0<i,j < N-1. Extracting w,; from the inner
summation leaves

N-1
Zmj = Z AmnWaj, (5J
=0

and thus

N-1
Yii = Z , Zm W

m=0

(6)

for0<4,j <N -1.

As seen in Equation 5 and Equation 6, both zp,;
and yj; are equivalent to N x N matrix multiplies.
However, since the z,,; values are produced in row-
major order but required in column-major order, the
results from the z,,; DCT must be transposed prior
to computing y;; as illustrated in Figure 8. In addi-
tion, since both input streams are read in TOW-major
order, it might be desirable to produce row-major out-
put (potentially reducing memory stalls), requiring yet
another transform (i.e. output Yij instead of y,;). The
resulting computation is ((A x W)T x W),

?To produce the final DOT result each yj; must be multiplied by
#EiB;. As with 1-D DCT, we ignore this scaling factor and focus
on the computation of Vi

111

N-Point | Zmi id

1-D DCT

1-D DCT

Figure 8: 2-D N x N DCT

We show the implementation of an 8 x 8 2-D DCT
on a 16-cell RaPiD array. Consider an M x N image
and an 8 x 8 weight matrix W. First, the image is
divided into AN sub-images of size 8 x 8. The com-
putation for cach sub-image A is outlined in Figure 9,

Intermediate results
stored in RAM and
transmegaﬂ‘g{ionirol

o
(I x) x [)’

a
8| A

rre

MxN

Computed by

Computed by
first 8 stages

last B stages

Figure 9: To compute 2-D DCT, an M x N image
is partitioned into 8 x 8 sub-images. RaPiD computes
each 1-D DCT by multiplying the sub-image by an 8% 8
weight matriz.

Since a 2-D DCT performs two multiplies by the
same weight matrix, W is loaded only once: one col-
umn per cell in both the first 8 cells and last 8 cells.
The transpose in between matrix multiplies is per-
formed with two local memories per cell: one to store
products of the current sub-image and the other to
store the products of the previous sub-image. During
the computation of the current sub-image, the trans-
pose of the previous sub-image computation is passed
to the next 8 cells. The datapath for one RaPiD cell
of a 2-D DCT is shown in Figure 10.

O RAM sloees the
current 1-D DCT results.

Column of matrix W

RAM
ICAIEmRAM, taen bared The biher lLB\!m Uie
RAM T frevia -0 DO w
carm Pt perfiinm a Lranspone
fa at] Wi RAM
twrh Lo
= AlLU LR
PO T Row o masx A sestms i El To
Previous

Mexi
" Cel)

Figure 10: Netlist for one cell of 2-D DCT. The top
pipelined bus streams in the A matriz while the bot-
tom bus streams out resulting 1-D DCT, trunsposed,
The top bus also streams the W columns into the lo-
cal memories prior to the computation.

Cell

oo ol -0 DT resulls i oul,

5.3 DCT Control

Prior to computation, a 2-D DCT must load the W
matrix into the local memories, one column per stage.

Petitioner Microsoft Corporation - Ex. 1066, p. 70

To take advantage of pipelined control, weights are
passed down a data-bus in row-major order, while a
control signal, traveling twice as slow as the data,
raises the write signal of the appropriate local mem.-
ories. As a result, all weights of the DCT can be
preloaded using a single control bus. Most RaPiD
control signals fit into such a simple, pipelined mode]
since an operation occurring in one RaPiD stage usu-
ally occurs in the next stage on the next cycle.

Sometimes control is required which -does not fit
into the simple, pipelined model. At the end of the
first 1-D DCT computation, results are stored one col-
umn per stage. To flow these results out in column-
magjor order (that is, perform the transpose), the first
local memory must be completely emptied onto the
output bus, followed by the second, third, etc. Hence,
the “empty” control signal must stay on for eight con-
secutive cycles in the first stage, and then eight cycles
in the second stage, etc. Possible solutions include
dedicating a control bus to every stage or using one
control bus with eight registers per stage. The solution
requiring the fewest resources configures two buses and
one 3-LUT per stage as a simple finite state machine,
as shown in Figure 11.

DATAPATH m__- Py
[H-can

CONTROL I

Fram — ﬂ Sll-:l ‘g]' ﬂ = Tin

Prayious | %2 = Next

Cett | t— Celif
T(Token) S (Start/Si0p) P (Previnus stage's fnken)

Figure 11: A simple state machine performs the trans-
pose using two buses, one LUT, and three registers per
stage.

Three control registers are used in the state ma-
chine: T is the token, S is the start/stop bit, and P
is the previous stage’s token delayed by a cycle. The
LUT is configured as a multiplexer of P and T with
select bit S (i.e. T = S&P+IS&T). If S is low, the to-
ken is held; if S is high, the token is passed to the next
stage. When a stage has a token, its results are emp-
tied from a local memory onto the output bus. This
operation repeats in each consecutive stage, effectively
transposing the 1-D DCT results.

To initiate the transpose, the stream controller
places a one into the first P register every 64 cycles
and a one into the first S register every 8 cycles. No-
tice that the token hold length is solely determined
by the frequency of the start/stop signal and does not
affect the number of control buses, LUTS, or registers

112

needed. Thus, the size of this state-machine contro]
is fixed no matter how long each stage must hold a
token.

5.4 DCT Performance

A 2-D DCT performs many consecutive 8 x 8 matrix
multiplies, allowing initialization, finalization, and re-
configuration times to be small compared to the to-
tal computation performed. For example, RaPiD-1
(Section 2.3) incurs a setup overhead of only 0.5% ta
compute the 2-D DCT of a 720 x 576 image. As a
result, RaPiD-1 performs very close to its peak of 1.6
GOPS on 2-D DCT (where GOPS is a billion multiply
accumulates per second).

6 Motion Estimation

Motion estimation is used in video data compression
to reduce the amount of data required to represent
a video frame. In most cases, objects do not move
very much from one frame to the next. In motion
estimation, a block in a frame is represented by the
address of the most similar nearby block in the previ-
ous frame plus the differences between the two blocks.
This section describes implementing motion estima-
tion on RaPiD.

Motion estimation has few data dependencies, pro-
viding flexibility in the order of computations and
greater parallelism. RaPiD favors computations that
are not memory bound. The prodigious amount of
computation and few memory accesses make motion
estimation an ideal candidate for RaPiD.

To compute the motion estimation of an M x N
reference image, the image is divided into —’%dﬂ 8x8
reference blocks (RB). The reference blocks are com-
pared with blocks of a prior video frame, the query
image. For each reference block RaPiD computes the
minimum absolute block difference (point-to-point dif-
ference) of all possible positions of the RB within a
24 x 24 query window (QW) of the query image, as
shown in Figure 12. The result is a vector which points
to the RB yielding the minimum block difference.

6.1 Motion Estimation Implementation

With a 16-stage RaPiD array we implement motion
estimation using 16 x 16 super reference blocks, which
are comprised of four 8 % 8 reference blocks, and 32 % 32
super query windows, The super RB and a 32 16 sec-
tion of the query window are stored in RaPiD’s local
memories, one column per stage. This mapping yields
the best reuse of RB and QW values for the avail-
able local memory. A stage of the resulting pipeline is
shown in Figure 13.

The block difference between a super RB and super
QW is computed row by row. For each row, a stage
performs an absolute-difference and accumulates the

Petitioner Microsoft Corporation - Ex. 1066, p. 71

Image

Quary Window

\

\

Reference Black

17*17 possible
RB positions

MxN

Figure 12: The image is partitioned inio 8 x 8 RBs.
Motion estimation of the RB within o 24 x 24 QW
is determined by finding the minimum block difference
for all positions of the RB within the QwW.

et BY Cilrmiy \ne Buper KE RAM hokds the siper RB Mabhr
18 campsiling with, whike (be pext wper RE's

Vales am pircbiaided jpt Ui riber Siper WG AR

SHlidrait

hutiin
| [_

Supet W Cidving

RAM e st

jare e SunRow ™ e rial rely

e TR g

Ve it ']
Fran B Ta
tln-..-.-.-_-_ ‘—D_ Piean

it T el
=Tt E RE Pipe
witdbeahtrin)

aY

RE Parity

“See Figure 11

Figure 13: Cell configuration far motion estimation
compute staeges. 16-bit data and I-bit control lines
are drawn in separate bowes. To achieve an absolute—
difference the sign bit of the Subtract ALU controls the
function of the +/- ALU.

113

result with the absolute-difference of the prior stage,

This operation happens in the same way as the FIR

filter of Section 4. The last stage totals all of the row

sums to produce the block difference and determines

the minimum block difference for each RB of the super
B.

The netlist for motion estim ation, presented in Fig-
ure 13, shows how two dynamic control lines con-
trol an ALU and super RB local memory selection,
The absolute-difference-accumulate operation is im-
plemented by controlling the function of the +/- ALU
with the sign of the subtract ALU.

The local memory used for the super RB is double-
buffered, with one local memoryused for the current
computation while the other is being preloaded with
the next super RB. The parity control signal is used to
determine which local memory to use for computation
and which to use for preloading. The parity signal
toggles when a motion vector for the current super
RB is output,

6.2 Motion Estimation Data Flow

To obtain the most reuse of data we perform block
differences in column-major order. That is, the super
RB starts in the upper right corner of the super QW
and proceeds down the rows before shifting left one
column,

A left shift of the super RB is implemented by shift-
ing the super QW columns right, to the next stage,
When a super QW value is no longer needed, the value
is shifted to the next stage and a new value is shifted
in from the prior stage. The first stage gets new super
QW values from the QW input stream.

Super QW values are reused between block differ-
ences by storing the address of the starting row of
the super QW in the StartRow register (Figure 14).
When a block difference completes, the QW column
local memory address is set to StartRow and StartRow
1s incremented. StartRow is reset when the super RB
is shifted left one column.

Super

pel Super
RB Column

QW Column

16 a2

T pe=—— StartRow
—— Curran! Black Dlifarence
Next Block Difterencs

\sumr OW values

reused batwean
block differences

Figure 14: The super RB column shifts down through
super QW column, performing a block difference at
each step. StartRow is the address of the first row of
the block difference,

Petitioner Microsoft Corporation - Ex. 1066, p. 72

Moving the super RB from right to left allows super
QW wvalues to be reused between sets of block differ-
ences. Figure 15 shows how the last columns of the
current super QW are the first columns used in the
super QW of the next super RB computation. This
data motion remaves the need to preload super QW
values for the next set of block differences,

Aeused Query
Window Values

Current Super
Reference Block &
Query Window

16

----- oo

16

Next Super
Reference Block &
Query Window

Figure 156: The last super QW columns used to com-
pute motion estimation for a super RB are reused in
the computation for the next RB.

The only time data loading stalls computation is
the beginning of a row of super RBs. In this case
the required super QW values were not used with the
prior super RB and must be loaded. The next section
shows that the cost is minor, being amortized over a
long computation.

6.3 Motion Estirnation Performance

Motion estimation is not a memory bound computa-
tion and with our implementation no memory stalls
are encountered. The cycles not spent computing
absolute-difference-accumulation operations are due
to initialization, finalization, reconfiguration, and the
loading of super QWs, For an image of size 720 x 576,
using RaPiD-1, loading the super QW costs 18,432
cycles for motion estimation of one frame®. The over-
head of loading and reconfiguration time take less than
0.03% of the total number of cycles. As a result, a
RaPiD-1 array performs close to its peak speed of 1.6
GOPS (where GOPS is a billion absolute-difference—
accurmnulates per second).

The speedup of motion estimation scales well as the
data size grows and with future versions of RaPiD. As
data size grows, the cycles used to load super QWs will
grow linearly, while the cycles spent in computation
grow with the square of the data size. Thus as the
data size grows a larger percentage of cycles will be
spent computing.

Future versions of RaPiD will have more stages and
larger local memories per stage, increasing the number
of RBs per super RB and thus the amount of paral-
lelism. Typical images also use 8-bit data, allowing

IThe super QW must be preloaded 576/18 times and o preload
takes 16 + 32 cycles, resulting in 18,432 cycles,

114

us to double gauge RaPiD’s 16-bit data path, gaining
another factor of two in speedup.

7 Parametric Curve Generation

This section describes how arbitrary 2-D Bézier curves
with four control points® can be computed by RaPiD
using Apex, an architecture for generating a large class
of parametric curves and surfaces [2]. Apex differs
from the previous applications in that it maps a tri-
angular data-flow onto RaPiD as shown in Figure 16.
Each node in the tree performs a weighted average
on the two inputs values and passes the result to the
parent node. In symbolic form this is equivalent to

Valt) & (1=1)Vjp +tVoigng = Viett +(Vight —Vefe)t

The root node produces a new point of the Bézier
curve for each t. The nodes are mapped onto the
RaPiD stages in the order indicated by the numbers
inside the nodes (Figure 16). This particular mapping
minimizes the communication between nodes.

Qr
%

9
SN
N

@

A S ‘\‘V*/@\V

Figure 16: Data-flow graph for compuiation of the
Bézier curve Q, described by the control points V;.
Bach node performs a weighted average (weights are
edge labels) of its two inputs.

7.1 Apex Implementation

The algorithm can be split into initialization and coImn-
putation. During initialization, the control points are
loaded (e.g. stages 1, 2, and 4 in Figure 16) and a
At increment is specified for t. Then the repetitive
computation starts in which each node increments its
private copy of ¢ by At and performs the required com-
pufation. During the computational phase, no further
external inputs are required.

Computing a 2-D Bézier curve produces two coor-
dinate values per point. The two values tan be com-
puted independently. Since we only need six stages

YWith very little additional effort this can be changed to Bézier
curves of arbitrary dimension and with up to six control points on
a 16-cell RaPiD array,

Petitioner Microsoft Corporation - Ex. 1066, p. 73

per coordinate value (see Figure 17), both can be com-
puted in parallel using a total of twelve stages.

Basic coanputatinn: {oghi-lefiy * | + Jen

{ Y
|

Teln vl
ey {
Cell

Figure 17: Netlist for one cell of Apex. The dt register
is loaded [rom a datapath (not shown) before COTgIU-
tation begins. Leaf nodes have two additional registers
holding the constant control points.

To
Nesi
Cell

gl ke

The accuracy and resolution is limited by that ¢ and
At which in our current implementation is represented
by a 16 bit register. The value £ can be computed
in the first stage using two registers (i.e. 32 bits) to
substantially reduce the forward differencing errors. It
would then propagate down the pipeline.

7.2 Apex Performance

Apex outputs a new point of the Bézier curve every
cycle with relatively small initialization overhead. If
we assume that 100 1000-point curves are displayed
before reconfiguration is necessary, the setup overhead
is only 0.2% for RaPiD-1 (Section 2.3) and it would
perform at nearly 1.2 GOPS (where one OP is one
weighted average). This is close to peak performance
with the small loss in performance due to the fact that
four cells are not used in the computation.

