
A Cloud-Scale Acceleration Architecture

Adrian M. Caulfield Eric S. Chung Andrew Putnam
Hari Angepat Jeremy Fowers Michael Haselman Stephen Heil Matt Humphrey

Puneet Kaur Joo-Young Kim Daniel Lo Todd Massengill Kalin Ovtcharov
Michael Papamichael Lisa Woods Sitaram Lanka Derek Chiou Doug Burger

Microsoft Corporation

Abstract—Hyperscale datacenter providers have struggled to
balance the growing need for specialized hardware (efficiency)
with the economic benefits of homogeneity (manageability). In
this paper we propose a new cloud architecture that uses
reconfigurable logic to accelerate both network plane func-
tions and applications. This Configurable Cloud architecture
places a layer of reconfigurable logic (FPGAs) between the
network switches and the servers, enabling network flows to be
programmably transformed at line rate, enabling acceleration
of local applications running on the server, and enabling the
FPGAs to communicate directly, at datacenter scale, to harvest
remote FPGAs unused by their local servers. We deployed this
design over a production server bed, and show how it can be
used for both service acceleration (Web search ranking) and
network acceleration (encryption of data in transit at high-
speeds). This architecture is much more scalable than prior
work which used secondary rack-scale networks for inter-FPGA
communication. By coupling to the network plane, direct FPGA-
to-FPGA messages can be achieved at comparable latency to
previous work, without the secondary network. Additionally, the
scale of direct inter-FPGA messaging is much larger. The average
round-trip latencies observed in our measurements among 24,
1000, and 250,000 machines are under 3, 9, and 20 microseconds,
respectively. The Configurable Cloud architecture has been
deployed at hyperscale in Microsoft’s production datacenters
worldwide.

I. INTRODUCTION

Modern hyperscale datacenters have made huge strides with

improvements in networking, virtualization, energy efficiency,

and infrastructure management, but still have the same basic

structure as they have for years: individual servers with

multicore CPUs, DRAM, and local storage, connected by the

NIC through Ethernet switches to other servers. At hyperscale

(hundreds of thousands to millions of servers), there are signif-

icant benefits to maximizing homogeneity; workloads can be

migrated fungibly across the infrastructure, and management

is simplified, reducing costs and configuration errors.

Both the slowdown in CPU scaling and the ending of

Moore’s Law have resulted in a growing need for hard-

ware specialization to increase performance and efficiency.

However, placing specialized accelerators in a subset of a

hyperscale infrastructure’s servers reduces the highly desir-

able homogeneity. The question is mostly one of economics:

whether it is cost-effective to deploy an accelerator in every

new server, whether it is better to specialize a subset of

an infrastructure’s new servers and maintain an ever-growing

number of configurations, or whether it is most cost-effective

to do neither. Any specialized accelerator must be compatible

with the target workloads through its deployment lifetime (e.g.

six years: two years to design and deploy the accelerator and

four years of server deployment lifetime). This requirement

is a challenge given both the diversity of cloud workloads

and the rapid rate at which they change (weekly or monthly).

It is thus highly desirable that accelerators incorporated into

hyperscale servers be programmable, the two most common

examples being FPGAs and GPUs.

Both GPUs and FPGAs have been deployed in datacenter

infrastructure at reasonable scale without direct connectivity

between accelerators [1], [2], [3]. Our recent publication

described a medium-scale FPGA deployment in a production

datacenter to accelerate Bing web search ranking using multi-

ple directly-connected accelerators [4]. That design consisted

of a rack-scale fabric of 48 FPGAs connected by a secondary

network. While effective at accelerating search ranking, our

first architecture had several significant limitations:

• The secondary network (a 6x8 torus) required expensive

and complex cabling, and required awareness of the physical

location of machines.
• Failure handling of the torus required complex re-routing

of traffic to neighboring nodes, causing both performance loss

and isolation of nodes under certain failure patterns.
• The number of FPGAs that could communicate directly,

without going through software, was limited to a single rack

(i.e. 48 nodes).
• The fabric was a limited-scale “bolt on” accelerator, which

could accelerate applications but offered little for enhancing

the datacenter infrastructure, such as networking and storage

flows.

