
Petitioner Microsoft Corporation - Ex. 1066, p. 1

Petitioner Microsoft Corporation - Ex. 1066, p. 2

Petitioner Microsoft Corporation - Ex. 1066, p. 3

Petitioner Microsoft Corporation - Ex. 1066, p. 4

Petitioner Microsoft Corporation - Ex. 1066, p. 5

Petitioner Microsoft Corporation - Ex. 1066, p. 6

Petitioner Microsoft Corporation - Ex. 1066, p. 7

Petitioner Microsoft Corporation - Ex. 1066, p. 8

Petitioner Microsoft Corporation - Ex. 1066, p. 9

Petitioner Microsoft Corporation - Ex. 1066, p. 10

Petitioner Microsoft Corporation - Ex. 1066, p. 11

Petitioner Microsoft Corporation - Ex. 1066, p. 12

Petitioner Microsoft Corporation - Ex. 1066, p. 13

Petitioner Microsoft Corporation - Ex. 1066, p. 14

Petitioner Microsoft Corporation - Ex. 1066, p. 15

Petitioner Microsoft Corporation - Ex. 1066, p. 16

Petitioner Microsoft Corporation - Ex. 1066, p. 17

Petitioner Microsoft Corporation - Ex. 1066, p. 18

Petitioner Microsoft Corporation - Ex. 1066, p. 19

Petitioner Microsoft Corporation - Ex. 1066, p. 20

Petitioner Microsoft Corporation - Ex. 1066, p. 21

Petitioner Microsoft Corporation - Ex. 1066, p. 22

Petitioner Microsoft Corporation - Ex. 1066, p. 23

Petitioner Microsoft Corporation - Ex. 1066, p. 24

Petitioner Microsoft Corporation - Ex. 1066, p. 25

Petitioner Microsoft Corporation - Ex. 1066, p. 26

Petitioner Microsoft Corporation - Ex. 1066, p. 27

Petitioner Microsoft Corporation - Ex. 1066, p. 28

Petitioner Microsoft Corporation - Ex. 1066, p. 29

Petitioner Microsoft Corporation - Ex. 1066, p. 30

Petitioner Microsoft Corporation - Ex. 1066, p. 31

Petitioner Microsoft Corporation - Ex. 1066, p. 32

Petitioner Microsoft Corporation - Ex. 1066, p. 33

Petitioner Microsoft Corporation - Ex. 1066, p. 34

Petitioner Microsoft Corporation - Ex. 1066, p. 35

Petitioner Microsoft Corporation - Ex. 1066, p. 36

Petitioner Microsoft Corporation - Ex. 1066, p. 37

Petitioner Microsoft Corporation - Ex. 1066, p. 38

Petitioner Microsoft Corporation - Ex. 1066, p. 39

Petitioner Microsoft Corporation - Ex. 1066, p. 40

Petitioner Microsoft Corporation - Ex. 1066, p. 41

publicly accessible to and in actual use by ordinarily skilled researchers no later than

the end of September 1997.

CONCLUSION

93. I reserve the right to supplement my opinions in the future to respond

to any arguments that Patent Owner or its expert(s) may raise and to take into account

new information as it becomes available to me.

94. I declare that all statements made herein of my knowledge are true, and

that all statements made on information and belief are believed to be true, and that

these statements were made with the knowledge that willful false statements and the

like so made are punishable by fine or imprisonment, or both, under Section 1001 of

Title 18 of the United States Code.

Executed this 30IJ1 day of August, 2018

in Williamsburg, Virginia

James L. Mul ins, PhD.

39

Petitioner Microsoft Corporation - EX. 1066, p. 41

Petitioner Microsoft Corporation - Ex. 1066, p. 42

Petitioner Microsoft Corporation - Ex. 1066, p. 43

Petitioner Microsoft Corporation - Ex. 1066, p. 44

Petitioner Microsoft Corporation - Ex. 1066, p. 45

Petitioner Microsoft Corporation - Ex. 1066, p. 46

Petitioner Microsoft Corporation - Ex. 1066, p. 47

Petitioner Microsoft Corporation - Ex. 1066, p. 48

Petitioner Microsoft Corporation - Ex. 1066, p. 49

Petitioner Microsoft Corporation - Ex. 1066, p. 50

Petitioner Microsoft Corporation - Ex. 1066, p. 51

Petitioner Microsoft Corporation - Ex. 1066, p. 52

Petitioner Microsoft Corporation - Ex. 1066, p. 53

Petitioner Microsoft Corporation - Ex. 1066, p. 54

Petitioner Microsoft Corporation - Ex. 1066, p. 55

Petitioner Microsoft Corporation - Ex. 1066, p. 56

Petitioner Microsoft Corporation - Ex. 1066, p. 57

Petitioner Microsoft Corporation - Ex. 1066, p. 58

Petitioner Microsoft Corporation - Ex. 1066, p. 59

Proceedings

IEEE Symposium on

FPBHS FDR

CUSTDIYI

CDIYIPLITJHB

IYIHCHIINES

April 16-18, 1997

Napa Valley, California

Edited by Kenneth L. Pocek and Jeffrey Amold

Sponsored by the IEEE Computer Society Technical Committee on Computer Architecture

IEEE.
COMPUaTER 9

SOCIETY

Petitioner Microsoft Corporation - EX. 1066, p. 59

Petitioner Microsoft Corporation - Ex. 1066, p. 60

FCCM’97

m; -- 199';

Petitioner Microsoft Corporation - EX. 1066, p. 60

Petitioner Microsoft Corporation - Ex. 1066, p. 61

Copyright © 199? by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that
carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, PD. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings ofihe meeting mentioned on the cover and tide page. They
reflect the outkors’ opinions and. in the interests of ninety dissemination, ore pubiisned as presented and
without change Their imitation in this publication does not necessarib: constitute endorsement by the
editors. the [BEE Computer Sociega, or the {meme ofEiecn-ico! and Electonicr Engineers, Inc.

7K. infid—

IEEE Computer Society Order Number PR08159 x: -.~ 6 _.'_‘ -. 5J __ _, _

ISBN 0—8186—8159-4 r F,
ISBN 0-8186-8160-8 (case) ’ " 5‘ I

ISBN 0-8186-8161-6 (microfiche)
IEEE Order Plan Catalog Number 9?T13100186

ISSN 1082-3409

Addition! copies may be orderedfrom:

IEEE Computer Society IEEE Service Center IEEE Computer Society IEEE Computer Society
Customer Service Center 445 Hoes Lane 13, Avenue de l‘Aquilon Ooehima Building
10662 Los Vaqueros Circle PO. Box 1331 3-1200 Brussels 2-19-1 Minami-Aoyama
PD. Box 3014 Piscataway. NJ 08855-1331 BELGIUM Minnie-kn. Tokyo 107
Los Alamitos, CA 907204314 Tal: + 1-908-981-1393 Tet: +32-2—770-2198 JAPAN
Tel: + 15714-82 1-8380 Fax: + 1-908-98 [-9667 Fax: + 32-2-770-8505 Tel: + 81-3-3408-3] IS
Fax: + 1-714—821-4641 mis.custserv@computcr.org euro.ofc@computer.org Fax: + 81-3-3408-3553
Evmail: cs.books@oomputer.org tokyo.ofo@computcr.org

Editorial production by Bob Werner

Cover art production Joe Daigle/Studio Productions

Printed in the United States of America by Technical Communication Services

IEEE e

COMPUTER 9
SOCIETY .55;

Petitioner Microsoft Corporation - EX. 1066, p. 61

Petitioner Microsoft Corporation - Ex. 1066, p. 62

Table of Contents

Symposium on Field-Programmable Custom Computing Machines —FCCM’97
Introduction........._.......... .

Program Committee
. . .. X

Session 1: Device Architecture

An FPGA Architecture for DRAM-based 8ystolic Computations..._...._........2
N. Margarine

Garp: A MIPS Processor with a Reconfigurable Coprocessor ... 12
J. Hauser, J. Wawrzynek

A Time-Multiplexed FPGA

S. Trimberger, D. Car-berry, A. Johnson, J. Wong

Session 2: Communication Applications

An FPGA—Based Coprocessor for ATM Firewalls ..
J. Moi-1.9mm P. Dowd, T. Carrozzi,
F. Pellegrino, W. Cocks

30

A Wireless LAN Demodulator in a Pamette: Design and Experience..........
T. McDermott, P. Ryan, M. Shani
D. Skeliern, T. Percival, N. Wests

40

Session 3: Run Time Reconfiguration

Incremental Reconfiguration for Pipelined Applications 47
H. Schmit

Compilation Tools for Run-Time ReconfigurableDesrgns_ 56
W. Luk, N. Shir-mi, P. Chaung

A Dynamic Reconfiguration Run—TimeSystem 66
J. Burns, A. Donlin, J. Hogg, S. Singh, M. de Wit

Session 4: Architectures for Run Time Reconfiguration

The Swappable Logic Unit: A Paradigm for Virtual Hardware 77
G. Brebner

Petitioner Microsoft Corporation - EX. 1066, p. 62
H

Petitioner Microsoft Corporation - Ex. 1066, p. 63

The Chimaera Reconfigurable Functional Unit ... 87
S. Hauck, T. Fry, M. Hester, J. Koo

Session 5: Architecture

Computing Kernels Implemented with a Wormhole RTR CCM _ .. 98
R. Bitmer Jr., P. Athanas

Mapping Applications to the RaPiD Configurable Architecture 106
C. Ebeling, D. Cmnquist, P. Franklin,
J. Secosky, S. Berg

Defect Tolerance on the Teramac Custom Computer ... 116
B. Culbertson, R. Amerson, R. Carter,
P. Kuekes, G. Snider

Session 6: Performance

Systems Performance Measurement onPCIPamette125
L. Moll, M. Shond

The RAW Benchmark Suite: Computation Structures for

General PurposeComputing134
J. Babb, M. Frank, V. Lee, E. Waingold, R. Berna,
M. Taylor, J. Kim, S. Deoobhaktuni, A. Agarwcl

Session 7: Software Tools

Automated Field-Programmable Compute Accelerator Design using
Partial Evaluation 145

Q. Wang, D. Lewis

FPGA Synthesis on the X06200 using IRIS and TrianusfHades

(Or, from Heaven to Hell and back again} ... 155
R. Woods, S. Ludwig, J. Heron, D. Trainer, 8'. Gehring

High Level Compilation for Fine Grained FPGAs .. 165
M. Gakhote, E. Gomersall

Session 8: CAD Applications

Acceleration of an FPGA Router .. 175
P. Chen, M Schlog

Fault Simulation on Reconfigurable Hardware........... 182
M. Abromooici, P. Merton

vi

Petitioner Microsoft Corporation - EX. 1066, p. 63
———————_____________________________

Petitioner Microsoft Corporation - Ex. 1066, p. 64

Session 9: Image Processing Applications

Automated Target Recognition on SPLASH 2 192
M. Rancher, B. Hatchinge

Real-Time Stereo Vision on the PARTS Reconfi
gurable Computer........___201

J. Woodfill, B. Van Herman

Increased FPGA Capacity Enables Scalable, Flexible CCMs:
An Example from Image Processing.........................

J. Greenbaum, M. Baxter

Session 10: Arithmetic Applications

Comparison of Arithmetic Architectures for

ReconfigurableHardware219
C. Paar, M. Rosner

Reed—Solomon Decoders in

Implementation of Single Precision Floating Point Square Root on FPGAs..... 226
Y. Li, W. Che

Poster Papers

Datapath-Oriented FPGA Mapping and Placement for
Configurable Computing..._.......... . _.

... 234
T. Callahan, J. Wawrzynek

Mapping a Real-Time Video Algorithm to a Context-Switched FPGA .. 236
S. Kelem

A Parallel Hardware Evolvable Computer POLYP 238
U. Tongan, L. Schulte, J. McCaskill

Laser Defect Correction Applications to FPGA Based Custom Computers........ . . 240
G. Chapman, B. Dufori

Speech Recognition HMM Training on Reconfigurable Parallel Processor..................................242
H. Yun, A. Smith, H. Silvermon

Efiicient Implementation of the DOT on Custom Computers244
N. Bergman, Y. Chung, B. Gunther

On Acceleration of the Check Tautology Logic Synthesis Algorithm using an
FPGA—based ReconfigurableCoprocessor246

J. Cong, J. Peck

Index ofAuthors 249

vii

Petitioner Microsoft Corporation - EX. 1066, p. 64

Petitioner Microsoft Corporation - Ex. 1066, p. 65

This material may be protected by Copyright law (Title 17 US. Code) '

Mapping Applications to the RaPiD Configurable Architecture*

Carl Ebeling, Darren C. Cronquist, Paul Franklin, Jason Secosky, and Stefan G. Berg
Department of Computer Science and Engineering

University of Washington
Box 352350

Seattle, WA 98195-2350

Abstract

The goal of the RaPiD {Rt-iconfigurable Pipelined
Datapath) architecture is to provide high per-
formance configurable computing for a range of
computationaily—intensive applications that demand
special-purpose hardware. This is accomplished by
mapping the computation into a deep pipeline using
a configurable array of coarse—grained computational
units. A key feature of RaPiD is the combination
of static and dynamic control. While the underly—
ing computational pipelines are configured statically,
a limited amount of dynamic control is provided whitfli
greatly increases the range and capability of applica-
tions that can be mapped to RaPiD. This paper illus-
trates this mapping and configuration for several im—
portant applications including a FIR filter, 2-D DCT,
motion estimation, and parametric curve generation;
it also shows how static and dynamic control are used
to perform complex computations.

l . Introduction

Field—programnmble custom computing machines
have attracted a lot of attention recently because of
their promise to deliver the high performance provided
by special purpose hardware along with the flexibil-
ity of general purpose processors. Unfortunately, the
promise of configurable computing has yet to be real—
ized in spite of some very successful examples [1, 9].
There are two main reasons for this.

First., configurable computing platforms are cur—
rently implemented using commercial FPGAs. These
FPGAs are necessarily very fine~grained so they can
be used to implement arbitrary circuits, but the over—
head of this generality exacts a high price in density
and performance. Compared to general purpose pro—
cessors (including digital signal processors), which use
highly optimized functional units that operate in hit-
parallel fashion on long data words, FPGAs are some—
what inefficient for performing logical operations and

"l‘his work was supported in part by the Defense Advanced
Research Projects Agency under Contract DAAH04—94~G02?9 D.
Cronquist was supported in art by an IBM fellowship. P. Franklinwas supported by an NSF fellowship.

0-8186-8159-4197 $10.00 © 1997 IEEE
106

even worse for ordinary arithmetic. FPGA-based com~
puting has the advantage only on complex bit—oriented
computations like count-ones, find-first-one, or com-
plicated bit~level masking and filtering.

Second, programming an FPGA—based configurable
computer is akin to designing an ASIC. The program-
mer either uses synthesis tools that deliver poor den~
sity and performance or designs the circuit manually,
which requires both intimate knowledge of the FPGA
architecture and substantial design time. Neither al—
ternative is attractive, particularly for simple compu-
tations that can be described in a few lines of C code.

Our response to these two problems is RaPiD, a
coarse-grained configurable architecture for construct—
ing deep computational pipelines. RaPiD is aimed at
regular, computation—intensive tasks like those found
in digital signal processing (DSP). RaPiD provides a.
large number of ALUS, multipliers, registers and mem~
ory modules that can be configured into the appropri-
ate pipelined datapath. The datapaths constructed
in RaPiD are linear arrays of functional units com—
municating in mostly nearest-neighbor fashion. Sys»
tolic algorithms [4], for example, map very well into
RaPiD datapaths, allowing us to take advantage of
the considerable research on compiling computations
to systolic arrays [5, 7']. However, RaPiD is not limited
to implementing systolic algorithms; a pipeline can be
constructed which comprises different computations at
different stages and at different times.

We begin with an overview of the RaPiD architecs
ture; for a more detailed description see [3]. We then
give a general description of how computations map
to RaPiD using a FIR filter as an example, and then
present how the architectural features of RaPiD are
used to perform more complex computations found in
2-D DCT, motion estimation, and parametric curve
generation.

2 The RaPiD Datapath Architecture

RaPiD is a linear array of functional units which
is configured to form a mostly linear computational
pipeline. This array of functional units is divided into
identical cells which are replicated to form a complete
array. Figure 1 shows the cell used in RaPiD-l, the

Petitioner Microsoft Corporation - EX. 1066, p. 65
——-——________________________¥

Petitioner Microsoft Corporation - Ex. 1066, p. 66

first version of the RaPiD architecture. This cell com-
prises an integer multiplier, three integer ALUs, six
general-purpose “datapath registers" and three small
local memories. A typical single—Clo]: RsPiD array
would contain between 8 and 32 of these cells.

dutapa :11
rug 1 5 tars

// \

input muxea output drivers

bus connectors

Figure 1: A basic RaPiD cell which is replicated left to
right to form a complete chip. RoPiD~I contains 16
cells similar to this one, with fourteen 16-bit buses.

2.1 Datapath Composition

The functional units are interconnected using a set
of segmented buses that run the length of the data.-
path. The functional units use a n. : 1 multiplexer to
select their data inputs from one of the o. — 2 [ms seg—
ments in the adjacent tracks. The additional inputs
provide fixed zero or feedback lines, which can be used
to clear and hold register values, or to use an ALU as
an accumulator. Each functional unit output includes
optional registers to accommodate pipeline delays and
a set of tristate drivers to drive their output onto one
or more bus segments.

The bust-n in different tracks are segmented into
different lengths to make the most efficient use of the
connection resources. In some tracks. adjacent bus
segments can be connected together by a bus connec-
tor as showu in Figure 1. This connection can be pro-
grammed in either direction via a unidirectional buffer
or pipelined with up to three register delays, allowing
data pipelines to be built in the bus structure itself.

RaPiD’s ALUs perform the usual logical and arith~
metic Operations on one word of data. The ALUs
can be chained for wide-integer operations. The
multiplier inputs two single-word numbers and pro-
duces a double-word result, shifted by a statically pro-
grammed amount to maintain a given fixed-point rep—
resentation. Both words of the result are available as
separate outputs.

The datapath registers serve a variety of purposes
in RaPiD. These registers can be used to store can-
stants loaded during initialization and temporary val-

107

Lies. They can be used as additional
simplify control; like any functional

tors can In) disaliled. They are also used while routing
llaPiD applications to connect hos segments in dilfer-
out tracks and/or for additional pipeline delays.

in many applications, the data is partitioned into
blocks which are loaded once. saved locally. reused as
needed. and then discarded. The local memories pro-
vided in trash cell of the datapath serve this purpose.
Each local memory has a specialized tlatapnth regis—
ter used as an address register; one of the bus nlputs
to this address register is replaced by no incrementing
feedback path. Like the. SILOs found in the Philips
\I’SP [8], this supports the common case of sequential
memory accesses. More complex addressing patterns
can be generated using registers and ALUs in the data—
path.

Input and output data enter and exit RaPiD via
I/O streams at each end of the datapath. Each stream
contains a FIFO filled with data. required or with re-
sults produced lay the computation. The dntapath ex-
plicitly reads from an input stream to oluain the next
input data value and writes to an output stream to
store a result.