8 Conclusion and Future Directions

RaPiD represents an efficient configurable computing
solution for regular computationally-intensive appli-
cations. In this paper, we have described how four
different applications are mapped to the RaPiD array.
These applications require a particular set of archi-
tectural features provided by RaPiD. We believe this
feature set enables RaPiD to perform a wide range
of different computations. By combining the appro-
priate amount of static and dynamic control, RaPiD
achieves substantially reduced control overhead rela-
tive to FPGA-based and general-purpose processors.
RaPiD is optimized for highly predictable and regular
computations, reducing the control overhead, The as-
sumption is that RaPiD will be integrated closely with
a RISC engine on the same chip. The RISC would
control the overall computational flow, performing the
unstructured computations which it does best, while
farming out the heavy-duty, brute-force computation
to RaPiD.

115

Several challenges remain. The range of RaPiD ap-
plications needs to be extended, and integrated appli-
cations comprising different computations need to be
investigated. The RaPiD B programming model needs
to be evaluated and new compiler optimizations im-
plemented. Finally, we would like to investigate how
parallel language and compiling methods can be ap-
plied to programming RaPiD applications at a higher
level.

Acknowledgments

We would like to thank Larry McMurchie and Chris
Fisher for their contributions to the RaPiD project.

References

(1] J. M. Arnold et al. The Splash 2 processor and
applications. In Proceedings IEEE International
Conference on Computer Design: VLSI in Com-
puters and Processors, pages 482-5. IEEE Com-
put. Soc. Press, 1993,

T. DeRose et al. Apex: two architectures for gener-
ating parametric curves aud surfaces. Visual Com-
puter, 5:264-76, 1989.

C. Ebeling, D. C. Cronguist, and P. Franklin.
RaPiD—reconfigurable pipelined datapath. In
R. Hartenstein and M. Glesner, editors, 6th Inter-
national Workshop on Field-Programmable Logic
and Compilers, Lecture Notes in Computer Sci-
ence, pages 126-135, Springer-Verlag, September
1996,

H. Kung. TLet’s design algorithms for VLSI
systems. Technical Report CMU-CS-79-151,
Carnegie-Mellon University, January 1979.

(2]

[4]

P. Lee and Z. M. Kedem. Synthesizing linear ar-
ray algorithms from nested FOR loop algorithms.
IEEE Transactions on Computers, 37(12):1578—
98, 1988.

C. E. Leierson and J. B. Saxe. Retiming syn-
chronous circiitry. Algorithmica, 6:5-35, 1991,

D. I. Moldovan and J. A. B. Fortes. Partition-
ing and mapping algorithms into fixed size sys-
tolic arrays. IEEE Transactions on Computers,
C-35(1):1-12, 1986.

[8] K. A. Vissers et al. Architecture and progranuning,
of two generations video signal processors. Micra-
processing & Microprogramming, 41(5-6):373-90,
1995.

[9) J. E. Vuillemin et al. Programmable active
memories: reconfigurable systems come of age.
IBEE Transactions on Very Large Seale Integra-
tion (VLSI) Systems, 4(1):56-69, 1996.

[6]
[7]

Petitioner Microsoft Corporation - Ex. 1066, p. 74

Attachment 1B

Petitioner Microsoft Corporation - Ex. 1066, p. 75

Mapping applications to the RaPiD configurable architecture https://www.computer.org/csdl/proceedings/fcem/1997/8159/00/8159...

1 of4

IEEE) computer society ¢
0 lE E E (http://wwiw.ieee.org)

CSDL Home (/esdl) » F (/esdl/proceedings/f/list.html) » FCCM (/csdl/proceedings/fccm/index.html) » 1997 (/csd |/proceedings/fccm /1997
{index.html) » TABLE OF CONTENTS (/csdl/proceedings/fccm/1997/8159/00/index.html)

Search the CSDL Q

Mapping applications to the RaPiD configurable architecture

(/csdl/proceedings/fccm/1997/8159/00/81590106-abs. html)

Field-Programmable Custom Computing Machines, Annual IEEE Symposium on (1997)

Napa Valley, CA

Apr. 16, 1997 to Apr. 18, 1997

ISSN: 1082-3409

ISBN: 0-8186-8159-4

pp: 106

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/FPGA.1997,624510 (http://doi.ieeecomputersociety.org/10.1109/FPGA.1997.624610)

C. Ebeling (/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=d|&
searchText=C.+Ebeling) , Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA

D.C. Cronquist (/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=d|&
searchText=D.C.+Cronquist) , Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA

P. Franklin (/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=d|(&
searchText=P.+Franklin) , Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA

J. Secosky (/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=d|&
searchText=J.+Secosky) , Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA

S.G. Berg (/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=d(&
searchText=S.G.+Berg) , Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA

ABSTRACT

The goal of the RaPiD (Reconfigurable Pipelined Datapath) architecture is to provide high performance configurable computing
for a range of computationally-intensive applications that demand special-purpose hardware. This is accomplished by mapping
the computation into a deep pipeline using a configurable array of coarse-grained computational units. A key feature of RaPiD is
the combination of static and dynamic control. While the underlying computational pipelines are configured statically, a limited
amount of dynamic control is provided which greatly increases the range and capability of applications that can be mapped to
RaPiD. This paper illustrates this mapping and configuration for several important applications including a FIR filter, 2-D DCT,
motion estimation, and parametric curve generation; it also shows how static and dynamic control are used to perform complex
computations.

INDEX TERMS

motion estimation; RaPiD configurable architecture; mapping applications; reconfigurable pipelined datapath architecture; high
performance configurable computing; special-purpose hardware; deep pipeline; coarse-grained computational units;
computational pipelines; dynamic control; FIR filter; 2-D DCT; motion estimation; parametric curve generation; complex
computations

Petitioner Microsoft Corporation SEX29b%4) po7eM

2 of4

i & O e W e N e NN e B

CITATION

S. Berg, D. Cronquist, J. Secosky, P. Franklin and C. Ebeling, "Mapping applications to the RaPiD configurable architecture,” Field-
Programmable Custom Computing Machines, Annual IEEE Symposium on(FCCM), Napa Valley, CA, 1997, pp. 106.

doi:10.1109/FPGA.1997.624610

FULL ARTICLE

@ ane

CITATIONS

SEARCH

PDF
BUY
RSS Feed (/web/csdl|/rss-feeds)

SUBSCRIBE (/web/csdl/subscribe/)

Plain Text (https://cs- b
services.computer.org/csdl/citation
/proceedings/ascii/fccm/1997

/8159/00/81590106)

RIS (https://cs-
services.computer.org/csdl/citation
[proceedings/ris/fccm/1997/8159
/00/81590106)

BibTex (https://cs-
services.computer.org/csdl/citation
/proceedings/bibtex/fccm/1997
/8159/00/81590106)

Articles by C. Ebeling (/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=d|&

searchText=C.+Ebeling)

Articles by D.C. Cronquist {/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=d|&

searchText=D.C.+Crongquist)

Articles by P. Franklin (/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=d|&

searchText=P.+Franklin)

Articles by J. Secosky (/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&

searchText=J.+Secosky)

Articles by S.G. Berg (/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=d|&

searchText=S.G.+Berg)

SHARE

Digg (http://digg.com
[submit?url=http%3A
//doi.ieeecomputersociety.org
/10.1109/FPGA.1997.624610&
title=Mapping applications to the

Facebook
(https://www.facebook.com
/sharer/sharer.php?u=httpd3A
//doi.ieeecomputersociety.org
/10.1109/FPGA.1997.624610&

Googlet (https://plus.google.com Linkedin
[share?url=http%3A
//doi.ieeecomputersociety.org
/10.1109/FPGA.1997.624610)

(https://www.linkedin.com
[shareArticle?url=http%3A
//doi.jeeecomputersociety.org
/10.1109/FPGA.1997.624610&

6/25/2018, 11:36 AM

Petitioner Microsoft Corporation - Ex. 1066, p. 77

Mapping applications to the RaPiD configurable architecture https://www.computer.org/csdl/proceedings/fccm/1997/8159/00/8159...

RaPiD configurable architecture) title=Mapping applications to the title=Mapping applications to the Reddit (http://reddit.com
RaPiD configurable architecture) ~ RaPiD configurable architecture) [submit?url=http%3A
//doi.iececomputersociety.org
/10.1109/FPGA.1997.624610&
title=Mapping applications to the
RaPiD configurable architecture)

Tumblr (http://www.tumblr.com Twitter (https://twitter.com Stumbleupon
[share/link?url=http%3A [share?url=http%3A (http://www.stumbleupon.com
{[doi.ieeecomputersociety.org /[doi.ieeecomputersociety.org /submit?url=http%3A
{/10,1109/FPGA.1997.624610& /10.1109/FPGA.1997.624610& //doi.ieeecomputersociety.org
name=Mapping applicationsto text=Mapping applications to the /10.1108/FPGA.1997.624610&
the RaPiD configurable RaPiD configurable architecture) title=Mapping applications to the
architecture) RaPiD configurable architecture)

3of4 Petitioner Microsoft Corporation 6/ExX2013661:36 78V

Mapping Applications to the RaPiD Configurable Architecture*

Carl Ebeling, Darren C. Cronquist, Paul Franklin, Jason Secosky, and Stefan G. Berg

Department of Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 98195-2350

Abstract

The goal of the RaPiD (Reconfigurable Pipelined
Datapath) architecture is to provide high per-
formance configurable computing for a range of
computationally-intensive applications that demand
special-purpose hardware. This is accomplished by
mapping the computation into a deep pipeline using
a configurable array of coarse-grained computational
units. A key feature of RaPiD is the combination
of static and dynamic control. While the underly-
ing computational pipelines are configured statically,
a limited amount of dynamic control is provided which
greatly increases the range and capability of applica-
tions that can be mapped to RaPiD. This paper illus-
trates this mapping and configuration for several im-
portant applications including a FIR filter, 2-D DCT,
motion estimation, and parametric curve generation;
it also shows how static and dynamic control are used
to perform complex computations.

1 Imntroduction

Field-programmable custom computing machines
have attracted a lot of attention recently because of
their promise to deliver the high performance provided
by special purpose hardware along with the flexibil-
ity of general purpose processors. Unfortunately, the
promise of configurable computing has yet to be real-
ized in spite of some very successful examples [1, 9].
There are two main reasons for this.

First, configurable computing platforms are cur-
rently implemented using commercial PPGAs. These
FPGAs are necessarily very fine-grained so they can
be used to implement arbitrary cireuits, but the over-
head of this generality exacts a high price in density
and performance. Compared to general purpose pro-
cessors (including digital signal processors), which use
highly optimized functional units that operate in bit-
parallel fashion on long data words, FPGAs are some-
what inefficient for performing logical operations and

*This work was supported in Cpﬂ.rt by the Defense Advanced
Research Projects Agency under Contract DAAH04-94-G0272, D.
Cronquist was supported in ¥art by an IBM fellowship. P. Franklin
wag supported by an NSF fellowship,

0-8186-8159-4/97 $10.00 ® 1997 IEEE

106

even worse for ordinary arithmetic. FPGA-based com-
puting has the advantage only on complex bit-oriented
computations like count-ones, find-first-one, or com-
plicated bit-level masking and filtering.

Second, programming an FPGA-based configurable
computer is akin to designing an ASIC. The program-
mer either uses synthesis tools that deliver poor den-
sity and performance or designs the circuit manually,
which requires both intimate knowledge of the FPGA
architecture and substantial design time. Neither al-
ternafive is attractive, particularly for simple compu-
tations that can be described in a few lines of C code.

Our response to these two problems is RaPiD, a
coarse-grained configurable architecture for construct-
ing deep computational pipelines. RaPiD is aimed at
regular, computation-intensive tasks like those found
in digital signal processing (DSP). RaPiD provides a
large number of ALUs, multipliers, registers and mem-
ory modules that can be configured into the appropri-
ate pipelined datapath. The datapaths constructed
in RaPiD are linear arrays of functional units com-
municating in mostly nearest-neighbor fashion. Sys-
tolic algorithms [4], for example, map very well into
RaPiD datapaths, allowing us to take advantage of
the considerable research on compiling computations
to systolic arrays [5, 7]. However, RaPiD is not limited
to implementing systolic algorithms; a pipeline can be
constructed which comprises different computations at
different stages and at different times.

We begin with an overview of the RaPiD architec-
ture; for a more detailed description see [3]. We then
give a general description of how computations map
to RaPiD using a FIR filter as an example, and then
present how the architectural features of RaPiD are
used to perform more complex computations found in
2-D DCT, motion estimation, and parametric curve
generation.

2 The RaPiD Datapath Architecture

RaPiD is a linear array of functional umits which
is configured to form a mostly linear computational
pipeline. This array of functional units is divided into
identical cells which are replicated to form a complete
array. Figure 1 shows the cell used in RaPiD-1, the

Petitioner Microsoft Corporation - Ex. 1066, p. 79

first version of the RaPiD architecture. This cell com-
prises an integer multiplier, three integer ALUs, six
general-purpose “datapath registers” and three small
local memories. A typical single-chip RaPiD array
would contain between 8 and 32 of these cells.

datapath
registers
[]]
/ \ R R ,:
al 1Ak A A|- A Apb
B L M 1 L M [L M
ul] {1 ul] 14 u| T
B it 8 Rl I b ol bl B ot i A 4 i
=i 15
) m n
Tl : f
| 4 T REL
1 f il
—'.’ 11 T ' 11
1 al; 1
/ N

bus connectors input muxes output drivers

Figure 1: A basic RaPiD cell which is replicated left to
right to form a complete chip. RaPiD-1 contains 16
cells similar to this one, with fourteen 16-bit buses.

2.1 Datapath Composition

The functional units are interconnected using a set
of segmented buses that run the length of the data-
path. The functional units use a n : 1 multiplexer to
select their data inputs from one of the n — 2 bus seg-
ments in the adjacent tracks. The additional inputs
provide fixed zero or feedback lines, which can be used
to clear and hold register values, or to use an ALU as
an accumulator. Each functional unit output includes
optional registers to accommodate pipeline delays and
a set of tristate drivers to drive their output onto one
or more bus segments.

The buses in different tracks are segmented into
different lengths to make the most efficient use of the
connection resources. In some tracks, adjacent bus
segments can be connected together by a bus connec-
tor as shown in Figure 1. This connection can be pro-
grammed in either direction via a unidirectional buffer
or pipelined with up to three register delays, allowing
data pipelines to be built in the bus structure itself.

