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Novel data-driven and demand-driven computer architectures are under development in a 
large number of laboratories in the United States, Japan, and Europe. These computers 
are not based on the tradlUonal von Neumann organization; instead, they are attempts to 
identify the next generation of computer. Basmally, m data-driven (e.g., data-flow) 
computers the availability of operands triggers the execution of the operation to be 
performed on them, whereas in demand-driven (e.g, reduction) computers the 
reqmrement for a result triggers the operation that will generate it. 

Although there are these two distinct areas of research, each laboratory has developed 
its own mdlvxdual model of computation, stored program representation, and machine 
organization. Across this spectrum of designs there m, however, a significant sharing of 
concepts. The aim of this palaer m to identify the concepts and relationships that exist 
both within and between the two areas of research. It does thin by examlmng data-driven 
and demand-driven architecture at three levels, computation organizatmn, (stored) 
program organization, and machine organLzation. Finally, a survey of various novel 
computer architectures under development is given. 

Categories and Subject Descriptors: C.0 [Compute r  Sys t ems  Organizat ion]:  
General-- hardware/software interfaces; system architectures; C.1.2 [P rocesso r  
Archi tec ture] :  Multiple Data Stream Architectures (Multiprocessors); C.1.3 [P rocesso r  
Arch i tec ture ]  Other Architecture Styles--data-flow architectures; high-level language 
architectures, D 3 2 [ P r o g r a m m i n g  Languages]  Language Classifications--data-flow 
languages; macro and assembly languages; very hzgh-level languages 

General Terms: Design 

Add~tmnal Key Words and Phrases Demand = driven architecture, data - driven 
architecture 

INTRODUCTION 

For more than thirty years the principles of 
computer architecture design have largely 
remained static [ORGA79], based on the von 
Neumann organization. These von Neu- 
mann principles include 

(1) a single computing element incorporat- 
ing processor, communications, and 
memory; 

(2) hnear organization of fLxed-size mem- 
ory cells; 

(3) one-level address space of cells; 
(4) low-level machine language (instruc- 

tions perform simple operations on el- 
ementary operands); 

(5) sequential, centralized control of com- 
putation. 

Over the last few years, however, a num- 
ber of novel computer architectures based 
on new "naturally" parallel organizations 
for computation have been proposed and 
some computers have even been built. The 
principal stimuli for these novel architec- 
tures have come from the pioneering work 
on data flow by Jack Dennis [DENN74a, 
DENS74b], and on reduction languages and 
machines by John Backus [BACK72, 
BACK73] and Klaus Berkling [BERK71, 
BERK75]. The resulting computer architec- 
ture research can be broadly classified as 
either data driven or demand driven. In 
data-driven (e.g., data-flow) computers the 
availability of operands triggers the execu- 
tion of the operation to be performed on 
them, whereas in demand-driven (e.g., re- 
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A 

v 

duction) computers the requirement for a 
result triggers the operation that will gen- 
erate it. 

Although the motivations and emphasis 
of individual research groups vary, there 
are basically three interacting driving 
forces. First, there is the desire to utilize 
concurrency to increase computer perform- 

ance. This is based on the continuing de- 
mand from areas such as weather forecast- 
ing and wind tunnel simulation for com- 
puters with a higher performance. The nat- 
ural physical laws place fundamental limi- 
tations on the performance increases ob- 
tainable from advances in technology alone. 
And conventional high-speed computers 
like CRAY 1 and ILLIAC IV seem unable 
to meet these demands [TREL79]. Second, 
there is the desire to exploit very large scale 
integration (VLSI) in the design of com- 
puters [SEIT79, MEAD80, TREL80b]. One 
effective means of employing VLSI would 
be parallel architectures composed of iden- 
tical computing elements, each containing 
integral capabilities for processing, com- 
munication, and memory. Unfortunately 
"general-purpose" organizations for inter- 
connecting and programming such archi- 
tectures based on the von Neumann prin- 
ciples have not been forthcoming. Third, 
there is the growing interest in new classes 
of very high level programming languages. 
The most well-developed such class of lan- 
guages comprises the functional languages 
such as LISP [McCA62], FP [BACK78], 
LUCID [ASHC77], SASL [TURN79a], Id 
[ARvI78], and VAL [ACKE79b]. Because of 
the mismatch between the various princi- 
ples on which these languages are based, 
and those of the von Neumann computer, 
conventional implementations tend to be 
inefficient. 

There is growing agreement, particularly 
in Japan and the United Kingdom, that the 
next generation of computers will be based 
on non-von Neumann architecture. (A re- 
port [JIPD81a] by Japan's Ministry of In- 
ternational Trade and Industry contains a 
good summary of the criteria for these fifth- 
generation computers.) Both data-driven 
and demand-driven computer architecture 
are possible fifth-generation architectures. 
The question then becomes, which archi- 
tectural principles and features from the 
various research projects will contribute to 
this new generation of computers? 

