
Petitioner Microsoft Corporation - Ex. 1034, p. 139

A Reconfigurable Data-Driven ALU for Xputers

Reiner W. Hartenstein, Rainer Kress, Helmut Reinig

University of Kaiserslautern

Erwin-Schrodinger-Strafie, D-67663 Kaiserslautern, Germany
Fax: ++49 631 205 2640, email: abakus@inf0rmatik.uni-kl.de

Abstract

A reconfigurable data-driven datapath architecture for
ALUs is presented which may be usedfor custom comput-
ing machines (CCMs), Xputers (a class of CCMs) and
other adaptable computer systems as well as for rapid
prototyping of high speed datapaths. Fine grained paral-

lelism is achieved by using simple reconfigurable process-
ing elements which are called datapath units (DPUs). The
word-oriented datapath simplifies the mapping ofapplica-
tions onto the architecture. Pipelining is supported by the
architecture. The programming environment allows auto—

matic mapping of the operators from high level descrip-
tions. Two implementations, one by FPGAs and one with
standard cells are shown.

1. Introduction

For numerical computations with custom computing
machines, word-oriented datapaths are necessary. A recent
trend in FPGA architectures moves toward support of effi-
cient implementation of datapath circuits. Xilinx XC4000

series [11] provides fast 2-bit addition at each logic cell by
a special carry circuit. AT&T's ORCA [6] supports larger
data manipulations For example a 16 bit adder requires
only four function blocks. Word-oriented datapaths are not
directly supported by FPGAs currently available, since
these circuits are evaluated for both random logic control
and datapath applications. Word-oriented datapaths in
reconfigurable circuits have the additional advantage of

operators being mapped more efficiently. Thus they sup-
port programming environments for custom computing
machines.

Hardware designers usually have no problem in using
custom computing machines, since most of the program-
ming models these machines provide are at hardware
level. Algorithms have to be expressed by a hardware
description language; Then they have to be synthesized to

0-8186—5490-2/94 $03.00 © 1994 IEEE
139

the dedicated hardware, or the application has to be edited
via a schematic editor and mapped by an FPGA vendor
tool [2], [1]. People coming from the software side are
more used to program with a procedural high level lan—
guage. To make custom computing machines more inter-

esting to such people, a procedural model for high level
programming is needed. Some custom computing
machines, consisting of an accelerator board and a host,
support function calls from high level languages to be exe—
cuted on the accelerator board, but they are not able to
configure the board from this level, e. g. [3]. Some
researchers start to evaluate compilers for their boards to
compile a high level input language directly. Gokhale and
Minnich [4] for example present such a compiler to pro-
gram an array of FPGA chips in a high level parallel C
using a SIMD prograrrnning model. However still prob—
lems are the automatic mapping of loops, arithmetic and
logic operators.

This paper introduces an Xputer [8] based methodology
solving these problems which strongly supports arithmetic

applications. The Xputer provides a hardware and a soft-
ware environment for a reconfigurable ALU (rALU). The
rALU has to compute a user defined compound operator
only. A compiler for the Xputer supports the high level
language C as input. The rALU programming environ-
ment has to compile arithmetic and logic expressions as
well as conditions into the rALU. The machine paradigm
of the Xputer is described in [7].

The reconfigurable data—driven ALU proposed here,
consists of the rALU control and the reconfigurable
datapath architecture (rDPA). The rDPA is a word-oriented

scalable regular array of simple processing elements called
datapath units (DPUs). The DPUs provide a higher granu-
larity of the basic function units than usual FPGAs. This
supports automatic mapping of arithmetic and logic opera-
tors to the rDPA. Using the Xputer with the data-driven
rALU allows the programming from a high level lan-
guage. The architecture does not only fit as a reconfigura-
ble ALU for Xputers, it may also be used for any other

Petitioner Microsoft Corporation - EX. 1034, p. 139

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1034, p. 140

kind of adaptable computer system as well as a universal
accelerator coprocessor or for rapid prototyping of high
speed datapaths.

First, this paper gives a short introduction to the hard-
ware environment. Section 3 introduces the rDPA. An

implementation with commercial FPGA chips and one
with standard cells is shown and both are compared to
each other. The usage as a rALU for Xputers is explained
in section 4. The programming environment allows the
mapping of operands and conditions to the rDPA automat-
ically (section 5). The final sections present an example
and conclude the paper.

2. Hardware environment

Many applications require the same data manipulations
to be performed on a large amount of data, e. g. statement
blocks in nested loops. Xputers are especially designed to
reduce the von-Neumann bottleneck of repetitive decoding
and interpreting address and data computations. High per-
formance improvements have been achieved for the class
of regular, scientific computations [7], [8].