RaPiD’s ALUs perform the usual logical and arith-
metic operations on one word of data. The ALUs
can be chained for wide-integer operations. The
multiplier inputs two single-word numbers and pro-
duces a double-word result, shifted by a statically pro-
grammed amount to maintain a given fixed-point rep-
resentation. Both words of the result are available as
separate outputs.

The datapath registers serve a variety of purposes
in RaPiD. These registers can be used to store con-
stants loaded during initialization and temporary val-

107

ues. They can be used as additional multiplexers to
simplify control; like any functional unit, the regis-
ters can be disabled. They are also used while routing
RaPiD applications to connect bus segments in differ-
ent tracks and/or for additional pipeline delays.

In many applications, the data is partitioned into
blocks which are loaded once, saved locally, reused as
needed, and then discarded. The local memories pro-
vided in each cell of the datapath serve this purpose.
Each local memory has a specialized datapath regis-
ter used as an address register; one of the bus inputs
to this address register is replaced by an incrementing
feedback path. Like the SILOs found in the Philips
VSP (8], this supports the common case of sequential
memory accesses. More complex addressing patterns
can be generated using registers and ALUs in the data-
path,

Input and output data enter and exit RaPiD via
I/O streams at each end of the datapath. Each stream
contains a FIFO filled with data required or with re-
sults produced by the computation. The datapath ex-
plicitly reads from an input stream to obtain the next
input data value and writes to an output stream to
store a result.

External memory operations are carried out inde-
pendent of the RaPiD array via three I/O streams
by placing FIFOs between the array and a memory
controller. In addition to carrying out the memory
operations, the memory controller generates statically
determined sequences of addresses for each stream. If
the datapath reads a value from an empty FIFO or
writes a value to a full FIFO, the datapath is stalled
until the FIFQ is ready.

2.2 Control Path

For the most part, the structure of a pipeline is stat-
ically configured. However, there are almost always
some pipeline control signals that must be dynamic.
For example, constants are loaded into datapath regis-
ters during initialization but then remain unchanged.
The load signals of the datapath registers thus take on
different, values during initialization and computation.
More complex examples include double-buffering the
local memories and performing data-dependent calcu-
lations.

The control signals are thus divided into static con-
trol signals provided by configuration memory as in
ordinary FPGAs, and control signals which can be dy-
namically programmed on every cycle. RaPiD is pro-
grammed for a particular application by first mapping
the computation onto a datapath pipeline. The static
programming bits are used to construct this pipeline
and the dynamic programming bits are used to sched-
ule the datapath operations over time. These dynamic
control bits are provided by a small pipelined control
path, not by the more typical local microprogrammed,
SIMD, or VLIW control.

Petitioner Microsoft Corporation - Ex. 1066, p. 80

Dynamic control is implemented by inserting a few
“context” bits each cycle into a pipelined control path
that parallels the datapath. This context contains
all the information required by the various pipeline
stages to compute their dynamic control signals. The
control path contains 1-bit segmented buses similar in
structure to the datapath buses, as shown in Figure 2.
(Signals which can be dynamic but do not need to
change during a particular computation are connected
to the static zero line.) Control values are inserted by
a global pipeline controller at one end of the control
path and are passed from stage to stage where they
are applied to the appropriate control signals. Since
applications generally use only a few dynamic control
signals and use similar pipeline stages, the number of
control signals in the control path is relatively small.

alu

input status

M
zel

input
mux alu

el control

L]
5

Figure 2: Dynamic control generation for part of a
RaPiD cell; these control buses are one bit wide.

Each dynamic control signal is derived from the in-
formation contained in the control path. Usually the
signal is simply connected to one of the bits in the
control path, but in more complex cases lookup-tables
embedded in the control path are used to compute
the control signal based on more information includ-
ing bits in the control path, status from ALUs in the
datapath, or feedback when implementing simple FSM
controllers. The generation of dynamic control is il-
lustrated in detail in the applications that follow.

2.3 RaPiD-1 Design Features

Most of the design and layout of the RaPiD-1 chip,
the first implementation of the RaPiD architecture,
is complete. This section presents those details of
RaPiD-1 useful in understanding the performance re-
sults discussed for each application presented in the
following sections.

RaPiD-1's datapath is based on 16-bit fixed-point
integers; to accommodate this, the multipliers can be
statically programmed to shift their 32-bit output ar-
bitrarily. Each RaPiD-1 cell contains three ALUs,
one multipliers, and three 32-word local memories.
Fourteen tracks are provided for the segmented data

108

buses, which are supplemented by the zero and feed-
back inputs available to each functional input. The
16 cells each have the functional units shown in Fig-
ure 1, in addition to control logic and up to 15 control
buses. The RaPiD-1 array is designed to be clocked
at 100MHz, and reconfiguration time for the array is
conservatively estimated to be 2000 cycles.

3 Programming Model

Mapping applications to RaPiD involves designing the
underlying datapath and providing the dynamic con-
trol required for the different parts of the computa-~
tion. The control design can be complicated because
control signals are generated at different times and
travel at different rates. We have designed the RaPiD
B programming language to accommodate these con-
trol patterns. Our RaPiD B compiler which produces
a placed and routed implementation along with the
dynamic control program is nearly complete. This sec-
tion first describes a FIR (Finite Impulse Response)
filter, a simple application useful for illustrating some
of the basic features of RaPiD. It then briefly presents
the timing models used by RaPiD B and by the re-
mainder of this paper.

3.1 FIR Filter Computation

Digital FIR filters are used in many signal processing
applications, typically for eliminating unwanted fre-
quency components from a signal. Figure 3a gives a
specification for a FIR filter with NumTaps taps and
NumX inputs. The filter weights are stored in the W
array, the input in the X array, and the output in the
Y array (starting at array location NumTaps — 1).
Figure 3b shows the entire computation required for a
single output of a 4-tap FIR filter.

tor 1 i= NumTaps-1 to NumxX-1
Y[i] :==0
for j := 0 to NumTaps-1
Y1) <= Y[+ X[-1*W[j)
en

end
(a)
,....)[9‘...A.XS,,.A.,XT,.A...XS,....,XS..,..,X4.,..,,.K3.,..‘.X?...A..,XL..,.J{D —
x X ® x

ww

Yo= >
(b)

Figure 3: FIR filter. (a) Algorithm. (b) Computation
for NumTaps=4 and i=6.

The circuit in Figure 4a performs the entire compu-
tation for one output value in a single cycle; it is easily
obtained by unrolling the inner loop of the program

Petitioner Microsoft Corporation - Ex. 1066, p. 81

in Figure 3a. Unfortunately, the circuit shown in Fig-
ure 4a has poor performance characteristics (note the
combinational path through all of the adders, which
scales linearly with the number of weights). A retimed
version of this circuit is shown in Figure 4b; the re-
timed circuit performs substantially better than the
original, particularly for larger computations.

Figure 4: Schematic diagrams for four-tap FIR filter
(a) as viewed in RaPiD B, grouping related compu-
tation and (b) as a high-performance pipelined imple-
mentation.

Specifying this retimed circuit directly is difficult
because of the complexity of the relative timing of the
internal data and control signals. It is much easier to
specify the computation somewhat naively as in Fig-
ure 4a, knowing that retiming can transform it into
a high-performance, pipelined circuit. This becomes
particularly evident in circuits with more complicated
control, and when more aggressive steps, such as using
the pipeline stage available in RaPiD’s multiplier, are
needed to achieve the desired performance, Therefore,
the RaPiD B compiler retimes the resulting netlist
based on [6].

All of the applications presented in the following
sections have been specified in a preliminary ver-
sion of RaPiD B and simulated to validate the im-
plementations described and the accompanying cy-
cle count. For ease of explanation, the computations
shown throughout this paper are shown before the full
retiming performed by the RaPiD B compiler. A pre-
liminary version of the RaPiD B toolset is nearly com-
plete, including compilation, retiming, control synthe-
sis, and full placement and routing of the resulting
RaPiD circuit.

109

4 FIR Filter Implementation

4.1 Simple Case

As with most applications, there are a variety of ways
to map a FIR filter to RaPiD. The choice of mapping

is driven by the parameters of both the RaPiD ar-

ray and the application. For example, if the number
of taps is less than the number of RaPiD multipliers,
then each multiplier is assigned to multiply a specific
weight. The weights are first preloaded into datapath
registers whose outputs drive the input of a specific
multiplier. Pipeline registers are used to stream the
X inputs and Y outputs. Since each ¥ output must
see NumTaps inputs, the X and ¥ buses must be
pipelined at different rates. Figure 5a shows one cell
of the FIR filter (several stages are shown in Figure 4b)
with the X input bus doubly pipelined and the ¥ in-
put bus singly pipelined.

Hold 1 HIaH

*

=

=) Weighis and X values stream in, u“‘“ﬁfm
c;n——g Cell
Intermediate Y values stream pul.
e
(a)
* [a]
L
"]
s —H OUT
IN—S=2 o
(b)

Figure 5: (a) Netlist for one cell of the simple FIR
filter. (b) One tap of the FIR filter mapped to the
RaPiD array (this is replicated to form more taps).

This implementation maps easily to the RaPiD ar-
ray, as shown for one tap in Figure 5b. For clarity, all
unused functional units are removed, and used buses
are highlighted. The bus connectors from Figure 1 are
left open to represent no connection and boxed to rep-
resent a register. The control for this mapping consists
of two phases of execution: loading the weights and
computing the output results. In the first phase, the
weights are sent down the /N double pipeline along
with a singly pipelined control bit which connects the

Petitioner Microsoft Corporation - Ex. 1066, p. 82

input of each datapath register to the IN bus. When
the final weight is inserted, the control bit is switched,
and the input is connected fo the feedback line. Since
the control bit travels twice as fast as the weights,
each datapath register will hold a unique weight. No
special signals are required to begin the computation;
the second phase implicitly starts when the control bit
goes low.

4.2 Increasing the Number of Taps

If the number of taps exceeds the number of RaPiD
multipliers, the multipliers must be time-shared be-
tween several taps. This can be achieved in RaPiD
by using a local memory to store several weights per
stage. Figure 6 shows our implementation for this
mapping. Unlike the simple case, we make the arbi-
trary choice for doubly pipelining the Y output values
and singly pipelining the X input values,

Right RAM bolds intermadiate
¥ oulput values that shift down
wntil are senl 16 nexl slage,

DHacoHJ
{) In e
DHE
Cell

Figure 6: Netlist for one cell of extended FIR. fil-
ter. The top pipelined bus streams in the X inputs
(the weights during initialization) while the bottom bus
streams out the intermediate Y values.

Lefi RAM holds weights 1 be
mltiplicd with X inpuis,

mra

“_E Weights and X values sircam in |
Provious|
Cell ﬂ Tntermediate ¥ values siream ouL

As a new X is read from external memory, the first
stage replicates it and presents it to the input data-
path for several cycles. Each stage can multiply this
X by its weights in turn and add it to one of its stored
intermediate values. At this point a new X value will
be fetched from memory and the cycle repeats.

There are the same number of intermediate values
as there are weights per stage, These intermediate val-
ues are stored in a second local memory. Let’s exam-
ine the stage holding weights Wy, Wi, Wis, and Wi,
(four taps per stage). A new input value Xap appears
on the input datapath. In four cycles the partial sums
for Y75, Y74, Yo3, and Yrp will be computed. These
are stored in that order in the local memory holding
the intermediate values. At this point, X5p moves to
the next pipeline stage followed by the intermediate
value ¥73. The next input, Xs;, appears on the input
datapath along with the intermediate value Y7g from
the previous stage. Now the partial sums for Y74, Y75,
Y74, and Y73 are computed.

4.3 FIR Performance

When the number of taps is a multiple of 16 the
weights can be partitioned evenly across the stages

110

and the allocated functional units are fully utilized.
RaPiD-1 (Section 2.3) can therefore operate at very
near its peak performance of 1.6 GOPS (where GOPS
is a billion multiply-accumulates per second).

5 Discrete Cosine Transform

The discrete cosine transform (DCT) is used fre-
quently in signal processing and graphics applications.
For example, the 2-D DCT is used in JPEG/MPEG
data compression to convert an image from the spatial
domain to the frequency domain. A 2-D DCT can be
decomposed into two sequential 1-D DCTs. We first
describe how the 1-D DCT can be computed on RaPiD
and then show how two 1-D DCTs can be composed
to perform a 2-D DCT.

5.1 1-D DCT

An N-point 1-D DCT partitions an input vector A into
N-element sub-vectors, and for each resulting sub-
vector Aj computes

—] ul
i
Yhi = Z Qpp COS W(Z‘R +1) (1)
n=0

for 0 < i € N — 1, where ap, is the n-th element of
sub-vector Ay (and the (AN + n)-th element of vector
A).! The N? cosine terms are constant over all sub-
vectors and hence can be read once as precomputed

weights W where wp; = cos 75 (2n + 1). This reduces
Equation 1 to

-1
Yhi = Y GhnWni,

n=0

(2)

for 0 <i < N —1. By viewing input vector A and
weights W as matrices A and W, Equation 2 reduces
o the matrix multiply Y = A x W. Thus, to compute
a 1-D DCT, RaPiD performs a matrix multiply.

To implement an 8 point 1-D DCT on an 8 x 8
input matrix A (i.e. a 64-element vector), the entire
8% 8 weight matrix W is stored in RaPiD’slocal mem-
ories, one column per cell. Each cell of the resulting
pipeline is configured as shown in Figure 7. The A ma-
frix is passed through the array in row-major order.
Within each cell, the local memory address is incre-
mented each cycle, and a register accumulates the dot
product of the stored column and the incoming row.
When a cell receives the last element of a row, the
resulting product is passed down an output pipeline,
the address is cleared, and the cell is ready to compute
the product of the next row on the next cycle. This
effectively computes the matrix multiply of A x W.

!To praduce the final DOT result each yy;: must be multiplied
by v/ # B¢ where E; = < if i = 0 and E; =1 otherwise. For our

p}:musea we ignore this scaling factor and focus on the computation
O Yhi-

Petitioner Microsoft Corporation - Ex. 1066, p. 83

urmn of matsix W is read from RAM
RAM

Lace Datsf
1n Dutl

WaoH
i] Tl
m«:rﬂ Row of mairix A streams in ::.nl

cel | - %* celi
Row of the resulting product streams oot

Figure 7: Netlist for one cell of a matrizc multiply.
The top pipelined bus streams in the A matriz (in
row-magor order) while the bottom bus streams out
the resulling matriz product (also in row-magor order).
The top bus also streams the W columns into the local
memories prior to the computation.