Work on data-driven and demand-driven 
architecture falls into two principal re- 
search areas, namely, data flow [DENN79b, 
Gosw79a] and reduction [BERK75]. These 
areas are distinguished by the way compu- 
tation, stored programs, and machine re- 
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sources are organized. Although research 
groups in each area share a basic set of 
concepts, each group has augmented the 
concepts often by introducing ideas from 
other areas {including traditional control- 
flow architectures) to overcome difficulties. 
The aim of this paper is to identify the 
concepts and relationships that exist both 
within and between these areas of research. 
We start by presenting simple operational 
models for control flow, data flow, and re- 
duction. Next we classify and analyze the 
way computation, stored programs, and 
machine resources are organized across the 
three groups. Finally, a survey of various 
novel computer architectures under devel- 
opment is given in terms of these classifi- 
cations. 

1. BASIC CONCEPTS 

Here we present simple operational models 
of control flow, data flow, and reduction. In 
order to compare these three models we 
discuss each in terms of a simple machine 
code representation. These representations 
are viewed as instructions consisting of se- 
quences of arguments--operators, literal 
operands, references--dehmited by paren- 
theses: 

(argO argl arg2 arg3 . . .  a r g n -  1 argn). 

However, the terms "instruction" and "ref- 
erence" are given a considerably more gen- 
eral meaning than their counterparts in 
conventional computers. To facilitate com- 
parisons of control flow, data flow, and re- 
duction, simple program representations 
for the statement a = (b + 1) • (b - c) are 
used. Although this statement consists of 
simple operators and operands, the con- 
cepts illustrated are equally applicable to 
more complex operations and data struc- 
tures. 

1.1 Control Flow 

We start by examining control flow, the 
most familiar model. In the control-flow 
program representations shown in Figure 1, 
the statement a = (b + 1)*(b - c) is 
specified by a series of instructions each 
consisting of an operator followed by one or 
more operands, which are literals or refer- 
ences. For instance, a dyadic operation such 

as + is followed by three operands; the f'~rst 
two, b and 1, provide the input data and 
the last, t l ,  is the reference to the shared 
memory cell for the result. Shared memory 
cells are the means by which data are 
passed between instructions. Each refer- 
ence in Figure 1 is also shown as a unidi- 
rectional arc. Solid arcs show the access to 
stored data, while dotted arcs define the 
flow of control. 

In traditional sequential (von Neumann) 
control flow there is a single thread of con- 
trol, as in Figure la, which is passed from 
instruction to instruction. When control 
reaches an instruction, the operator is ini- 
tially examined to determine the number 
and usage of the following operands. Next 
the input addresses are dereferenced, the 
operator is executed, the result is stored in 
a memory cell, and control is passed im- 
plicitly to the next instruction in sequence. 
Explicit control transfers are caused by op- 
erators such as GOTO. 

There are also parallel forms of control 
flow [FARR79, HOPK79]. In the parallel form 
of control flow, shown in Figure lb, the 
implicit sequential control-flow model is 
augmented by parallel control operators. 
These parallel operators allow more than 
one thread of control to be active at an 
instance and also provide means for syn- 
chronizing these threads. For example, in 
Figure lb the FORK operator activates the 
subtraction instruction at address i2 and 
passes an implicit flow of control on to the 
addition instruction. The addition and sub- 
traction may then be executed in parallel. 
When the addition finishes execution, con- 
trol is passed via the GOTO i3 instruction 
to the JOIN instruction. The task of the 
JOIN is to synchronize the two threads of 
control that  are released by the addition 
and subtraction instruction, and release a 
single thread to activate the multiply in- 
struction. 

In the second parallel form of control 
flow, shown in Figure lc, each instruction 
explicitly specifies its successor instruc- 
tions. Such a reference, il/0, defines the 
specific instruction and argument position 
for the control signal, or control token. Ar- 
gument positions, one for each control sig- 
nal required, are represented by empty 
bracket symbols ( ) ,  and an instruction is 
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( ) t 2 : (  ) a : (  ) 

..~) 

(a) 

s-- -~ i2:~--- -~i3: 
(...FORK i2 ~ + b 1 tl GOTO i3 ~- b c t2 JOIN 2 * tl t2 a 

b:(4 : tl:( ) t2:( ) a:( ) 

(b) 

. , . )  

t0: ( . . .  il/o 12/o) bj,(4)¢,__ ¢: (2) 
; . . . . .  \ 

i l :  ( ( l~)  + b 1 t l  i 3 / 0 )  t 2 :  ( ( 4 )  - b c 

i t 

- "  " t 2 :  ( ) I t l :  ( ) / 

t3: ((~') (I,) t l  t2 a . . . )  

a :  ( ) 

(c) 

t 2  i 3 / i  ) 

Figure 1. Control~flow programs for a = (b + 1) * (b - c): (a) sequential,  (b) parallel 
"FORK-JOIN" ;  (c) parallel "control  tokens." 

executed when it has received the required 
control tokens. The two parallel forms of 
control flow, illustrated by Figures lb and 
lc, are semantically equivalent; FORKS are 
equivalent to multiple successor instruction 
addresses and JOINs are equivalent to mul- 
tiple empty bracket arguments. 