In this paper, we describe a new cloud-scale, FPGA-based

acceleration architecture, which we call the Configurable

Cloud, which eliminates all of the limitations listed above with

a single design. This architecture has been — and is being

— deployed in the majority of new servers in Microsoft’s

production datacenters across more than 15 countries and

5 continents. A Configurable Cloud allows the datapath of

cloud communication to be accelerated with programmable

hardware. This datapath can include networking flows, stor-

age flows, security operations, and distributed (multi-FPGA)

applications.

The key difference over previous work is that the accelera-978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

Petitioner Microsoft Corporation - Ex. 1030, p. 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

TOR

TOR TOR

TOR

L1 L1

Expensive
compression

Deep neural
networks

Web search
ranking Bioinformatics

Web search
ranking

L2

TOR

(a) (b)

Fig. 1. (a) Decoupled Programmable Hardware Plane, (b) Server + FPGA schematic.

tion hardware is tightly coupled with the datacenter network—

placing a layer of FPGAs between the servers’ NICs and

the Ethernet network switches. Figure 1b shows how the

accelerator fits into a host server. All network traffic is routed

through the FPGA, allowing it to accelerate high-bandwidth

network flows. An independent PCIe connection to the host

CPUs is also provided, allowing the FPGA to be used as a local

compute accelerator. The standard network switch and topol-

ogy removes the impact of failures on neighboring servers,

removes the need for non-standard cabling, and eliminates the

need to track the physical location of machines in each rack.
While placing FPGAs as a network-side “bump-in-the-wire”

solves many of the shortcomings of the torus topology, much

more is possible. By enabling the FPGAs to generate and

consume their own networking packets independent of the

hosts, each and every FPGA in the datacenter can reach

every other one (at a scale of hundreds of thousands) in

a small number of microseconds, without any intervening

software. This capability allows hosts to use remote FPGAs for

acceleration with low latency, improving the economics of the

accelerator deployment, as hosts running services that do not

use their local FPGAs can donate them to a global pool and

extract value which would otherwise be stranded. Moreover,

this design choice essentially turns the distributed FPGA

resources into an independent computer in the datacenter,

at the same scale as the servers, that physically shares the

network wires with software. Figure 1a shows a logical view

of this plane of computation.
This model offers significant flexibility. From the local

perspective, the FPGA is used as a compute or a network

accelerator. From the global perspective, the FPGAs can be

managed as a large-scale pool of resources, with acceleration

services mapped to remote FPGA resources. Ideally, servers

not using all of their local FPGA resources can donate

those resources to the global pool, while servers that need

additional resources can request the available resources on

remote servers. Failing nodes are removed from the pool

with replacements quickly added. As demand for a service

grows or shrinks, a global manager grows or shrinks the pools

correspondingly. Services are thus freed from having a fixed

ratio of CPU cores per FPGAs, and can instead allocate (or

purchase, in the case of IaaS) only the resources of each type

needed.

Space limitations prevent a complete description of the

management policies and mechanisms for the global resource

manager. Instead, this paper focuses first on the hardware

architecture necessary to treat remote FPGAs as available

resources for global acceleration pools. We describe the com-

munication protocols and mechanisms that allow nodes in

a remote acceleration service to connect, including a proto-

col called LTL (Lightweight Transport Layer) that supports

lightweight connections between pairs of FPGAs, with mostly

lossless transport and extremely low latency (small numbers

of microseconds). This protocol makes the datacenter-scale

remote FPGA resources appear closer than either a single local

SSD access or the time to get through the host’s networking

stack. Then, we describe an evaluation system of 5,760 servers

which we built and deployed as a precursor to hyperscale

production deployment. We measure the performance charac-

teristics of the system, using web search and network flow

encryption as examples. We show that significant gains in

efficiency are possible, and that this new architecture enables a

much broader and more robust architecture for the acceleration

Petitioner Microsoft Corporation - Ex. 1030, p. 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Altera Stratix V D5 FPGA
256 Mb ConfigFlash

USB

4 GB DDR3-1600

40Gb QSFP Network to TORUSB to JTAG µC 40Gb QSFP Network to NIC
4 lanes @ 10.3125 Gbps4 lanes @ 10.3125 Gbps

72 bits (with ECC)QSPIPCIe Mez
anine Connecto

r PCIe Gen3 x8PCIe Gen3 x8

Temp, power, LEDsI2C

Fig. 2. Block diagram of the major components of the accelerator board.

of hyperscale datacenter services.