An Xputer consists of three major parts: the data
sequencer, the data memory and the rALU including mul-
tiple scan windows and operator subnets. Scan windows
are a kind of window to the data memory. They contain all
the data, which are accessed or modified within the body
of a loop. The data manipulations are done by the rALU
subnets, which have parallel access to the scan windows.

The scan windows are updated by their corresponding
generic address generators, which are the most essential
part of the data sequencer. Each generic address generator
can produce address sequences which correspond to up to
three nested loops under hardware control. The term data
sequencing derives from the fact that the sequence of data
triggers the operations in the rALU, instead of a von-Neu-

mann instruction sequence. Pipelining across loop bound-
aries is supported. Generally, for each nesting level of
nesred loops a separate rALU subnet is required to per-
form the computations associated with that nesting level.
For most algorithms, only three nested loops are necessary
for the computation, this means that in the worst case three

rALU subnets are sufficient. The rALU subnets perform
all computations on the data in the scan windows by
applying a user—configured complex operator to that data.
The subnets need not to be of the same type. Subnets can
be configured for arithmetic or hit level operations. The
data-driven reconfigurable datapath architecture proposed
here is well suited for arithmetic, and in the FPGA version

also for bit level operations.

The Xputer prototype, Map-oriented Machine 3 (MoM-
3), has direct access to the host's main memory. The rALU

subnets receive their data directly from a local memory or

140

h

3 Scan Vlfindow

E Instr. Sequencer rALU SubnetU'

a A3322:
.3 Generator rALU SubnetD

Gem
Address

Generator rALU Subnet

‘ BusInterface
VMEbus

Figure 1. The Xputer prototype Map-oriented
Machine 3 (MOM-3)

via the MoMbus from the main memory. The MoMbus has
an asynchronous bus protocol. The datapath architecture is
designed for the asynchronous bus protocol of the MoM-
bus, but it can also be used by a synchronous bus with
minor modifications. Figure 1 shows our prototype MoM—
3.

3. Reconfigurable datapath architecture

The benefit of using the reconfigurable datapath archi—
tecture (rDPA) within the Xputer paradigm stems from the
development environment available. The programmer can
benefit from the performance boost of custom operators to
match the requirements of the application. He need not
know much about hardware description languages or tradi-

tional input descriptions for FPGA synthesis tools. Instead
the problem is formulated in a familiar procedural pro-
grarruning language and a compiler converts the loops of
the application to GAG scan patterns. The statements con-
sisting of expressions and conditions have to be mapped to
the rALU only. Section 5 shows the automatic mapping
onto the rDPA architecture.

The rDPA is the data manipulator of the data-driven
rALU. The rDPA was designed to evaluate any arithmetic
and logic expression from a high level description. There-
fore the granularity of the basic operation is increased
from the bitwise level to wordlevel with possible opera-
tions such as addition or multiplication. This greatly sim-
plifies the automatic mapping onto the architecture. A
regular structure like in systolic arrays is required for the
scalability, also across chip boundaries. Systolic array
structures combine intensive local communication and

Petitioner Microsoft Corporation - EX. 1034, p. 140

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1034, p. 141

computation with decentralized parallelism in a compact
package. The basic cell of the rDPA is called datapath unit
(DPU), see figure 2a. Each DPU has two input and two
output registers which may form some part of the scan

window of the Xputer paradigm. The dataflow direction is
only from west and/or north to east and/or south. The com-
munication between the neighbouring DPUs is synchro-

nized by a handshake. This avoids problems of clock skew
and each DPU can have a different computation time for

its operator. The operation in the DPU is data—driven, this
means that the operation is evaluated when the required
operands are available. After completion of the operation,
the result in the output register of the DPU is declared to
be valid. As soon as the input registers of the succeeding
DPU are free, the data will be transferred and the next

computation starts. In systolic architectures the high I/O
requirements often make the integration into chips a prob-

lem. To reduce the number of input and output pins, a
serial link is used for data transfer between neighbour
DPUs (32 bits are converted into a series of 2 bit nibbles),

as shown in figure 2b.

parallel to serial converter serial to parallel converter

Figure 2. a) datapath unit (DPU), b) the scalable
rDPA architecture between chip boundaries

A global 110 bus has been implemented into the rDPA
permitting the DPUs to write from the output registers
directly outside the array and to read directly from the out-

side. This means input data to expressions mapped into the
rDPA do not need to be routed through the DPUs. Princi-
pally, the global I/O bus is used for reading and writing the
scan window contents to the array. A single bus is suffi-
cient for our Xputer prototype MOM-3 since the data from
the main memory of the host is made available by the bus
also. For other systems it may be better to have a dedicated

input and output bus. The communication between the
outside control unit and the DPUs is synchronized by a
handshake like the internal communications.