The sequential and parallel control-flow 
models have a number of common features: 
(1) data are passed indirectly between in- 
structions via references t~ shared memory 
cells; (2) literals may be stored in instruc- 
tions, which can be viewed as an optimiza- 
tion of using a reference to access the literal; 
(3) flow of control is implicitly sequential, 
but explicit control operators can be used 
for parallelism, etc.; and (4) because the 
flows of data and control are separate, they 
can be made identical or distinct. 

1.2 Data Flow 

Data flow is very similar to the second form 
of parallel control flow with instructions 
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activated by tokens and the requirement 
for tokens being the indicated ( ) symbols. 
Data-flows programs are usually described 
in terms of directed graphs, used to illus- 
trate the flow of data between instructions. 
In the data-flow program representation 
shown in Figure 2, each instruction consists 
of an operator, two inputs which are either 
literal operands or "unknown" operands de- 
fined by empty bracket ( ) symbols, and a 
reference, i3/1, defining the specific instruc- 
tion and argument position for the result. 
A reference, also shown as a unidirectional 
arc, is used by the producer instruction to 
store a data token (i.e., result) into the 
consumer. Thus data are passed directly 
between instructions. 

An instruction is enabled for execution 
when all arguments are known, that is, 
when all unknowns have been replaced by 
partial results made available by other in- 
structions. The operator then executes, re- 
moving the inputs from storage, processing 
them according to the specified operation, 
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13: ) ( )~ a/l) 

(a) 

97 

! 
! 

11: (+ (~) 1 13/1) 12: (- 

13: (*~() 

(~) (I) i3 /2)  

) 

(b) 10 

Figure 2. D a t a - f l o w  p r o g r a m  for a = (b + 1) * (b - c) (a) S t a g e  
1; (b) S t a g e  4. 

and using the embedded  reference to store 
the result  a t  an  unknown operand in a 
successor instruction. In  t e rms  of directed 
graphs, an instruct ion is enabled when a 
da ta  token is present  on each of its input  
arcs. During execution the opera tor  re- 
moves  one da ta  token f rom each input  arc 
and releases a set of  result  tokens  onto the 
output  arcs. 

Figure 2 i l lustrates the sequence of exe- 
cution for the p rogram f ragment  a = (b + 
1) * (b - c), using a black dot on an arc to 
indicate the presence of a da ta  token. The  
two black dots at  Stage 1 in Figure 2 indi- 
cate tha t  the data  tokens  corresponding to 
the values of b and c have  been genera ted 
by  predecessor  instructions. Since b is re- 
quired as input  for two subsequent  instruc- 
tions, two copies of  the token are genera ted 
and stored into the respective locations in 
each instruction. T h e  availabili ty of these 
inputs  completes  bo th  the addit ion and the 
subtract ion instruction, and enables their  
operators  for execution. Executing com- 
pletely independently,  each opera tor  con- 
sumes its input  tokens  and stores its result  

into the mult ipl icat ion instruct ion "i3." 
This  enables the multiplication, which ex- 
ecutes and stores its result  corresponding 
to the identifier "a," shown at  Stage 4. 

In the data-flow model  there  are a num- 
ber  of interesting features: (1) par t ia l  re- 
sults are passed directly as da ta  tokens  
between instructions; (2) literals m a y  be 
embedded  in an instruction tha t  can be 
viewed as an optimizat ion of the  data  token  
mechanism;  (3) execution uses up da ta  to- 
k e n s m t h e  values are no longer available as 
inputs  to this or any  o ther  instruction; (4) 
there  is no concept  of  shared da ta  s torage 
as embodied  in the  t radi t ional  notion of a 
variable; and (5) sequencing cons t ra in t s - -  
flows of con t ro l - - a re  t ied to the  flow of 
data. 

1.3 Reduction 

Control-flow and data-flow programs  are 
built  f rom fixed-size instructions whose ar- 
guments  are primit ive opera tors  and oper- 
ands. Higher  level p rogram st ructures  are 
built  f rom linear sequences of these  primi- 
t ive instructions. 
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