II. HARDWARE ARCHITECTURE

There are many constraints on the design of hardware

accelerators for the datacenter. Datacenter accelerators must

be highly manageable, which means having few variations

or versions. The environments must be largely homogeneous,

which means that the accelerators must provide value across a

plurality of the servers using it. Given services’ rate of change

and diversity in the datacenter, this requirement means that a

single design must provide positive value across an extremely

large, homogeneous deployment.

The solution to addressing the competing demands of ho-

mogeneity and specialization is to develop accelerator archi-

tectures which are programmable, such as FPGAs and GPUs.

These programmable architectures allow for hardware homo-

geneity while allowing fungibility via software for different

services. They must be highly flexible at the system level, in

addition to being programmable, to justify deployment across a

hyperscale infrastructure. The acceleration system we describe

is sufficiently flexible to cover three scenarios: local compute

acceleration (through PCIe), network acceleration, and global

application acceleration, through configuration as pools of

remotely accessible FPGAs. Local acceleration handles high-

value scenarios such as search ranking acceleration where

every server can benefit from having its own FPGA. Network

acceleration can support services such as intrusion detection,

deep packet inspection and network encryption which are

critical to IaaS (e.g. “rental” of cloud servers), and which have

such a huge diversity of customers that it makes it difficult to

justify local compute acceleration alone economically. Global

acceleration permits accelerators unused by their host servers

to be made available for large-scale applications, such as

machine learning. This decoupling of a 1:1 ratio of servers

to FPGAs is essential for breaking the “chicken and egg”

problem where accelerators cannot be added until enough

applications need them, but applications will not rely upon

the accelerators until they are present in the infrastructure.

By decoupling the servers and FPGAs, software services that

demand more FPGA capacity can harness spare FPGAs from

Fig. 3. Photograph of the manufactured board. The DDR channel is
implemented using discrete components. PCIe connectivity goes through a
mezzanine connector on the bottom side of the board (not shown).

other services that are slower to adopt (or do not require) the

accelerator fabric.

In addition to architectural requirements that provide suffi-

cient flexibility to justify scale production deployment, there

are also physical restrictions in current infrastructures that

must be overcome. These restrictions include strict power

limits, a small physical space in which to fit, resilience

to hardware failures, and tolerance to high temperatures.

For example, the accelerator architecture we describe is the

widely-used OpenCompute server that constrained power to

35W, the physical size to roughly a half-height half-length

PCIe expansion card (80mm x 140 mm), and tolerance to

an inlet air temperature of 70◦C at 160 lfm airflow. These

constraints make deployment of current GPUs impractical

except in special HPC SKUs, so we selected FPGAs as the

accelerator.

We designed the accelerator board as a standalone FPGA

board that is added to the PCIe expansion slot in a production

server SKU. Figure 2 shows a schematic of the board, and

Figure 3 shows a photograph of the board with major com-

ponents labeled. The FPGA is an Altera Stratix V D5, with

172.6K ALMs of programmable logic. The FPGA has one

4 GB DDR3-1600 DRAM channel, two independent PCIe Gen

3 x8 connections for an aggregate total of 16 GB/s in each

direction between the CPU and FPGA, and two independent

40 Gb Ethernet interfaces with standard QSFP+ connectors. A

256 Mb Flash chip holds the known-good golden image for the

FPGA that is loaded on power on, as well as one application

image.

To measure the power consumption limits of the entire

FPGA card (including DRAM, I/O channels, and PCIe), we

developed a power virus that exercises nearly all of the FPGA’s

interfaces, logic, and DSP blocks—while running the card in

a thermal chamber operating in worst-case conditions (peak

ambient temperature, high CPU load, and minimum airflow

due to a failed fan). Under these conditions, the card consumes

29.2W of power, which is well within the 32W TDP limits for

a card running in a single server in our datacenter, and below

the max electrical power draw limit of 35W.

The dual 40 Gb Ethernet interfaces on the board could allow

for a private FPGA network as was done in our previous

Petitioner Microsoft Corporation - Ex. 1030, p. 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

40G
MAC
(NIC)

40G
MAC
(TOR)

40G Network Bridge and Bypass

Elastic
Router

DDR3
Controller

Lightweight Transport Layer Protocol Engine

PCIe Gen 3
DMA x 2

Role
RoleRole x N

Fig. 4. The Shell Architecture in a Single FPGA.

work [4], but this configuration also allows the FPGA to be

wired as a “bump-in-the-wire”, sitting between the network

interface card (NIC) and the top-of-rack switch (ToR). Rather

than cabling the standard NIC directly to the ToR, the NIC is

cabled to one port of the FPGA, and the other FPGA port is

cabled to the ToR, as we previously showed in Figure 1b.