5.2 2-D DCT

An N x N 2-D DCT partitions an input matrix into
sub-matrices of size NV x N, and for each resulting
sub-matrix A, computes

N-1N—-1

= mi mJ
Yii = Z Z Gmn COS ﬁ@m + 1) cos ﬁ@n +1)
m=0 n=0
(3)

for 0 <i,j < N—1.2 Aswith the 1-D DCT, Equation
3 is reduced using the N*? precomputed W weights,
yielding

N-1N-1

Yji = Z z CmnWmilWn;

m=0 n=0
for 0 <4,j < N — 1. Extracting w,,; from the inner
summation leaves

(4)

N-1
Fmj = Z Gmnlng, (5)
n=>0
and thus
N—-1
Yii = z ZmjWmi (6)
m=0

for0<i,j <N -1.

As seen in Equation 5 and Equation 6, both Zmi
and y;; are equivalent to N x N matrix multiplies.
However, since the z,,; values are produced in row-
major order but required in column-major order, the
results from the 2,; DCT must be transposed prior
to computing y;; as illustrated in Figure 8. In addi-
tion, since both input streams are read in row-major
order, it might be desirable to produce row-major out-
put (potentially reducing memory stalls), requiring yet
another transform (i.e. output y;; instead of y;;). The
resulting computation is ((A x W)T x W)7,

*To produce the final DCT result each y;; must be multiplied by
#E:E;. As with 1-D DCT, we ignore this scaling factor and focus
on the computation of yj;.

111

&m| N-Point | Zm; o Zim | N-Point | Yii
—-—a s
1-D DCT 1-D DCT

Figure 8: 2-D N x N DCT

We show the implementation of an 8 x 8 2-D DCT
on a 16-cell RaPiD array. Consider an M x N image
and an 8 x 8 weight matrix W. First, the image is
divided into X sub-images of size 8 x 8. The com-
putation for each sub-image A is outlined in Figure 9.

Intermediate results
g stored in RAM and
transposed by control
/ T~

| x W) x W)

Computed by
last 8 stages

((

Computed by
first 8 stages

MxN

Figure 9: To compute 2-D DCT, an M x N image
is partitioned into 8 x 8 sub-images. RaPiD computes
each 1-D DCT by multiplying the sub-image by an 8 x 8
weight matriz.

Since a 2-D DOT performs two multiplies by the
same weight matrix, W is loaded only once: one col-
umn per cell in both the first 8 cells and last 8 cells.
The transpose in between matrix multiplies is per-
formed with two local memories per cell: one to store
products of the current sub-image and the other to
store the products of the previous sub-image. During
the computation of the current sub-image, the trans-
pose of the previous sub-image computation is passed
to the next 8 cells. The datapath for one RaPiD cell
of a 2-D DCT is shown in Figure 10.

One RAM stores
Column of matrix W current 1-D DCT results.
is read from RAM. “cmmﬁﬁ-‘
previous 1-D
RAM Pestorm a 2
o o *aw
L)
[I
From - To
Previous Row of matsix A sireams i, u
Cell [Celi
Column of 1-D DCT results flows not,

Figure 10: Netlist for one cell of 2-D DCT. The top
pipelined bus sireams in the A matriz while the boi-
tom bus sireams out resulting 1-D DCT, transposed.
The top bus also streams the W columns into the lo-
cal memories prior to the computation.

5.3 DCT Control

Prior to computation, a 2-D DCT must load the W
matrix into the local memories, one column per stage.

Petitioner Microsoft Corporation - Ex. 1066, p. 84

To take advantage of pipelined control, weights are
passed down a data-bus in row-major order, while a
control signal, traveling twice as slow as the data,
raises the write signal of the appropriate local mem-
ories. As a result, all weights of the DCT can be
preloaded using a single control bus. Most RaPiD
control signals fit into such a simple, pipelined model
since an operation occurring in one RaPiD stage usu-
ally occurs in the next stage on the next cycle.

Sometimes control is required which ‘does not fit
into the simple, pipelined model. At the end of the
first 1-D DCT computation, results are stored one col-
umn per stage. To flow these results out in column-
major order (that is, perform the transpose), the first
local memory must be completely emptied onto the
output bus, followed by the second, third, etc. Hence,
the “empty” control signal must stay on for eight con-
secutive cycles in the first stage, and then eight cycles
in the second stage, etc. Possible solutions include
dedicating a control bus to every stage or using one
control bus with eight registers per stage. The solution
requiring the fewest resources configures two buses and
one 3-LUT per stage as a simple finite state machine,
as shown in Figure 11.

DATAPATH

T(Token) S (Swn/Swop) P (Previous siage’s inken)

Figure 11: A simple state machine performs the trans-
pose using two buses, one LUT, and three registers per
stage.

Three control registers are used in the state ma-
chine: T is the token, S is the start/stop bit, and P
is the previous stage’s token delayed by a cycle. The
LUT is configured as a multiplexer of P and 7' with
select bit S (i.e. T = S&P+!S&T). If S is low, the to-
ken is held; if S is high, the token is passed to the next
stage. When a stage has a token, its results are emp-
tied from a local memory onto the output bus. This
operation repeats in each consecutive stage, effectively
transposing the 1-D DCT results.

To initiate the transpose, the stream controller
places a one into the first P register every 64 cycles
and a one into the first S register every 8 cycles. No-
tice that the token hold length is solely determined
by the frequency of the start/stop signal and does not
affect the number of control buses, LUTs, or registers

112

needed. Thus, the size of this state-machine control
is fixed no matter how long each stage must hold a
token.

5.4 DCT Performance

A 2-D DCT performs many consecutive 8 x 8 matrix
multiplies, allowing initialization, finalization, and re-
configuration times to be small compared to the to-
tal computation performed. For example, RaPiD-1
(Section 2.3) incurs a setup overhead of only 0.5% to
compute the 2-D DCT of a 720 % 576 image. As a
result, RaPiD-1 performs very close to its peak of 1.6
GOPS on 2-D DCT (where GOPS is a billion multiply
accumulates per second).

6 Motion Estimation

Motion estimation is used in video data compression
to reduce the amount of data required to represent
a video frame. In most cases, objects do not move
very much from one frame to the next. In motion
estimation, a block in a frame is represented by the
address of the most similar nearby block in the previ-
ous frame plus the differences between the two blocks.
This section describes implementing motion estima-
tion on RaPiD.

Motion estimation has few data dependencies, pro-
viding flexibility in the order of computations and
greater parallelism. RaPiD favors computations that
are not memory bound. The prodigious amount of
computation and few memory accesses make motion
estimation an ideal candidate for RaPiD.

To compute the motion estimation of an M x N
reference image, the image is divided into 22X 8 x 8
reference blocks (RB). The reference blocks are com-
pared with blocks of a prior video frame, the query
image. For each reference block RaPiD computes the
minimum absolute block difference (point-to-point dif-
ference) of all possible positions of the RB within a
24 x 24 query window (QW) of the query image, as
shown in Figure 12. The result is a vector which points
to the RB yielding the minimum block difference.

6.1

With a 16-stage RaPiD array we implement motion
estimation using 16 x 16 super reference blocks, which
are comprised of four 8 x 8 reference blocks, and 32x 32
super query windows. The super RB and a 32 x 16 sec-
tion of the query window are stored in RaPiD’s local
memories, one column per stage. This mapping yields
the best reuse of RB and QW wvalues for the avail-
able local memory. A stage of the resulting pipeline is
shown in Figure 13.

The block difference between a super RB and super
QW is computed row by row. For each row, a stage
performs an absolute-difference and accumulates the

Motion Estimation Implementation

Petitioner Microsoft Corporation - Ex. 1066, p. 85

Image
Query Window
24
24
17*17 possible \
RB positions Reference Block

MxN

Figure 12: The image is partitioned into 8 x 8 RBs.
Motion estimation of the RB within a 24 x 24 QW
is determined by finding the minimum block difference
for all positions of the RB within the QW.

Super RB Column

e Seper BB RAM holds tia super RB RaPID
i with, he

hile o

RB's
vahues are prelosded into the olher Soper RE RAM.

T
T

Froin

L

Cal cell

QW Pipe

B Pipa

1=

| nelibdrubsiracs

"Soe Figare 14.

Figure 13: Cell configuration for motion estimation
compute stages. 16-bit data and 1-bit contrel lines
are drawn in separate bozes. To achieve an absolute—
difference the sign bit of the Subtract ALU controls the
function of the +/- ALU.

113

result with the absolute-difference of the prior stage.
This operation happens in the same way as the FIR
filter of Section 4. The last stage totals all of the row
sums to produce the block difference and determines
the minimum block difference for each RB of the super

The netlist for motion estimation, presented in Fig-
ure 13, shows how two dynamic control lines con-
trol an ALU and super RB local memory selection.
The absolute-difference-accumulate operation is im-
plemented by controlling the function of the +/- ALU
with the sign of the subtract ALU,

The local memory used for the super RB is double-
buffered, with one local memoryused for the current
computation while the other is being preloaded with
the next super RB. The parity control signal is used to
determine which local memory to use for computation
and which to use for preloading. The parity signal
toggles when a motion vector for the current super
RB is output,

6.2 Motion Estimation Data Flow

To obtain the most reuse of data we perform block
differences in column-major order. That is, the super
RB starts in the upper right corner of the super QW
and proceeds down the rows before shifting left one
column.

A left shift of the super RB is implemented by shift-
ing the super QW columns right, to the next stage.
When a super QW value is no longer needed, the value
is shifted to the next stage and a new value is shifted
in from the prior stage. The first stage gets new super
QW values from the QW input stream.

Super QW values are reused between block differ-
ences by storing the address of the starting row of
the super QW in the StartRow register (Figure 14).
When a block difference completes, the QW column
local memory address is set to StartRow and StartRow
is incremented. StartRow is reset when the super RB
is shifted left one column.

Super Super
RB Column QW Column

Figure 14: The super RB column shifts down through
super QW column, performing o block difference at
each step. StartRow is the address of the first row of
the block difference.

Petitioner Microsoft Corporation - Ex. 1066, p. 86

Moving the super RB from right to left allows super
QW values to be reused between sets of block differ-
ences. Figure 15 shows how the last columns of the
current super QW are the first columns used in the
super QW of the next super RB computation. This
data motion removes the need to preload super QW
values for the next set of block differences.

RAeused Query
Window Values

Current Super
Reference Block &
Query Window

Next Super
Reference Block &
Query Window

e

Figure 15: The last super QW columns used to com-
pute motion estimation for a super RB are reused in
the computation for the next RB.

The only time data loading stalls computation is
the beginning of a row of super RBs. In this case
the required super QW values were not used with the
prior super RB and must be loaded. The next section
shows that the cost is minor, being amortized over a
long computation.

6.3 Motion Estimation Performance

Mbotion estimation is not a memory bound computa-
tion and with our implementation no memory stalls
are encountered. The cycles not spent computing
absolute-difference-accumulation operations are due
to initialization, finalization, reconfiguration, and the
loading of super QWs. For an image of size 720 x 576,
using RaPiD-1, loading the super QW costs 18,432
cycles for motion estimation of one frame®. The over-
head of loading and reconfiguration time take less than
0.03% of the total number of cycles. As a result, a
RaPiD-1 array performs close to its peak speed of 1.6
GOPS (where GOPS is a billion absolute—difference—
accumulates per second).

The speedup of motion estimation scales well as the
data size grows and with future versions of RaPiD. As
data size grows, the cycles used to load super QWs will
grow linearly, while the cycles spent in computation
grow with the square of the data size. Thus as the
data size grows a larger percentage of cycles will be
spent computing,.

Future versions of RaPiD will have more stages and
larger local memories per stage, increasing the number
of RBs per super RB and thus the amount of paral-
lelism. Typical images also use 8-bit data, allowing

*The super QW must be preloaded 576/16 times and a preload
takes 16 % 32 cycles, resulting in 18,432 cycles.

114

us to double gauge RaPiD’s 16-bit data path, gaining
another factor of two in speedup.

7 Parametric Curve Generation

This section describes how arbitrary 2-D Bézier curves
with four control points* can be computed by RaPiD
using Apex, an architecture for generating a large class
of parametric curves and surfaces [2]. Apex differs
from the previous applications in that it maps a tri-
angular data-flow onto RaPiD as shown in Figure 16.
Each node in the tree performs a weighted average
on the two inputs values and passes the result to the
parent node. In symbolic form this is equivalent to

Vel®) (1=OViegy +Vright = Viek + (Vright — Vieg)t
The root node produces a new point of the Bézier
curve for each . The nodes are mapped onto the
RaPiD stages in the order indicated by the numbers
inside the nodes (Figure 16). This particular mappin g
minimizes the communication between nodes.

Figure 16: Data-flow graph for computation of the
Bézier curve Q; described by the control points Vi,
Each node performs a weighted average (weights are
edge labels) of its two inputs.

7.1 Apex Implementation

The algorithm can be split into initialization and com-
putation. During initialization, the control points are
loaded (e.g. stages 1, 2, and 4 in Figure 16) and a
At increment is specified for t. Then the repetitive
computation starts in which each node increments its
private copy of ¢ by At and performs the required com-
putation. During the computational phase, no further
external inputs are required.

Computing a 2-D Bézier curve produces two coor-
dinate values per point. The two values can be com-
puted independently. Since we only need six stages

AWith very little additional effort this can be changed to Bézier
curves of arbitrary dimension and with up te six control points on
a 16-cell RaPiD array.

Petitioner Microsoft Corporation - Ex. 1066, p. 87

per coordinate value (see Figure 17), both can be com-
puted in parallel using a total of twelve stages.

Basic campuiation: (right-left) * L+ lef|

gl |
[
From | Telt node

Figure 17: Netlist for one cell of Apex. The dt register
15 loaded from a datepath (not shown) before compu-
tation begins. Leaf nodes have two additional registers
holding the constant control points.

[

%

ALU—-

Tn
Next
[~ call

right node

The accuracy and resolution is limited by that ¢ and
At which in our current implementation is represented
by a 16 bit register. The value ¢ can be computed
in the first stage using two registers (i.e. 32 bits) to
substantially reduce the forward differencing errors. It
would then propagate down the pipeline.

7.2 Apex Performance

Apex outputs a new point of the Bézier curve every
cycle with relatively small initialization overhead. If
we assume that 100 1000-point curves are displayed
before reconfiguration is necessary, the setup overhead
is only 0.2% for RaPiD-1 (Section 2.3) and it would
perform at nearly 1.2 GOPS (where one OP is one
weighted average). This is close to peak performance
with the small loss in performance due to the fact that
four cells are not used in the computation.

