
Petitioner Microsoft Corporation - Ex. 1021, p. 1054

1054 [EEE TRANSACTIONS ON COMPUTERS. VOL. c-3l. N0. 11. NovEMttER 1982

Wavefront Array Processor: Language,
Architecture, and Applications

SUNsYUAN KUNG, MEMBER, tEEE, K. S. ARUN, STUDENT MEMBER, lEEE, RON J. GAL-EZER.

STUDENT MEMBER, IEEE, AND D. V. BHASKAR RAO, STUDENT MEMBER. IEEE

Abstract—This paper describes the development of a wavefront—
based language and architecture for a programmable special-purpose
multiprocessor array. Based on the notion of computational wavefront,
the hardware of the processor array is designed to provide a computing
medium that preserves the key properties of the wavefront. In con-
junction, a wavefront language {MDFL} is introduced that drastically
reduces the complexity of the description of parallel algorithm and
simulates the wavefront propagation across the computing network.
Together. the hardware and the language lead to a programmable
wavefront array processor (WAP). The WAP blends the advantages
of the dedicated systolic array and the general-purpose data-flow
machine, and provides a powerful tool for the high-speed execution
of a large class of matrix operations and related algorithms which have
widespread applications.

index Term—Asynchrony, computational wavefront, concurrency,
data-flow computing, matrix data-flow language, signal processing,
systolic array. VLSI array processor. wavefront architecture.

I. lNTRODUCTlON

A. VLSI Signal Processing

[TI-i the rapidly growing microelectronics technology

leading the way. modern signal processing is under-

going a major revolution. The past two decades have witnessed

a steep increase in the complexity of computations. processing
speed requirements, and the volume of data handled in various

signal processing applications. The availability of low cost. high

density, fast VLSI devices has opened a new avenue for

implementing these increasingly sophisticated algorithms and

systems [1}. [2]. While a major improvement in device speed

is foreseen, it is in no way comparable to the rate ofittcreasc

of throughput required by modern real-time signal processing.

In order to achieve such increases in throughput rate, the only

effective solution appears to be highly coucurrent processing.

Consequently, it has become a major challenge to update the

current signal processing techniques so as to maximally exploit

their potential for concurrent execution.

In a broad sense, the answer to this challenge lies in a

cross~disciplinary research encompassing the areas of algo-

rithm analysis, parallel computer design, and system appli-

Manuscript received January I l. l982: revised June 18. 1982. This work
was supported in part by the Office of Naval Research under Contract
NOOGI4-80-C-045'l. N00014-8l-K-019l . by the National Science Foundation
under Grant PICS-804653 l. and by the Defense Advanced Research Projects
Agency under Contract MDA903-79-C-0630.

The authors are with the Department of Electrical Engineering—Systems.
University of Southern California. Los Angeles. CA 90089.

cations. In this paper, we therefore introduce an integrated

research approach aimed at incorporating the vast VLSI

computational capability into modern signal processing ap-

plications.

The traditional design of parallel computers and languages

is deemed unsuitable for our purposes. It usaally suffers from

heavy supervisory overhead incurred by synchronization,

communication, and scheduling tasks, which severely hamper

the throughput rate which is critical to real-time signal pro-

cessing. In fact. these are the key barriers inherent in very large

scale computing structure design. Moreover. although VLSI

provides the capability of implementing a large array of pro-

cessors on one chip, it imposes its own constraints on the sys-

tem. Large design and layout costs [2] suggest the utilization

of a repetitive modular structure. In addition, communication,

which costs the most in VLSI chips in terms of area, time, and

energy. has to be restricted (to localized communication) [1].

In general. highly concurrent systems require this locality

property in order to reduce interdependence and ensuing

waiting delays that result from excessive communication [1].

This locality constraint prevents the utilization of centralized

control and global synchronization. The resulting use of

asynchronous distributed control and localized data flow is

an effective approach to the design of very large scale, highly

concurrent computing structures.