141

Each DPU which has to communicate using the global

I/O bus gets an address for its input and/or output register
during configuration. The rDPA control unit can address a

DPU register directly using the bus. The DPU where the
address matches performs the handshake with the outside
conu'ol unit and receives or sends the data. The propaga-
tirm of interim results, which accounts for the largest

bunch of communication, is handled through the internal

communication paths, and therefore fully parallel.

An extensible set of operators for each DPU is provided

by a library. The set includes the operators of the program-
ming language C. Other operators such as the parallel pre—
fix operator are provided. The parallel prefix operator [5]
has an internal feedback. For example a queue of scan-

max operators can be used for easy implementation of a
hardware bubble sort [10]. The scan-max computes the

maximum from the input variable and the internal feed-
back variable and gives the maximum as result and stores
the other value internally. Operators can also be used for
routing, even mixed with other operations, e. g. first multi—
ply a with b and write the result to the south, then route
variable a to the east.

Conditions are implemented in the rDPA in the follow-

ing way. Each communication channel has an additional
condition bit. If this bit is true, the operation is computed,
otherwise not. In each case the condition bit is routed with

the data using the same handshake. The condition operator
sends to one neighbouring DPU a true condition bit, to the
other one a false bit. The 'false' path is evaluated very

quick, because the condition bit is routed only. With this
technique also nested i f_then_e lse statements can be
evaluated. An example is shown in figure 3. The then
and the el se path can be merged at the end with a merge

8) if (a < b) (1)
if (a > C) (2)

x = u + V * w; (3)
else (4)

X = u ~ 5 * w; (5)
else (6)

x=w*t+v*z, (7)

Figure 3. Example of a nested ifflthen_else
statement

Petitioner Microsoft Corporation - EX. 1034, p. 141

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1034, p. 142

operator (in). This operator routes the value with the valid
condition bit to its output.

With the proposed scalable model for the rDPA, the
array can be expanded also across printed circuit board
boundaries, e. g. with connectors and flexible cable. This
makes it possible to connect the outputs of the east array

boundary with the west one, to build a toms. The same is
possible for the south and the north. With the data-driven
concept, the user need not worry about synchronization.

For the implementation of the rDPA two possibilities
are presented. The first is based on FPGAs and the second
one is the based on standard cells.

3.1 FPGA implementation of the rDPA

The communication model of the DPU can be imple
mented into SRAM based FPGAs. A large reconfigurable

datapath architecture can be implemented into multiple
FPGA chips. The FPGA chips are arranged in an array
with a single bus and configuration lines to each chip. All
other wiring is local, therefore no field programmable
interconnect component (FPIC) is required. 011 each
FPGA, an array of DPUs is implemented depending on the
size of the FPGA and the complexity of the operators. If a

complex operator like a multiplication is implemented into
an FPGA, the other DPUs can only be used for routing or

simple operators in this chip. The rDPA programming
environment, presented in section 5 takes this fact into
consideration.

The implementation of the DPUs using FPGAs has the
advantage that speed critical operators can be imple-
mented fully or partly in parallel if necessary. Also the
operations itself can be pipelined. The programming envi-
ronment detects the critical path with the critical opera-
tions. Slow ripple carry adders can be substituted by
conditional sum adders or other faster adders. A library of

operators, which can be extended, is available in the rDPA
programming environment. The communication channels
are all the same for each DPU. The programmer has to put

the macros for the operators and the communication
together in a schematic editor. Then the DPUs are mapped
with a vendor tool to the FPGA structure. This is done for

each FPGA, no partitioning is necessary. Especially bit
level operators are well suited for FPGA implementation.
The DPUs are smaller, faster and a larger number can be

implemented on a chip. Different widths of the datapath
can be used also.

3.2 Standard cell implementation of the rDPA

The rDPA implemented with standard cells has a 32 bit
datapath. The operators of the DPUs are configurable with
a fixed ALU and a microprograrnrned control. This means
operators such as addition, subtraction or logical operators

142

can be evaluated directly, whereas multiplication or divi-

sion are implemented sequentially. A library of operators
is available and new operators can be build with a micro-
assembler. The standard cell implementation of the pro-

posed model has a higher density of the arithmetic
operations and the delay times are known for each opera-
tion. The time for synthesis of the rALU board is reduced
because the operators in the DPUs are microprogrammed.

As mentioned before the array is scalable by using sev-

eral chips of the same type. The DPU registers have no
address before configuration. The only identification of the
DPUs is their location in the rDPA array. Each DPU has an

x- and a y-address like the elements in a matrix. A config-
uration word consists of a configuration bit which distin-

guish the configuration data from computational data.
Further it consists of the x— and the y—address, the address

of the DPU's configuration memory and the data for this
memory.