8 Conclusion and Future Directions

RaPiD represents an efficient configurable computing
solution for regular computationally-intensive appli-
cations. In this paper, we have described how four
different applications are mapped to the RaPiD array.
These applications require a particular set of archi-
tectural features provided by RaPiD. We believe this
feature set enables RaPiD to perform a wide range
of different computations. By combining the appro-
priate amount of static and dynamic control, RaPiD
achieves substantially reduced control overhead rela-
tive to FPGA-based and general-purpose processors.
RaPiD is optimized for highly predictable and regular
computations, reducing the control overhead. The as-
sumption is that RaPiD will be integrated closely with
a RISC engine on the same chip. The RISC would
control the overall computational flow, performing the
unstructured computations which it does best, while
farming out the heavy-duty, brute-force computation
to RaPiD.

115

Several challenges remain. The range of RaPiD ap-
plications needs to be extended, and integrated appli-
cations comprising different computations need to be
investigated. The RaPiD B programming model needs
to be evaluated and new compiler optimizations im-
plemented. Finally, we would like to investigate how
parallel language and compiling methods can be ap-
plied to programming RaPiD applications at a higher
level.

Acknowledgments

We would like to thank Larry McMurchie and Chris
Fisher for their contributions to the RaPiD project.

References

[1] J. M. Arnold et al. The Splash 2 processor and
applications. In Proceedings IEEE International
Conference on Computer Design: VLSI in Com-
puters and Processors, pages 482-5. IEEE Com-
put. Soc. Press, 1993.

[2] T.DeRose et al. Apex: two architectures for gener-
ating parametric curves and surfaces. Visual Com-
puter, 5:264-76, 1980,

C. Ebeling, D. C. Cronquist, and P. Franklin.
RaPiD—reconfigurable pipelined datapath. In
R. Hartenstein and M. Glesner, editors, 6th Inter-
national Workshop on Field-Programmable Logic
and Compilers, Lecture Notes in Computer Sci-
ence, pages 126-135. Springer-Verlag, September
996.

(31

[4] H. Kung. Let’s design algorithms for VLSI
systems. Technical Report CMU-CS-79-151,

Carnegie-Mellon University, January 1979.

P. Lee and Z. M. Kedem. Synthesizing linear ar-
ray algorithms from nested FOR loop algorithms.
IEEE Transactions on Computers, 37(12):1578-
98, 1988.

[6] C. E. Leierson and J. B. Saxe. Retiming syn-
chronous circuitry. Algorithmica, 6:5-35, 1991.

[7] D. 1. Moldovan and J. A. B. Fortes. Partition-
ing and mapping algorithms into fixed size sys-
tolic arrays. IEEE Transactions on Computers,
C-35(1):1-12, 1986.

K. A. Vissers et al. Architecture and programming
of two generations video signal processors. Micro-
processing & Microprogramming, 41(5-6):373-90,
1995.

J. E. Vuillemin et al. Programmable active
memories: reconfigurable systems come of age.
IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 4(1):56-69, 1996,

(8]

[9]

Petitioner Microsoft Corporation - Ex. 1066, p. 88

Attachment 1C

Petitioner Microsoft Corporation - Ex. 1066, p. 89

r OCLC
S.a:)\ WorldCat’

Search WorldCat

Search I

Advanced Search Find a Library

<< Return to Search Results Cite/Export Print
Add to list Add tags Write areview Rate this item: 1 2 3 4 5

Proceedings, the 5th Annual IEEE
Symposium on FPGAs for Custom
Computing Machines, April 16-18, 1997, Napa
Valley, California

Author: Kenneth L Pocek; Jeffrey M Amold; IEEE Computer
Society. Technical Committee on Computer Architecture.

Publisher: Los Alamitos, Calif. : IEEE Computer Society Press,
©1997.

Edition/Format: || Print book : Conference publication :
English View all editions and formats

Rating: (not yet rated) 0 with reviews - Be the first.
Subjects Field programmable gate arrays - Congresses.

Computer engineering — Congresses.
Computer engineering.

View all subjects

More like this Similar ltems

El Find a copy in the library

Enter your location: |library of congress Find libraries |
Submit a complete postal address for best results.

Displaying libraries 1-6 out of 207 for all 8 editions (101 Independence Ave
SE, Washington, DC 20540, LUSA)

4« First < Prev 1 2 3 Next > Last »

Library Held formats Distance
1. Library of Congress Book not held; <1 mile
Washington, DC 20540 United States 1 other formals MAP IT
2. Federal Communications Commission Book not held; 1 mile
Washington, DC 20554 United States 1 other formats MAP T
3. George Washington University Book not held; 2 miles
Washington, DC 20052 United States 1 other formals Map
4, Research Center, National Academies of . ey
Sciences, Engineering, and Medicine B LIRS
1 other formats MAP T
Washington, DC 20001 United States
5. Institute for Defense Analyses Library .
IDA Libra Book not held; 7 miles
w 1 other formats MAP IT

Alexandria, VA 22311 United States

E-mail

Share Permalink

Get a Copy
Find a copy in the library

Library info
Ask a librarian
Add fo favorites

Library info
Add to favorites

Library info

Add to favorites

Library info
Add to favorites

Library info
Add fo favorites

Show libraries holding just this edition

Petitioner Microsoft Corporation - Ex. 1066, p. 90

1 AafD

EMMNINNT1IO £.AM AN

Proceedings, the 5th Annual IEEE Symposium on FPGAs for Custom... https://www.worldcat.org/title/proceedings-the-5th-annual-ieee-sympo...

6. University of Maryland Libraries s — é—i:-r*aﬂ;i-"-fgh i
- 5 ook n : miles Search at this library
UMD Libraries _ e AP 1T Ask a librarian
College Park, MD 20742 United States Add to favorites

“ First <Prev 1 2 3 Next » Last »

- Details
Genre/Form: Conference papers and proceedings
Congresses
Material Type: Conference publication
Document Type: Book
All Authors / Kenneth L Pocek; Jeffrey M Arnold; IEEE Computer Society. Technical Commitiee on Computer
Contributors: Architecture.
Find more information about: f Kenneth L Pocek g
ISBN: 0818689005 9780818689000 0818689021 9780818689024
OCLC Number: 733142130
Notes: "IEEE Computer Society order number PR08159"-Title page verso.
"IEEE order plan catalog number 97TB100186"--Title page verso.
Description: X, 250 pages : illustrations ; 28 cm
Responsibility: sponsored by the IEEE Computer Society, IEEE Computer Society Technical Committee on Computer
Architecture ; edited by Kenneth L. Pocek and Jeffrey Armnold.
= Reviews

User-contributed reviews

Add a review and share your thoughts with other readers. Be the first

- Tags

Add tags for "Proceedings, the 5th Annual IEEE Symposium on FPGAs for Custom Computing Machines, April 16-18, 1997, Napa
Valley, California". Be the first

= Similar items

Related Subjects: (4)

Field programmable gate arrays -- Congresses.

Computer engineering -- Congresses.

Computer engineering.

Field programmable gate arrays.

+ Linked Data
Petitioner Microsoft Corporation - Ex. 1066, p. 91

Attachment 1D

Petitioner Microsoft Corporation - Ex. 1066, p. 92

6/29/2018 LC Online Catalog - ltem Information (MARC Tags)
LIBRARY OF CONGRESS
ONLINE CATALOG

&= 1 of 1

BOOK

Proceedings, the 5th Annual IEEE Symposium on
Field-Programmable Custom ..

Full Record MARC Tags

———

000 02049cam a2200433 a 4500

001 712410

005 19980406123106.3

008 971119s1997 caua b 1010engd

035 __ |9 (DLC) 97080098

906 __ |a7|bchc |c copycat |d u |e open |f 19 |g y-gencatlg
955 __ |apb23 11-18-97 to cat; jg00 11-26-97; jg05 01-05-97; jg07 01-15-98
010 __ |a 97080098

020 __ |a 0818681594

020 __ |a0818681608 (case)

020 __ |a 0818681616 (microfiche)

035 __ |a(OColLC)37949175

040 __ |aGAT |c GAT |d DLC

042 __ |alccopycat

050 04 |a TK7895.G36 |b 135 1997
082 00 |a621.39/5 |2 21
111 2_ |a IEEE Symposium on FPGAs for Custom Computing Machines |d (1997 : |c Napa Valley, Calif.)

245 10 |a Proceedings, the 5th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, April 16-18, 1997, Napa Valley, California / |c sponsored by the IEEE Computer Society,
IEEE Computer Society Technical Committee on Computer Architecture ; [edited by Kenneth L.
Paocek and Jeffrey Arnald]

246 1_ |i Half title: |a FCCM'97
246 30 |a 5th Annual IEEE Symposium on Field- Programrp%ﬁlﬁo(;ﬁ@m%lﬁt@a%%qmﬁe%x 1066, p. 93

™A ~y TPt A Dol BTN ol i e, it e P LTl ™o o e N e e W i TAT

6/29/2018

LC Online Catalog - ltem Information (MARC Tags)

246 14 |a IEEE Symposium on FPGAs for Custom Computing Machines

246 18 |a FPGAs for Custom Computing Machines

260 __|aLos Alamitos, Calif. : |b IEEE Computer Society Press, |c c1997.

300 _ |ax, 280 p.:|bil. ; |c 28 cm.

500 __|a"IEEE Computer Society order number PR08159"--T.p. verso.

500 __ |a"IEEE order plan catalog number 97TB100186"--T.p. verso.

504 __ |aIncludes bibliographical references and index.

650 _0 |a Field programmable gate arrays |x Congresses.

650 _0 |a Computer engineering [x Congresses.

700 1_ |a Pocek, Kenneth L.

700 1_ |a Arnold, Jeffrey M.

710 2_ |a IEEE Computer Society. |b Technical Committee on Computer Architecture.

920 __ |a*™LC HAS REQ'D # OF SHELF COPIES **

991 __ |bc-GenColl |h TK7895.G36 |i I35 1997 |t Copy 1 |w BOOKS
Request this ltem A LC Find It

ltem Availability

CALL NUMBER

Request In

Status

CALL NUMBER

Request in

Status

TK7895.G36 135 1997
Copy 1

Jefferson or Adams Building Reading Rooms

Not Charged

TK7895.G36 135 1997 FT MEADE
Copy 2

Jefferson or Adams Building Reading Rooms - STORED OFFSITE

Not Charged

Petitioner Microsoft Corporation - Ex. 1066, p. 94

Attachment 1E

Petitioner Microsoft Corporation - Ex. 1066, p. 95

6/29/2018 LC Online Catalog - Item Information (Full Record)
LIBRARY OF CONGRESS
ONLINE CATALOG

& 1 of 1

BOOK

Proceedings, the 5th Annual IEEE Symposium on
Field-Programmable Custom ...

Full Record MARC Tags

Meeting name

IEEE Symposium on FPGAs for Custom Computing Machines (1997 : Napa Valley, Calif.)

Main title

Proceedings, the 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, April 16-
18, 1997, Napa Valley, California / sponsored by the IEEE Computer Society, IEEE Computer Society Technical
Committee on Computer Architecture ; [edited by Kenneth L. Pocek and Jeffrey Arnold]

Published/Created
Los Alamitos, Calif. : IEEE Computer Society Press, c1997.

Request this ltem #4 LC Find It
More Information >
LCCN Permalink https://lccn.loc.gov/97080098
Description X, 250 p. :ill. ; 28 cm.
ISBN 0818681594

0818681608 (case)
0818681616 (microfiche)

LC classification TK7895.G36 135 1997 Petitioner Microsoft Corporation - Ex. 1066, p. 96

6/29/2018

Variant title

Portion of title

Cover title
Spine title

Relaled names

LC Subjects

Browse by shelf order

Notes

LCCN
Dewey class no.
Other system no.

Type of material

Iltem Availability

CALL NUMBER

Request in

Stalus

CALL NUMBER

LC Online Catalog - ltem Information (Full Record)

Half title: FCCM'97
Fifth Annual IEEE Symposium on Field-Programmable Custom
Computing Machines

5th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines

IEEE Symposium on FPGAs for Custom Computing Machines
FPGAs for Custom Computing Machines

Pocek, Kenneth L.

Amold, Jeffrey M.

IEEE Computer Society. Technical Committee on Computer Architecture.

Field programmable gate arrays--Congresses.
Computer engineering--Congresses.

TK7895.G36

"IEEE Computer Society order number PR08159"--T.p. verso.
"IEEE order plan catalog number 97TB100186"--T.p. verso.
Includes bibliographical references and index.

97080098
621.39/5
(OCoLC)37949175

Book

TK7895.G36 135 1997
Copy 1

Jefferson or Adams Building Reading Rooms

Not Charged

TK7895.G36 135 1997 ﬁpﬁgﬂﬁ}fr Microsoft Corporation - Ex. 1066, p. 97

6/29/2018 LC Online Catalog - Item Information (Full Record)

Copy 2
Reguest in Jefferson or Adams Building Reading Rooms - STORED OFFSITE
Status Not Charged

Petitioner Microsoft Corporation - Ex. 1066, p. 98

Attachment 1F

Petitioner Microsoft Corporation - Ex. 1066, p. 99

Specifying and Compiling Applications for RaPiD*

Darren C. Cronquist, Paul Franklin, Stefan G. Berg, and Carl Ebeling

Department of Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 98195-2350

Abstract

Efficient, deeply pipelined implementations exist for a
wide variety of important computation-intensive ap-
plications, and many special-purpose hardware ma-
chines have been built that take advantage of these
pipelined computation structures. While these imple-
mentations achieve high performance, this comes at
the expense of flexibility. On the other hand, flexible
architectures proposed thus far have not been very
efficient. RaPiD is a reconfigurable pipelined data-
path architecture designed to provide a combination
of performance and flexibility for a variety of applica-
tions. It uses a combination of static and dynamic con-
trol to efficiently implement pipelined computations.
This control, however, is very complicated; specify-
ing a computation’s control circuitry directly would
be prohibitively difficult.

This paper describes how specifications of a pipe-
lined computation in a suitably high-level language are
compiled into the control required to implement that
computation in the RaPiD architecture. The com-
piler extracts a statically configured datapath from
this description, identifies the dynamic control signals
required to execute the computation, and then pro-
duces the control program and decoding structure that
generates these dynamic control signals.

1 Introduction

The RaPiD architecture is a field-programmable ar-
chitecture that allows pipelined computational struc-
tures to be constructed from an array of arithmetic
units, registers and memories. These are intercon-
nected and controlled using a combination of static
control, which does not change during the computa-
tion, and dynamic control, which does. This paper
deals with the problems of specifying linear pipelined
computations and compiling a specification into the
combination of static configuration and dynamic con-
trol required to program the RaPiD architecture.