External memory operations are carried out inde-
pendent of the IlaPiD array via three [/0 streams
lry placing F'lF'Os lit-theell the array and a memory
controller. In addition to carrying out the memory
operations. the memory controller generates statically
determined sequences of addresses for each strewn. If
the datapnth reads a. value from an empty FIFO or
writes a value to a full FIFQ the datapath is stalled
until the FIFO is ready.

multiplexers to

unit. the regis—

2.2 Control Path

For the most part. the structure of a pipeline is stat-
ically conligiu'ed. However, there are ahnost always
some pipeline wntrol signals that must be dynamic.
For example, constants are loaded into ilatapath regis-
ters during initialization but then remain unchanged.
The load signals of the datapath registers thus take on
rlifl'erent values during initialization and computation.
More complex examples include doulilc—lnlffering the
local memories and performing doln-depelulent calcu—lations.

The control signals are thus divided into static con—
trol signals provided by configuration memory as in
ordinary FPGAs, and control signals which can be dy-
namically progrmnmed on every cycle. RaPiD is pro—
grammed for a particular application by first mapping
the computation onto a datapath pipeline. The static
prograinn'ling hits are used to construct this pipeline
and the dynamic programming hits are used to sched-
ule the datapnth operations over time. These dynamic
control bits are provided by a small pipelined control
path, not by the more typical local microprogrammed,
SIMD, or VLIW control.

Petitioner Microsoft Corporation - EX. 1066, p. 66

Petitioner Microsoft Corporation - Ex. 1066, p. 67

Dynamic control is implemented by inserting a few
' ‘ control path

all the information required by the various pipeline
stages to compute their dynamic control signals. The
control path contains 1ebit segmented buses similar in
structure to the datapath buses, as shown in Figure 2.
{Signals which can be dynamic but do not need to
change during a particular computation are connected
to the static zero line.) Control values are inserted by
a global pipeline controller at one end of the control
path and are passed from stage to stage where they
are applied to the appropriate control signals. Since
applications generally use only a few dynamic control
signals and use similar pipeline stages, the number of
control signals in the control path is relatively small.

aluinput
mu: status alucontrol

inputmux

.............

Figure 2: Dynamic control generation for port of e
RePiD call; these control buses are one bit wide.

Each dynamic control signal is derived from the in-
formation contained in the control path. Usually the
signal is simply connected to one of the bits in the
control path, but in more complex cases lockup—tables
embedded in the control path are used to compute
the control signal based on more information includ-
ing bits in the control path, status from ALUs in the
datapath, or feedback when implementing simple FSM
controllers. The generation of dynamic control is il-
lustrated in detail in the applications that follow.

2.3 RaPiD-l Design Features

Most of the design and layout of the RaPiD—l chip.
the first implementation of the RaPiD architecture,
is complete. This section presents those details of
RaPiD-l useful in understanding the performance re-
sults discussed for each application presented in the
following sections.

RaPiD—l’s datapath is based on 16-bit fixed~point
integers; to accommodate this, the multipliers can be
statically programmed to shift their 32-bit output ar~
bitrarily. Each RaPiD—l cell contains three ALUs,
one multipliers, and three 32—word local memories.
Fourteen tracks are provided for the segmented data

108

buses, which are supplemented by the zero and feed-
back inputs available to each functional input. The
16 cells each

have the functional units shown in Fig
tion to control logic and up to 15 control

buses. The RaPiD-l array is designed to be clocked
at 100MHz, and reconfiguration time for the array is
conservatively estimated to be 2000 cycles.

3 Programming Model

Mapping applications to RaPiD involves designing the
underlying datapath and providing the dynamic con
trol required for the different parts of the computa-
tion. The control design can be complicated because
control signals are generated at different
travel at different rates. We have designed
B programming language to accommodate
trol patterns.
a placed and

times and

the RaPiD
these con-

Our RaPiD B compiler which produces
routed implementation along with the

dynamic control program is nearly complete. This sec-
tion lirst describes

filter, a simple application
of the basic features of R

the timing models used by RaPiD

a FIR (Finite Impulse Response}
useful for illustrating some

aPiD. It then briefly presents
13 and by the re-

mainder of this paper.

3.1

Digital FIR. filters are used in
applications,

FIR Filter Computation

many signal processing
typically for eliminating unwanted fre-

quency components from a signal. Figure 3a gives 3
Specification for a FIR filter with NimiTnps taps and
NumX inputs. The filter weights are stored in the W
array, the hip

l" array (starting at array |
Figure 3]) show: the

single output

Lit in the X array, and the output in the
ocation Nuanps ~ 1)-

entire computation required for a
of e 4-tap FIR. filter.

 on :: ‘nm uns— lo ‘nm '-

Y[i] := fl
forj := u to Nunl‘l'aps-I

rm == rm + xii-ermend
end

..... x9 ...xsxr._....xa.....xs......x4xs.....x2. ...XI. . so aX X X x
we WI we W5

(b)

(a) Algorithm. (b) ComputationFigure 3: FIR filter.
for Nam Tops :4 and 11:6.

The circuit in Figure 4a performs the entire compu~
tation for one output value in a single cycle; it is easily
obtained by enrolling the inner loop of the program

Petitioner Microsoft Corporation - EX. 1066, p. 67
———.______________________________

Petitioner Microsoft Corporation - Ex. 1066, p. 68

in Figure 3a. Unfortunately,
ure 43. has poor performance characteristics (note the
combinational path through all of the adders, which
scales linearly with the number of weights). A retimed
version of this circuit is shown in Figure 4b; the re-
tirned circuit performs substantially better than the
original, particularly for larger computations.

the circuit shown in Fig.

OUT

{b)

Figure 4: Schematic diagrams for four-tap FIR filter
(a) as viewed in RePiD B, grouping related compu-
tation and (b) as a high-performance pipelincd imple-mentntion.

Specifying this retimed circuit directly is difficult
because of the complexity of the relative timing of the
internal data and control signals. It. is much easier to
specify the computation somewhat naively as in Fig-
ure 4a, knowing that retiming can transform it into
a high-performance, pipelined circuit. This becomes
particularly evident in circuits with more complicated
control, and when more aggressive steps, such as using
the pipeline stage available in RaPiD’s multiplier, are
needed to achieve the desired performance. Therefore,
the RaPiD B compiler retimes the resulting netlist
based on [6].

All of the applications presented in the following
sections have been specified in a preliminary ver~
sion of RaPiD B and simulated to validate the im-
plementations described and the accompanying cy-
cle count. For ease of explanation, the computations
shown throughout this paper are shown before the full
retiming performed by the RaPiD B compiler. A pre-
liminary version of the RaPiD B toolset is nearly corn~
plate, including compilation, retiming, control synthe-
sis, and full placement and routing of the resulting
RaPiD circuit.

109

4 FIR Filter Implementation

4.1 Simple Case

As with most applications, there are a variety of ways
to map a FIR filter to RaPiD. The choice of mapping
is driven by the parameters of both the RaPiD an
ray and the application- For example, if the number
of taps is less than the number of RaPiD multipliers,
then each multiplier is assigned to multiply a specific
weight. The weights are first preloaded into datapath
registers whose outputs drive the input of a specific
multiplier. Pipeline registers are used to stream the
X inputs and Y outputs. Since each Y output must
see NumTaps inputs, the X and Y buses must be
pipelined at different rates. Figure 5a show: one cell
ofthe FIR filter (several stages are shown in Figure 4b)
with the X input bus doubly pipelined and the Y in—
put bus singly pipelined.

OUT

(b)

Figure 5: (a) Netlist for one cell of the simple FIR
filter. {6) One tsp of the FIR filter mapped to the
RePiD army {this is replicated to form more taps).

This implementation maps easily to the RaPiD ar-
ray, as shown for one tap in Figure 5b. For clarity, all
unused functional units are removed, and used buses
are highlighted. The bus connectors from Figure 1 are
left open to represent no connection and boxed to rep-
resent a register. The control for this mapping consists
of two phases of execution: loading the weights and
computing the output results. In the first phase, the
weights are sent down the IN double pipeline along
with a singly pipelinecl control bit which connects the

Petitioner Microsoft Corporation - EX. 1066, p. 68
—\

Petitioner Microsoft Corporation - Ex. 1066, p. 69

input of each datapath register to the IN bus. When
the final weight is inserted, the control bit is switched,
and the input is connected to the feedback line. Since

the control bit travels twice as fast as the weights,
each datapath register will hold a unique weight. No
special signals are required to begin the computation;
the second phase implicitly starts when the control bit
goes low.

4.2 Increasing the Number of Taps

If the number of taps exceeds the number of RaPiD
multipliers, the multipliers must be time-shared be-
tween several taps. This can be achieved in RaPiD

by using a local memory to store several weights per
stage. Figure 6 shows our implementation for this
mapping. Unlike the simple case, we make the arbi-
trary choice for doubly pipelining the Y output values
and singly pipelining the X input values.

Righl RAM holds islennedl-uc
Y mu I Vahtfi Iliad shill down
mm 3- are am In ml my:

Len RAM holds weight; In IN!
Multiplied Willi K (upon.

aWeight. Iml x “Inn menu In

Figure 6: Neth‘st for one cell of extended FIR fil-
ter. The top pipelined bus streams in the X inputs
(the weights during initialization) while the bottom has
streams out the intemediote Y values.

As a. new X is read from external memory, the first
stage replicates it and presents it to the input data-
path for several cycles. Each stage can multiply this
X by its weights in turn and add it to one of its stored
intermediate values. At this point a new X value will
be fetched from memory and the cycle repeats.

There are the same number of intermediate values
as there are weights per stage. These intermediate val-
ues are stored in a second local memory. Let’s exam-
ine the stage holding weights W55, W54, W53, and W52
(four taps per stage). A new input. value X20 appears
on the input datapath. In four cycles the partial sums
for 1’75, Y“, 1’73, and Y-m will be computed. These
are stored in that order in the local memory holding
the intermediate values. At this point, X30 moves to
the next pipeline stage followed by the intermediate
value Y”. The next input, X2], appears on the input
datapath along with the intermediate value Yin; from
the previous stage. Now the partial some for 1’75, Y“,
Y“, and 1’73 are computed.

4.3 FIR Performance

When the number of taps is a multiple of 16 the
weights can be partitioned evenly across the stages

llllI

and the allocated functional units are fully utilized.
RaPiD-l (Section 2.3) can therefore operate at very
near its peak performance of 1.6 GOPS (where GOPS
is a billion multiply-accumulates per second).

5 Discrete Cosine Transform

The discrete cosine transform (DOT) is used fre-
quently in signal processing and graphics applications.
For example, the 2-D DCT is used in JPEG/MPEG
data compression to convert an image from the Spatial
domain to the frequency domain. A 2—D DCT can be
decomposed into two sequential 1-D DCTs. We first
describe how the 1-D DOT can be computed on RaPiD
and then show how two 1—D DCTs can be composed
to perform a 2-D DCT.

5.] 1-D DCT

An N—point 1-D DCT partitions an input vector A into
N-element sub-vectors, and for each resulting sub-
vector Ah computes

(1)

for D g i S N - 1, where aim is the n—th element of
sub-vector Ag, (and the (hN + n)—th element of vector
All The N2 cosine terms are constant over all sub-
vectors and hence can be read once as precomputed
weights H" where w.” = cos gig—,(Qn + 1). This reduces
Equation 1 to _

(3)

for 0 5 i 5 N - 1. By viewing input vector A and
weights W as matrices A and W, Equation 2 reduces
to the matrix multiply Y = A x W. Thus, to compute
a 1-D DCT, RaPiD performs a matrix multiply.

To implement an 8 point 14) DOT on an 8 x 8
input matrix A (Le. a fill—element vector), the entire
8 x 8 weight matrix W is stored in RaPiD’slocal mem-

ories, one column per cell. Each cell of the resulting
pipeline is configured as shown in Figure 7. The A ma-
trix is passed through the array in row—major order.
Within each cell, the local memory address is incre-
mented each cycle, and a register accumulates the dot
product of the stored column and the incoming row.
When a cell receives the last element of a row, the
resulting product is passed down an output pipeline,
the address is cleared, and the cell is ready to compute
the product of the next row on the next cycle. This
effectively computes the matrix multiply of A x W.

1To produce the final DCT result each 3”,,- must be multiplied
by 1 / £8; where E.- = i if i = D and E,- = 1 otherwise. For our
purposes we ignore this scaling factor and focus on the computationof y“.

Petitioner Microsoft Corporation - EX. 1066, p. 69
-———-—————_________________________

Petitioner Microsoft Corporation - Ex. 1066, p. 70

Figure 7: Neth'si for one cell of a metric multiply.
The top pipelined bus streams in the A matrix (in
row-mojor order) while the bottom bus streams out

the resulting metric product (also in row-major order).
The top bus also streams the W columns into the local
memories prior to the computation.

5.2 2-D DCT

An N x N 2-D DCT partitions on input matrix into
sub-matrices of size N x N , and for each resulting
sub-matrix A, computes

N-1 N—l . -
h m m

yj, _ mica “2:0 om“, cos 2—“?(2711 + 1) cos 2—“?(2n. + 1)
(3)

for 0 g ij 5 N— 1.“2 As with the 1-D DOT, Equation
3 is reduced using the N2 precomputed W weights,
yielding

N—l. N—l

yjl‘. -_- Z Z flmnwmiwnj
m=fl n=0 (4)

for 0 g i, j g N — 1. Extracting mm,- from the inner
summation leaves

(5)

and thus

(5)

forOfiiJSN—l.

As seen in Equation 5 and Equation 6, both ij
and we are equivalent to N x N matrix multiplies.
However, since the em,- values are produced in row—
major order but required in column-major order, the
results from the 2",; DOT must be transposed prior
to computing yj, as illustrated in Figure 8. In addi-
tion, since both input streams are read in row-major
order, it might be desirable to produce row-major out-
put. (potentially reducing memory stalls), requiring yet.
another transform (Le. output yo,- insiead of 3:5,). The
resulting cornputution is ((A x W)T x WP"..—__.____.___,

2"[‘u produce the final DOT result each WI must be multiplied by
1,2,7EEEJ1. As with 1-D DOT, we ignore this scaling factor and focus
on the computation of 13,1.

111

am N-Point Zmi ”moss 25m N-Point n
1—D DCT 1-D ocr

Figure 8: 2-D N x N DCT

We show the implementation of an 8 x 8 2—D DCT
on a Iii-cell RaPiD array. Consider an M x N image
and an 8 x 8 weight matrix W. First, the innigo is
divided into M” suhamlngos of size 8 x 8. The com-
putation for can]: sob-image A is outlined in Figure 9,

Intermediate results
stored in HAM and

transposed by control

(as mil/Inf
" K
/ \

Computer! by
last 6 stages

Computed by
tire! 8 stagesMxN

Figure 9: To compute 2~D DOT, on M x N image
is partitioned into 8 x 8 sub-images. RoPiD computes
eocli 1-D DOT by multiplying the sub-image by an 8): 8
weight matrix.

Since a. 2-D DCT performs two multiplies by the
same weight matrix, W is loaded only once: one col-
umn per cell in both the first 8 cells and last 8 cells.
The transpose in between matrix multiplies is per—
formed with two local memories per cell: one to store
products of the Current sub-image and the other to
store the products of the precious sub-image. During
the computation of the current sub-image, the trans-
pose of the previous sub-image computation is passed
to the next 8 cells. The detspeth for one RaPiD cell
of a 2—D DCT is shown in Figure 10.

[Jim as. M unto-s Ibo
cuntnl l-D DCT rcnilu.

The other I mm UIB

Column 0! moi: W
is I'Eld I‘mm RAM.

iuuulm l‘ UL’I‘ m

Figure 10: Netlist for one cell of 2-D DC’T. The top
pipelined bus streams in the A matrix while the bot—
tom bus streams out resulting .l-D DOT, transposed.
The top bus also streams the W columns into the lo-
cal memories prior to the computation.

5.3 DCT Control

Prior to computation, a 2-D DC'I‘ must load the W
matrix into the local memories, one column per stage.

Petitioner Microsoft Corporation - EX. 1066, p. 70
————-———————_____________________

Petitioner Microsoft Corporation - Ex. 1066, p. 71

rIlo take advantage of pipelined control, weights are
passed down a data—bus in row-major order, while a
control signal, traveling twice as slow as the data,
raises the write signal of the appropriate local menu
ories. As a result, all weights of the DCT can be
preloaded using a single control bus. Most RaPiD
control signals fit into such a simple, pipelined model
since an operation occurring in one RaPiD stage usu-
ally occurs in the next stage on the next cycle.

Sometimes control is required which does not fit
into the simple, pipelined model. At the end of the
first l-D DC'I‘ computation, results are stored one col-
umn per stage. To flow these results out in column—

mojor order (that is, perform the transpose), the first
local memory must be completely emptied onto the
output bus, followed by the second, third, etc. Hence,
the “empty” control signal must stay on for eight con-
secutive cycles in the first stage, and than eight cycles
in the second stage, etc. Possible solutions include
dedicating a control bus to every stage or using one
control bus with eight registers per stage. The solution
requiring the fewest resources configures two buses and
one 3-LUT per stage as a simple finite state machine,
as shown in Figure 11.

DATA PATH

CONTROL

anl
Prcl'ruus
Cell

Tl Token) 3 {Sim-Ilium! P (Prevluus stage): Intern

Figure 11: A simple state machine performs the trans-
pose using two buses, one LUT, and three registers per
stage.

Three control registers are used in the state ma-
chine: T is the token, S is the start/stop bit, and P
is the previous stage‘s token delayed by a cycle. The
LUT is configured as a multiplexer of P and T with
select bitS (i.e. T = S&P+!S&T). If S is low, the to-
ken is held; if .S' is high, the token is passed to the next
stage. When a stage has a token, its results are emp—
tied from a local memory onto the output bus. This
operation repeats in each consecutive stage, effectively
transposing the 1—D DCT results.

To initiate the transpose, the stream controller
places a one into the first P register every 64 cycles
and a one into the first 5‘ register every 8 cycles. No-
tice that the token hold length is solely determined
by the frequency of the start/stop signal and does not
affect the number of control buses, LUTs, or registers

112

needed. Thus, the size of this state-machine control
is fixed no matter how long each stage must hold atoken.

5.4 DCT Performance

A 2-D DCT performs many consecutive 8 x 3 matrix
multiplies, allowing initialisation, finalisation. and re-
configuration times to be small compared to the to-
tal computation performed. For example, RaPiD—l
(Section 2.3) incurs a setup overhead of only 0.5% to
compute the 2~D DOT of a 720 >< 576 image. As a.
result, RaPiD-l performs very close to its peak of 1.6
GOPS on 2-D DCT (where COPS is a billion multiply
accumulates per second).

6 Motion Estimation

Motion estimation is used in video data compression
to reduce the amount of data required to represent
a video frame. In most cases, objects do not move
very much from one frame to the next. In motion
estimation, a block in a frame is represented by the
address of the most similar nearby block in the previ-
ous frame plus the differences betwaen the two blocks.
This section describes implementing motion estima-
tion on RaPiD.