Each time a configuration word is transferred to a DPU,
the DPU checks the x- and the y-address. If the y-address

is larger than zero, the address will be decreased by one
and the configuration word will be transferred to the next
DPU in y-direction. If the y-address is zero and the x-
address is larger than zero, the x-address will be decreased

by one and the configuration word will be transferred in x-
direction. If both addresses are zero, the target DPU is
reached and the address of the DPU's configuration mem-

ory shows the place where the data will be written.
One serial link at the array boundary is sufficient to

configure the complete array, but multiple ports can be
used to save time. The physical chip boundaries are com-

pletely transparent to the user. The communication struc-
ture allows dynamic in-circuit reconfiguration of the
rDPA. This implies partial reconfigurability during
runtime [9]. Filter coefficients, for example, can be

changed during runtime to build adaptive filters. Further,
the configuration technique allows to migrate designs
from a smaller array to a larger array without modification.
Even newer generation rDPA chips with more DPUs inte-

grated do not need a recompilation of the configuration
data.

4. Reconfigurable data-driven ALU

A subnet of the reconfigurable data-driven ALU con-
sists of two main parts: the control for the rALU and the

reconfigurable datapath architecture, as shown in figure 4.
Subnets can run in parallel. Here the connection to the
MoMbus is shown only.

The register file is necessary for optimizing memory
cycles when the generic address generator runs with over-
lapping scan windows. This means that data of the actual
scan window position is required in the consecutive posi-

Petitioner Microsoft Corporation - Ex. 1034, p. 142

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1034, p. 143

 MoMbus to GAGs, Host, Main Memory

rDPA
address

generationunit

FIFO

r—

 rD PA

control
 register-lobalI/Obus

Figure 4. One subnet of the reconfigurable data-
driven ALU

tion. This data can be stored in the register file and written
back to main memory when its not needed any more. If
there are flow dependencies between the variables in the

scan window, the register file can also be used for storing
the values. Additionally, the register file is used to store
auxiliary variables. If a large statement has to be broken
down because it does not fit into the current size of the

rDPA, the auxiliary variable can be stored in the register
file and read back over the global [/0 bus, to the place
where the computation of the statement is finished. The
register file makes it possible to use each DPU in the rDPA
for operations by using the bus for routing. If different
expressions have a common subexpression, this subex-
pression has to be computed only once. If the rDPA does

not provide the routing capacity for this reduction, 6. g. if
three or more subexpressions are in common, the interim
result can be routed through the register file.

The address generation unit delivers the address for the
DPU registers before each data is written into the rDPA

over the bus. Normally the address is only increased by
one, but it can also be loaded directly from the rDPA con-
trol unit.

The rDPA control unit holds a program to control the
different units of the data driven rALU. The instruction set

consists of instructions for loading data into the rDPA to a
specific DPU from the MoMbus or the register file, for

143

receiving data from a specific DPU, or branches on a spe-
cial control signal from the generic address generators.
The rDPA control supports context switches between three
control programs which allows to use three independent
virtual rALU subnets. The control program is loaded dur-

ing configuration. The reconfigurable data-driven ALU
allows also pipelined operation as shown in the example in
section 6.

A status can be reported to the generic address genera—
tors (GAG) to inform on overflows or to force the GAGs

to compute data dependent addresses. The input FIFO is
currently only one word deep for each direction. This is
sufficient because the data flow is regular to the main
memory. Normally the rALU does not have to wait for
data.

5. Programming environment

Statements which can be mapped to the rDPA array are
arithmetic and logic expressions as well as conditions.
loops are handled by the generic address generators. The
input language for programming the rALU is the rALU
programming language. The syntax of the statements fol—
lows the C programming language syntax (see also
figure 3). In addition, the language provides the size of the
used scan windows and the next handle position (relative
to the actual position). The handle position is the lower left
corner of the boundary of the scan window. By providing
the handle position the rALU gets the necessary informa-

tion for pipelining the complete statement block.

The rALU programming language file is parsed and a
data structure like an abstract program tree is computed.
Common subexpressions are taken into consideration. The
operators of each statement are allocated with a straight
forward algorithm. The number of DPUs used is opti-
mized. Each allocated operator is then associated to a DPU
in the rALU array. To recognize possible parallelization
and to find data dependencies between the statements, a
data dependency analysis is performed. Due to the global
l/O bus of the rDPA array, the loading of the data and the

storing are restricted to one operation per time. For best
performance, an optimal sequence of these I/O operations
has to be determined. Comparing an ‘as soon as possible’
(ASAP) with an ‘as late as possible’ (ALAP) schedule, the
time critical path is detected. Apriority function is devel-
oped from these schedules which gives the range of the
I/O operations of the operands. With a list based schedul-
ing method the optimal sequence of the 1/0 operations is
found. Memory cycles can be optimized using the register
file when the scan pattern of the GAGs works with over-
lapping scan windows.

The rDPA configuration file is computed from the map-
ping information of the DPUs and a library with the code

Petitioner Microsoft Corporation - Ex. 1034, p. 143

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