3. A Special-Parpose VLSI Array Processor

The above restrictions imposed by VLSI will render the

general-purpose array processor rather inefficient. We

therefore restrict ourselves to a special class of applications,

i.e., recursive' and local data-dependent algorithms. to con-

form with the constraints imposed by VLSI. This restriction.

however. incurs little loss of generality, as a great majority of

signal processing algorithms possess these properties. One

typical example is a class of matrix algorithms. It has recently

been indicated that a major portion of the computational needs

for signal processing and applied mathematical problems can,

in fact, be reduced to a basic set of matrix operations and other

related algorithms [3]. [4]. Therefore. a special-purpose

parallel machine for processing these typical computational

algorithms will be cost effective and attractive in VLSI system

design.

' In a recursive algorithm. all processors do nearly identical tasks. and each
processor repeats a fixed set of tasks on sequentially available data.

0018-9340/82/1IOU-105430035 © 19321EEE

Petitioner Microsoft Corporation - Ex. 1021, p. 1054

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1021, p. 1055

KUNG or at: WAVEFRONT ARRAY PROCESSOR

MEMORY MODULES

 ,
K

m . , I I I
, —~ ., H.H

a «' -

a l.‘// f,’/ 34¢.
5 "/ ."// ""9o I x ’ . /
gums—.HH ./ ..._.E ' a ' a

FIRST WAVE — — —
SECOND W-M'E- '---~- i

Fig. l. The WAP configuration.

Very significantly, these algorithms involve repeated ap-

plication of relatively simple operations with regular localized

data flow in a homogeneous computing network. This leads

to an important notion of computational wavefront. which

portrays the computation activities in a manner resembling

a wave propagation phenomenon. More precisely, the recursive

nature ofthe algorithm, in conjunction with the localized data

dependency, points to a continuously advancing wave of data

and computational activity. The computational sequence starts

with one element and propagates through the processor array,

closely resembling a physical wave phenomenon (cf. Fig. I).

In fact, all algorithms that have locality and recursioity (and

are thus implementable on our VLSI array processor) will

exhibit this wave phenomenon. Therefore, the notion of a

computational wavefront has attracted the attention of many

researchers [2], [5]—[l3].

The wavefront concept provides a firm theoretical founda-

tion for the design of highly parallel array processors and

concurrent languages. In addition, this concept appears to have

some distinct advantages.

First. the wavefront notion drastically reduces the com-

plexity in the description of parallel algorithms. The mecha-

nism provided for this description is a special-purpose, wave-

front-oriented language [7’], [9], [10]. Rather than requiring

a program for each processor in the array, this language allows

the programmer to address on entirefront ofprocessors.
Second, the wavefront notion leads to a wavefront-based

architecture which preserves Huygen’s principle [14]. and
ensures that wavefronts never intersect. Therefore, a wavefront

architecture can provide asynchronous waiting capability, and

consequently, can cope with timing uncertainties, such as local

clocking, random delay in communications, and fluctuations

of computing times. In short, the notion lends itself to a

(asynchronous) data-flow computing structure that conforms

well with the constraints of VLSI.

The integration of the wavefront concept, the wavefront

language, and the wavefront architecture leads to a pro-

1055

grammable computing network, which we will call the wave-

front array processor (WAP). The WAP is, in a sense, an

optimal rrodeoff between the globaliy synchronized and

dedicatedsysiolic array [1], [15], [16} (that works on a sim-

ilar set of algorithms). and the general-purpose data-flow

muftiprocessors [1?1—[23]. It provides a powerful tool for the

high-speed execution of a large class of algorithms which have

widespread applications.

C. Organization

The organization of the rest of the paper is as follows. Sec-

tion II elaborates on the computational wavefront. Section III

proposes a wavefront-oriented language (MDFL) for pro-

gramming the WAP, and provides a programming method-

ology. Section W explains a pessible hardware organization
and architecture for the WAP. Section V illustrates some

applications of the WAP by means of MDFL programs. Sec-

tion VI compares the WAP to other array processors, such as

the systolic array, data-flow multiprocessors, and conventional

SIMD arrays like the Illiac IV.

II. CONCEPT OF COMPUTATIONAL WAVEFRONT

The wavefront array processor is configured in a square

array of N X N processing elements with regular and local

interconnections (cf. Fig. 1).