Motion estimation has few data dependencies, pro-
viding flexibility in the order of computations and
greater parallelism. RaPiD favors computations that
are not memory bound. The prodigious amount of
computation and few memory accesses make motion
estimation an ideal candidate for RaPiD.

To compute the motion estimation of an M x N
reference image, the image is divided into 1E3 8 x 8
reference blocks (RB). The reference blocks are com-
pared with blocks of a prior video frame, the query
image. For each reference block RaPiD computes the
minimum absolute block difierence (point-to—point dif-
ference) of all possible positions of the RB within a
24 x 24 query window (QW) of the query image, as
shown in Figure 12. The result is a vector which points
to the RB yielding the minimum block difference.

6.1 Motion Estimation Implementation

With a 16-stage RaPiD array we implement motion
estimation using 16 x 16 super reference blocks, which
are comprised of four 8 x 8 reference blocks, and 32 x 32
super query windows. The super RB and a 32 x16 sec~
tion of the query window are stored in RaPiD’s local
memories, one column per stage. This mapping yields
the best reuse of RB and QW values for the avail~
able local memory. A stage of the resulting pipeline is
showu in Figure 13.

The block difference between a super RB and super
QW is computed row by row. For each row, a stage
performs an absolute—difference and accumulates the

Petitioner Microsoft Corporation - EX. 1066, p. 71
———-———____________________________

Petitioner Microsoft Corporation - Ex. 1066, p. 72

Image

Query Window

17"” possible

RB positions Reference Elloell'

MIN

Figure 12: The image is partitioned into 8 x 8 R83.
Motion estimation of the RB within a 24 x 24 QW
is determined. by finding the minimum block dlfierence
for all positions of the RB within the QW.

New! at L'-'l~m"r u... s-lm In: RAM an. an a,“ no mm« Lnfllfhkn‘ e Ilh. uhlh Ik ml are: 11 E ' '
mum in: pelt-Minn. um "In rural- Iul um

Illa: rig-4.: ll

Figure 13: Cell configuration for motion estimation
compute stages. 16-bit data and 1-bit control lines
are drawn in separate bases. To achieve an absolute—
difierence the sign bit of the Subtract ALU controls the
function of the +/— ALU.

113

result with the absoluteedifference of the prior stage.
This operation happens in the same way as the FIR
filter of Section 4. The last stage totals all of the row
sums to produce the block difl‘erence and determines
the minimum block difference for each RB of the superRE.

The netlist for motion estimation, presented in Fig
are 13, shows how two dynamic control lines con-
trol an ALU and super RB local memory selection.
The absolutedifference—accumulate Operation is im~
pleniented by controlling the function of the +/- ALU
with the sign of the subtract ALU.

The local memory used for the super RE is double-
bufi'ered, with one local memoryused for the current
computation while the other is being preloaded with
the next super RB. The parity control signal is used to
determine which local memory to use for computation
and which to use for preloading. The parity signal
toggles when a motion vector for the current super
RE is output.

6.2 Motion Estimation Data Flow

To obtain the most reuse of data we perform block
differences in column-major order. That is, the super
RB starts in the upper right corner of the super QW
and proceeds down the rows before shifting left onecolumn.

A left shift of the super BB is implemented by shift-
ing the super QW columns right, to the next stage.
When a super QW value is no longer needed, the value
is shifted to the next stage and a new value is shifted
in from the prior stage. The first stage gets new super
QW values from the QW input stream.

Super QW values are reused between block differ-
ences by storing the address of the starting row of
the super QW in the StartRow register (Figure 14).
When a block difference completes, the QW column
local memory address is set to StartRow and StartRow
is incremented. StartRow is reset when the super RB
is shifted left one column.

SuperRB Column Super
0W Column

82

Shflflow

—— Curran] Block Dlll‘arenca
..... New Sleek Dlflnreneo

super our value-
leuee-d bemoan

I block dlltmneu

Figure 14: The super RB column shifts down through
super QW column, performing a block alifl'erence at
each step. Stortllow is the address of the first row of
the block difl'erence.

Petitioner Microsoft Corporation - EX. 1066, p. 72

Petitioner Microsoft Corporation - Ex. 1066, p. 73

Moving the super RB from right to left allows super
QW values to be reused between sets of block differ-
ences. Figure 15 shows how the last columns of the
current super QW are the first columns used in the
super QW of the next super RB computation. This
data motion removes the need to preload super QW
values for the next set of block difl'erences.

neared Query
Window Veluee

Current Super
Reference Block 8r
Query Window

Next Super
Reference Block a

Query Window

Figure 15: The lost super QW columns used to com—
pute motion estimation for a super RB ore reused in
the computation for the nest RB.

The only time data loading stalls computation is
the beginning of a row of super RBs. In this case
the required super QW values were not used with the
prior super RB and must be loaded. The next section
shows that the cost is minor, being amortized over a
long computation

6.3 Motion Estimation Performance

Motion estimatiOn is not a memory bound computa-
tion and with our implementation no memory stalls
are encountered. The cycles not spent computing
absolute--diiference—accumulation operations are due
to initialization. finalisation, reconfiguration, and the
loading of super QWs. For an image of size 720 x 576,
using RaPiD-l, loading the super QW costs 18,432
cycles for motion estimation of one frame“. The over
head of loading and reconfiguration time take less than
0.03% of the total number of cycles. As a result, a
RaPiD-l array performs close to its peak speed of 1.6
GOPS (where GOPS is a. billion absolute—difference—
accumulates per second).

The speedup of motion estimation scales well as the
data size grows and with future versions of RaPiD. As
data size grows, the cycles used to load super QWs will
grow linearly, while the cycles spent in computation
grow with the square of the data size. Thus as the
data size grows a larger percentage of cycles will be
spent computing.

Future versions of RaPiD will have more stages and
larger local memories per stage, increasing the number
of RBs per super RB and thus the amount of paral—
lelism. Typical images also use 8-bit data, allowing

3The super QW must be preloaded 575/16 times and a preload
takes is 'r 32 cycles. resulting in 18.43:! cycles.

114

us to double gauge RaPiD’s 16-bit data path, gaining
another factor of two in speedup.

7 Parametric Curve Generation

This section describes how arbitrary 2-D Besier curves
with four control points'1 can be computed by RaPiD
using Apex, an architecture for generating a large class
of parametric curves and surfaces [2] Apex differs
from the previous applications in that it reaps a tri-
angular data-flow onto RaPiD as shown in Figure 16.
Each node in the tree performs a weighted average
on the two inputs values and passes the result to the
parent node. In symbolic form this is equivalent to

V,(t) ‘— (1 rillieaHVright = liefa+(l”I-ighrliertli
The root node produces a new point of the Bé‘zier

curve for each t. The nodes are mapped onto the
RaPiD stages in the order indicated by the numbers
inside the nodes (Figure 16). This particular mapping
minimizes the communication between nodes.

QI-A.

t.
y“ \

'\@~/Q\
\VV ”\‘VVQ\V

Figure 16: Data-flow graph for computation of the
Better came Q; described by the control points it}.
Each. node performs a weighted average {weights are
edge labels) of its two inputs.

7.1 Apex Implementation

The algorithm can be split into initialization and com—
putation. During initialization, the control points are
loaded (eg. stages 1, 2, and 4 in Figure 16) and a
At increment is specified for t. Then the repetitive
computation starts in which each node increments its
private copy of t by At and performs the required com—
putation. During the computational phase, no further
external inputs are required.

Computing a 2-D Bézier curve produces two coor-
dinate values per point. The two values can be com-
puted independently. Since we only need six stages

"With very little additional efi’ort this can be changed to Bertie:-
curves of arbitrary dimension and with up to six control points ona Iii-cell HsPiD array,

Petitioner Microsoft Corporation - EX. 1066, p. 73
———————————_______________________

Petitioner Microsoft Corporation - Ex. 1066, p. 74

per coordinate value (see Figure 17), both can be com-
puted in parallel using a total of twelve stages.

Basic ammonia: (figuvlcfu ' I + Inn

Figure 17: thlisf. for one cell of Apes. The zit register
is loaded from a damped: (not Sharon) liajore compu—
tation begins. Leaf nodes have two additional registers
holding the constant control points.

The accuracy and resolution is limited by that t and
At which in our current implementation is represented
by a 16 bit register. The value t can be computed
in the first stage using two registers (he. 32 bits) to
substantially reduce the forward differencing errors. It
would then propagate down the pipeline.

7.2 Apex Performance

Apex outputs a new point of the Bézier curve every
cycle with relatively small initialization overhead- If

we assume that 100 lflflo-point curves are displayed
before reconfiguration is necessary, the setup overhead
is only 0.2% for RaPiD-l (Section 2.3) and it would
perform at nearly 1.2 GOPS {where one OP is one
weighted average). This is close to peak performance
with the small loss in performance due to the fact that
four cells are not used in the computation.

8 Conclusion and Future Direétions

RaPiD represents an efficient configurable computing
solution for regular computationally—intensive appli-
cations. In this paper, we have described how four

different applications are mapped to the RaPiD array.
These applications require a particular set of archi-
tectural features provided by RaPiD. We believe this

feature set enables RaPiD to perform a wide range
of different computations. By combining the appro—
priate amount of static and dynamic control, RaPiD
achieves substantially reduced control overhead rela»
tive to FPGA-based and general—purpose processors.
RaPiD is optimized for highly predictable and regular
computations, reducing the control overhead. The as-

sumption is that RaPiD will be integrated closely with
a RISC engine on the same chip. The RISC would
control the overall computational flow, performing the
unstructured computations which it does best, while
farming out the heavy-duty, brute-force computation
to RaPiD.

115

Several challenges remain. The range of RaPiD ap-
plications needs to be extended, and integrated appli—
cations comprising difierent computations need to be
investigated. The RaPiD B programming model needs
to be evaluated and new compiler optimizations im-
plemented. Finally, we would like to investigate how
parallel language and compiling methods can be ap-
plied to programming RaPiD applications at a higher
level.

Acknowledgments

We would like to thank Larry McMurchie and Chris

Fisher for their contributions to the RaPiD project.

References

[1] J. M. Arnold et al. The Splash 2 processor and
applications. In Proceedings IEEE International
Conference on Computer Design: VLSI in Com-
puters and Processors, pages 482—5. IEEE Com—
put. Soc. Press, 1993.

[2] T. Del'ioso et a1. Apex: two architectures for gener-
ating parametric curves and surfaces. Visual Com—
puter, 5:264—76, 1989.

[3] C. Ebeling, D. C. Cronquist, and P. Franklin.
RaPiD—reconfigurable pipelined datapath. In
R. Hartenstein and M. Glesner, editors, 6th Inter-
national Workshop on Field—Programmable Logic
and Compilers, Lecture Notes in Computer Sci-
ence, pages 126-135. Springer—Verlag, September1996.

[4] H. Kong. Let’s design algorithms for VLSI
systems. Technical Report CMU—CS-i’Q-llil.
Carnegie-Mellon University, January 1979.

[5] F. Lee and Z. M. Kedem. Synthesizing linear ar-
ray algorithms from nested FOR loop algorithms.
IEEE Eransoctions on Computers, 37(12):15?8-
93, 1988.

[B] C. E. Leierson and J. B. Sane. Retirning syn-
chronous circuitry. Algorithm-ice, 6:5~35, 1991.

[7] D. I. Moldovan and J. A. B. Fortes. Partition—
ing and mapping algorithms into fixed size sys-
tolic arrays. IEEE Iransoctions on Computers,
C-35(1):1~12, 1986.

[8] K. A. Vissers et al. Architecture and programming
of two generations video signal processors. Micro-
pmcessing t? Microprogmrnming, 41(5—6):373—90,
1995.

[9] J. E. Vuilleuiin et al. Programmable active
memories: reconfigurable systems come of age.
IEEE Transactions on Very Large Scale Integra—
tion (VLSI) Systems, 4(1):.56—69, 1996.

Petitioner Microsoft Corporation - EX. 1066, p. 74
—\

Petitioner Microsoft Corporation - Ex. 1066, p. 75

Petitioner Microsoft Corporation - Ex. 1066, p. 76

Mapping applications to the RaPiD configurable architecture htlps:ifwww.computer.org/osdliproceedingsffccmi’ l 997:3 l 59i00f8159...

IEEE"a"!comiiuter society in
0IEEE (htPIHWwwjeeelorg)

CSDL Home {ftsdl} >> F (Itsdli'proceedingsif;r list. html} :9 FCCM {fcsdlg'proceedingsffccmiindexmtml})9 1997 chdUproceedingsffccmllfiig'i

{Indemhtmlj » TABLE OF CONTENTS chdliproceedingsifccmilga'!{alssfuoiindexhtmn

Sea rch the CSDL Q

Mapping applications to the RaPiD configurable architecture
[/csdl/proceedings/fccm/lSE-‘JTISlSBfOD/BlEBUlOG-abs.html)

Field-Programmable Custom Computing Machines, Annual IEEE Symposium on {1997)

Napa Valley. CA

Apr. 16, 1997 to Apr. 18, 1997
ISSN:1032-3409

ISBN: 0-8186-815941

pp: 106

D0! Bookmark: httpfldoijeeecom putersociety.org{10.1109!FPGA.1997.524510 (htt|:i:,i‘ir:loi.ieee-computtersocietyorggr10.llOQlFPGAJQQlSNElOJ

C. Ebeling (/webjsea rch?cs_search_action:advancedsearch&search0peration=exact&search—options=d18¢

searchText=C.+Ebeling} , Dept. of Comput. Sci. 8; Eng, Washington Univ, Seattle, WA, USA

D.C. Cronquist {fweb/sea rch?cs_search_action=advancedsearch&search0peration=exact&search-options=d[&

searchText=D.C.+Cronquist} , Dept. of Comput. Sci. 84 Eng, Washington Univ., Seattle, WA, USA

P. Franklin (fweb/search?cs_search_action=advancedsearch&searchC-peration=exact&search—options=dl&

searchTextzP.+Franklin] , Dept. of Comput. Sci. 8.: Eng, Washington Univ., Seattle, WA, USA

J. Secosky (jwebxsearch?cs_search_action=advancedsearchScsearchOperation=exact&search-options=d|&

searchText=J.+Secoskyi , Dept. of Comput. Sci. & Eng, Washington Univ., Seattle, WA, USA

5.6. Berg (fwebr’search?cs_search_action=advancedsearch&searchOperation=exactasearch—optioani8:

searchText=S.G.+Berg) , Dept. of Comput. Sci. & Eng, Washington Univ, Seattle, WA, USA

ABSTRACT

The goal of the RaPiD (Reconfigurable Pipe-lined Datapath) architecture is to provide high performance configurable computing

for a range of computationally—intensive applications that demand special-purpose hardware. This is accomplished by mapping

the computation into a deep pipeline usinga configurable array of coarse-grained computational units. A key feature of RaPiD is

the combination ofstatic and dynamic control. While the underlying computational pipelines are configured statically, a limited

amount of dynamic control is provided which greatly increases the range and capability of applications that can be mapped to

RaPiD. This paper illustrates this mapping and configuration for several important applications including a FIR filter. 2-D DCT,

motion estimation, and parametric curve generation; it also shows how static and dynamic control are used to perform complex
computations.

INDEX TERMS

motion estimation; RaPiD configurable architecture; mapping applications; reconfigurable pipelined datapath architecture; high

performance configurable computing; special-purpose hardware; deep pipeline; coarse-grained computational units;

computational pipelines; dynamic control; FIR filter; 2—D DCT; motion estimation; parametric curve generation; complex
computations

] of4 Petitioner Microsoft Corporation fi’gégiifié,‘ 19W

Petitioner Microsoft Corporation - Ex. 1066, p. 77

201'4

CITATION

S. Berg, D. Cronquist, J. Secosky, P. Franklin and C. Ebeling, "Mapping applications to the RaPiD configurable architecture," Field-

Programmable Custom Computing Machines, Annual iEEE Symposium on{FCCM}, Na pa Valley, CA, 1997, pp. 106.

doi:10.1109/FPGA.1997.624610

FULLARTICLE

IBE-
CITATIONS

SEARCH

PDF

BUY

R55 Feed (fwebfcsd lines—feeds}

SUBSCRIBE Uwehfcrsdlfsubscribefl

Plain Text {httpsu'fcs—

services.computer.orgfcsdlfcitation

jproceedi ngsfasci if fccrnfl997

18159100131590105)

RIS (httpszflcs—

servicescomputenorgfcsdlfcitatlcn

fI'Flrmeeti ingsfrisffccmleQTfalsg
{0031590106}

BibTex (httpswcs—

seruices.computer.orgicsdlfcitation

{proceedings/bibtexffccmflQBT
f8159!00f81590106}

Articies by C. Ebeling {/web/search?cs_5earch_action=advancedsearch&search0perati0n=exact&search-options=dl&

searchText=C.+Ebeling)

Articles by UL. Cronq uist {{web}sea rch?cs_search_action=adva nced5earch&search0peration=exacthsearch-options=d l&

searchText=D.C.+Cronqui5t)

Articles by P. Franklin (fwebfsearch?cs_search_action=advancedsearch&search0peration=exact&search—options=dl&

searchText=R+Franklin1

Articles by J. Secosky (/webfsearchks_search_action=aduancedsearch&5earch0peration=exact&search—options=dl&

sea rchText=J.+Secosky)

Articles by 5.6. Berg (/webfsea rch?cs_search_action=aduancedsearch&search0peration=exact&search-options=dl&

sea rchText=S.G.+Berg)

SHARE

Digg {http:f/digg.com

fsubrnit?url=http%3A

ffdoijeeecomputersocietyorg

{ll}.llDBJFPGAlBQTfiZAfilDE:

title=Mapping applications to the

Facebook

{https:f{www.facebook.com

fsharerfsharer. php?u=http%3A

Ndoijeeecom putersocietynrg

J1'1l).ll09,1FF’Gfil.lQB'l'fiZ‘i-lil[18c

Google+lhttpsflplusgoogletom Linkedln

Jishare‘.r‘url=l'ltl:|:i°rl:3A (httpsflwwainkedinLom

{{doi.ieeecomputersociety.org f5hareAfiicle?url=http%3A

f10.1.1091FPGA199162461EI} hidoileeecom putersocietynrg

{10.1109} FPGA.1§97.52451[1&

652512018, 11:36 AM

Petitioner Microsoft Corporation - EX. 1066, p. 77

Petitioner Microsoft Corporation - Ex. 1066, p. 78

Mapping applications to the RaPiD configurable architecture httpsdz’wwwxomputemrg/csdUproceedjngsz‘fccmf1997M159r‘002’8 l 59...

