Accelerating An IR Automatic Target Recognition
Application with FPGAs

Jack Jean, Xuejun Liang, Brian Drozd, and Karen Tomko
Department of Computer Scicence and Engineering
Wright State University, Dayton, OH 45435, USA

{jjean, xliang, bdrozd, ktomko } @cs.wright.edu

An infrared automatic target recognition (IR
ATR) application is accelerated with an FPGA
co-processor board. The board features and the
application are first stated. The FPGA design is
then described. The achieved performance is
reported and analyzed at the end.

The FPGA co-processor board used is a Giga
Operations’s G900 board which is PCI-bus
based and hosted on a 180 MHz Pentium PC.
On the board there are 8 XMODs, each
containing 2 XC4020 FPGA chips, 256 KBytes
of SRAM, and 2 MBytes of DRAM. 1t is
possible to broadcast or multicast an FPGA
configuration file to those XC4020s in 0.37
seconds.

The application of the IR ATR program is to
locate and identify ground vehicles based on a
single IR image frame. The G900 board is used
to accelerate the bottleneck of the program
which is to locate the region of interests (ROIs)
by applying a set of templates through the whole
image. Because the computation involved is
different from a previous work on mapping ATR
to FPGA [1], we were not able to adopt
techniques used in that work.

To locate the ROIs six template pairs are applied
through the whole image except the image
boundary. Each template pair contains one
target template and one for background
template. Each template contains a pattern of
exactly 30 pixels in a relatively large area, say,
of size 20 by 50. (Different templates have
different sizes.) Each image is partitioned into
five strips of different heights and each template
needs to be rescaled across strip boundary.

The surrounding area of an image pixel is tested
against a template pair to see if it is an ROI.
The computation involved is as follows.

DOCKET

_ ARM

1. Compute the mean of those 30 test points
associated with the background template.

2. Test points whose values are larger than the
mean are considered “hot” (otherwise
“cold”). Compute four different sums, one
for target hot values, one for target cold,
one for background hot, and one for
background cold.

3. Based on the four sums compute the
correlation.

4. Ifthe correlation is greater than or equal to
a constant threshold, the pixel is a ROI.

The FPGA design has the following features.

1. All the floating point computations have
been replaced with full-precision integer
operations.

2. The original code uses one byte per image
pixel. The FPGA used 5 bits per pixel. The
recognition results were considered
comparable judging from the image output
files and the no. of ROIs.

3. Six XC4020 chips are used, one per
template pair.

4. Each template pair is evaluated on two
neighboring pixels in parallel.

5. The original C code uses several 2-D and 4-
D arrays which require many array index
computations. Those computations are
removed with the FPGA design.

Only the locating of ROIs is implemented in
the FPGA design. A host program running on
the PC does everything else as required in the
original source code. To overlap the FPGA
computation and the host machine computation,
the host program uses two threads. When the
child thread is waiting for the FPGA signal of
computation completion for one strip, the parent

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

thread can go ahead and process ROIs identified
for the previous strips.

The FPGA design in an XC4020 contains
several components:

1. An SRAM controller: it has four functions.
(a) It receives contiguous image data from the
host program and stores them in the SRAM on
the XMOD. Note that data are stored

1. Image data transfer from PC to XMODs:
about 0.075 seconds. The data transfer
bandwidth is about 6MB/sec for write and
4MB/sec for read from G900.

2. Other data transfer: about 0.018 seconds.
(1) The sending of templates to XMODs:
less than 10 Kbyes (2) The reading of
results from XMODs: Assume that the
number of pixel locations that are ROIs is
less than 10%. Since each location takes 2

redundantly as shown at the right bytes. There are about 60 (=300 x 0.1 x 2)
so that two neighboring pixels 0 ! KBytes to read.

can be evaluated in parallel. (b) ! 2 3. Real computation: The computation time is
For each single pixel location, it 2 3 mostly overlapped with the reading of
allows the (almost random) image data from SRAM to FPGA chips.
access of 60 test points. (c) Store 100 | 101 For SRAM, it takes one clock cycle to read
the pixel location into SRAM if 101 | 102 2 bytes. For an image frame of 300 K

the location is an ROI. (d) Allow pixels, each pixel requires the reading of 60
the host program to read back all Memory data bytes. So it takes 9 M (= 60 x 300 K/ 2)
the ROIs. arrangement: clock cycles, which takes 0.562 seconds

2. A buffer: it stores the locations Each memory with a 16 MHz clock.

of those 60 test points associated address is for

with a template pair. two pixels. Therefore the timing results obtained with the

3. A computation unit: it
contains three parts:

(a) two TEMPERATURE units, each containing
an accumulator to compute the sum of 30
background image values, a buffer to store those
30 values, comparators and adders to compute
HOT and COLD values.) (b) a multiplexer and
a small unit called CONVERT, and (c) an
ASSERT unit to evaluate if the correlation is
greater than or equal to a threshold.

The ASSERT unit is time-multiplexed to
process the outputs of the two TEMPERATURE
units. This arrangement saves one CONVERT
unit and one ASSERT unit at the expense of
requiring the multiplexer. In addition, a 33
MHz clock is used for the ASSERT unit while
the rest of the chip runs with a 16 MHz clock.
The whole Round 0 design takes 704 CLBs per
chip which is 89.8% of the total CLBs on a
XC4020 chip.

The execution times for the computation of
ROIs are summarized in Table 1. Note that the
execution time with FPGA does not include the
time to initialize the board (2.31 seconds) and
the time to load the bit file (0.37 seconds).

On G900, the execution time contains the
following three parts that take 0.655 (= 0.075 +
0.018 + 0.562) seconds.

DOCKET

_ ARM

FPGA board are consistent with the above
timing analysis.

Acknowledgments

This research is supported by DARPA under Air
Force contract number F33615-97-1-1148, an
Ohio State investment fund, and an Ohio State
research challenge grant. Xilinx Inc. donated
an FPGA design tool and FPGA chips on
XMODs. The authors would like to thank Mr.
Jim Hilger with the US Army Night Vision &
Electronics Sensors Directorate for his
introduction to the IR ATR application and his
help and comments on the design.

Reference

[1] J. Villasenor et al., “Configurable
Computing Solutions for Automatic Target
Recognition,” in IEEE Symposium on
FCCM, pp. 70--79, 1996.

Image Time Time With Speedup
No. On PC FPGA
1 13.106 0.602 21.2
2 12.980 0.614 21.1
3 13.187 0.622 21.2
4 13.016 0.617 21.1

Table 1 : Execution times in second

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