The computing network serves as a (data) wave-propagating

medium. The notion of computational wavefront can be best

explained by a simpie example. To this end. we shall consider

matrix multiplication as being representative. Let A = log},

= {by-l. and C = A X B = {CU-l all beN X N matrices. The
matrix A can be decomposed into columns A,- and matrix B

into rows By, and therefore.

c=A]*B]+A2*Bg+ "+AN*BN. (1)

The matrix multiplication can then be carried out in N re-

cursions, executing

C(")=CU‘")+A;c *Bk (2)

recursively for k = l, 2, - - - , N.
The exploitation of parallelism is now evident with the

availability of N X N processors. A parallel algorithm for

matrix multiplication is fairly simple. However, most existing

parallel programs would need global interconnections in the

computing network, while localized interconnections and data

flow are much more desirable in VLSl systems.

The topology of the matrix multiplication algorithm can be

mapped naturally onto the square, orthogonal N x N matrix

array of the WAP (cf. Fig. 1). To create a smooth data

movement in a localized communication network, we make

use of the computational wavefront concept. For the purpose

of this example, a wavefront in the processing array will cor-

respond to a mathematical recursion in the algorithm. Suc-

cessive pipelining of the wavefronts will accomplish the com-

putation of all recursions.

As an example, the computational wavefront for the first

recursion in matrix multiplication will now be examined.

Petitioner Microsoft Corporation - EX. 1021, p. 1055

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1021, p. 1056

l056

Suppose that the registers of all the processing elements (PE’s)

are initially set to zero:

Cl? = 0

the entries of A are stored in the memory modules to the left

(in columns), and those of B in the memory modules on the top

(in rows). The process starts with PE (1, l), where

Cll} = Clot) + an * bit

for all (i,j);

(3)

is computed. The computational activity then propagates to

the neighboring PE’s (l, 2) and (2, l), which will execute

cl? = Citi) + an * biz (4)

and _

Cii} = Chi) + a2] * bl l- (5)

The next front of activity will be at PE’s (3, l), (2, 2), and

(l, 3), thus creating a computation wavefront traveling down

the processor array. This computational wavefront is similar

to optical wavefronts (they both obey Huygen’s principle) since

each processor acts as a secondary source and is responsible

for the propagation of the wavefront. It may be noted that wave

propagation implies localized data flow. Once the wavefront

sweeps through all the cells, the first recursion is over. As the

first wave propagates, we can execute an identical second re-

cursion in parallel by pipelining a second wavefront immedi—

ately alter the first one. For example, the (l, 1) processor will
execute

(6)

and soon. In general. the (i,j)th processor will execute the lcth
recursion,

Cl” = Clil + an * bzl

Cll)=an *blj+arz*bzr+'”+alk*bki' (7)

The pipelining is feasible because the wavefronts of two suc-

cessive recursions will never intersect (Huygen's wavefront

principle), as the processors executing the recursions at any

given instant will be different, thus avoiding any contention

problems.

Locality, regularity, recursiuity, and concurrency lead to

the wavefront phenomenon. Thus, all algorithms which possess

these properties will exhibit computational wavefronts. The

notion of computational wavefronts leads to a wavefront—based

language (a modified data~flow language) to program the

processor array. This language (called the matrix data-flow

language) is especially powerful for matrix and other related

algorithms. It will be developed in the next section.

Ill. A WAVEFRONT LANGUAGE: MATRIX DATA-FLOW

LANGUAGE

In contrast to the heavy burden of scheduling, resource

sharing. as well as the control of processor interactions en-

countered in programming a general-purpose multiprocessor,

the computational wavefront notion can facilitate the de-

scription of parallel algorithms and drastically reduce the

complexity of parallel programming. In this section, we in-

troduce a wavefront language that is tailored towards the de-

[EEE TRANSACTIONS ON COMPUTERS. voL_ (3.3!, N0. 11, NOVEMBER 1982

scription of computational wavefronts and the corresponding

data flow in a large class of algorithms (which exhibit the re-

cursivity and locality mentioned earlier).

Since matrix algorithms are typical of this class, we call the

language the matrix data-flow language (MDFL). This

wavefront language permits the array processor to be pro-
grammable, broadens the range of applications, and also makes

possible the simulation and verification of parallel algo-
rithms.