Maintaining the discrete NIC in the system enables us

to leverage all of the existing network offload and packet

transport functionality hardened into the NIC. This simplifies

the minimum FPGA code required to deploy the FPGAs to

simple bypass logic. In addition, both FPGA resources and

PCIe bandwidth are preserved for acceleration functionality,

rather than being spent on implementing the NIC in soft logic.

Unlike [5], both the FPGA and NIC have separate connec-

tions to the host CPU via PCIe. This allows each to operate

independently at maximum bandwidth when the FPGA is

being used strictly as a local compute accelerator (with the

FPGA simply doing network bypass). This path also makes it

possible to use custom networking protocols that bypass the

NIC entirely when desired.

One potential drawback to the bump-in-the-wire architecture

is that an FPGA failure, such as loading a buggy application,

could cut off network traffic to the server, rendering the server

unreachable. However, unlike a torus or mesh network, failures

in the bump-in-the-wire architecture do not degrade any neigh-

boring FPGAs, making the overall system more resilient to

failures. In addition, most datacenter servers (including ours)

have a side-channel management path that exists to power

servers on and off. By policy, the known-good golden image

that loads on power up is rarely (if ever) overwritten, so power

cycling the server through the management port will bring

the FPGA back into a good configuration, making the server

reachable via the network once again.

A. Shell architecture

Within each FPGA, we use the partitioning and terminology

we defined in prior work [4] to separate the application logic

ALMs MHz
Role 55340 (32%) 175
40G MAC/PHY (TOR) 9785 (6%) 313
40G MAC/PHY (NIC) 13122 (8%) 313
Network Bridge / Bypass 4685 (3%) 313
DDR3 Memory Controller 13225 (8%) 200
Elastic Router 3449 (2%) 156
LTL Protocol Engine 11839 (7%) 156
LTL Packet Switch 4815 (3%) -
PCIe DMA Engine 6817 (4%) 250
Other 8273 (5%) -
Total Area Used 131350 (76%) -
Total Area Available 172600 -

Fig. 5. Area and frequency breakdown of production-deployed image with
remote acceleration support.

(Role) from the common I/O and board-specific logic (Shell)

used by accelerated services. Figure 4 gives an overview of

this architecture’s major shell components, focusing on the

network. In addition to the Ethernet MACs and PHYs, there

is an intra-FPGA message router called the Elastic Router

(ER) with virtual channel support for allowing multiple Roles

access to the network, and a Lightweight Transport Layer

(LTL) engine used for enabling inter-FPGA communication.

Both are described in detail in Section V.

The FPGA’s location as a bump-in-the-wire between the

network switch and host means that it must always pass

packets between the two network interfaces that it controls.

The shell implements a bridge to enable this functionality,

shown at the top of Figure 4. The shell provides a tap for

FPGA roles to inject, inspect, and alter the network traffic as

needed, such as when encrypting network flows, which we

describe in Section III.

Full FPGA reconfiguration briefly brings down this network

link, but in most cases applications are robust to brief network

outages. When network traffic cannot be paused even briefly,

partial reconfiguration permits packets to be passed through

even during reconfiguration of the role.

Figure 5 shows the area and clock frequency of the shell IP

components used in the production-deployed image. In total,

the design uses 44% of the FPGA to support all shell functions

and the necessary IP blocks to enable access to remote pools of

FPGAs (i.e., LTL and the Elastic Router). While a significant

fraction of the FPGA is consumed by a few major shell

components (especially the 40G PHY/MACs at 14% and the

DDR3 memory controller at 8%), enough space is left for

the role(s) to provide large speedups for key services, as we

show in Section III. Large shell components that are stable for

the long term are excellent candidates for hardening in future

generations of datacenter-optimized FPGAs.

Petitioner Microsoft Corporation - Ex. 1030, p. 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

B. Datacenter Deployment

To evaluate the system architecture and performance at

scale, we manufactured and deployed 5,760 servers containing

this accelerator architecture and placed it into a production dat-

acenter. All machines were configured with the shell described

above. The servers and FPGAs were stress tested using the

power virus workload on the FPGA and a standard burn-in test

for the server under real datacenter environmental conditions.