“This work was supported in part by the Defense Advanced
Research Projects Agency under Contract DAAH04-94-G0272. D.
Cronquist was supported in part by a Gray fellowship. P. Franklin
was supported in part by an NSF fellowship.

We begin with a programming language that al-
lows a pipelined computation to be described in both
time and space. Specific operations are assigned to
a specific pipeline stage at a specific time. Time is
described using nested loops, while space is described
by the innermost loop. Each iteration of this inner-
most loop is allocated to a specific pipeline stage at a
specific time. Since pipelined computations are both
regular and repetitive, descriptions in this form are
usually quite concise.

When compiling a program, we take the classic ap-
proach of partitioning the implementation into data-
path and control. The program describes the opera-
tions performed by each pipeline stage in each cycle.
These operations determine the underlying pipelined
datapath. Typically this datapath has a number of
dynamic controls to change the functionality and in-
terconnection of elements in the datapath during the
computation. These controls are decoded from in-
struction bits passed down the array, which are in turn
produced by a control program. Since each applica-
tion needs different control, each will use the instruc-
tion bits and decoding structure differently, and will
have its own control program.

Although the compiler was designed specifically for
RaPiD, we believe the RaPiD-C language provides
a clean and effective way to specify pipelined com-
putations. For example, a different back-end to our
compiler could be used to generate implementations
in different technologies such as FPGAs or custom
ASICs. In fact, we see the RaPiD architecture model
used in a variety of ways. One possibility is to cre-
ate a single very flexible implementation that could
be used for a wide variety of different problems. This
implementation would include a set of generic func-
tional units and a very flexible set of interconnection
resources. Another possibility would be to create a
“custom” RaPiD implementation tailored specifically
for one predetermined set of computations. This im-
plementation would trade flexibility for reduced cost.

We begin by giving a brief overview of the RaPiD
architecture model. We then present the matrix mul-
tiply application to motivate the approach we have
taken for language design and compilation. Next, we
present RaPiD-C language features and describe how

Petitioner Microsoft Corporation - Ex. 1066, p. 100

programs are written using the language constructs.
Finally, we describe the compilation process used to
generate and optimize datapath and its control.

2 The RaPiD Architecture

This section provides a brief overview of the architec-
tural details of RaPiD which directly affect the com-
pilation process. For a more thorough description of
the architecture, see [1] and [2].

RaPiD is a coarse-grained field-programmable ar-
chitecture for compute intensive applications. The ar-
chitecture consists of an abundance of functional units
such as ALUs and multipliers as well as general pur-
pose registers (GP-REGs) and RAMs. As an exam-
ple, a version of the architecture that we have used
for benchmarking contains 96 GP-REGs, 48 32-entry
RAMs, 48 ALUs, and 16 multipliers, all supporting
16-bit data operands. This benchmark version is ap-
proximately 100mm? in a .5 u process and runs con-
servatively at 100 MHz.

Such a large number of functional units must be
interconnected in a cost-effective manner. Although
a crossbar would provide the greatest flexibility, the
myriad of functional units requiring connections over
200 in the benchmark version make this approach
infeasible. Instead, RaPiD arranges the functional
units linearly above a field-programmable segmented
bus structure. A linear structure is easily manage-
able, yet it reduces implementation cost and control
requirements tremendously. By using the small RAMs
spread throughout the array as buffers, multidimen-
sional tasks can be performed on RaPiD arrays. The
underlying datapath, i.e. which functional units can
forward results to each other, is configured statically
on a per application basis. During the execution of
an application, the data movement between functional
units can change every cycle via a decoded instruction.

A simple example is shown in Figure 1. A regis-
ter is used to hold a constant value, such as a coef-
ficient for a FIR filter. The underlying datapath is
statically configured so the register can load from ei-
ther an input stream or its previous value. During
the execution of the instruction stream, dynamic con-
trol directs data movement on a cycle-by-cycle basis.
In summary, static control determines the extent that
data can flow in a given application. Dynamic control
determines the cycle by cycle data movement under
the restrictions placed by static control. For example,
the dynamic control would specify when the register
should load from the input stream and when it should
hold its value by loading from the feedback path.

The RaPiD architecture provides hard control sig-
nals, which are fixed by the configuration data, and
soft control signals, which can change each clock cy-
cle. Soft control signals drive ALU functions, input
and output stream enables, RAM writes and incre-
ments, and multiplexer selects. As a result, RaPiD

Input Stream
FIFO

From 1
Controllel ’_

dynamic
control

Figure 1: A register configured to load or hold its value
for a constant multiply. The interconnect shown is
configured statically but the dynamic control signals
can change every cycle.

contains a substantial number of soft control signals—
over 1000 in the benchmark version. To reduce the cir-
cuitry required to generate these signals, a pipelined
control path that parallels the datapath is used to gen-
erate these signals from a narrow instruction (eg. 32
bits) inserted at the beginning of the array. This “in-
struction” contains all the information required by the
various pipeline stages to compute their dynamic con-
trol signals. The control path comprises a set of 1-bit
segmented busses similar in structure to the datapath
busses, as shown in Figure 2. This bus structure allows
the instruction bits to be individually manipulated as
they proceed down the RaPiD array.

Input Stream
FIFO

From 1
Controlle ’_

alu
status

Instruction
FIFO

From |
RaPiD

Controller

Figure 2: Soft control circuitry used to dynamically
control the circuit shown in Figure 1

The majority of soft control bits are static for a
given application, and are wired to a constant 0 or 1.
Other bits are wired to one of the other control wires.
This control often comes directly from the controller,
pipelined as needed. However, more complex decod-
ing using 3-input look-up tables (LUTSs) can be used
to decode several instruction bits into the appropriate
control or to combine pipelined control with status in-
formation (e.g. ALU carry). The LUTs also contain
optional registers, allowing for simple finite state ma-
chines (FSMs) occasionally required by non-pipelined
control. Such FSMs can be used to activate a function
for several cycles in each stage, one stage at a time.

Petitioner Microsoft Corporation - Ex. 1066, p. 101

If RaPiD supported deep pipelining within the con-
trol path, this could be done easily by placing enough
registers between each stage. Instead, this can be con-
structed using a FSM; a stage can remember whether
or not its RAM is active, and one instruction bit can
be used to deactivate one stage and activate the next,
requiring only two control lines. This is used in im-
plementing a 2-D DCT on RaPiD [2].

The number of busses required in the control path
varies by application, but is not large because control
signals tend to be reused extensively. The benchmark
version of the RaPiD architecture provides 31 busses,
which can be pipelined and otherwise manipulated in-
dividually. This is more than enough for the current
set of applications, even using non-optimal mappings
produced by automated CAD tools.

2.1 Datapath Controller

The RaPiD array consumes one instruction per cycle
which drives the beginning of the control buses. Gen-
erating this instruction stream is nontrivial because
it often controls several tasks running in parallel; the
matrix multiply example in the next section illustrates
this. The RaPiD datapath controller contains several
simple microcontrollers (instruction generators) whose
output is combined to form instructions for the RaPiD
array.

Each instruction generator executes a micropro-
gram to generate a stream of instructions. The gen-
erators are optimized to handle nested and sequential
loops; they also contain microinstructions for perform-
ing simple arithmetic synchronization.

Instr A
Gen =1I/[[=fs
y
n
Instr c To
Gen h)
i . Inst ti
Fipog ctien |1 Instruction | rrzo /’::’Z iD
Instr ° Merge
Gen i
z
e
\J,

Instr
Gen —1I[[[=

Figure 3: The RaPiD controller.

The instruction streams produced by the instruc-
tion generators are synchronized via SIGNAL and
WAIT tags. The stream containing a WAIT tag is
stalled until the matching SIGNAL occurs in another
stream. After the instruction streams have been syn-
chronized, they are combined in a bitwise fashion, and
the final instruction then passes through the last in-
struction FIFO and proceeds to the RaPiD array.

RaPiD also contains address generators used for
generating sequences of memory addresses used by the
memory controller (Figure 4). The address generators
use arithmetic microinstructions to produce address

sequences. The memory controller handles these mem-
ory requests by placing data in or removing data from
the appropriate input or output FIFO.

External
RAM

Input Stream FIFO

Output Stream FIFO

Figure 4: The RaPiD address generators and I1/0O
streams.

3 Specification

To map an algorithm to the RaPiD array we have de-
signed a new parallel programming language, RaPiD-
C. Although created with RaPiD in mind, the meth-
ods of specification and compilation could be extended
to other architectures for implementing pipelined com-
putations. In addition, this programming technique
could be used for ASIC design.

3.1 Motivation: Matrix Multiply

To motivate a specification language, we first look at
a common, well-studied application—matrix multiply.
The problem takes an L x M matrix A and an M x N
matrix B and computes the L x N matrix C = A x B,
as shown in the nested-loop specification of Figure 5.
As it stands, this high-level specification is far from a

for (i=0;1 < L; i++)
for (j=0;] < M; j++)
for (k=0; k < N; k++)
if (j==0) Clil[k] — ALi)1*BIilIK];
else C[i][k] += A[i][j]*B[j][k];

Figure 5: Nested loop specification for matriz multiply

mapping to a pipelined linear array. In particular, the
parallelism and the data I/O are not specified, and
the algorithm must be partitioned to fit on the target
architecture.

Automating these processes is a difficult problem
for an arbitrary specification, and one we do not solve
here. Instead, we propose a language that is C-like and
requires the programmer to specify the parallelism,
data movement, and partitioning. To this end, the
programmer uses well known techniques of loop trans-
formation [5] and space/time mapping [4, 3]. The re-
sulting specification is a nested loop where outer loops

Petitioner Microsoft Corporation - Ex. 1066, p. 102

specify time and the innermost loop space.! In the
context of RaPiD-C, the space loop refers to a loop
over the stages of an algorithm, where a stage is one
iteration of the innermost loop. The compiler maps
the entire stage loop to the target architecture by un-
rolling the loop to form a flat netlist. Hence, the stage
loop, also called a Sloop, has implicit parallelism since
it executes in a single cycle on the target architecture.?
As a result, the programmer must permute and tile
the loop-nest so that the computation required after
unrolling the innermost loop will fit onto the target ar-
chitecture. The remainder of the loop nest determines
the number of times the Sloop is executed.

The programmer first transforms the original spec-
ification by choosing a loop to iterate over the stages,
optimizing for speed, memory, scalability, etc. Par-
titioning of the algorithm is based on the number of
functional units and available memory in the target
architecture. For example, consider mapping matrix
multiply to an architecture with S multipliers, at least
3 RAMs per multiplier, and R words of memory per
RAM. The innermost loop is partitioned by the num-
ber of stages (i.e. multipliers) and the outer loops by
the size of the RAMs. Since the stage loop is the inner-
most loop, k has been replaced by the stage iteration
variable s. Loop permutation is applied, yielding the
code in Figure 6. From now on, instead of explic-
itly stating the innermost loop as for (s=0; s < S;
s++), we will simply write Sloop.

+)
Cli+f][s+h] = Afi+f][j+g]*B[j+g][s+h];
Cli+f][s+h] += A[i+f][j+g]*Blj+g][s+h];

= o
g

Figure 6: Matriz multiply partitioned to space and
time

Memory accesses are determined by examining in-
dexing in every stage on every cycle (recall that the
Sloop executes in a single cycle). Since Afi + f][j + g]
is independent of s, the appropriate A matrix value
will be broadcast to the entire array on every cycle.
Expression B[j + g][s + h] references R elements (the
length of the j loop) of the B matrix in each stage,
which can be stored in a RAM in each stage. More-
over, since h changes every R? cycles, a new set of ele-
ments must be loaded every R? cycles. To prevent the
array from stalling, the RAMs can be double-buffered.
Finally, expression C[i + f][s + h| references R ele-
ments (the length of the i loop) of the C matrix in

1Since RaPiD is a linear architecture we have a singly nested loop
for space. An n-dimensional architecture would have an n-nested
loop dedicated to space.

2In actuality, pipelining and retiming usually cause the Sloop to
be executed on a diagonal of the time axis instead of the same cycle.

3For ease of presentation, we assume that R divides L and M,
and that S divides N.

each stage, which again can be stored in a RAM in
each stage. Since every stage produces a result on the
same cycle, these results are pipelined down the array
instead of being broadcast; the final stage stores the
values from this pipeline into the C memory.

Matrix multiply can now be broken down into three
processes: preload, computation, and output. These
processes all run in parallel but need to be precisely
synchronized to allow them to communicate. The
preload loop-nest must complete one iteration of its
h-loop before the computation loop-nest begins. The
computation loop-nest must complete one iteration
of its g-loop before the output loop-nest can begin.
To simplify this specification, the language supports
parallel loop nodes and Signal/Wait synchronization
pairs. The double buffering of the B values is per-
formed by a two-dimensional array of S x 2 RAMs
which is indexed by the stage number and a boolean
toggle bit to flip between the RAMs on the appropri-
ate cycle. This sums up the major features of RaPiD-
C, which is described in more detail in the next sec-
tion. Pseudo-code for the RaPiD-C implementation of
matrix multiply is shown in Figure 7. To clarify the
structure of this code, we often write a control tree as
shown in Figure 8. Control trees will be described in
detail in the next section.

Par
// Preload loop-nest
for (f1=0; f1 < L; fl+=R)
for (g1=0; g1 < M; gl+=R)
for (h1=0; h1 < N; h1+=S) {
for (j1=0; j1 < R; j1++4)
for (i1=0; i1 < S; il++)
Sloop
if (i1==s) ramB([s][!toggle|(j1) = B[j1+gl1][s+h1];
Signal(comp); Wait(preload);

// Computation loop-nest
for (f2=0; f2 < L; f24+=R)
for (g2=0; g2 < M; g2+=R)
for (h2=0; h2 < N; h2+=8) {
Signal(preload); Wait(comp);
for (i2=0; i2 < R; i2++)
for (j2=0; j2 < R; j2++)
Sloop {
if (i2==0 && j2==0) toggle = !toggle;
if (j2==0 && g2==0)
ramC|[s](i2) = A[i24f2][j2+g2]*ramB][s|[toggle](j2);
else
ramC[s](i2) += A[i2+f2][j2+g2]*ramB([s][toggle](j2);
if (j2==R-1 && g2==MR)
pipeOut = ramC|[s](i2);
Signal(output);
}
}
// Output loop-nest
for (f3=0; f3 < L; f3+=R)
for (h3=0; h3 < N; h3+=S)
for (i3=0; i3 < R; i3+4) {
Wait(output);
for (j3=S-1; j3 > 0; j3——)
Sloop
if (s==8-1) C[i3+f3][h3+j3] = pipeOut;

}

Figure 7: Matriz multiply after I/0, ram allocation

Petitioner Microsoft Corporation - Ex. 1066, p. 103

For For i3
Signal Wait Signal Wait Wait
For il DN For P
Sloop
Sloop Sloop
if (...) signal()

Figure 8: Control tree for matriz multiply

3.2 Control Trees

Control trees are a convenient representation of a
RaPiD-C program’s loop structure. They are particu-
larly useful while manipulating a program’s structure
by performing loop transformations, and as an aid to
explaining a program’s control structure. This section
presents them, while using them to explain the control
structures available in RaPiD-C.