A. Matrix Data-Flow Language

There exist two approaches to programming the WAP: a

local approach describing the actions of each processing ele-

ment, and a global approach-describing the actions of each

wavefront. To allow the user to program the WAP in both of

these fashions, two versions of MDFL are proposed: global and
local MDFL.

A global MDFL program describes the algorithm from the

viewpoint of a wavefront, while a local MDFL program de-

scribes the operations of an individual processor. More pre-

cisely, the perspective of a global MDFL programmer is of one

wavefront passing across all the processors, while the per-

spective of a local MDFL programmer is that of one processor

encountering a series of wavefronts.

From the macroscopic point of view, a higher level language,

closer to the algorithm, is desired for reducing the heavy bur-

den on the programmer. Global MDFL provides such a tool,

as it is easier to view the algorithm as a series of wavefronts.

At the microscopic level, each PE executes its own set of in-

structions and performs localized interprocessor transactions.

Implementing a program on such a system requires trans-

forming the high level description (in global MDFL) into a set

of lower level programs (in local MDFL) for the individual

processors.2 We have developed a compiler to do such a map-
ping of global wavefront—oriented MDFL programs into local

programs for individual processors.

3. MDFL Instruction Set

At each front of activity, the computational wavefront

performs similar tasks in all the processors involved (cf. Section

II, matrix multiplication example and Section III-D on pro-

gramming methodology). Hence, global (wavefront) in-

structions and local (processor) instructions are nearly iden-
tical. Most of the MDFL instruction set is, therefore, common

to both global and local MDFL.

Table l is a complete list of the MDFL instruction reper—

toire. For the complete semantics and more detailed syntax,

the reader is referred to a recent publication [10]. Unless

otherwise specified, the following instructions belong to both

global and local MDFL. The proposed instruction set is

functionally complete, but improvements and modifications

are still underway to incorporate additional features such as

double precision. etc. There also appears to be room for the

3 it suffices, in general, to describe a wavefront algorithm at four locations
of the array: corner, Firisow, FirstColumn, and Interior PE’s. Consequently,
every global MDFL program gets compiled into four slightly different local
programs.

Petitioner Microsoft Corporation - EX. 1021, p. 1056

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1021, p. 1057

KUNG er «1'..- WAVEFRONT ARRAY PROCESSOR

TABLE [
MDFL INSTRUCTION SET

Data Transfer Instructions

FLOW (SOURCE REGISTER), (DIRECTION):
FETCH (DESTINATIGN REGIS”ER>, (DIRECTION);
READ;

Recursion Dr tented Instructions

REPEAT ... UNTTL “ERMINATRD:
NHILE HAVEFRONT [N ARRAY D0

BEGIN ... END;
SET COUNT (“UNBER OF WAVEEROWTS>;
DECREMENT COUNT;
ENDPRDGRAM.

Conditional Instructions

I? EQUAL THEN (STATEMENT);
I? NOT-EOUAL THEN (STATEHENT):
IF GRERTER THEN (STATEMENT);
IF LESS—THAN THEN (STATEMENT):
IF (DIRECTION) DISABLED T32“ (STATE“ENT>:
CASE KIND 5

[1,1] : (STATEVENT>;
{I,*I : (STATEMENT):
{‘,1) : (STATEMENT):
INT : <5TRTE"E“T>:

ENDCASE;

Internal Processor Instructions

TSR (SOURCE), (DESTINATION);
non (SOURCE 11>, <SOURCE 12>. (DESTINATION);
SUB (SOURCE :1). (SOURCE 12>, (DESTINATION);
«ULT (SOURCE It), (SOURCE t2). (DESTINATION);
otv (SOURCE It), (SOURCE |2>, (DESTINATION);
SORT (SOURCE), (DESTINATION);
cue (SOURCE #1), (SOURCE l2);
TST <SOURCB>;
STORE;
MOP:
RESET;
HEGIN ... END;
DISABLE-SELF;

development of a higher level language suitable for the non-

specialist programmer.

C. Programming Methodology

In this subsection, we provide guidelines for programming

in global MDFL. The most straightforward method of pro

gramming the WAP would be to explicitly spell out the actions

ofeach wavefront at each of its (2n - 1) positions (fronts) (cf.