The servers all passed, and were approved for production use

in the datacenter.

We brought up a production Bing web search ranking

service on the servers, with 3,081 of these machines using the

FPGA for local compute acceleration, and the rest used for

other functions associated with web search. We mirrored live

traffic to the bed for one month, and monitored the health and

stability of the systems as well as the correctness of the ranking

service. After one month, two FPGAs had hard failures, one

with a persistently high rate of single event upset (SEU) errors

in the configuration logic, and the other with an unstable 40 Gb

network link to the NIC. A third failure of the 40 Gb link to the

TOR was found not to be an FPGA failure, and was resolved

by replacing a network cable. Given aggregate datacenter

failure rates, we deemed the FPGA-related hardware failures

to be acceptably low for production.

We also measured a low number of soft errors, which

were all correctable. Five machines failed to train to the full

Gen3 x8 speeds on the secondary PCIe link. There were

eight total DRAM calibration failures which were repaired

by reconfiguring the FPGA. The errors have since been traced

to a logical error in the DRAM interface rather than a hard

failure. Our shell scrubs the configuration state for soft errors

and reports any flipped bits. We measured an average rate

of one bit-flip in the configuration logic every 1025 machine

days. While the scrubbing logic often catches the flips before

functional failures occur, at least in one case there was a

role hang that was likely attributable to an SEU event. Since

the scrubbing logic completes roughly every 30 seconds, our

system recovers from hung roles automatically, and we use

ECC and other data integrity checks on critical interfaces, the

exposure of the ranking service to SEU events is low. Overall,

the hardware and interface stability of the system was deemed

suitable for scale production.

In the next sections, we show how this board/shell combi-

nation can support local application acceleration while simul-

taneously routing all of the server’s incoming and outgoing

network traffic. Following that, we show network acceleration,

and then acceleration of remote services.

III. LOCAL ACCELERATION

As we described earlier, it is important for an at-scale

datacenter accelerator to enhance local applications and in-

frastructure functions for different domains (e.g. web search

and IaaS). In this section we measure the performance of our

system on a large datacenter workload.

0.0

0.5

1.0

1.5

2.0

0.0 1.0 2.0 3.0 4.0

La
te

nc
y

(n
or

m
al

ize
d

to

99
th

 p
er

ce
nt

ile
 ta

rg
et

)

Throughput (normalized)

Software
Local FPGA

Fig. 6. 99% Latency versus Throughput of ranking service queries running
on a single server, with and without FPGAs enabled.

A. Bing Search Page Ranking Acceleration

We describe Bing web search ranking acceleration as an

example of using the local FPGA to accelerate a large-scale

service. This example is useful both because Bing search is

a large datacenter workload, and since we had described its

acceleration in depth on the Catapult v1 platform [4]. At a

high level, most web search ranking algorithms behave sim-

ilarly; query-specific features are generated from documents,

processed, and then passed to a machine learned model to

determine how relevant the document is to the query.

Unlike in [4], we implement only a subset of the feature

calculations (typically the most expensive ones), and nei-

ther compute post-processed synthetic features nor run the

machine-learning portion of search ranking on the FPGAs.

We do implement two classes of features on the FPGA. The

first is the traditional finite state machines used in many search

engines (e.g. “count the number of occurrences of query term

two”). The second is a proprietary set of features generated

by a complex dynamic programming engine.

We implemented the selected features in a Feature Func-

tional Unit (FFU), and the Dynamic Programming Features in

a separate DPF unit. Both the FFU and DPF units were built

into a shell that also had support for execution using remote

accelerators, namely the ER and LTL blocks as described

in Section V. This FPGA image also, of course, includes

the network bridge for NIC-TOR communication, so all the

server’s network traffic is passing through the FPGA while

it is simultaneously accelerating document ranking. The pass-

through traffic and the search ranking acceleration have no

performance interaction.

We present results in a format similar to the Catapult

results to make direct comparisons simpler. We are running

this image on a full production bed consisting of thousands

of servers. In a production environment, it is infeasible to

simulate many different points of query load as there is

substantial infrastructure upstream that only produces requests

at the rate of arrivals. To produce a smooth distribution with

repeatable results, we used a single-box test with a stream

Petitioner Microsoft Corporation - Ex. 1030, p. 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