Ra PiD configurable architecture) title=Mapping applications to the title=Mapping applications to the Raddit (httpzfi'redditcom

Ra PiD configurable a rchitecture} RaPiD configura ble architecture} l.Fsut1mit?url=http‘l»63i\

fidoijeeecomputersocietyprg
.310.1109IFPGA.1997.624610&

title=Mapping applications to the

RaPiD configurable architecture)

Tumblr (h ttpu‘,’www.mm blr.com Twitter {httpswtwittencorn Stumbleupon

(share; |ink?url=http%3A {share?u rl=http%3A (httpzflwwwstumbleupon.com

Ndoileeecomputersocietyprg {idoljeeecomputersocletynrg fsubmit?u rl=http%3A

f10.11.091'FPGAJ9975246108: I10.1109fFPGA.1997.624610& Lidoi.ieeecomputer50ciety.org
name=Mapping applications to text=Mapping applications to the £10.1109!FPGA.1997.624610&

the RaPiD configurable RaPiD configurable architecture) titlonapping applicationstothe

architecture} Ra PiD configurable architecture)

3 0” Petitioner Microsoft Corporation fi/EQQUEGJ 113157811
—————————_—_—__________——_

Petitioner Microsoft Corporation - Ex. 1066, p. 79

Mapping Applications to the RaPiD Configurable Architecture*

Carl Ebeling, Darren C. Cronquist, Paul litanldin, Jason Secosliy, and Stefan G. Berg

Department of Computer Science and Engineering
University of Washingt

011

Box 352350

Seattle, WA 93195—2350

Abstract

The goal of the RaPiD (Reconfigurable Pipelined
Datapath) architecture is to provide high per-
formance configurable computing for a range of
computationally-intensive applications that demand

specislapurpose hardware. This is accomplished by
mapping the computation into a deep pipeline using
a configurable array of coarse-gramed computational
units. A key feature of RaPiD is the combination

of static and dynamic control. While the underly-
ing computational pipelines are configured statically,
a limited amount of dynamic control is provided which
greatly increases the range and capability of applica—
tions that can be mapped to RaPiD. This paper illus-
trates this mapping and configuration for several im-
portant applications including a FIR filter, 2-D DCT,
motion estimation, and parametric curve generation;
it also shows how static and dynamic Control are used
to perform complex computations.

1 Introduction

Field-programmable custom computing machines
have attracted a lot of attention recently because of
their promise to deliver the high performance provided
by Special purpose hardware along with the fleidbil-
ity of general purpose processors. Unfortunately, the
promise of configurable computing has yet to be real-
ised in spite of some very successful examples [1, 9].
There are two main reasons for this.

First, configurable computing platforms are cur
rently implemented using commercial FPGAs. These

FPGAs are necessarily very fine—grained so they can
be used to implement arbitrary circuits, but the over—
head of this generality exacts a high price in density
and performance. Compared to general purpose pro-
cessors (including digital signal processors), which use
highly optimized functional units that operate in hit—
parallel fashion on long data words, FPGAs are some—
what inefficient for performing logical operations and

‘This wort: was supported incpm hy- the Defense AdvancedResearch Projects Agency under untract DAAHM-Qd—GDE'H. D.
Cronquist was supported in art by an lBM fellowship. P. Franklinwas supported by an NSF fe lowship.

0-8136—81594l97 $10.00 a 1997 IEEE
106

even worse for ordinary arithmetic. FPGA~based com-

puting has the advantage only on complex bit-oriented
computations like count~ones, find-first-one, or com-
plicated bit-level masking and filtering.

Second, programming an FPGA—based configurable
computer is akin to designing an ASIC. The program-
mer either uses synthesis tools that deliver poor den-
sity and performance or designs the circuit manually,
which requires both intimate knowledge of the FPGA
architecture and substantial design time. Neither al~
ternative is attractive, particularly for simple compu—
tations that can be described in a few lines of C code.

Our response to these two problems is RaPiD, a
coarse-grained configurable architecture for construct—
ing deep computational pipelines. RaPiD is aimed at
regular, computation—hiteusive tasks like those found

in digital signal processing (DSP). RaPiD provides a
large number of ALUs, multipliers, registers and mem-
ory modules that can be configured into the appropri-
ate pipelined datapath. The datapaths constructed
in RaPiD are linear arrays of functional units com—

municating in mostly nearest-neighbor fashion. Sys-
tolic algorithms [4], for example, map very well into
BaPiD datapaths, allowing us to take advantage of
the considerable research on compiling computations
to systolic arrays [5, 7']. However, RaPiD is not limited
to implementing systolic algorithms; a pipeline can be
constructed which comprises different computations at
difi'erent stages and at difi’erent times.

We begin with an overview of the RaPiD architec-

ture; for a more detailed description see [3]. We then
give a general description of how computations map
to RaPiD using a FIR filter as an example, and then
present how the architectural features of RaPiD are

used to perform more complex computations found in
2-D DCT, motion estimation, and parametric curve
generation.

2 The RaPiD Datapath Architecture

RaPiD is a linear array of functional units which

is configured to form a mostly linear computational
pipeline. This array of functional units is divided into

identical cells which are replicated to form a complete
array. Figure 1 shows the cell used in RaPiD-l, the

Petitioner Microsoft Corporation - EX. 1066, p. 79
.___._——__________________

Petitioner Microsoft Corporation - Ex. 1066, p. 80

first version of the RaPiD architecture. This cell com-

prises an integer multiplier, three integer ALUs, six
general-purpose “datapath registers" and three small
local memories. A typical single-chip RaPiD array
would contain between 8 and 32 of these cells-

datepath
reqi s I: are

IE-
bus connectors input: muxes output. drivers

Figure 1: A basic RuPiD cell which is replicated left to
right to form a complete chip. RoPiD-I coutuins 16
cells similar to this one, with fourteen 16-bit buses.

2.1 Datnpath Composition

The functional units are interconnected using a set
of segmented buses that run the length of the data—
path. The functional units use a n : 1 multiplexer to
select their data inputs from one of the u — 2 bus seg-
ments in the adjacent tracks. The additional inputs
provide fixed zero or feedback lines, which can be used
to clear and hold register values, or to use an ALU as
an accumulator. Each functional unit output includes

Optional registers to accommodate pipeline delays and
a set of tristate drivers to drive their output onto one
or more bus segments.

The buses in difl‘erent tracks are segmented into
different lengths to make the most efficient use of the

connection resources. In some tracks, adjacent bus
segments can be connected together by a bus connec—
tor as shown in Figure 1. This connection can be pro-
grammed in either direction via a unidirectional bullet

or pipelined with up to three register delays, allowing
data pipelines to be built in the bus structure itself.

RaPiD’s ALUs perform the usual logical and with
metic operations on one word of data. The ALUs

can be chained for wide-integer operations. The
multiplier inputs two single-word numbers and pro-
duces a double-word result, shifted by a statically pro—
grammed amount to maintain a given fixed-point rep-
resentation. Both words of the result are available as
separate outputs.

The datapath registers serve a. variety of purposes
in RaPiD. These registers can be used to store con—

stants loaded during initialization and temporary val-

107

use. They can be used as additional multiplexers to
simplify control; like any functional unit, the regis»
tors can be disabled. They are also used while routing
RaPiD applications to connect bus segments in difl'er—
ent tracks and/or for additional pipeline delays.

In many applications, the data is partitioned into
blocks which are loaded once, saved locally, reused as
needed, and then discarded. The local memories pro
vided in each cell of the datapath serve this purpose.
Each local memory has a specialized datapath regis~
ter used as an address register; one of the bus inputs
to this address register is replaced by an incrementing
feedback path. Like the SILOs found in the Philips
VSP [8]. this supports the common case of sequential
memory accesses. More complex addressing patterns
can be generated using registers and ALUs in the data-
path.

Input and output data enter and exit RaPiD via

[/0 streams at each end of the datapath. Each stream
contains a FIFO filled with data required or with re-
sults produced by the computation. The datapath ex-
plicitly reads from an input stream to obtain the next

input data value and writes to an output stream to
store a result.

External memory Operations are carried out inde-

pendent of the RaPiD array via three 1/0 streams
by placing FIFOs between the array and a memory
controller. In addition to carrying out the memory
operations, the memory controller generates statically
determined sequences of addresses for each stream. If

the datapath reads a value from an empty FIFO or
writes a value to a full FIFO, the datapath is stalled
until the FIFO is ready.

2.2 Control Path

For the most part, the structure of a pipeline is stat-
ically configured. However, there are almost always
some pipeline control signals that must be dynamic.
For example, constants are loaded into datapath regis-
ters during initialization but then remain unchanged.
The load signals of the datapath registers thus take on
different values during initialization and computation.
More complex examples include doublebufi‘ering the
local memories and performing data-dependent calcu-
lations.

The control signals are thus divided into static con-
trol signals provided by configuration memory as in
ordinary FPGAB, and control signals which can be dy-
namically programmed on every cycle. RaPiD is pro-
grammed for a particular application by first mapping
the computation onto a datapath pipeline. The static

programming bits are used to construct this pipeline
and the dynamic progemming bits are used to sched—
ule the datapath operations over time. These dynamic
control bits are provided by a small pipelined control

path, not by the more typical local uncroprogrammed,
SIMD, or VLIW control.

Petitioner Microsoft Corporation - EX. 1066, p. 80

Petitioner Microsoft Corporation - Ex. 1066, p. 81

Dynamic control is implemented by inserting a few
“context” bits each cycle into a pipelined control path
that parallels the datapath. This context contains

all the information required by the various pipeline
stages to compute their dynamic control signals. The
control path contains 1-bit segmented buses similar in

structure to the datapath buses, as shown in Figure 2.
(Signals which can be dynamic but do not need to
change during a particular computation are connected
to the static zero line.) Control values are inserted by
a global pipeline controller at one end of the control
path and are passed from stage to stage where they
are applied to the appropriate control signals. Since
applications generally use only a few dynamic control
signals and nee similar pipeline stages, the number of
control signals in the control path is relatively small.

alu
statusinputmax inputmux

Figure 2: Dynamic control generation for port of a
RoPiD cell; these control hoses are one hit aside.

Each dynamic control signal is derived from the in~
formation contained in the control path. Usually the
signal is simply connected to one of the bits in the
control path, but in more complex cases lookup-tables
embedded in the control path are used to compute
the control signal based on more information includ-
ing bits in the control path, status from ALUs in the

datapath, or feedback when implementing simple FSM
controllers. The generation of dynamic control is i1»
lustrated in detail in the applications that follow.

2.3 RaPiD-l Design Features

Most of the design and layout of the RaPiD—l chip,
the first implementation of the RaPiD architecture,
is complete. This section presents those details of

RaPiD—I useful in understanding the performance re-
sults discussed for each application presented in the
following sections.

RaPiD—l’s datapath is based on 16—bit fixed-point
integers; to accommodate this, the multipliers can he
statically programmed to shift their 32-bit output ar-
bitrarily. Each RaPiD—l cell contains three ALUs,
one multipliers, and three 32—word local memories.
Fourteen tracks are provided for the segmented data

108

buses, which are supplemented by the zero and feed—
back inputs available to each functional input. The
16 cells each have the functional units shown in Fig
ure 1, in addition to control logic and up to 15 control
buses. The RaPiD-l array is designed to be clocked
at 100MHz, and reconfiguration time for the array is
conservatively estimated to be 2000 cycles.

3 Programming Model

Mapping applications to RsPiD involves designing the
underlying datapath and providing the dynamic con~
trol required for the difi'ercnt parts of the computa—
tion. The control design can be complicated because.
control signals are generated at different times and
travel at different rates. We have designed the RaPiD
B programming language to accommodate these con-
trol patterns. Our RaPiD B compiler which produces
a placed and rooted implementation along with the
dynamic control program is nearly complete. This sec-
tion first describes a FIR (Finite Impulse Response)
filter, a simple application useful for illustrating some
of the basic features of RaPiD. It then briefly presents
the timing models used by RaPiD B and by the re-
mainder of this paper.

3.1 FIR Filter.- Computation

Digital FIR filters are used in many signal processing
applications, typically for eliminating unwanted fre-
quency components from a signal. Figure 3a gives a
specification for a FIR filter with Noanps taps and
NumX inputs. The filter weights are stored in the W
array, the input in the X array, and the output in the
Y array (starting at array location NumTops — 1).
Figure 3b show the entire computation required for a.
single output of a 4-1211) FIR filter.

01‘]:2 ‘um 125— to ‘
Yfi} :: 0
forj z: 0 to Num'l‘aps-l

Yli] := W] + Xli-Jl*Wlil
Build

(bl

Figure 3: FIR filter. {a} Algorithm. (b) Computation
for NumTops=4 and i=6.

The circuit in Figure 4a performs the entire compu—
tation for one output value in a single cycle; it is easily
obtained by unrolling the inner loop of the program

Petitioner Microsoft Corporation - EX. 1066, p. 81
—————-———————n__________________

Petitioner Microsoft Corporation - Ex. 1066, p. 82

in Figure 3a. Unfortunately, the circuit shown in Fig-
ure 4a has poor performance characteristics (note the
combinational path through all of the adders, which
scales linearly with the number of weights). A retimed
version of this circuit is shown in Figure 4b; the re-
timed circuit performs substantially better than the
original, particularly for larger computations.

Figure 4: Schematic diagrams for four-tap FIR filter
(a) as viewed in RaPiD B, grouping related compu-
tation and (b) as a'high-perfoflnance pipelines! imple—
mentation.

Specifying this retimed circuit directly is difficult
because of the complexity of the relative timing of the
internal data and control signals. It is much easier to

specify the computation somewhat naively as in Fig-
ure 4a, knowing that retiming can transform it into
a high-performance, pipelined circuit. This becomes

particularly evident in circuits with more complicated
control, and when more aggressive steps, such as using
the pipeline stage available in RaPiD‘s multiplier, are
needed to achieve the desired performance. Therefore,
the RaPiD B compiler retimes the resulting netlist
based on [6].

All of the applications presented in the following
sections have been specified in a preliminary ver-
sion of RaPiD B and simulated to validate the im-

plementations described and the accompanying cy»
cle count. For ease of explanation, the computations
shown throughout this paper are shown before the full
retiming performed by the RaPiD B compiler. A pre«
liminary version of the RaPiD B toolset is nearly com-
plete, including compilatiori, retiming, control synthe—
sis, and full placement and routing of the resulting
RaPiD circuit.

109

4 FIR Filter Implementation

4.1 Simple Case

As with most applications, there are a variety of ways
to map a FIR. filter to RaPiD. The choice of mapping
is driven by the parameters of both the RaPiD ar»

ray and the application. For example, if the number
of taps is less than the number of RaPiD multipliers,
then each multiplier is assigned to multiply a specific
weight. The weights are first preloaded into datapath
registers whose outputs drive the input of a specific
multiplier. Pipeline registers are used to stream the

X inputs and Y outputs. Since each 1’ output must
see NamTaps inputs, the X and Y buses must be

pipelined at diflerent rates. Figure 5a shows one cell
of the FIR filter (several stages are shown in Figure 4b)
with the X input bus doubly pipelined and the Y in-
put bus singly pipelined.

OUT
(b)

Figure 5: (a) Netlist for one cell of the simple FIR
filter. (b) Our: top of the FIR filter mapped to the
RaPiD army (this is replicated to form more taps).

This implementation maps easily to the RaPiD ar~
ray, as shown for one tap in Figure 5b. For clarity, all
unused functional units are removed, and used buses
are highlighted. The bus connectors from Figure 1 are
left open to represent no connection and boxed to rep-
resent a register. The control for this mapping consists
of two phases of execution: loading the Weights and
computing the output results. In the first phase, the

weights are sent down the IN double pipeline along
with a singly pipelined control bit which connects the

Petitioner Microsoft Corporation - EX. 1066, p. 82
______________________________—_

Petitioner Microsoft Corporation - Ex. 1066, p. 83

input of each datapath register to the IN bus. When
the final weight is inserted, the control hit is switched,
and the input is connected to the feedback line. Since
the control bit travels twice as fast as the weights,

each datapath register will hold a unique weight. No
special signals are required to begin the computation;

the second phase implicitly starts when the control bit
goes low.

4.2 Increasing the Number of Taps

If the number of tape exceeds the number of RaPiD
multipliers, the multipliers must be time-shared be-
tween several taps. This can be achieved in RaPiD

by using a local memory to store several weights per
stage. Figure 6 shows our implementation for this
mapping. Unlike the simple case, we make the arbi-

trary choice for doubly pipelining the Y output values
and singly pipelining the X input values.

autumnal-ammo»Y m 1 winner. thllahlfi dawn
null mmlflmfllfl.

imam held: mam:- be:
multiplied was): impala

HIE!-
WeighlsandxmsuumhPrevious

*1“

Figure 6: Netlist for one cell of extended FIR fil-
ter. The top pipelined bus streams in the X inputs

(the weights during initialisation) while the bottom has
streams out the intermediate Y values.

As a new X is read from external memory, the first
stage replicates it and presents it to the input data-

path for several cycles. Each stage can multiply this
X by its weights in turn and add it to one of its stored
intermediate values. At this point a new X value will
be fetched from memory and the cycle repeats.

There are the same number of intermediate values

as there are weights per stage. These intermediate val-

ues are stored in a second local memory. Let’s exam-
ine the stage holding weights Was, Wat, W53, and W5;
(four taps per stage). A new input value X29 appears
on the input datapath. In four cycles the partial sums
for Yes, Y“, 1’73, and Ya will be computed. These
are stored in that order in the local memory holding
the intermediate values. At this point, X29 moves to
the next pipeline stage followed by the intermediate
value 1’72. The next input, X21, appears on the input.
datapath along with the intermediate value Y3“; from
the previous stage. Now the partial some for E5, 1’75,
Y“, and 1’33 are computed-

4.3 FIB. Performance

When the number of taps is a multiple of 16 the
weights can be partitioned evenly across the stages

110

and the allocated functional units are fully utilized.
RaPiD-l {Section 2.3) can therefore operate at very
near its peak performance of 1.6 GOPS (where GOPS
is a billion multiply-accumulates per second).

5 Discrete Cosine Transform

The discrete cosine transform (DCT) is need fre-
quently in signal processing and graphics applications.
For example, the 2-D DOT is used in JPEG/MPEG
data compression to convert an image from the Spatial
domain to the frequency domain. A 2-D DCT can be
decomposed into two sequential 1-D DCTs. We first

describe how the 1-D DOT can be computed on RaPiD
and then show how two 1-D DCTs can be composed
to perform a 2—D DCT.

5.] 1-D DCT

An N-point 1-D DOT partitions an input vector A into
N—element sub-vectors, and for each resulting sub-
vector A], computes

Null

‘ “— Z on cos 11:!-
_‘ 'fl.

":0 2N
' (2n + 1) (1)

for 0 g i 5 N — l, where arm is the n-th element of
sub—vector Ab {and the (hN +n)-th element of vector
11)} The N2 cosine terms are constant over all sub-

vectors and hence can be read once as precomputed
weights W where tum: = cos —(2n + 1). This reduces
Equation 1 to

(2)

for 0 S t‘ g N — 1. By viewing input vector A and
weights W as matrices A and W, Equation 2 reduces
to the matrix multiply Y = A x W. Thus, to compute
a l~D DCT, RaPiD performs a matrix multiply.

'Ih implement an 8 point 1—D DCT on an 8 x 8

input matrix A (i.e. a (itinelement vector), the entire
8 x 8 weight matrix W is stored in RaPiD’slocal mem-

ories, one column per cell. Each cell of the resulting
pipeline is configured as shown in Figure 7. The A ma-
trix is passed through the array in row-major order.