Fig. 1). Nevertheless, the regularity and recursivity in almost

all matrix algorithms allows us to assume the following.

i) Space Invariance: The tasks performed by a wavefront
in a particular kind of processor must be identical at all

(2:: - I) fronts.

2) Time Invariance: Recursions are identical.

Accordingly, global MD FL provides two repetitive con-

structs, the space repetitive construct
WHILE WAVEFRONT IN ARRAY DO

BEGIN (TASK T) END

(so that T is repeated at all fronts). and the time repetitive
construct

REPEAT (ONE RECURSION) UNTIL TERMINATED

(so that the same recursion is repeated).

The REPEAT construct is inherently concurrent in that

I 05?

successive wavefronts are pipelined through the array. As soon

as the kth wavefront is propagated, the (l, 1) processor ini-

tiates the (k + l)st wavefront.

To allow for more than one wavefront per recursion, the

complete global MDFL program will have the syntax
BEGIN

SET COUNT (>:
REPEAT

(TASKS A);
WHILE WAVEFRONT IN ARRAY DO

BEGIN

(TASKS a);
ENIX

WHILE WAVEFRONT IN ARRAY D0
BEGIN

(TASKS C);
END;

(TASKS D);

DECREMENT COUNT;

UNTIL TERMINATED;
ENDPROGRAM.

Each recursion will execute the instructions within the

REPEAT - ' - UNTIL construct. The number of recursions is set

by SET COUNT. In this example, a recursion consists of two

wavefronts. At the start. tasks A are performed only at the (l,

1) processor. The first wavefront of each recursion will perform

tasks 3 at each of its (2:: — I) fronts. The second wave will

execute tasks C in each of these fronts immediately after tasks
3 have been concluded. it should be noted that the number of

different wavefronts within a recursion may vary from one

application to another. At the end of each recursion, COUNT
is decremented. When it becomes zero, TERMINATED is set

and a “phase” of identical recursions is over.

The corresponding local MDFL program for interior pro-
cessors (cf. Section III-A) will be

REPEAT

(TASKS 3")

(TASKS C’)

UNTIL TERMINATED;

where 3’ and C’ are the compiled versions of B and C, with

only relevant portions of the CASE statement extracted. The

conversion of a global program into its local versions is thus

fairly straightforward.

Certain syntax rules [10] are needed to ensure that there

is no circular waiting for data between adjacent PE’s. They also

ensure that neighbors will not contend for the interprocessor

bus at the same time. Concisely, the rules dictate that PETCHes

in one direction precede (and equal in number) the FLOWS in

the opposite direction, and that the data FETCHing precede

any computation (cf. data-driven computation in Section

IV-A). The complete proof of the claim that these rules will

prevent deadlock and bus contention is omitted here [24].

Based on the above guidelines, a complete global MDFL

program for matrix multiplication follows.

More programming examples will be provided in Section
V.

Petitioner Microsoft Corporation - EX. 1021, p. 1057

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Petitioner Microsoft Corporation - Ex. 1021, p. 1058

“158

Program 1. Matrix multiplication.
Array Size: M x N

Computation: C = A x B
th lki ik-li

k wavefront: c = c + a b
ij ij ik kj

k = l, 2. ... , N

Initial: "atria A is stored in the Memory I“odthle ["“i

on the left (stored row by row). “atrix F is in

M“ on the top and is stored column by column.

Pinal: The result will be in the C registers.

1: REST“
sn'r coo-w 3;
REPEAT:

WHILE WhVRPRONT TN ARRAY DO
5: RESIN

FETCH R. UP:
FETCH A. LEFT:
now A, mom-,-
PLOW a, Down;
I C <- C + as; *

10: vut'r A. n. or
non C. n. C;

esp;
DECREVENT COUNM;

uurtL *ERMINA"ED:
15: ENDFROGRAM.

* Comments are enclosed between '5' and ';'

D. Summary of MDFL Features

Future VLSI multiprocessors must support massiVe con-

currency to achieve a significant increase in performance;

consequently, a base language for parallel computers must

allow expression of concurrency of program execution on a

large scale [20]. However, few languages support the idea of

large scale concurrency. and only weak notions of locality exist

in most of them [25].