RaPiD-C uses a control tree to specify the loop
structure of a particular application. In a complete
RaPiD-C program, this tree is part of the code, as
shown in Figure 7; however, while determining what
a program’s control tree should look like, it is often
useful to draw it separately. This section uses con-
trol trees to reintroduce the control constructs already
shown above.

Figure 9 shows two simple RaPiD-C trees. Tree (a)
represents two nested loops in time. The inner loop
contains the stages loop, or Sloop. This loop auto-
matically iterates the reserved variable s over all of
the stages (0 < s < 8). Tree (b) illustrates a compu-
tation split into two loops; the j loop will begin after
the i loop completes. Note that each branch has its
own Sloop.

Each Sloop in a control tree contains code to be
compiled to the target architecture. Inside Sloop
blocks, a programmer uses a C-like syntax with spe-
cial objects representing some features of the archi-
tecture. Since each block actually executes S times,
conditional statements can check the value of s to re-
strict code segments to specific stages. Conditionals
can also compare against a For node’s iteration count
such as i==3. In addition, the conditionals .first,
.last, or .1live test on the first, last, or any iteration

(a) (b)

For(C)i=(1..10)

For(C)j=(1..100) (1.500)

Sloop

Figure 9: Simple RaPiD-C control trees. (a) Nested
loops. (b) Loops to be run in sequence.

of a loop, respectively. Code which needed to be exe-
cuted every 100th iteration can easily be coded in the
Sloop for Figure 9(a) with the condition j.last.

Note that a condition specifying every 100th iter-
ation of Figure 9(b) is more complex. Control trees
should represent the actual control needed by an appli-
cation. The RaPiD-C code for matrix multiply shown
in Figure 7 contains only relatively simple conditions,
indicating that its control tree captures the loop and
control structure of the application.

RaPiD-C uses Par nodes to indicate branches which
should run in parallel. RaPiD-C also contains synchro-
nization primitives; a Wait node stalls until it receives
a signal from either a Signal node or a signal state-
ment in a Sloop. Figure 10 shows a control tree in
which the right Sloop will start executing as the left
Sloop begins its second iteration.

For(")i1=(1..10)

j1=(1..100)
Wait

\ For

if (i1==1 && j1==2) Signal(eventGo);

For

Sloop

Sloop

Figure 10: A Signal/MWait pair to run two nested
loops in parallel, offset by one cycle

Control trees can also contain Inf nodes; they are
similar to For nodes but execute on every cycle, halt-
ing immediately when all other control is exhausted.
Table 1 summarizes the node types presented in this
section.

Petitioner Microsoft Corporation - Ex. 1066, p. 104

Table 1: Control tree node types in RaPiD-C

Node Type | Children Execution Length (in cycles)

Seq In sequence, one at a Sum of Tengths of
time children

Par In parallel, all starting Length of longest
simultaneously child

For Its single child, loop it- # of iterations *
eration times child length

Inf Its single child, many Number of cycles
times in entire tree

Sloop No children One cycle

Wait No children Until signaled

Signal No children Zero cycles

Table 2: Data types in RaPiD-C

Data Type Specifies

Word Single width variable

Long Double width variable

Bool Single bit value, used for conditional
statements

Ram Fixed size RAM local to a stage

Pipe Inter-stage communicator

3.3 Communication

A RaPiD-C application needs to communicate among
its stages and with the outside world. This is pro-
vided for with separate mechanisms. Communication
with the outside world is done through array refer-
ences. Inter-stage communication is accomplished us-
ing pipes that connect a number of stages together.
The programmer can specify an arbitrary number
of external arrays that can be read from or written to
inside a RaPiD-C program (see arrays A, B, and C in
Figure 6). A limitation imposed on the programmer
is that all references must be data independent since
memory addressing is determined at compile time.
Pipes are used to communicate values between
stages. A pipe is just a global bus with a number
of optional registers between stages. The program-
mer can therefore use them to feed data into or out of
the array or to communicate intermediate results from
one stage to the next. Figure 7 shows an example of
a pipeline used for writing the result matrix to the
external array C. All stages output their final results
to pipeOut at regular intervals. The last stage reads
from pipeOut and stores the read values in array C.

3.4 More RaPiD-C Types

RaPiD-C has several predefined types to support both
computation and data communication within an algo-
rithm, as shown in Table 2.

The types Word and Long represent the single and
double precision data types for use within a stage. For
computation that is similar across several stages, typ-
ically an array of Words or Longs is defined.

Type type Bool is used for control defined by
the programmer. For example, double buffering two
RAMs requires a toggle signal. For example, the code

if (i2==0 && j2==0) toggle = !toggle;

Table 3: Operators for RAMs.

Operator Action

ramFoo.address = x Set the address register to value x, mod
size

Increment the address register, mod size
Set the ram value for the current ad-
dress to y (y is of type word)

Read the value for the current address

ramFoo.address++
ramFoo =y

y = ramFoo
ramFoo(i) Automatically address ram with respect

to For loop ¢

flips the toggle bit on the appropriate cycle in matrix
multiply (see Figure 7).

The type Ram specifies a fixed-size local memory in a
stage of the target architecture. Ram is accessed via an
implicit address register that can be assigned, cleared
and incremented. Table 3 lists the valid operators on
a ram.

The Ram type represents an architecture-specific de-
vice. When specifying applications targeted at other
architectures, other architecture-specific types might
be called for.

4 Compilation

A RaPiD-C program clearly specifies an algorithm’s
hardware requirements. As a matter of fact, the union
of all Sloop blocks is very close to a structural de-
scription of the algorithm. One difference from a true
structural description is that Sloop statements are
specified sequentially but execute in parallel. A netlist
must be generated to maintain these sequential seman-
tics in a parallel environment. Another difference is
that control is not explicit but instead embedded in a
nested-loop structure. This control must be extracted
into multiplexer select lines and functional unit con-
trol. Then, an instruction stream must be generated
which can be decoded to form this control. A final
difference from a true structural description is the im-
plicit decoupling of data I/O. Address generators must
be instantiated to take the data to and from memory
at the appropriate time. Hence, compiling RaPiD-C
into a structural description consists of four compo-
nents: netlist generation, dynamic control extraction,
instruction stream/decoder generation, and I/O ad-
dress generation.

The compilation process produces a structural
specification consisting entirely of components on the
target architecture. The netlist is then mapped to the
architecture via standard FPGA mapping techniques
including pipelining, retiming, and place and route.
The place and route solution fully specifies the static
setting required to program the array.

4.1 Netlist Generation

Generating a parallel netlist from a sequential specifi-
cation is straightforward. Consider the three types of

Petitioner Microsoft Corporation - Ex. 1066, p. 105

data dependencies found in sequential code: true (read

INNER LOOP OF CODE after write), anti (write after read), and output (write
Sloop { after write). The idea is to convert variables into reg-
if (loop.first) w[s].address = 0; isters, noting that if a register is read and written on
if (loop.live) foo[s] = w[s].address; the same cycle, the register’s value on the previous cy-
if (inc.live) w[s].address++ cle is read. An anti-dependence requires the previous
value of a variable be read, so a register is sufficient.

} A true dependence requires the current value of a vari-
INITIAL STATE able to be read, so data forwarding is used. Finally,

. an output-dependence is implemented with a register
whose input multiplexer gives priority to the latest
— write in the sequential code.

The compiler converts a RaPiD-C program into a
structural specification by interpreting the union of all
— Sloop blocks for each value of s. During interpreta-
tion, the compiler instantiates registers for variables,
ALUs for adds (and other operations), multipliers for
multiplies, and multiplexers for if-then-else state-
:E ments. Once interpretation is complete, the final value

w{0].addres:

if (loop.first) w[s].address = 0;

of each variable is connected to the input of the vari-
able’s register, creating state across cycles.

wioJaddess For example, Figure 11 shows the netlist construc-
tion for a small set of Sloop statements. During the

D first iteration of the loop, s is assigned to zero, creat-

toopfirs ing the variables foo [0] and w[0] .address which are

initialized as registers. The first line of code adds a
) multiplexer to the address register which either holds
<E its current value or loads zero, depending on the value

if (loop.live) foo[s] = w[s].address;

of loop.first. The second line updates foo[0] to be
the current value of the address register, if loop.live
is true. The third line instantiates an incrementer and
updates the value of the address register if inc.1liveis
true. After the final reference to the variables foo[0]
and w[0] .address, the current values are connected
oop it as inputs to the original registers, providing support
for dependencies across iterations of the control tree.

w{0].addre

if (inc.live) w[s].address++

4.2 Dynamic Control Extraction

Dynamic control can take many forms depending on
the versatility of the target architecture. The most
common dynamic signals are used to time data move-
ment, as in a multiplexer’s select lines, and to specify
a change in computation, as in a functional unit’s op-
eration signals. As a result, two key steps are required
to generate dynamic control: multiplexer merging and
functional unit merging.

4.2.1 Multiplexer Merging
w(0].addre:
The initial netlist generation forms two-input multi-
plexers for every conditional statement. These smaller
multiplexers must be merged to match the size of mul-
tiplexers on the target architecture, potentially chang-
ing the required control.

To merge multiplexers a depth-first search of the
initial two-input multiplexer netlist is performed start-
Figure 11: Generation of a netlist from RaPiD-C. ing at the output streams, since all required functional

Petitioner Microsoft Corporation - Ex. 1066, p. 106

units must be reachable from the output. When a pre-
viously unreached functional unit is found, each input
is replaced with a 16:1 multiplexer (or whatever size
corresponds to the target architecture). The compiler
then performs a depth-first search to determine reach-
able inputs. An input’s select condition is the AND
of multiplexer conditions along this path. Figure 12
shows the code and a portion of a generated netlist
containing three multiplexers which are merged into
a single multiplexer with three inputs. The REG1 in-
put is found to be unreachable since the global context
becomes b A a A —a = 0.

if (a) REG1=0; else REGI=...+..;; (ALU1)
if (b) REG2 = REGT;
.. = REG2 + ... (ALU2)

Generated Netlist Merged Multiplexers

Figure 12: An example of multiplexer merging: three
2-input muzxes are merged into a single muz.

4.2.2 Functional Unit Merging

RaPiD-C uses symbols, such as * and +, to specify
operations on data. Clearly, if the programmer uses
a common subexpression, the compiler must be ro-
bust enough to map all instances of the expression
to the same functional unit. Although a standard
common-subexpression elimination algorithm would
work for common-subexpressions, the dynamic con-
trol of the RaPiD array can optimize some uncommon-
subexpressions. For example, the expressions x-y and
x+y are different but could be mapped to the same
ALU if they are not both in use during a common
cycle. This would require a control signal to be gen-
erated to change the ALU function from an addition
to a subtraction on the appropriate cycle.

Even expressions with different operands can be
merged. If the expressions x+y and w-z are not in
use during a common cycle, they could be merged
by having both x and y reach one ALU multiplexer
input, and both w and z the other. Now three dy-
namic control signals must be used to change between
the two expressions. Since all three signals are equiv-
alent, this second example doesn’t use more control
path resources than the first. However, the underlying

netlist (static control) becomes more complex, poten-
tially stressing the available routing resources in the
datapath; in some cases, the control becomes complex
enough that the merging must be rejected.

To support both common and uncommon subex-
pression elimination, a list of functional units is main-
tained in every stage. In addition, a boolean in-use
function is created for each functional unit to record
the cycles of operation. The functional units’ in-use
functions determine when merging can occur. Two
functional units can be merged if they are identical
(i.e. a common-subexpression), or if their in-use func-
tions are mutually exclusive and the union of their
inputs doesn’t exceed some internal maximum. This
maximum is n for n-input multiplexers but clearly
should be substantially smaller due to routing con-
straints. When there is a choice of functional units
to merge, the pair with the larger number of common
inputs is selected. Functional units which use static
control to determine their functionality must be equiv-
alent in these bits to be merged.

For example, consider an ALU with two data inputs
(Left and Right) and four control inputs (F3, F2, F1,
and FO). The in-use function, InUse, determines when
the ALU is actually needed. If we are given alul and
alu2 with mutually exclusive InUse functions, they
can be merged into alu3 by applying the code in Figure
13.

alu3.Left.Merge(alul.Left, alu2.Left);
alu3.Right.Merge(alu2.Right, alu2.Right);

alu3.InUse = alul.InUse || alu2.InUse;
alu3.F3 = alul.InUse && alul.F3 || alu2.InUse && alu2.F3;

alu3.F0 = alul.InUse && alul.F0 || alu2.InUse && alu2.F0;

Figure 13: Compiler’s code to merge two ALUs. The
function Merge adds all inputs to alul’s input multi-
plexer and ORs the control of any common inputs.

4.3 Data Dependent Dynamic Control

Some operations, such as maximum and absolute
value, require data-dependent dynamic control to be
generated. For example, the statement sum += |x-y|
compiles to a netlist which connects the sign status
signal of an ALU computing x-y to the add/subtract
control input of a second ALU. If the sign is positive,
the second ALU adds the first result to sum, and if
negative it subtracts the first result from sum. In more
complex data dependent conditions, decoding may be
required as shown in the next section.

4.4 Instruction and Decoder Generation

Each dynamic control signal is represented by a
boolean function of the following variable types: an
event in the control tree, a status bit from the data-
path, and a condition on s. Examples of such

Petitioner Microsoft Corporation - Ex. 1066, p. 107

boolean variables include the first iteration of a For
node (i.first), the carry condition on an ALU
(alu.carry), and the equivalence of a For node and s
(i==s), respectively. Each control signal is paired with
an in-use function to aid optimization. Given this dy-
namic control information, a set of boolean functions,
whose concatenation forms an instruction, must be
found from which all dynamic signals can be decoded.
This set of functions is limited by the instruction width
of the target architecture.

Mapping all dynamic control into a fixed-width
instruction involves finding common subexpressions
within the dynamic control signals and using in-use
information efficiently. In addition, this process may
require multi-level minimization, Shannon decomposi-
tion and/or compilation to state machines, depending
on the complexity of the dynamic control functions.

A dynamic signal comprised entirely of events from
the control tree is independent of s and can be broad-
cast to all required stages. For example, the function
i.live && j.first compiles directly to a bit in the
instruction, which is then broadcast to each required
functional unit and multiplexer. Since these variables
are independent of s, they can be computed outside
of the array by an external microcontroller.