Within each cell, the local memory address is incre-
mented each cycle, and a register accumulates the dot

product of the stored column and the incoming row
When a cell receives the last element of a row, the
resulting product is passed down an output pipeline,
the address is cleared, and the cell is ready to compute
the product of the next row on the next cycle. This
effectively computes the matrix multiply of A x W

in. produce the final nor result each up" must be multiplied

by fifi£3; where E.- = fi ifs = G and E. = 1 otherwise For our

pyrposes we ignore this scaling factor and focus on the computation0 liki-

Petitioner Microsoft Corporation - EX. 1066, p. 83

Petitioner Microsoft Corporation - Ex. 1066, p. 84

Figure 7: Netlist for one cell of o matrix multiply.
The top pipelined bus streams in the A matrix (in
row-major order) while the bottom bus streams out

the resulting mom}: product (also in mic-major order).
The top bus also streams the W columns into the local
memories prior to the cmnputotion.

5.2 2-D DC’I‘

An N x N 2-D DCT partitions on input matrix into
sub-matrices of size N x N, and for each resulting
sub~matrix A, computes

N~1 N—l . .

.. .. fl. 3
y” — ”go 3;) emu cos 2N(2m + 1) cos 2Nfiln + 1)

(3)
for 0 S L} g N~ 1.2 As with the 1-D DCT, Equation
3 is reduced using the N2 precomputed W weights,
yielding

N—l N—i

tin = Z z amnwmiwnjm=0 71:0

for CI 5 i, j g N — 1. Extracting rum,- from the inner
summation leaves

(4)

N—l

zmj : E :amnwnj:"—70 (5)

and thus

(6)

forOSt',j$N—1.

As seen in Equation 5 and Equation 6, both Yarn}
and y}; are equivalent to N x N matrix multiplies.
However, since the 2,“,- values are produced in row-
major order but required in column—major order, the
results from the 2m DCT must be transposed prior
to computing 1953'; as illustrated in Figure 8. In addi—
tion, since both input streams are read in row~major
order, it might be desirable to produce row-major out-
put (potentially reducing memory stalls), requiring yet
another transform (Le. output 95,- instead of 3m)- The
resulting computation is ((A x W)T x W)?

3To produce the final DCT result each 3;.- must be multiplied by
fiEgEj. As with 1—D BUT. we ignore this scaling factor and focus
on the computation of 3,9,.

111

Figure 8: 2-D N x N BUT

We show the implementation of an 8 x 8 2-D DCT

on a Iii-cell RaPiD array. Consider an M x N image
and an 8 x 8 weight matrix W. First, the image is
divided into Mail sub-images of size 3 x s. The com-
putation for each sub-image A is outlined in Figure 9.

Intermediate results
stored In RAM and
transported by control
\

xEvli Inf
‘\

Computed by
first 8 stages

Computed by
last 8 stages

MxN

Figure 9: To compute 2-D DOT, on M x N image
is partitioned into 8 x 8 sub-images. RaPiD computes
cock 1-D DOT by multipiying the sub-image by on 8 x 8
weight mom's.

Since a 2-D DOT performs two multiplies by the
same weight matrix, W is loaded only once: one col—
mm per cell in both the first 8 cells and last 8 cells.

The transpose in between matrix multiplies is per-
formed with two local memories per cell: one to store
products of the current sub—image and the other to
store the products of the previous sub-image. During
the computation of the current sub—image, the trans-
pose of the previous sub-image computation is passed
to the next 8 cells. The datapath for one RaPiD cell
of a 2—D DOT is shown in Figure 10.

Figure 10: Netlist for one cell of 2-D DOT. The top
pipelines! bus streams in the A matrix while the bot-

tom bus streams out resulting 1~D DOT, transposed.
The top bus also streams the W columns into the lo—
cal memories prior to the computation.

5.3 DCT Control

Prior to computation, a 2—D DCT must load the W

matrix into the local memories, one column per stage.

Petitioner Microsoft Corporation - EX. 1066, p. 84____—____________—_

Petitioner Microsoft Corporation - Ex. 1066, p. 85

To take advantage of pipelined control, weights are
passed down a data-bus in row-major order, while a
control signal, traveling twice as slow as the data,

raises the write signal of the appropriate local mem—
ories. As a result, all weights of the DCT can be

preloaded using a single control bus. Most RaPiD
control signals fit into such a simple, pipelined model

since an operation occurring in one RaPiD stage usu-
ally occurs in the next stage on the next cycle.

Sometimes control is required which does not fit
into the simple, pipelined model. At the end of the
first l-D DOT computation, results are stored one col-

umn per stage. To flow these results out in column-

mojor order (that is, perform the transpose), the first
local memory must be completely emptied onto the
output bus, followed by the second, third, etc. Hence,

the “empty“ control signal must stay on for eight con-
secutive cycles in the first stage, and then eight cycles
in the second stage, etc. Possible solutions include

dedicating a control bus to every stage or using one
control bus with eight registers per stage. The solution
requiring the fewest resources configures two buses and
one 3~LUT per stage as a simple finite state machine,
as shown in Figure 11.

DATAPATH

‘I‘n
Noun
CHI

CONTROL

Fmrn
Previous

“Tole-All SKSImetop) Fifievlnmslage'a “sham

Figure 11: A simple state machine performs the trans—
pose using two buses, one LUT, and three registers per
stage.

Three control registers are used in the state ma-
chine: T is the token, .5' is the start/stop bit, and P
is the previous stage's token delayed by a cycle. The
LUT is configured as a multiplexer of P and T with
select bit S (i.e. T = S&P+!S&T). If 5’ is low, the to
ken is held; if S is high, the token is passed to the next
stage. When a stage has a token, its results are emp—
tied from a local memory onto the output bus. This
operation repeats in each consecutive stage, effectively
transposing the 1-D DCT results.

In initiate the transpose, the stream controller

places a. one into the first P register every 64 cycles
and a one into the first S register every 8 cycles. No-
tice that the tolcen hold length is solely determined
by the frequency of the start/stop signal and does not
affect the number of control buses, LUTs, or registers

112

needed. Thus, the size of this state-machine control

is fixed no matter how long each stage must hold a
token.

5.4 DCT Performance

A 2-D DCT performs many consecutive 8 x 8 matrix
multiplies, allowing initialization, finalisation, and re-
configuration times to be small compared to the to—
tal computation performed. For example, RaPiD-l
(Section 2.3) incurs a setup overhead of only 0.5% to
compute the 2-D DOT of a 720 x 576 image. As a.
result, RaPiD-l performs very close to its peak of 1.6
GOPS on 2-D DOT (where GOPS is a. billion multiply
accumulates per second).

6 Motion Estimation

Motion estimation is used in video data. compression
to reduce the amount of data required to represent
a video frame. In most cases, objects do not move
very much from one frame to the next- In motion

estimation, a block in a frame is represented by the
address of the most similar nearbyr block in the previ—
ous frame plus the dilferences between the two blocks.

This section describes implementing motion estima-
tion on RaPiD.

Motion estimation has few data dependencies, pro—
viding flexibility in the order of computations and

greater parallelism. RaPiD favors computations that
are not memory bound. The prodigious amount of
computation and few memory accesses make motion
estimation an ideal candidate for RaPiD.

To compute the motion estirnation of an M x N

reference image, the image is divided into «3% 8 x 8
reference blocks (RB). The reference blocks are com-
pared with blocks of a prior video frame, the query
image. For each reference block RaPiD computes the
minimum absolute block difierence (point-to—point dif-
ference) of all possible positions of the RB within a
24 x 24 query window (QW) of the query image, as
shown in Figure 12. The result is a vector which points
to the RB yielding the minimum block difi’erence.

8.1 Motion Estimation Implementation

With a. Iii-stage RaPiD array we implement motion
estimation using 16 x 16 super reference blocks, which
are comprised of four 8 x 8 reference blocks, and 32x 32
super query windows. The super RB and a 32 x 16 sec—
tion of the query window are stored in RaPiD’s local

memories, one column per stage. This mapping yields
the best reuse of RB and QW values for the avail-

able local memory. A stage of the resulting pipeline is
shown in Figure 13.

The block diiference between a super RB and super
QW is computed row by row. For each row, a stage
performs an absolute—difference and accumulates the

Petitioner Microsoft Corporation - EX. 1066, p. 85

Petitioner Microsoft Corporation - Ex. 1066, p. 86

Dunn! Window

17"1? possible

"3 00$le safarem Block

MxN

Figure 12: The image is partitioned into 8 x 8 R35.
Motion estimation of the RB within o 24 x 24 QW
is determined by finding the minimum block diflerence
for all positions of the RB within the QW.

8w” Calm whenwWhlwumflhim: Hit. whisk-alumni
mminhlhomiqnflb MM.

'Sufim it.

Figure 13: Cell configuration for motion estimation
compute stages. 16-bit data and 1-bit control lines
one drown in sepomte bores. To achieve on obsolotm

difierence the sign bit of the Subtmct ALU controls the
function of the +/- AL U.

113

result with the absolutewtiifierence of the prior stage.
This operation happens in the same way as the FIR
filter of Section 4. The last stage totals all of the row
sums to produce the block difference and determines

the minimum block difference for each RB of the super
RB

The netlist for motion estimation, presented in Fig-
ure 13, shows how two dynamic control lines con-
trol an ALU and super RB local memory selection.
The absolute—difi'erence—«acmrmulate operation is im-

plemented by controlling the function of the + /- ALU
with the sign of the subtract ALU.

The local memory used for the super RB is double-
buffered, with one local memoryused for the current
computation while the other is being preloaded with
the next super RB. The parity control signal is used to
determine which local memory to use for computation
and which to use for preloading. The parity signal
toggles when a motion vector for the current super
RB is output.

6.2 Motion Estimation Data Flow

To obtain the most reuse of data we perform block
differences in column-major order. That is, the super
RB starts in the upper right corner of the super QW
and proceeds down the rows before shifting left one
column.

A left shift of the super RB is implemented by shift-
ing the super QW columns right, to the next stage.
When a. super QW value is no longer needed, the value
is shifted to the next stage and a new value is shifted
in from the prior stage. The first stage gets new super
QW values from the QW input stream.

Super QW values are reused between block differ—

ences by storing the address of the starting row of
the super QW in the StartRow register [Figure 14).
When a block difference completes, the QW column
local memory address is set to StartRow and StartRow

is incremented. StartRow is reset when the super RB
is shifted left one column.

Sup-r Super
RB carom: ow Column

Slum“

H mm:Nook Winona!
------ Nut Blue! Differenc-

Swu our mm
Wbum
block dl'l'lerunm

Figure 14: The super RB column shifts done: through
super QW column, perfonning u block dijference at
each step. StortRow is the address of the first row of
the block difiernnce.

Petitioner Microsoft Corporation - EX. 1066, p. 86_________________________

Petitioner Microsoft Corporation - Ex. 1066, p. 87

Moving the super RB iii-om right to left allows super
QW values to be reused between sets of block dither-
euces. Figure 15 shows how thel last columns of the
current super QW are the first columns used in the

super QW of the next super RB computation. This
data motion removes the need to preload super QW
values for the next set of block differences.

Hausa-cl Query
Window Values

Current Super
Reference Block 3:
Query wmdow Next Super
Relevance Block 8:

Query Window

5..-...-

Figure 15: The last super QW columns used to com-
pute motion estimation for a super R3 are reused in
the computation for the next RB.

The only time data loading stalls computation is
the beginning of a row of super RBs. In this case
the required super QW values were not used with the
prior super RB and must be loaded. The next section
shows that the cost is minor, being amortized over a
long computation.

6.3 Motion Estimation Performance

Motion estimation is not a memory bound computa~
tion and with our implementation no memory stalls
are encountered. The cycles not spent computing
absolutcedifi‘erenckaccumulation operations are due
to initialisation, finalization, reconfiguration, and the
loading of super QWs. For an image of size 720 x 576,
using RaPiD-l, loadhig the super QW costs 18,432
cycles for motion estimation of one framea. The over-
head of loading and reconfiguration time take less than
0.03% of the total number of cycles. As a result, a
RaPiD-l array performs close to its peak speed of 1.6
GOPS (where GOPS is a billion absolute—difference—
accumulates per second).

The speedup of motion estimation scales well as the
data size growa and with future versions of RaPiD. As
data size grovvs, the cycles used to load super QWs will
grow linearly, while the cycles spent in computation
grow with the Square of the data size. Thus as the

data size grows a larger percentage of cycles will be
spent computing.

Future versions of RaPiD will have more stages and
larger local memories per stage, increasing the number
of RBs per super RB and thus the amount of paral-
lelism. Typical irnages also use 8~bit data, allowing

3The super QW must be preloaded 576/16 times and a. preload
takes 16 ll: 32 cycles. resulting in 18.4l32 cycles.

114

us to double gauge RaPiD’s 16-bit data path, gaining
another factor of two in speedup.

7' Parametric Curve Generation

This section describes how arbitrary 2-D Bézier curves
with four control points" can be computed by RaPiD
using Apex, an architecture for generating a large class
of parametric curves and surfaces [2]. Apex difi‘ers
from the previous applications in that it maps a tri-
angular data~flow onto RaPiD as showu in Figure 16.
Each node in the tree performs a weighted average
on the two inputs values and passes the result to the
parent node. In symbolic form this is equivalent to

Va“) *— (1 ‘tll’lea ”Vega : Vleft +(Vright *Vleftfi

The root node produces a new point of the Bécier
curve for each t. The nodes are mapped onto the
RaPiD stages in the order indicated by the numbers
inside the nodes (Figure 16). This particular mapping
minimises the communication between nodes.

Q;

Figure 16: Data-flow graph for computation of the
Bézier curve Q, described by the control points l/,-.
Each node performs a weighted average {weights are
edge labels) of its two inputs.

7.1 Apex Implementation

The algorithm can be split into initialization and com~
putation. During initialisation, the control points are
loaded (eg. stages 1, 2, and 4 in Figure 16) and a
At increment is specified for t. Then the repetitive
computation starts in which each node increments its

private cepy of t by At and performs the required com—
putation. During the computational phase, no further
external inputs are required.

Computing a 2—D Bézier curve produces two coor-
dinate values per point. The two values can be com-

puted independently. Since we only need six stages

“With very little additional effort this cam be changed to Better
curves of arbitrary dimension and with up to six control points ona Iii-cell RaPiD array.

Petitioner Microsoft Corporation - EX. 1066, p. 87
——————-—————_________________

Petitioner Microsoft Corporation - Ex. 1066, p. 88

per coordinate value (see Figure 17), both can be com—
puted in parallel using a total of twelve stages.

Busicrmumlauuu: (light-tel}! ‘ 1 Hon

Figure 17: Netlist for one cell of Aper. The dt register
is loaded from a datapata‘a (not shown) before compu-
tation begins. Leaf nodes hone two additional registers
holding the constant control points.

The accuracy and resolution is limited by that t and
At which in our current implementation is represented
by a 16 bit register. The value t can be computed
in the first stage using two registers (i.e. 32 bits) to
substantially reduce the forward difi‘erencing errors. It
would then propagate down the pipeline.

7.2 Apex Performance

Apex outputs a new point of the Bézier curve every
cycle with relatively small initialization overhead. If

we assume that 100 IUOU—point curves are displayed
before reconfiguration is necessary, the setup overhead
is only 0.2% for RaPiD—l (Section 2.3) and it would
perform at nearly 1.2 GDPS (where one OP is one
weighted average). This is close to peak performance
with the small loss in performance due to the fact that
four cells are not used in the computation.

8 Conclusion and Future DireCtions

RaPiD represents an efficient configurable computing
solution for regular computationally-intensive appli-
cations. In this paper, we have described how four

different applications are mapped to the RaPiD array.
These applications require a particular set of archi-
tectural features provided by RaPiD. We believe this

feature set enables RaPiD to perform a wide range
of difl'ereut computations. By combining the appro-
priate amount of static and dynamic control, RaPiD
achieves substantially reduced control overhead rela-
tive to FPGA-based and general-purpose processors.
RaPiD is optimized for highly predictable and regular
computations, reducing the control overhead The as-

sumption is that RaPiD will be integrated closely with
a. RISC engine on the same chip. The RISC would
control the overall computational flow, performing the
unstructured computations which it does best. while
farming out the heavy-duty, brute~force computation
to RaPiD.

115

Several challenges remain. The range of RaPiD ap-
plications needs to be extended, and integrated appli~
cations comprising different computations need to be
investigated. The Ra'PiD B programming model needs
to be evaluated and new compiler optimizations im-
plemented. Finally, we would like to investigate how
parallel language and compiling methods can be ap-
plied to programming RaPiD applications at a higherlevel.

Acknowledgments

We would like to thank Larry McMurchie and Chris
Fisher for their contributions to the RaPiD project.

References

[1} J. M. Arnold et al. The Splash 2 processor and
applications. In Proceedings IEEE International
Conference on Computer Design: VLSI in Gom-
puters and Processors, pages 482w5. [EEE Com-
put. Soc. Press, 1993.

[2] T. DeRose et a1. Apex: two architectures for genen
sting parametric curves and surfaces. Visual Gom-
pater, 5:254—76, 1939.

[3] C. Ebeling, D. C. Cronquist, and P. Franklin.
RaPiD—reconfigurable pipelined datapath. In
R. Hartenstein and M- Glesner, editors, 6th Inter-
national Workshop on Field—Programmable Logic
and Compilers, Lecture Notes in Computer Sci-
ence, pages 126—135. Springer-Verlag, September1996.

[4] H. Kong. Let’s design algoritth for VLSI
systems. Technical Report CMU-CS-YQ—lfil,
Carnegie-Mellon University, January 1979.

[5] F. Lee and Z. M. Kedern. Synthesizing linear or
ray algorithms from nested FOR loop algorithms.
IEEE Trunwctiona on Computers, 37(12):1578u
as, 1988.

[6] C. E. Leierson and J. B. Sane. Betiming syn—
chronous circuitry. Algorithmica, 6:5-35, 1991.

[7] D. I. Moldovan and J. A. B. Fortes. Partition-

ing and mapping algorithms into fixed size sys~
tolic arrays. IEEE Transactions on Computers,
0-35(1};1+12, 1986.

[8] K. A. Vissers et al. Architecture and programming
of two generations video signal processors. Micro
processing 8 Micmprogmmming, 41(56)::373430,1995.

[9] .l. E. Vuillemin et a1. Programmable active
memories: reconfigurable systems come of age.
IEEE Transactions on Very Large Scale Integra-
tion (V1331) Systems, 4(1):5fi—l39, 1996.

Petitioner Microsoft Corporation - EX. 1066, p. 88
——-——-—___.——______________________—__

Petitioner Microsoft Corporation - Ex. 1066, p. 89

Petitioner Microsoft Corporation - Ex. 1066, p. 90Inf?

r our

$3 WorldCat“
Search WoddCat

Search I
acitggnced Search Find a lerag

s s. fielumofieeg REBLlilfi

Add to list Add figs Write a review Rate this item: 1

mm

2 3 4

Proceedings, the 5th Annual IEEE

Symposium on FPGAs for Custom

Computing Machines, April 16-1 8, 1997, Napa

Valley, California

5

 Author Kenneth L Pooek; Jeffrey M Arnold; IEEE Computer
Society. Technigal Committee on Computer Architecture.