It must be noted that a parallel program is not just an en-

semble of separate programs for individual processors. More

importantly. it should also define coordination between PE's

including their interdependence for data and the sequencing
of their tasks. As such. it is a tall Order.

At present, data-flow languages appear to be the best can-
didate as the base language of parallel computers. Data-flow

languages are asynchronous. data driven, and algorithmic.

They avoid centralized control and shared memory to achieve

asynchrony and maximai concurrency [20]. [26]—[29].

MDFL basically possesses all these properties of data-flow

languages. It shares the principle of data-activated compu-

tation and its consequent advantages. In addition, MDFL has

a rather distinctive feature of regularity, and is built around

the notion of locality. It is very close to the algorithms; hence.

MDFL programs are modular and easy to understand. MDFL

permits the programmer to address a front of processors at the

same time, instead of programming individual processors

separately. Being wavefront oriented, it permits viewing the

algorithm as the repetition ofa computational sequence (i.c.,

the wavefront) progressing through the array. In short, the

wavefront notion makes it possible to program an array of

asynchronous processors in a simplistic fashion. and leads to

simple readable MDFL programs.

IEEE TRANSACTIONS ON COMPUTERS. vOL. c-31. No. 11. NOVEMBER 1982

IV. WAVEFRONT ARCHITECTURE

The hardware of the processing array is designed to support
MDFL. The main architectural considerations include four

general aspects: 1) interprocessor communications, based on

wavefront requirements; 2) the basic PE configuration; 3)

interfacing with the host computer; and finally. 4) the ex-

tendability and reconfigurability issues.

A. Interprocesmr Communication

The configuration of the processor array is as shown in the

schematic diagram of Fig. 1. It provides for data and control
communications between orthogonally adjacent processors and

links to memory module; through the first row and first column

of processors.

To simulate the phenomenon of wavefront propagation, the

processors in the array must wait for a primary wavefront (of

data), then perform its computation and, finally act as a sec-

ondary source of new wavefronts. To implement this wait,

processors are provided with data transfer buffers. Hence, a

FETCHing of data involves an inherent WAlTing for the buffer

to be filled (DATA READY) by the adjacent data sourcing

processor. Thus, if the software ensures that the processor al-

ways performs data FETCH before the computation (cf. syntax

rules of Section III-C), the processing With? not be initiated until

the arrival oftire data wavefront (this is similar to the concept

of data flow machines [171-[23], [26]—{29]). Each processor

can FLOW data to the input buffers of the neighboring PE's.

thus acting as a secondary source of data wavefronts (Huygen’s

principle). To avoid the overrunning of data wavefronts (in

conformation with Huygen’s principle), the processor hard-

ware ensures that a processor cannot send new data to the

buffer unless the old data have been used by the neighbor.

Thus. the wavefront concept suggests that interprocessor

communication employ buffers and “DATA READYg‘DATA

USED” flags between adjacent processors.

The WAITS for wavefronts ofdata allow for giobaiiy asyn-

chronous operation of processors, i.e., there is no need for

global synchronization. Synchronization is a very critical issue

in parallel processing, especially when one considers large scale

systems. Two opposite timing schemes come to mind, namely,

the synchronous and the asynchronous timing approaches. In

the synchronous scheme, there is a global clock network which

distributes the clocking signals over the entire chip. The global

clock beats out the rhythm to which all the PE‘s in the array

execute their tasks. In the basic synchronous configuration.

all the PE‘s operate in unison. all performing the same identical

operation. In contrast. the asynchronous scheme involves no

global clock, and information transfer is by mutual conve-
nience between each PE and its immediate neighbors.

Whenever the data are available, the transmitting PB informs

the receiver of the fact. and the receiver accepts the data when

it needs them. It then conveys to the sender the information

that the data have been used. This scheme can be implemented

by means ofa simple handshaking protocol [10]. [30] (cf. Fig.
2).

3. PE Configuration

The proposed hardware for the processing elements of the

Petitioner Microsoft Corporation - EX. 1021, p. 1058

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