A dynamic signal whose function is dependent on
s may require decoding. This might be in the form
of a state machine or a simple pipeline. For example,
consider a RaPiD-C program containing a For node
i and a dynamic control function i==s. Because the
variable i==s is dependent on s, it can’t be directly
generated outside the array. However, if 1 has an in-
crement of one and a range which includes zero to the
number of stages, this dynamic control signal can be
compiled into a singly pipelined control line driven by
the boolean function i==0, which is independent of s.
Similarly, a conditional of the form i==ks can be re-
alized by creating a control pipeline with k registers
per stage.

A dynamic control signal that is a function of more
than one variable often requires special decoding. For
example, the statement if (i.first && X==Y) F0O
= Z; requires local decoding since the condition X==Y
is compiled to the “is result zero?” output of an ALU
subtract. The binary AND of this signal and i.first
must be formed in the stage associated with the code,
as is shown in Figure 14.

After generating the control path complete with
decoding, the final step is to produce microprogram
code that will generate the instruction stream. Since
the set of boolean functions comprising the instruction
consists entirely of boolean variables from the control
tree, the microprogram is similar to the control tree
itself. Each parallel task of the tree is mapped to an
instruction generator, as shown in Figure 3. Hence,
the number of instruction generators places a limit on
the number of simultaneous parallel tasks in a RaPiD-
C program.

The ALU performs a subtract and
outputs the "is result zero?" condition.

4 (/ ES W

'\ Instruction drives this line as "i.first"

Figure 14: The dynamic condition i.first && x==y
is generated by configuring a LUT as an AND gate.

An instruction bit depending only on variables from
a single parallel task is generated by a single instruc-
tion generator. An instruction bit depending on vari-
ables from more than one parallel task must be de-
composed (using two-level or multi-level minimiza-
tion) into functions specific to a single parallel task.
These functions are computed on their corresponding
instruction generators and then later recombined in
the merge unit to form the original instruction bit.

4.5 I/0 Address Generation

The input/output addresses are generated by a set of
address generators, such as shown in Figure 4. Each
array reference is extracted from the RaPiD-C speci-
fication and dedicated to an address generator.* The
memory controller processes these requests in parallel
with (and potentially ahead of) the computation on
the RaPiD array.

For example, pseudo-code for generating the ad-
dresses for matrix B of matrix multiply is shown in
Figure 15, where B represents the base offset of the ar-
ray in memory. Matrix multiply requires three address
generators, one for each array used.

for (f=0; f < L; f+=R)
for (g=0; g < M; g+=R)
for (h=0; h < N; h+=S)
for (j=0;j < R; j++)
for (s=0; s < S; s++)
// Output the address associated with B[j+g][s+h]
Output(B + (j+g)*N + (s+h));

Figure 15: Matrix B address generation

4.6 Pipelining and Retiming

Although the target architecture’s functional units
and memories may be pipelined, the programmer can
assume that the units are combinational to simplify
the code. In addition, the programmer can specify

4 Although there is a limit on the number of address generators,
two or more references could be mapped to the same address gen-
erator if they occur on different cycles.

Petitioner Microsoft Corporation - Ex. 1066, p. 108

data using a broadcast model even though such broad-
casts might not meet the required cycle time. A re-
timing step ensures that the final netlist adheres to
the target architecture’s pipeline structure and timing
requirements. A retimed circuit will adhere to the cy-
cle time of the target hardware, taking into account
delays through RaPiD elements, as well as pipelining
requirements present in the underlying architecture.
Because placement cannot be done until retiming is
performed, the retimer conservatively estimates rout-
ing delays between elements.

5 Future Work and Conclusions

There are several ways we plan to extend the capa-
bility of the RaPiD-C language and compiler to make
them more powerful. Some are simple extensions to
the compiler to generate more optimized datapaths.
These extensions would rely on extracting more in-
formation from the control structure to allow better
sharing of resources and a more efficient generation of
control. Other extensions are more far-reaching such
as incorporating automatic time-multiplexing. Cur-
rently the programmer must explicitly describe how
the time-multiplexing is done, which can be compli-
cated and error-prone. It would be better to present
the programmer with an array of arbitrary length and
map this to the physical array by automatically intro-
ducing time-multiplexing. Another extension would
be to have the compiler infer data movement from a
description of the computation. That is, the specifi-
cation would indicate the operations and data items
and the compiler would create the dataflow required
to satisfy the computation.

One of the disadvantages to many configurable ar-
chitectures is the difficulty of specifying and compil-
ing the computation. In this paper we have presented
a conceptually clean and effective way to specify a
pipelined implementation for regular and repetitive
computation. This language requires the programmer
to map the computation to space and time, but pro-
vides simple and concise ways to do this. The compiler
is then able to generate the appropriate configuration
data and dynamic control structure to implement the
computation in a RaPiD array.

The RaPiD-C language can be viewed either as
a convenient, sufficiently high-level language for pro-
grammers to describe pipelined computations in, or
as an intermediate language used by a parallel com-
piler to describe the space-time mapping derived from
an even higher-level description of the computation.
Such a compiler currently appears out of reach for
many complex computations, but as research in par-
allelizing compilers progresses, we may reach the point
where RaPiD-C is largely used only by the compiler
back-end. Until then, it provides a relatively powerful
and convenient way for programmers to program the
RaPiD architecture.

Acknowledgments

We would like to thank Larry McMurchie, Chris
Fisher, and Miguel Figueroa for their contributions
to the RaPiD project.

References

[1] C. Ebeling, D. C. Cronquist, and P. Franklin.
RaPiD—reconfigurable pipelined datapath. In
R. Hartenstein and M. Glesner, editors, 6th Inter-
national Workshop on Field-Programmable Logic
and Compilers, Lecture Notes in Computer Sci-
ence, pages 126 135. Springer-Verlag, September
1996.

[2] C. Ebeling, D. C. Cronquist, P. Franklin, and
S. Berg. Mapping applications to the rapid config-
urable architecture. In Field-Programmable Cus-
tom Computing Machines (FCCM-97), 1997.

[3] P. Lee and Z. M. Kedem. On high-speed com-
puting with a programmable linear array. In Pro-
ceedings. Supercomputing ‘88, pages 425 32. IEEE
Comput. Soc. Press, 1988.

[4] D. Moldovan and J. A. B. Fortes. Partitioning and
mapping algorithms into fixed size systolic arrays.
IEEE Transactions on Computers, C-35(1):1-12,
1986.

[5] M. E. Wolf and M. S. Lam. A loop transforma-
tion theory and an algorithm to maximize paral-
lelism. [EEE Transactions on Parallel and Dis-
tributed Systems, 2(4):452-471, 1991.

Petitioner Microsoft Corporation - Ex. 1066, p. 109

Attachment 2A

Petitioner Microsoft Corporation - Ex. 1066, p. 110

Proceedings

IEEE Symposiuﬁﬁu

HPGAs foR
CUSTGM

CDI"IPUTJNB
MACHINES -

April 16-18, 1997
Napa Valley, California

1@-NOV-1897 BSDS 5%y

IEEE SYI‘TPDSIUH ON FPGAS FOR CUSTOM COMPUTIN

QATRARATIDEARncAmp

4363 086450 TR
AC# K

1/2

Edited by Kenneth L. Pocek and Jeffrey Amold
Sponsored by the IEEE Computer Society Technical Committee on Computer Architecture

)

IEEE

COMPUTER

SOCIETY €

IEEE

thrane 98 lun 2P EHHBEMicrosoft Corporation - Ex. 1066, p. 111

/

-

o

Pl g

/.
h

PROCEEDINGS

The 5th Annual IEEE Symposium on

Field-Programmable
Custom Computing Machines

April 16— 18, 1997
Napa Valley, California

Sponsored by

IEEE Computer Society
IEEE Computer Society Technical Committee on Computer Architecture

@!9 i T
i | o o
IEEE > | . 7 .

COMPUTER ’

SOCIETY

Los Alamitos, California
Washington e Brussels e Tokyo

Petitioner Microsoft Corporation - Ex. 1066, p. 112

Copyright © 1997 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that
carry & code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P,Q. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and ritle page. They
reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and
without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the [EEE Computer Society. or the Institute of Electrical and Electonics Engineers, Inc.

[EEE Computer Society Order Number PR08159
ISBN 0-8186-8159-4
ISBN 0-8186-8160-8 (case)
ISBN 0-8186-8161-6 (microfiche)
[EEE Order Plan Catalog Number 97TB100186
ISSN 1082-3409

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society IEEE Computer Society
Customer Service Center 445 Hoes Lane 13, Avenue de 'Aquilon Ooshima Building

10662 Los Vaqueros Circle P.O. Box 1331 B-1200 Brussels 2-19-1 Minami-Aoyama
P.O. Box 3014 Piscataway, NJ 08855-1331 BELGIUM Minato-ku, Tokyo 107
Los Alamitos, CA 90720-1314 Tel: + 1-908-981-1393 Tel: + 32-2-770-2198 JAPAN

Tel: + 1-714-821-8380 Fax: + 1-908-981-9667 Fax: + 32-2-770-8505 Tel: +81-3-3408-3118
Fax: + 1-714-82]-4641 mis.custserv@computer.org euro.ofc@computer.org Fax: + 81-3-3408-3553
E-mail: cs.books@computer.org tokyo.ofc@computer.org

Editorial production by Bob Wemer
Cover art production Joe Daigle/Studio Productions
Printed in the United States of America by Technical Communication Services

D

COMPUTER @
SOCIETY =

Petitioner Microsoft Corporation - Ex. 1066, p. 113

Table of Contents

Symposium on Field-Programmable Custom Computing Machines — FCCM97

Intmducnonm
Program Commltteex

Session 1: Device Architecture

b2

An FPGA Architecture for DRAM-based Systolic Computations..‘....“...........A......‘........,.....................A
N. Margolus

Garp: A MIPS Processor with a Reconfigurable Coprocessor 12
J. Hauser, J. Wawrzynek

A Time-Multiplexed FPGA 22
S. Trimberger, D. Carberry, A. Johnson, J. Wong

Session 2: Communication Applications

An FPGA-Based Coprocessor for ATM F‘Lrewalls 30
J. McHenry, P. Dowd, T. Carrozzi,
F. Pellegrino, W. Cocks

A Wireless LAN Demodulator in a Pamette: Design and Experience........coocooo 40
T. McDermott, P. Ryan, M. Shand,
D. Skellern, T. Percival, N. Weste

Session 3: Run Time Reconfiguration

Incremental Reconfiguration for Pipelined Appllt‘.‘atloﬂs 47
H. Schmit

Compilation Tools for Run-Time Reconfigurable Demgns 56
W. Luk, N. Shirazi, P. Cheung

A Dynamic Reconfiguration Run-Time System e b e s et B
oJ. Burns, A. Donlin, .J. Hogg, S. Singh, M. de Wit

Session 4: Architectures for Run Time Reconfiguration

The Swappable Logic Unit: A Paradigm for Virtual Hardware.........ccoooricenomnsisssoosos 77
G. Brebner

Petitioner Microsoft Corporation - Ex. 1066, p. 114

The Chimaera Reconfigurable Functional Unit.._. 87
S. Hauck, T. Fry, M. Hosler, J. Kao

Session 5: Architecture

Computing Kernels Implemented with a Wormhole RTR CCM 98
R. Bittner Jr., P. Athanas

Mapping Applications to the RaPiD Configurable Architecture 106
C. Ebeling, D. Cronguist, P. Franklin,
J. Secosky, S. Berg

Defect Tolerance on the Teramac Custom COMPIEBY ... sicivsnisscioonss s rmmtiiressiiiin 116
B. Culbertson, R. Amerson, R. Carter,
P. Kuekes, G. Snider

Session 6: Performance

Systems Performance Measurement on PCI Pamette............................ e 125
L. Moll, M. Shand

The RAW Benchmark Suite: Computation Structures for

General Purpose Computing..........ooooooooooooooo 134
J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua,
M. Taylor, J. Kim, S. Devabhaktuni, A. Agarwal

Session 7: Software Tools

Automated Field-Programmable Compute Accelerator Design using
Partial Evaluation B e R AR 145
Q. Wang, D. Lewis

FPGA Synthesis on the XC6200 using IRIS and Trianus/Hades
(Or, from Heaven to Hell and back again) ... e 156
R. Woods, S. Ludwig, J. Heron, D. Trainor, S. Gehring

High Level Compilation for Fine Grained FPGAs 165
M. Gokhale, E. Gomersall

Session 8: CAD Applications

Acceleration of an FPGA Router ... S Prr e o OO R e SO 175
P. Chan, M. Schlag

Fault Simulation on Reconfigurable Hardware.. . PSTRNRSTNIPISSEOL | ..
M. Abramovici, P. Menon

vi

Petitioner Microsoft Corporation - Ex. 1066, p. 115

Session 9: Image Processing Applications

Automated Target Recognition on SPLASH 2 R e 192
M. Rencher, B. Hutchings

Real-Time Stereo Vision on the PARTS Reconfigurable Computer......... ; 201
J. Woodfill, B. Von Herzen

Increased FPGA Capacity Enables Scalable, Flexible CCMs:
An Example from Image Processing............. FARLAEAN A4 SR asesas e b SRSt e 211
. Greenbaum, M. Baxter

Session 10: Arithmetic Applications

Comparison of Arithmetic Architectures for Reed-Solomon Decoders in
Reconfigurable Hardware.. . . : .219
C. Paar, M. Rosner

Implementation of Single Precision Floating Point Square Root on FPGAR,, ..ciisisnn s 226
Y. Li, W. Chu

Poster Papers

Datapath-Oriented FPGA Mapping and Placement for
Configurable i s 234
T. Callahan, J. Wawrzynek

Mapping a Real-Time Video Algorithm to a Context-Switched (0 3 ¢ 7 (N 236
S. Kelem
A Parallel Hardware Evolvable Computer POLYP A e o S e oo e 238

U. Tangen, L. Schulte, J, McCashill

Laser Defect Correction Applications to FPGA Based Custom Computers............___ 240
G. Chapman, B. Dufort

Speech Recognition HMM Training on Reconfigurable Paralle] Processor-............... 249
H. Yun, A. Smith, H. Silverman

Efficient Implementation of the DCT on Custom Computers.... 244
N. Bergmann, Y. Chung, B. Gunther

On Acceleration of the Check Tautology Logic Synthesis Algorithm using an

FPGA-based Reconfigurable R S N 246
J. Cong, J. Peck
Index of Authors......... ; e 249
vii

Petitioner Microsoft Corporation - Ex. 1066, p. 116