Publisher. Los Alamitos, Calif. : IEEE Computer Society Press.
@1997.

EditioniFom-iat: I Print book : Conference publication :
English View all editions anrf formats

Rating: (not yet rated) QwithjeviEWs ~ Eta the first.

Subjects field orggrammable gate arrays — Congresses
Computer engineering __ Congresses.

masons
mugging

More like this Similar Items

:I Find a copy in the library

Enter your location: |Iibrary of congress Find libraries!
Submit a complete postal address for best results.

Displaying lioranes 1—6 out of 20? for all 3 editions (101 independence Ave
SE] Washington, DC 20540. USA}

E—rnail Share Permalink

Get a Copy

MW

Show libraries holding just this edition

<<First<Preu123Nemt> L_ae_t»

Library

1. Library of Congress

Washington, DC 20540 United States

2. Federal Communications Commission

Washington. DC 20554 United States

3. George Washington University

Washington. DC 20052 United States

4. Research Center National Academies of

Sciences, Engineering. and Medicine

Washington. DC 20001 United States

5. Institute for Defense Analyses Library

IDA Library

Alexandria VA 22311 United States

Held formats

Book not held;
] _oft_1_er formals

Book not held;
1 flier Formats

Book not held;
1 Olifiifflrf—T'laifi

Book not held:
lgtbetiermeis

Book not held;
1 other formats

Distance

<1 mile
men

1 mile
w IT

2 miles
W rr

2 miles
IMP Fr

7 miles
MAP rr

mm
Ask a librarian
W

Library info
Add to favofi'les

LilliififltlflLQ

add to favorites

Alameda
Add to favorites

twenties
was

Petitioner Microsoft Corporation - EX. 1066, p. 90(ronrnn1o (“Gin Ah!

Petitioner Microsoft Corporation - Ex. 1066, p. 91

Proceedings, the 5th Annual IEEE Symposium on FPGAS for Custom... https:waworldcat.org/titlefproceedings-the-Sth-annual-ieee-sympo...

6' U ivers' Of tan Libr '95 B k at held 7 ‘I grew” llb. . co rI .' mles ME

UMD Libraries _ 1 other Logging m rr Ask a librarian
College Park. MD 20742 United States Add tgfayon'tes

rrFirst<Prev12§lflell> Lea”

- Details

Genrei'Form: Conference papers and proceedings
Congresses

Material Type: Conference publication

Document Type: Book

Ali Authors 1" Kenneth L Pocek: Jeffrey M Arnold; IEEE Computer Society. Technical Committee on Computer
Contributors: architectug.

Find more information about: i Kenneth L Pocek E!

ISBN: 0818689005 9780818689000 0818689021 9780818689024

OCLC Number: T33142130

Notes: "IEEE Computer Society order number PR08159"—Tltle page verso.
"IEEE order plan catalog number 97TB100186"—T1tle page verso.

Description: x. 250 pages : illustrations ; 28 cm

Responsibility: sponsored by the IEEE Computer Society. IEEE Computer Society Technical Committee on Computer
Architecture ; edited by Kenneth L. Pooek and Jeffrey Arnold.

; Reviews

User-contributed _revievgs

Add a review and share your thoughts with other readers. Be the first.

:. Tags

Add tags for ”Proceedings, the 5th Annual tEEE Symposium on FPGAS for Custom Computing Machines, Apn‘i 18—18, 1997, Napa
Valley, California". Be the first.

_.- Similar items

Related Subjects: {4)

Field programmable gate arrays - Congresses.

Computer engineering — Conga-sag.

Computer engineering-

Field programmable gate arrays.

+ Linked Data

Petitioner Microsoft Corporation - EX. 1066, p. 91

Petitioner Microsoft Corporation - Ex. 1066, p. 92

Petitioner Microsoft Corporation - Ex. 1066, p. 93

El'29l'20 1 8

E

LC Unline Catalog - Item Information {MARC Tags)

LIBRARY OF CONGRESS

ONLlNE CATALOG

1of1

BOOK

Proceedings, the 5th Annual IEEE Symposium on

Field-Programmable Custom ..

Full Record MARC Tags

000 0204acam 82200433 a 4500

001 712410

005 199804061231063

008 97111931997 caua b 101 0 eng d

035 _ |9 (DLC) 97080098

906 _ la 7 |b cbc |c copycat |d u |e open If 19 lg y-gencatlg

955 ._ |a pb23 11-18-97 to eat J'QOD 11-26—97: 1905 01-05-97; ng? 0145-98

010 __ |a 97080098

020 _ la 0818681594

020 _ la 0818681608 (case)

020 _ [a 0818681616 (microfiche)

035 _ |a (OCoLC)379491?5

040 _ la GAT lc GAT Id DLC

042 _ la lccopycat

050 04 |a TK7895.G36 |b |35 1997

082 00 |a 621 .395 12 21

111 2_ la IEEE Symposium on FF’GAs for Custom Computing Machines [d (199? : |c Napa Valley. Calif.)

245 10 la Proceedings, the 501 Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, April 16-18, 1997. Napa Valley. California i la sponsored by the lEEE Computer Society.

IEEE Computer Society Technical Committee on Computer Architecture ; [edited by Kenneth L.

Pocek and Jeffrey Arnold]

24a 1_ ii Half title: la FCCM‘Q? *

246 30
'1‘!“ "I]a 5th Annual IEEE Symposium on Field-Programrpgglfiogusmmtwafi3mtfmfiesEx 1066 p 93l__ Fin]. A...._._I II_l-'I"‘ n. _____:_ _..__ __ 6—. I H___.___ _ _ l__i‘h.._1__ ('I ________ __

Petitioner Microsoft Corporation - Ex. 1066, p. 94

6129l2013

246 14

245 18

260

300

500

500

504

650 0

650 _0

700 1_

700 1_

710 2g

920

991
l

LC Online Catalog ~ Item Information (MARC Tags)

la IEEE Symposium on FPGAs for Custom Computing Machines

|a FPGAs for Custom Computing Machines

|a Los Alamitos, Calif. : lb IEEE Computer Society Press, |c c1997.

Ia x, 250 p. : lb ill. ; lo 28 cm.

|a "lEEE Computer Society order number PROB‘I59"--T.p. verso.

Ia "lEEE order plan catalog number 97T8100186"—-T.p. verso.

|a Includes bibliographical references and index.

|a Field programmable gate arrays |x Congresses.

la Computer engineering |x Congresses.

la Pocek, Kenneth L.

la Arnold, Jeffrey M.

|a IEEE Computer Society. lb Technical Committee on Computer Architecture.

la ** LC HAS REQ‘D # OF SHELF COPIES **

[b c-GenCoIl |h TK7895.G36 |i I35 199? |t Copy 1 |w BOOKS

Request this Item fl LC Find It

Item Availability >

CALL NUMBER

Request In

Status

CALL NUMBER

Request in

Status

“(7895.636 135 1997

Copy 1

Jefferson or Adams Building Reading Rooms

Not Charged

TKTBBSGSB |35 1997 FT MEADE

Copy 2

Jefierson or Adams Building Reading Rooms - STORED OFFSITE

Not Charged

Petitioner Microsoft Corporation - EX. 1066, p. 94

Petitioner Microsoft Corporation - Ex. 1066, p. 95

Petitioner Microsoft Corporation - Ex. 1066, p. 96

6129:2018 LC Online Catalog - item Information (Full Record}

LIBRARY OF CONGRESS

ONLINE CATALOG

BOOK

Proceedings, the 5th Annual IEEE Symposium on

Field-Programmable Custom

Full Record MARC Tags

Meeting name

IEEE Symposium on FPGAs for Custom Computing Machines (1997 : Napa Valley. Calif.)

Main title

Proceedings, the 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, April 16—

18. 1997, Napa Valley, California! sponsored by the IEEE Computer Society, lEEE Computer Society Technical

Committee on Computer Architecture ; [edited by Kenneth L. Pocek and Jeffrey Arnold]

PublishedtCreated

Los Alamitos. Calif. : IEEE Computer Society Press, 0199?.

Request this item fl LC Find it

More Information >

LCCN Permatink httpsfllccn.loc.govf97080098

Description x, 250 p. : ill. ; 28 cm.

ISBN 0818681594

0818681608 (case)

0818681616 (microfiche)

LC classification TK7895.G36 BS 1997 Petitioner Microsoft Corporation - EX. 1066, p. 96

Petitioner Microsoft Corporation - Ex. 1066, p. 97

6l29l2018 LC Unline Catalog — [tom lnion‘rlation {Full Record)

Variant tltle Half title: FCCM'QT

Fifth Annual IEEE Symposium on Field-Programmable Custom

Computing Machines

Portion of title 5th Annual IEEE Symposium on-Field-Programmable Custom Computing

Machines

Cover title IEEE Symposium on FPGAS for Custom Computing Machines

Spine title FPGAs for Custom Computing Machines

Related names Pocek, Kenneth L-

Arnold. Jeffrey M.

IEEE Computer Society. Technical Committee on Computer Architecture.

LC Subjects Field programmable gate arrays~Congresses

Computer engineering—Congresses.

Browse by shelf order “(7895.636

Notes "lEEE Computer Society order number PR08159"—-T.p. verso.

"IEEE order plan catalog number 97T3100186"—T.p. verso.

Includes bibliographical references and index.

LCCN 97080098

Dewey class no. 621.39l'5

Olher system no. (OCOLC)37949175

Type of material Book

Item Availability >

CALL NUMBER “(7895.635 I35 1997

Copy 1

Request in Jefferson or Adams Building Reading Rooms

Status Not Charged

CALL NUMBER TK7895.G36 I35 1997 FTPlfiEil‘dEr MICIOSOft corporatlon ' E" 1066’ p‘ 97

Petitioner Microsoft Corporation - Ex. 1066, p. 98

Bf29r2018 LC Online Catalog — Item Information (Full Record]

Copy 2

Request in Jefferson or Adams Buiiding Reading Rooms - STORED OFFSITE

Status Not Charged

Petitioner Microsoft Corporation - EX. 1066, p. 98

Petitioner Microsoft Corporation - Ex. 1066, p. 99

Specifying and Compiling Applications for RaPiD�

Darren C� Cronquist� Paul Franklin� Stefan G� Berg� and Carl Ebeling

Department of Computer Science and Engineering
University of Washington

Box ������
Seattle� WA �	
�������

Abstract

E�cient� deeply pipelined implementations exist for a
wide variety of important computation�intensive ap�
plications� and many special�purpose hardware ma�
chines have been built that take advantage of these
pipelined computation structures� While these imple�
mentations achieve high performance� this comes at
the expense of
exibility� On the other hand�
exible
architectures proposed thus far have not been very
e�cient� RaPiD is a recon�gurable pipelined data�
path architecture designed to provide a combination
of performance and
exibility for a variety of applica�
tions� It uses a combination of static and dynamic con�
trol to e�ciently implement pipelined computations�
This control� however� is very complicated� specify�
ing a computation�s control circuitry directly would
be prohibitively di�cult�

This paper describes how speci�cations of a pipe�
lined computation in a suitably high�level language are
compiled into the control required to implement that
computation in the RaPiD architecture� The com�
piler extracts a statically con�gured datapath from
this description� identi�es the dynamic control signals
required to execute the computation� and then pro�
duces the control program and decoding structure that
generates these dynamic control signals�

� Introduction

The RaPiD architecture is a �eld�programmable ar�
chitecture that allows pipelined computational struc�
tures to be constructed from an array of arithmetic
units� registers and memories� These are intercon�
nected and controlled using a combination of static
control� which does not change during the computa�
tion� and dynamic control� which does� This paper
deals with the problems of specifying linear pipelined
computations and compiling a speci�cation into the
combination of static con�guration and dynamic con�
trol required to program the RaPiD architecture�

�This work was supported in part by the Defense Advanced
Research Projects Agency under Contract DAAH������G����� D�
Cronquist was supported in part by a Gray fellowship� P� Franklin
was supported in part by an NSF fellowship�

We begin with a programming language that al�
lows a pipelined computation to be described in both
time and space� Speci�c operations are assigned to
a speci�c pipeline stage at a speci�c time� Time is
described using nested loops� while space is described
by the innermost loop� Each iteration of this inner�
most loop is allocated to a speci�c pipeline stage at a
speci�c time� Since pipelined computations are both
regular and repetitive� descriptions in this form are
usually quite concise�

When compiling a program� we take the classic ap�
proach of partitioning the implementation into data�
path and control� The program describes the opera�
tions performed by each pipeline stage in each cycle�
These operations determine the underlying pipelined
datapath� Typically this datapath has a number of
dynamic controls to change the functionality and in�
terconnection of elements in the datapath during the
computation� These controls are decoded from in�
struction bits passed down the array� which are in turn
produced by a control program� Since each applica�
tion needs di�erent control� each will use the instruc�
tion bits and decoding structure di�erently� and will
have its own control program�

Although the compiler was designed speci�cally for
RaPiD� we believe the RaPiD�C language provides
a clean and e�ective way to specify pipelined com�
putations� For example� a di�erent back�end to our
compiler could be used to generate implementations
in di�erent technologies such as FPGAs or custom
ASICs� In fact� we see the RaPiD architecture model
used in a variety of ways� One possibility is to cre�
ate a single very
exible implementation that could
be used for a wide variety of di�erent problems� This
implementation would include a set of generic func�
tional units and a very
exible set of interconnection
resources� Another possibility would be to create a
�custom� RaPiD implementation tailored speci�cally
for one predetermined set of computations� This im�
plementation would trade
exibility for reduced cost�

We begin by giving a brief overview of the RaPiD
architecture model� We then present the matrix mul�
tiply application to motivate the approach we have
taken for language design and compilation� Next� we
present RaPiD�C language features and describe how

Petitioner Microsoft Corporation - Ex. 1066, p. 100

programs are written using the language constructs�
Finally� we describe the compilation process used to
generate and optimize datapath and its control�

� The RaPiD Architecture

This section provides a brief overview of the architec�
tural details of RaPiD which directly a�ect the com�
pilation process� For a more thorough description of
the architecture� see ��� and �	��

RaPiD is a coarse�grained
eld�programmable ar�
chitecture for compute intensive applications� The ar�
chitecture consists of an abundance of functional units
such as ALUs and multipliers as well as general pur�
pose registers �GP�REGs� and RAMs� As an exam�
ple� a version of the architecture that we have used
for benchmarking contains
� GP�REGs� �� �	�entry
RAMs� �� ALUs� and �� multipliers� all supporting
���bit data operands� This benchmark version is ap�
proximately ���mm� in a �� u process and runs con�
servatively at ��� MHz�

Such a large number of functional units must be
interconnected in a cost�e�ective manner� Although
a crossbar would provide the greatest �exibility� the
myriad of functional units requiring connections�over
	�� in the benchmark version�make this approach
infeasible� Instead� RaPiD arranges the functional
units linearly above a
eld�programmable segmented
bus structure� A linear structure is easily manage�
able� yet it reduces implementation cost and control
requirements tremendously� By using the small RAMs
spread throughout the array as bu�ers� multidimen�
sional tasks can be performed on RaPiD arrays� The
underlying datapath� i�e� which functional units can
forward results to each other� is con
gured statically
on a per application basis� During the execution of
an application� the data movement between functional
units can change every cycle via a decoded instruction�

A simple example is shown in Figure �� A regis�
ter is used to hold a constant value� such as a coef�

cient for a FIR
lter� The underlying datapath is
statically con
gured so the register can load from ei�
ther an input stream or its previous value� During
the execution of the instruction stream� dynamic con�
trol directs data movement on a cycle�by�cycle basis�
In summary� static control determines the extent that
data can �ow in a given application� Dynamic control
determines the cycle by cycle data movement under
the restrictions placed by static control� For example�
the dynamic control would specify when the register
should load from the input stream and when it should
hold its value by loading from the feedback path�

The RaPiD architecture provides hard control sig�
nals� which are
xed by the con
guration data� and
soft control signals� which can change each clock cy�
cle� Soft control signals drive ALU functions� input
and output stream enables� RAM writes and incre�
ments� and multiplexer selects� As a result� RaPiD

Memory
From

Controller

Input Stream
FIFO

dynamic
control

Figure �� A register con�gured to load or hold its value
for a constant multiply� The interconnect shown is
con�gured statically but the dynamic control signals
can change every cycle�

contains a substantial number of soft control signals�
over ���� in the benchmark version� To reduce the cir�
cuitry required to generate these signals� a pipelined
control path that parallels the datapath is used to gen�
erate these signals from a narrow instruction �eg� �	
bits� inserted at the beginning of the array� This �in�
struction� contains all the information required by the
various pipeline stages to compute their dynamic con�
trol signals� The control path comprises a set of ��bit
segmented busses similar in structure to the datapath
busses� as shown in Figure 	� This bus structure allows
the instruction bits to be individually manipulated as
they proceed down the RaPiD array�

RaPiD
Controller

From

:

:

alu
status

:
FIFO

FIFO
Instruction

Input Stream

Controller

From
Memory

Figure 	� Soft control circuitry used to dynamically
control the circuit shown in Figure �

The majority of soft control bits are static for a
given application� and are wired to a constant � or ��
Other bits are wired to one of the other control wires�
This control often comes directly from the controller�
pipelined as needed� However� more complex decod�
ing using ��input look�up tables �LUTs� can be used
to decode several instruction bits into the appropriate
control or to combine pipelined control with status in�
formation �e�g� ALU carry�� The LUTs also contain
optional registers� allowing for simple
nite state ma�
chines �FSMs� occasionally required by non�pipelined
control� Such FSMs can be used to activate a function
for several cycles in each stage� one stage at a time�

Petitioner Microsoft Corporation - Ex. 1066, p. 101

If RaPiD supported deep pipelining within the con�
trol path� this could be done easily by placing enough
registers between each stage� Instead� this can be con�
structed using a FSM� a stage can remember whether
or not its RAM is active� and one instruction bit can
be used to deactivate one stage and activate the next�
requiring only two control lines� This is used in im�
plementing a ��D DCT on RaPiD ����

The number of busses required in the control path
varies by application� but is not large because control
signals tend to be reused extensively� The benchmark
version of the RaPiD architecture provides 	
 busses�
which can be pipelined and otherwise manipulated in�
dividually� This is more than enough for the current
set of applications� even using non�optimal mappings
produced by automated CAD tools�

��� Datapath Controller

The RaPiD array consumes one instruction per cycle
which drives the beginning of the control buses� Gen�
erating this instruction stream is nontrivial because
it often controls several tasks running in parallel� the
matrix multiply example in the next section illustrates
this� The RaPiD datapath controller contains several
simple microcontrollers �instruction generators� whose
output is combined to form instructions for the RaPiD
array�

Each instruction generator executes a micropro�
gram to generate a stream of instructions� The gen�
erators are optimized to handle nested and sequential
loops� they also contain microinstructions for perform�
ing simple arithmetic synchronization�

S
y
n
c
h
r
o
n
i
z
e
r

To
RaPiD
Array

Instruction
FIFO

Gen
Instr

Gen
Instr

Gen
Instr

Gen
Instr

Instruction
FIFOs

Merge
Instruction

Figure 	
 The RaPiD controller�

The instruction streams produced by the instruc�
tion generators are synchronized via SIGNAL and
WAIT tags� The stream containing a WAIT tag is
stalled until the matching SIGNAL occurs in another
stream� After the instruction streams have been syn�
chronized� they are combined in a bitwise fashion� and
the �nal instruction then passes through the last in�
struction FIFO and proceeds to the RaPiD array�

RaPiD also contains address generators used for
generating sequences of memory addresses used by the
memory controller �Figure ��� The address generators
use arithmetic microinstructions to produce address

sequences� The memory controller handles these mem�
ory requests by placing data in or removing data from
the appropriate input or output FIFO�

..

.

Output Stream FIFO

Gen
Addr

..

.
Gen
Addr

Input Stream FIFO

External
RAM

Controller
Memory RaPiD

Array

Figure �
 The RaPiD address generators and I�O
streams�

� Speci�cation

To map an algorithm to the RaPiD array we have de�
signed a new parallel programming language� RaPiD�
C� Although created with RaPiD in mind� the meth�
ods of speci�cation and compilation could be extended
to other architectures for implementing pipelined com�
putations� In addition� this programming technique
could be used for ASIC design�

��� Motivation� Matrix Multiply

To motivate a speci�cation language� we �rst look at
a common� well�studied application�matrix multiply�
The problem takes an L�M matrix A and anM�N

matrix B and computes the L�N matrix C � A�B�
as shown in the nested�loop speci�cation of Figure ��
As it stands� this high�level speci�cation is far from a

for �i��� i � L� i���
for �j��� j � M� j���
for �k��� k � N� k���
if �j���� C�i��k� � A�i��j�	B�j��k��
else C�i��k� �� A�i��j�	B�j��k��

Figure �
 Nested loop speci�cation for matrix multiply

mapping to a pipelined linear array� In particular� the
parallelism and the data I�O are not speci�ed� and
the algorithm must be partitioned to �t on the target
architecture�

Automating these processes is a di�cult problem
for an arbitrary speci�cation� and one we do not solve
here� Instead� we propose a language that is C�like and
requires the programmer to specify the parallelism�
data movement� and partitioning� To this end� the
programmer uses well known techniques of loop trans�
formation ��� and space�time mapping ��� 	�� The re�
sulting speci�cation is a nested loop where outer loops

Petitioner Microsoft Corporation - Ex. 1066, p. 102

specify time and the innermost loop space�� In the
context of RaPiD�C� the space loop refers to a loop
over the stages of an algorithm� where a stage is one
iteration of the innermost loop� The compiler maps
the entire stage loop to the target architecture by un�
rolling the loop to form a �at netlist� Hence� the stage
loop� also called a Sloop� has implicit parallelism since
it executes in a single cycle on the target architecture��

As a result� the programmer must permute and tile
the loop�nest so that the computation required after
unrolling the innermost loop will �t onto the target ar�
chitecture� The remainder of the loop nest determines
the number of times the Sloop is executed�

The programmer �rst transforms the original spec�
i�cation by choosing a loop to iterate over the stages�
optimizing for speed� memory� scalability� etc� Par�
titioning of the algorithm is based on the number of
functional units and available memory in the target
architecture� For example� consider mapping matrix
multiply to an architecture with S multipliers� at least
� RAMs per multiplier� and R words of memory per
RAM� The innermost loop is partitioned by the num�
ber of stages �i�e� multipliers	 and the outer loops by
the size of the RAMs� Since the stage loop is the inner�
most loop� k has been replaced by the stage iteration
variable s� Loop permutation is applied� yielding the
code in Figure
�� From now on� instead of explic�
itly stating the innermost loop as for �s��� s � S�
s���� we will simply write Sloop�

for �f��� f � L� f��R	
for �g��� g � M� g��R	
for �h��� h � N� h��S	
for �i��� i � R� i��	
for �j��� j � R� j��	
for �s��� s � S� s��	
if �j�g���	 C
i�f�
s�h� � A
i�f�
j�g��B
j�g�
s�h��
else C
i�f�
s�h� �� A
i�f�
j�g��B
j�g�
s�h��

Figure
� Matrix multiply partitioned to space and
time

Memory accesses are determined by examining in�
dexing in every stage on every cycle �recall that the
Sloop executes in a single cycle	� Since A�i
 f ��j
 g�
is independent of s� the appropriate A matrix value
will be broadcast to the entire array on every cycle�
Expression B�j
 g��s
 h� references R elements �the
length of the j loop	 of the B matrix in each stage�
which can be stored in a RAM in each stage� More�
over� since h changes every R� cycles� a new set of ele�
ments must be loaded every R� cycles� To prevent the
array from stalling� the RAMs can be double�bu�ered�
Finally� expression C�i
 f ��s
 h� references R ele�
ments �the length of the i loop	 of the C matrix in

�Since RaPiD is a linear architecture we have a singly nested loop
for space
 An n�dimensional architecture would have an n�nested
loop dedicated to space

�In actuality� pipelining and retiming usually cause the Sloop to
be executed on a diagonal of the time axis instead of the same cycle

�For ease of presentation� we assume that R divides L and M �
and that S divides N

each stage� which again can be stored in a RAM in
each stage� Since every stage produces a result on the
same cycle� these results are pipelined down the array
instead of being broadcast� the �nal stage stores the
values from this pipeline into the C memory�

Matrix multiply can now be broken down into three
processes� preload� computation� and output� These
processes all run in parallel but need to be precisely
synchronized to allow them to communicate� The
preload loop�nest must complete one iteration of its
h�loop before the computation loop�nest begins� The
computation loop�nest must complete one iteration
of its g�loop before the output loop�nest can begin�
To simplify this speci�cation� the language supports
parallel loop nodes and Signal�Wait synchronization
pairs� The double bu�ering of the B values is per�
formed by a two�dimensional array of S � � RAMs
which is indexed by the stage number and a boolean
toggle bit to �ip between the RAMs on the appropri�
ate cycle� This sums up the major features of RaPiD�
C� which is described in more detail in the next sec�
tion� Pseudo�code for the RaPiD�C implementation of
matrix multiply is shown in Figure �� To clarify the
structure of this code� we often write a control tree as
shown in Figure �� Control trees will be described in
detail in the next section�

Par f
�� Preload loop�nest
for �f���� f� � L� f���R	
for �g���� g� � M� g���R	
for �h���� h� � N� h���S	 f
for �j���� j� � R� j���	
for �i���� i� � S� i���	
Sloop
if �i���s� ramB�s���toggle��j�� � B�j��g���s�h��	

Signal�comp�	 Wait�preload�	
g

 Computation loop�nest
for �f��
	 f� � L	 f���R�
for �g��
	 g� � M	 g���R�
for �h��
	 h� � N	 h���S� f
Signal�preload�	 Wait�comp�	
for �i��
	 i� � R	 i����
for �j��
	 j� � R	 j����
Sloop f
if �i���
 �� j���
� toggle � �toggle	
if �j���
 �� g���
�
ramC�s��i�� � A�i��f���j��g���ramB�s��toggle��j��	

else
ramC�s��i�� �� A�i��f���j��g���ramB�s��toggle��j��	

if �j���R�� �� g���M�R� f
pipeOut � ramC�s��i��	
Signal�output�	
g
g

g

 Output loop�nest
for �f��
	 f� � L	 f���R�
for �h��
	 h� � N	 h���S�
for �i��
	 i� � R	 i���� f
Wait�output�	
for �j��S��	 j� �
	 j����
Sloop
if �s��S��� C�i��f���h��j�� � pipeOut	

g
g

Figure �� Matrix multiply after I�O� ram allocation

Petitioner Microsoft Corporation - Ex. 1066, p. 103

i1

j1

For

For

Sloop

j3

i3

h3

f3

j2

i2

h2

g2

f2

h1

g1

f1

Sloop

For
Wait

SeqSeq

Signal Wait

Sloop

Signal Wait
For

For

For

For

For

For

For

For

For

For

For

Par

Seq

if (...) signal()

Figure �� Control tree for matrix multiply

��� Control Trees

Control trees are a convenient representation of a
RaPiD�C program�s loop structure� They are particu�
larly useful while manipulating a program�s structure
by performing loop transformations� and as an aid to
explaining a program�s control structure� This section
presents them� while using them to explain the control
structures available in RaPiD�C�

RaPiD�C uses a control tree to specify the loop
structure of a particular application� In a complete
RaPiD�C program� this tree is part of the code� as
shown in Figure �	 however� while determining what
a program�s control tree should look like� it is often
useful to draw it separately� This section uses con�
trol trees to reintroduce the control constructs already
shown above�

Figure
 shows two simple RaPiD�C trees� Tree �a�
represents two nested loops in time� The inner loop
contains the stages loop� or Sloop� This loop auto�
matically iterates the reserved variable s over all of
the stages �
 � s � S�� Tree �b� illustrates a compu�
tation split into two loops	 the j loop will begin after
the i loop completes� Note that each branch has its
own Sloop�

Each Sloop in a control tree contains code to be
compiled to the target architecture� Inside Sloop

blocks� a programmer uses a C�like syntax with spe�
cial objects representing some features of the archi�
tecture� Since each block actually executes S times�
conditional statements can check the value of s to re�
strict code segments to speci�c stages� Conditionals
can also compare against a For node�s iteration count
such as i���� In addition� the conditionals �first�
�last� or �live test on the �rst� last� or any iteration

For

For j=(1..100)

i=(1..10)

(b)(a)

Sloop SloopSloop

Seq

For j=(1..500)i=(1..500)For

Figure
� Simple RaPiD�C control trees� �a� Nested
loops� �b� Loops to be run in sequence�

of a loop� respectively� Code which needed to be exe�
cuted every �

th iteration can easily be coded in the
Sloop for Figure
�a� with the condition j�last�

Note that a condition specifying every �

th iter�
ation of Figure
�b� is more complex� Control trees
should represent the actual control needed by an appli�
cation� The RaPiD�C code for matrix multiply shown
in Figure � contains only relatively simple conditions�
indicating that its control tree captures the loop and
control structure of the application�

RaPiD�C uses Par nodes to indicate branches which
should run in parallel� RaPiD�C also contains synchro�
nization primitives	 a Wait node stalls until it receives
a signal from either a Signal node or a signal state�
ment in a Sloop� Figure �
 shows a control tree in
which the right Sloop will start executing as the left
Sloop begins its second iteration�

if (i1==1 && j1==2) Signal(eventGo);
k2=(1..25)

j2=(1..8)

i2=(1..5)

...

j1=(1..100)

i1=(1..10)

Wait eventGo

For

Sloop

For

Seq

For

Sloop

For

For

Par

Figure �
� A Signal�Wait pair to run two nested
loops in parallel� o�set by one cycle

Control trees can also contain Inf nodes	 they are
similar to For nodes but execute on every cycle� halt�
ing immediately when all other control is exhausted�
Table � summarizes the node types presented in this
section�

Petitioner Microsoft Corporation - Ex. 1066, p. 104

Table �� Control tree node types in RaPiD�C

Node Type Children Execution Length �in cycles�
Seq In sequence� one at a

time
Sum of lengths of
children

Par In parallel� all starting
simultaneously

Length of longest
child

For Its single child� loop it�
eration times

� of iterations �
child length

Inf Its single child� many
times

Number of cycles
in entire tree

Sloop No children One cycle
Wait No children Until signaled
Signal No children Zero cycles

Table �� Data types in RaPiD�C

Data Type Speci�es
Word Single width variable
Long Double width variable
Bool Single bit value� used for conditional

statements
Ram Fixed size RAM local to a stage
Pipe Inter�stage communicator

��� Communication

A RaPiD�C application needs to communicate among
its stages and with the outside world� This is pro�
vided for with separate mechanisms� Communication
with the outside world is done through array refer�
ences� Inter�stage communication is accomplished us�
ing pipes that connect a number of stages together�

The programmer can specify an arbitrary number
of external arrays that can be read from or written to
inside a RaPiD�C program �see arrays A� B� and C in
Figure 	
� A limitation imposed on the programmer
is that all references must be data independent since
memory addressing is determined at compile time�

Pipes are used to communicate values between
stages� A pipe is just a global bus with a number
of optional registers between stages� The program�
mer can therefore use them to feed data into or out of
the array or to communicate intermediate results from
one stage to the next� Figure � shows an example of
a pipeline used for writing the result matrix to the
external array C� All stages output their �nal results
to pipeOut at regular intervals� The last stage reads
from pipeOut and stores the read values in array C�

��� More RaPiD�C Types

RaPiD�C has several prede�ned types to support both
computation and data communication within an algo�
rithm� as shown in Table ��

The types Word and Long represent the single and
double precision data types for use within a stage� For
computation that is similar across several stages� typ�
ically an array of Words or Longs is de�ned�

Type type Bool is used for control de�ned by
the programmer� For example� double bu
ering two
RAMs requires a toggle signal� For example� the code

if �i���� �� j����� toggle � �toggle	

Table �� Operators for RAMs�

Operator Action
ramFoo	address
 x Set the address register to value x� mod

size
ramFoo	address�� Increment the address register� mod size
ramFoo
 y Set the ram value for the current ad�

dress to y �y is of type word�
y
 ramFoo Read the value for the current address
ramFoo�i� Automatically address ram with respect

to For loop i

�ips the toggle bit on the appropriate cycle in matrix
multiply �see Figure �
�

The type Ram speci�es a �xed�size local memory in a
stage of the target architecture� Ram is accessed via an
implicit address register that can be assigned� cleared
and incremented� Table � lists the valid operators on
a ram�

The Ram type represents an architecture�speci�c de�
vice� When specifying applications targeted at other
architectures� other architecture�speci�c types might
be called for�

� Compilation

A RaPiD�C program clearly speci�es an algorithm�s
hardware requirements� As a matter of fact� the union
of all Sloop blocks is very close to a structural de�
scription of the algorithm� One di
erence from a true
structural description is that Sloop statements are
speci�ed sequentially but execute in parallel� A netlist
must be generated to maintain these sequential seman�
tics in a parallel environment� Another di
erence is
that control is not explicit but instead embedded in a
nested�loop structure� This control must be extracted
into multiplexer select lines and functional unit con�
trol� Then� an instruction stream must be generated
which can be decoded to form this control� A �nal
di
erence from a true structural description is the im�
plicit decoupling of data I�O� Address generators must
be instantiated to take the data to and from memory
at the appropriate time� Hence� compiling RaPiD�C
into a structural description consists of four compo�
nents� netlist generation� dynamic control extraction�
instruction stream�decoder generation� and I�O ad�
dress generation�

The compilation process produces a structural
speci�cation consisting entirely of components on the
target architecture� The netlist is then mapped to the
architecture via standard FPGA mapping techniques
including pipelining� retiming� and place and route�
The place and route solution fully speci�es the static
setting required to program the array�

��� Netlist Generation

Generating a parallel netlist from a sequential speci��
cation is straightforward� Consider the three types of

Petitioner Microsoft Corporation - Ex. 1066, p. 105

w[0].address

foo[0]

0

1

0

0

1

loop.live

loop.first

if (loop.live) foo[s] = w[s].address;

foo[0]

w[0].address

INITIAL STATE

...
}

INNER LOOP OF CODE

Sloop {
if (loop.first) w[s].address = 0;

if (inc.live) w[s].address++
if (loop.live) foo[s] = w[s].address;

loop.first
0

w[0].address

foo[0]

0

1

if (loop.first) w[s].address = 0;

w[0].address

0

1

0 ++

0

1

0

1

foo[0]

loop.live

inc.liveloop.first

if (inc.live) w[s].address++

CONNECT FEEDBACK
foo[0]

0

w[0].address

0

1 ++

0

1

0

1

loop.live

inc.liveloop.first

Figure ��� Generation of a netlist from RaPiD�C�

data dependencies found in sequential code� true �read
after write�� anti �write after read�� and output �write
after write�� The idea is to convert variables into reg�
isters� noting that if a register is read and written on
the same cycle� the register	s value on the previous cy�
cle is read� An anti�dependence requires the previous
value of a variable be read� so a register is su
cient�
A true dependence requires the current value of a vari�
able to be read� so data forwarding is used� Finally�
an output�dependence is implemented with a register
whose input multiplexer gives priority to the latest
write in the sequential code�

The compiler converts a RaPiD�C program into a
structural speci�cation by interpreting the union of all
Sloop blocks for each value of s� During interpreta�
tion� the compiler instantiates registers for variables�
ALUs for adds �and other operations�� multipliers for
multiplies� and multiplexers for if�then�else state�
ments� Once interpretation is complete� the �nal value
of each variable is connected to the input of the vari�
able	s register� creating state across cycles�

For example� Figure �� shows the netlist construc�
tion for a small set of Sloop statements� During the
�rst iteration of the loop� s is assigned to zero� creat�
ing the variables foo��� and w����address which are
initialized as registers� The �rst line of code adds a
multiplexer to the address register which either holds
its current value or loads zero� depending on the value
of loop�first� The second line updates foo��� to be
the current value of the address register� if loop�live
is true� The third line instantiates an incrementer and
updates the value of the address register if inc�live is
true� After the �nal reference to the variables foo���
and w����address� the current values are connected
as inputs to the original registers� providing support
for dependencies across iterations of the control tree�

��� Dynamic Control Extraction

Dynamic control can take many forms depending on
the versatility of the target architecture� The most
common dynamic signals are used to time data move�
ment� as in a multiplexer	s select lines� and to specify
a change in computation� as in a functional unit	s op�
eration signals� As a result� two key steps are required
to generate dynamic control� multiplexer merging and
functional unit merging�

����� Multiplexer Merging

The initial netlist generation forms two�input multi�
plexers for every conditional statement� These smaller
multiplexers must be merged to match the size of mul�
tiplexers on the target architecture� potentially chang�
ing the required control�

To merge multiplexers a depth��rst search of the
initial two�input multiplexer netlist is performed start�
ing at the output streams� since all required functional

Petitioner Microsoft Corporation - Ex. 1066, p. 106

units must be reachable from the output� When a pre�
viously unreached functional unit is found� each input
is replaced with a ���� multiplexer �or whatever size
corresponds to the target architecture	� The compiler
then performs a depth�
rst search to determine reach�
able inputs� An input�s select condition is the AND
of multiplexer conditions along this path� Figure ��
shows the code and a portion of a generated netlist
containing three multiplexers which are merged into
a single multiplexer with three inputs� The REG� in�
put is found to be unreachable since the global context
becomes b � a � �a
 ��

if �a� REG���� else REG���������� �ALU��
if �b� REG	 � REG��
��� � REG	 � ���� �ALU	�

1

0
1

0

Merged Multiplexers

0

ba

b!a

!b

U
L
A

1

E
R

G
2 U

L
A

2

U
L
A

U
L
A

1

b!aa

2

E
R

G

2

Generated Netlist

E
R

G

0

1

1

0

Figure ��� An example of multiplexer merging� three
��input muxes are merged into a single mux�

����� Functional Unit Merging

RaPiD�C uses symbols� such as � and �� to specify
operations on data� Clearly� if the programmer uses
a common subexpression� the compiler must be ro�
bust enough to map all instances of the expression
to the same functional unit� Although a standard
common�subexpression elimination algorithm would
work for common�subexpressions� the dynamic con�
trol of the RaPiD array can optimize some uncommon�
subexpressions� For example� the expressions x�y and
x�y are di�erent but could be mapped to the same
ALU if they are not both in use during a common
cycle� This would require a control signal to be gen�
erated to change the ALU function from an addition
to a subtraction on the appropriate cycle�

Even expressions with di�erent operands can be
merged� If the expressions x�y and w�z are not in
use during a common cycle� they could be merged
by having both x and y reach one ALU multiplexer
input� and both w and z the other� Now three dy�
namic control signals must be used to change between
the two expressions� Since all three signals are equiv�
alent� this second example doesn�t use more control
path resources than the
rst� However� the underlying

netlist �static control	 becomes more complex� poten�
tially stressing the available routing resources in the
datapath� in some cases� the control becomes complex
enough that the merging must be rejected�

To support both common and uncommon subex�
pression elimination� a list of functional units is main�
tained in every stage� In addition� a boolean in�use
function is created for each functional unit to record
the cycles of operation� The functional units� in�use
functions determine when merging can occur� Two
functional units can be merged if they are identical
�i�e� a common�subexpression	� or if their in�use func�
tions are mutually exclusive and the union of their
inputs doesn�t exceed some internal maximum� This
maximum is n for n�input multiplexers but clearly
should be substantially smaller due to routing con�
straints� When there is a choice of functional units
to merge� the pair with the larger number of common
inputs is selected� Functional units which use static
control to determine their functionality must be equiv�
alent in these bits to be merged�

For example� consider an ALU with two data inputs
�Left and Right	 and four control inputs �F�� F�� F��
and F�	� The in�use function� InUse� determines when
the ALU is actually needed� If we are given alu� and
alu� with mutually exclusive InUse functions� they
can be merged into alu� by applying the code in Figure
���

alu
�Left�Merge�alu��Left� alu	�Left��
alu
�Right�Merge�alu	�Right� alu	�Right��

alu
�InUse � alu��InUse jj alu	�InUse�
alu
�F
 � alu��InUse �� alu��F
 jj alu	�InUse �� alu	�F
�
���
alu
�F� � alu��InUse �� alu��F� jj alu	�InUse �� alu	�F��

Figure ��� Compiler�s code to merge two ALUs� The
function Merge adds all inputs to alu��s input multi�
plexer and ORs the control of any common inputs�

��� Data Dependent Dynamic Control

Some operations� such as maximum and absolute
value� require data�dependent dynamic control to be
generated� For example� the statement sum �� 	x�y	
compiles to a netlist which connects the sign status
signal of an ALU computing x�y to the add�subtract
control input of a second ALU� If the sign is positive�
the second ALU adds the
rst result to sum� and if
negative it subtracts the
rst result from sum� In more
complex data dependent conditions� decoding may be
required as shown in the next section�

��� Instruction and Decoder Generation

Each dynamic control signal is represented by a
boolean function of the following variable types� an
event in the control tree� a status bit from the data�
path� and a condition on s� Examples of such

Petitioner Microsoft Corporation - Ex. 1066, p. 107

boolean variables include the �rst iteration of a For
node �i�first�� the carry condition on an ALU
�alu�carry�� and the equivalence of a For node and s
�i��s�� respectively� Each control signal is paired with
an in�use function to aid optimization� Given this dy�
namic control information� a set of boolean functions�
whose concatenation forms an instruction� must be
found from which all dynamic signals can be decoded�
This set of functions is limited by the instruction width
of the target architecture�

Mapping all dynamic control into a �xed�width
instruction involves �nding common subexpressions
within the dynamic control signals and using in�use
information e�ciently� In addition� this process may
require multi�level minimization� Shannon decomposi�
tion and	or compilation to state machines� depending
on the complexity of the dynamic control functions�

A dynamic signal comprised entirely of events from
the control tree is independent of s and can be broad�
cast to all required stages� For example� the function
i�live �� j�first compiles directly to a bit in the
instruction� which is then broadcast to each required
functional unit and multiplexer� Since these variables
are independent of s� they can be computed outside
of the array by an external microcontroller�

A dynamic signal whose function is dependent on
s may require decoding� This might be in the form
of a state machine or a simple pipeline� For example�
consider a RaPiD�C program containing a For node
i and a dynamic control function i��s� Because the
variable i��s is dependent on s� it can
t be directly
generated outside the array� However� if i has an in�
crement of one and a range which includes zero to the
number of stages� this dynamic control signal can be
compiled into a singly pipelined control line driven by
the boolean function i���� which is independent of s�
Similarly� a conditional of the form i��ks can be re�
alized by creating a control pipeline with k registers
per stage�

A dynamic control signal that is a function of more
than one variable often requires special decoding� For
example� the statement if �i�first �� X��Y� FOO
� Z� requires local decoding since the condition X��Y
is compiled to the �is result zero�
 output of an ALU
subtract� The binary AND of this signal and i�first
must be formed in the stage associated with the code�
as is shown in Figure ���

After generating the control path complete with
decoding� the �nal step is to produce microprogram
code that will generate the instruction stream� Since
the set of boolean functions comprising the instruction
consists entirely of boolean variables from the control
tree� the microprogram is similar to the control tree
itself� Each parallel task of the tree is mapped to an
instruction generator� as shown in Figure �� Hence�
the number of instruction generators places a limit on
the number of simultaneous parallel tasks in a RaPiD�
C program�

outputs the "is result zero?" condition.
The ALU performs a subtract and

0?

Instruction drives this line as "i.first"

Z FOOYX

LUT

ALU

Figure ��� The dynamic condition i�first �� x��y
is generated by con�guring a LUT as an AND gate�

An instruction bit depending only on variables from
a single parallel task is generated by a single instruc�
tion generator� An instruction bit depending on vari�
ables from more than one parallel task must be de�
composed �using two�level or multi�level minimiza�
tion� into functions speci�c to a single parallel task�
These functions are computed on their corresponding
instruction generators and then later recombined in
the merge unit to form the original instruction bit�

��� I�O Address Generation

The input	output addresses are generated by a set of
address generators� such as shown in Figure �� Each
array reference is extracted from the RaPiD�C speci�
�cation and dedicated to an address generator�� The
memory controller processes these requests in parallel
with �and potentially ahead of� the computation on
the RaPiD array�

For example� pseudo�code for generating the ad�
dresses for matrix B of matrix multiply is shown in
Figure ��� where B represents the base o�set of the ar�
ray in memory� Matrix multiply requires three address
generators� one for each array used�

for �f��� f � L� f��R�
for �g��� g � M� g��R�
for �h��� h � N� h��S�
for �j��� j � R� j���
for �s��� s � S� s���
�� Output the address associated with B	j�g
	s�h

Output�B � �j�g��N � �s�h���

Figure ��� Matrix B address generation

��� Pipelining and Retiming

Although the target architecture
s functional units
and memories may be pipelined� the programmer can
assume that the units are combinational to simplify
the code� In addition� the programmer can specify

�Although there is a limit on the number of address generators�
two or more references could be mapped to the same address gen

erator if they occur on di�erent cycles�

Petitioner Microsoft Corporation - Ex. 1066, p. 108

data using a broadcast model even though such broad�
casts might not meet the required cycle time� A re�
timing step ensures that the �nal netlist adheres to
the target architecture�s pipeline structure and timing
requirements� A retimed circuit will adhere to the cy�
cle time of the target hardware� taking into account
delays through RaPiD elements� as well as pipelining
requirements present in the underlying architecture�
Because placement cannot be done until retiming is
performed� the retimer conservatively estimates rout�
ing delays between elements�

� Future Work and Conclusions

There are several ways we plan to extend the capa�
bility of the RaPiD�C language and compiler to make
them more powerful� Some are simple extensions to
the compiler to generate more optimized datapaths�
These extensions would rely on extracting more in�
formation from the control structure to allow better
sharing of resources and a more e�cient generation of
control� Other extensions are more far�reaching such
as incorporating automatic time�multiplexing� Cur�
rently the programmer must explicitly describe how
the time�multiplexing is done� which can be compli�
cated and error�prone� It would be better to present
the programmer with an array of arbitrary length and
map this to the physical array by automatically intro�
ducing time�multiplexing� Another extension would
be to have the compiler infer data movement from a
description of the computation� That is� the speci��
cation would indicate the operations and data items
and the compiler would create the data�ow required
to satisfy the computation�

One of the disadvantages to many con�gurable ar�
chitectures is the di�culty of specifying and compil�
ing the computation� In this paper we have presented
a conceptually clean and e	ective way to specify a
pipelined implementation for regular and repetitive
computation� This language requires the programmer
to map the computation to space and time� but pro�
vides simple and concise ways to do this� The compiler
is then able to generate the appropriate con�guration
data and dynamic control structure to implement the
computation in a RaPiD array�

The RaPiD�C language can be viewed either as
a convenient� su�ciently high�level language for pro�
grammers to describe pipelined computations in� or
as an intermediate language used by a parallel com�
piler to describe the space�time mapping derived from
an even higher�level description of the computation�
Such a compiler currently appears out of reach for
many complex computations� but as research in par�
allelizing compilers progresses� we may reach the point
where RaPiD�C is largely used only by the compiler
back�end� Until then� it provides a relatively powerful
and convenient way for programmers to program the
RaPiD architecture�

Acknowledgments

We would like to thank Larry McMurchie� Chris
Fisher� and Miguel Figueroa for their contributions
to the RaPiD project�

References

�� C� Ebeling� D� C� Cronquist� and P� Franklin�
RaPiD
recon�gurable pipelined datapath� In
R� Hartenstein and M� Glesner� editors� �th Inter�
national Workshop on Field�Programmable Logic
and Compilers� Lecture Notes in Computer Sci�
ence� pages �������� Springer�Verlag� September
�����

�� C� Ebeling� D� C� Cronquist� P� Franklin� and
S� Berg� Mapping applications to the rapid con�g�
urable architecture� In Field�Programmable Cus�
tom Computing Machines �FCCM����� �����

�� P� Lee and Z� M� Kedem� On high�speed com�
puting with a programmable linear array� In Pro�
ceedings� Supercomputing �		� pages ������� IEEE
Comput� Soc� Press� �����

�� D� Moldovan and J� A� B� Fortes� Partitioning and
mapping algorithms into �xed size systolic arrays�
IEEE Transactions on Computers� C������������
�����

�� M� E� Wolf and M� S� Lam� A loop transforma�
tion theory and an algorithm to maximize paral�
lelism� IEEE Transactions on Parallel and Dis�
tributed Systems� ������������� �����

Petitioner Microsoft Corporation - Ex. 1066, p. 109

Petitioner Microsoft Corporation - Ex. 1066, p. 110

Petitioner Microsoft Corporation - Ex. 1066, p. 111

Proceedings

IEEE Symposium
, FPBHS FDR

y CUSTDIYI

10-Nov-1897 BSDS 3339,33

éEEgCEYEEgSIUH UN FPGRS’ FOR GUSTO“ COHP‘LITIN

Mfilfllflllfl[1111111111111]IIIE
4363.[186450 *5” ”9’

AC” K
._. ' 1/2

April 1 6-1 8, 1 997 1

Napa Valley, California 3

Edited by Kenneth L. Pooek and Jeffrey Arnold

Sponsored by the IEEE Computer Society Technicai Committee on Computer Architecture

__J
i”

,2

IEEE ' {4
COMPUTER ,0 /

SOCIETY ,3, /

"‘" 9‘Pé‘df‘io‘fiéf‘R/Iicrosoft Corporation - EX. 1066, p. 111

Petitioner Microsoft Corporation - Ex. 1066, p. 112

PROCEEDINGS

The 5th Annual IEEE Symposium on

Field-Programmable

Custom Computing Machines

April 16—18, 1997

Napa Valley, California

Sponsored by

IEEE Computer Society

IEEE Computer Society Technical Committee on Computer Architecture

® ; I I 1 HI. ' -r t:

IEEE " . _ . . - J .___...__.__,_._._.._..._.COMPUTER ——-i
SOCIETY

Los Alamitos, California

Washington . Brussels . Tokyo

Petitioner Microsoft Corporation - Ex. 1066, p. 112
..___________________

Petitioner Microsoft Corporation - Ex. 1066, p. 113

Copyright © 199‘? by The Institute of Electrical and Electronics Engineers. Inc.
All rights reserved

Copyright and Reprint Percussion: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law. for private use of patrons. those articles in this volume that
carry a code at the bottom of the first page. provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center. 122 Rosewood Drive, Danvers, MA 0] 923.

Other copying, reprint, or republication requests should be addressed to: iEEE Copyrights Manager. [EEE
Service Center. 445 Hoes Lane, 9.0. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings ofrite meeting mentioned on the cover and title page. Tim:
reflect the authors' opinions and. in the interests of timely dissemination ore pubiirnod as presented and
without change. Their inclusion in this publication does not necetroribr constintte endorsement by the
editors. the 1555 Computer Society. or the institute ofElectricoi and Electont'cs Engineers. inc.

{EEE Computer Society Order Number PR08159
ISBN 0-8136-8159-4

ISBN 0-8186-8160-8 (case)

ISBN 0-8186-8161-6 (microfiche)
[EEE Order Plan Catalog Number 9713100186

ISSN 1082-3409

Additional copies may be orderedfiat-n:

IEEE Computer Society lEEE Service Caner IEEE CornwterSociery [EEE Cornputer Society
Customer Service Center 415 Hoes Lane 13. Avatar: de l'AquilatI Ooshima Building
[0662 Lo: Vaquetos Circle ED. Boar 133] 3-1200 Brussels 2-]9-1 Miran-Anytime
PI). Box 3014 Piaentaway. NJ 08855-1331 BELGIUM Mimic-ht. Tokyo 107
Lbs Nautilus, CA 90720-13” Tel: + 1m1-1393 Tel: -I- 32-2-7W-2I98 JAPAN
Tel: + l-7l4—BZi-8380 Fax: + I-908-9fll-9667 Fax: + 324-770-8505 Tel: + 81-3-3408-31 18
Fax: + 1-7 1 4-32 [4164! mis.custserv@computer.org emo.ofc@eomputet.org Fax: + 814440845553
E-mail: cs.boolrs@eomputer.org mommies-org

Editorial production by Bob Werner

Cover on production Joe DaigleIStudio Productions

Printed in the United States of America by Technical Communication Services

m®
COMPUTER 9

SOCIETY to

Petitioner Microsoft Corporation - EX. 1066, p. 113

Petitioner Microsoft Corporation - Ex. 1066, p. 114

Table of Contents

Symposium on Field-Programmable Custom Computing Machines —

Introductionix
Program Committeex

FCCNI’Q?

Session 1: Device Architecture

io
N. Margoius

Garp: A MIPS Processor with a Reconfigurable Coprocessor ..
J. Houser, J. Wowrzynek

A Time-Multiplexed FPGA

S. Trimberger, D. Cor-berg. A. Johnson, J. Wong

Session 2: Communication Applications

An FPGA-Based Coprocessor for ATM Firewalls 30
J. McHeij. P. Dowd, T. Corr-023:3.
F. Pellegrino, W. Cocks

A Wireless LAN Demoduiator in a Pamette: Desi
T. McDermott, P. Ryan, M. Shand,
D. Skeilern, T. Percival. N. Waste

go and Experience-10

Session 3: Run Time Reconfiguration

Incremental Reconfiguration for Pipeline-dApplications 47
H. Schmit

Compilation Tools for Run—Time Reconfigurable DESlgnS 56
W. Lek, N. Shirozi, P. Cheating

A Dynamic Reconfiguration Run-Time System
.. 56

J. Burns, A. Bonito. J. Hogg, S. Singh, M. de Wit

Session 4: Architectures for Run Time Reconfiguration

The Swappable Logic Unit: A Paradigm for Virtual Hardware 77
G. Brebner

V

Petitioner Microsoft Corporation - Ex. 1066, p. 114

Petitioner Microsoft Corporation - Ex. 1066, p. 115

The Chimeera Reconfigurable FunctionalUmt 87
S. Hooch, T. Fry, M. Hosier, J. Koo

Session 5: Architecture

Computing Kernels Implemented with a Wormhole RTR CCM 98
R. Either Jr., P. Athanas

Mapping Applications to the RaPiD Configurable Architecture 108
C. Ebeiing, D. Cronquisr, P. Franklin,
J. Secosky, S. Berg

Defect Tolerance on the Terarnac Custom Computer ..
B. Culbertson, R. Amerson, R. Carter,
P. Knekes, G. Snider

116

Session 6: Performance

Systems Performance Measurement on PCIPamette 125
L. Mail, M. Shand

The RAW Benchmark Suite: Computation Structures for

General PurposeComputing 134
J. Babb, M. Frank, V. Lee, E. Waingold, R. Home,
M. Taylor, J. Kiwi, S. Deuabhoktani, A. Agorwal

Session 7: Software Tools

Automated Field-Programmable Compute Accelerator Design using
Partial Evaluation.145

Q. Wang, D. Lewis

FPGA Synthesis on the X06200 using IRIS and Trianus’i'lsdes

(Or, from Heaven to Hell and back again) 155
R. Woods, S. Ludwig, J. Heron, D. Trainor, S. Gehring

High Level Compilation for Fine Grained FPGAs 165
M. Gokhaie, E. Gomersaii

Session 8: CAD Applications

Acceleration ofan FPGA Router .. 175
P. Chan, M. Schlag

Fault Simulation on Reconfigurable Hardware ... 182

M. Abramovici, P. Meson

vi

Petitioner Microsoft Corporation - EX. 1066, p. 115
__________________‘__________—

Petitioner Microsoft Corporation - Ex. 1066, p. 116

M. Reuben B. Hutchings

Real-Time Stereo Vision on the PARTS
Reconfigurable Computer...

J. Wood/ill, B. Van Herzen 201

Increased FPGA Capacity Enables Scalable. Flexible CCMs:
An Example from Image Processing.. 211

J. Greenbaum. M. Baxter

Session 10: Arithmetic Applications

Comparison ofArithmetic Architectures for Reed-Solomon Decoders in
Reconfigurable Hardware

C. Poor, M. Rasher

Implementation of Single Precision Flo
sting Point Square Root on FPGAs 226Y. Li, W. Chu

Poster Papers

T. Callahan, J. Wawrzynek

S. Kelem

A Parallel Hardware Evolvable Computer POLY?
.. 238

U. Tongan, L. Schulte, J. McCaskiH

Laser Defect Correction Applications to FPCLA Based Custom Computers 240
G. Chapman, 3. Dufort

Speech Recognition I'M! Training on Reconfigurable Parallel Processor 242
H. YumA. Smith. H. Silver-nun

Efficient Implementation of the DCT on Custom Computers
....244

N. Bergman, Y. Chung, B. Gunther

0n Acceleration of the Check Tautology Logic Synthesis Algorithm using an
FPGA—based Reconfigurable Coprocessor... 246

J. Cong, J. Peck

Index ofAuthors ... 249

vii

Petitioner Microsoft Corporation - EX. 1066, p. 116
_.______________‘_‘______

