
Data-Driven and Demand-Driven Computer Architecture

PHILIP C. TRELEAVEN, DAVID R. BROWNBRIDGE, AND RICHARD P. HOPKINS

Computing Laboratory, Unwerstty of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, England

Novel data-driven and demand-driven computer architectures are under development in a
large number of laboratories in the United States, Japan, and Europe. These computers
are not based on the tradlUonal von Neumann organization; instead, they are attempts to
identify the next generation of computer. Basmally, m data-driven (e.g., data-flow)
computers the availability of operands triggers the execution of the operation to be
performed on them, whereas in demand-driven (e.g, reduction) computers the
reqmrement for a result triggers the operation that will generate it.

Although there are these two distinct areas of research, each laboratory has developed
its own mdlvxdual model of computation, stored program representation, and machine
organization. Across this spectrum of designs there m, however, a significant sharing of
concepts. The aim of this palaer m to identify the concepts and relationships that exist
both within and between the two areas of research. It does thin by examlmng data-driven
and demand-driven architecture at three levels, computation organizatmn, (stored)
program organization, and machine organLzation. Finally, a survey of various novel
computer architectures under development is given.

Categories and Subject Descriptors: C.0 [Compute r Sys t ems Organizat ion]:
General-- hardware/software interfaces; system architectures; C.1.2 [P rocesso r
Archi tec ture] : Multiple Data Stream Architectures (Multiprocessors); C.1.3 [P rocesso r
Arch i tec ture] Other Architecture Styles--data-flow architectures; high-level language
architectures, D 3 2 [P r o g r a m m i n g Languages] Language Classifications--data-flow
languages; macro and assembly languages; very hzgh-level languages

General Terms: Design

Add~tmnal Key Words and Phrases Demand = driven architecture, data - driven
architecture

INTRODUCTION

For more than thirty years the principles of
computer architecture design have largely
remained static [ORGA79], based on the von
Neumann organization. These von Neu-
mann principles include

(1) a single computing element incorporat-
ing processor, communications, and
memory;

(2) hnear organization of fLxed-size mem-
ory cells;

(3) one-level address space of cells;
(4) low-level machine language (instruc-

tions perform simple operations on el-
ementary operands);

(5) sequential, centralized control of com-
putation.

Over the last few years, however, a num-
ber of novel computer architectures based
on new "naturally" parallel organizations
for computation have been proposed and
some computers have even been built. The
principal stimuli for these novel architec-
tures have come from the pioneering work
on data flow by Jack Dennis [DENN74a,
DENS74b], and on reduction languages and
machines by John Backus [BACK72,
BACK73] and Klaus Berkling [BERK71,
BERK75]. The resulting computer architec-
ture research can be broadly classified as
either data driven or demand driven. In
data-driven (e.g., data-flow) computers the
availability of operands triggers the execu-
tion of the operation to be performed on
them, whereas in demand-driven (e.g., re-

Permission to copy without fee all or part of this material m granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is gwen that copying m by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0010-4892/82/0300-0093 $00.75

Computing Surveys, Vol. 14, No 1, March 1982

,

SRC00034170

Patent Owner Saint Regis Mohawk Tribe
Ex. 2047, p. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

cevans
Highlight

https://www.docketalarm.com/

94 * P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

CONTENTS

I N T R O D U C T I O N
I BASIC C O N C E P T S

1 1 Control Flow
1 2 Da ta Flow
1 3 Reduct ion

2. C O M P U T A T I O N ORGANIZATION
2 1 Classification
2 2 Control Flow
2 3 Da ta Flow
2 4 Reduc tmn
2 5 Implications

3 P R O G R A M ORGANIZATION
3.1 Classification
3 2 Control Flow
3 3 Da ta Flow
3 4 Reduct ion
3 5 Imphcat ions

4 M A C H I N E ORGANIZATION
4 1 Classification
4 2 Control Flow
4 3 D a t a Flow
4.4 Reductmn
4 5 Implications

5 DATA-FLOW C O M P U T E R S
5 1 M I.T Data-Flow Computer
5 2 Texas Ins t ruments Distr ibuted Da ta Processor
5 3 U tah Data-Dr iven Machine (DDM1)
5 4 Irvme Data-Flow Machine
5 5 Manches ter Data-Flow Computer
5 6 Toulouse LAU System
5 7 Newcastle Data-Control Flow Computer
5.8 Other Projects

6 R E D U C T I O N C O M P U T E R S
6 1 G M D Reduct ion Machine
6 2 Newcastle Reduct ion Machine
6 3 N o r t h Carohna Cellular Tree Machine
6 4 U tah Applicative Mult lprocessmg Sys tem
6.5 S - K Reduct ion Machine
6 6 Cambridge SKIM Machine
6.7 Other Projects

7 F U T U R E DIRECTIONS
A C K N O W L E D G M E N T S
R E F E R E N C E S
BIBL IOGRAPHY

A

v

duction) computers the requirement for a
result triggers the operation that will gen-
erate it.

Although the motivations and emphasis
of individual research groups vary, there
are basically three interacting driving
forces. First, there is the desire to utilize
concurrency to increase computer perform-

ance. This is based on the continuing de-
mand from areas such as weather forecast-
ing and wind tunnel simulation for com-
puters with a higher performance. The nat-
ural physical laws place fundamental limi-
tations on the performance increases ob-
tainable from advances in technology alone.
And conventional high-speed computers
like CRAY 1 and ILLIAC IV seem unable
to meet these demands [TREL79]. Second,
there is the desire to exploit very large scale
integration (VLSI) in the design of com-
puters [SEIT79, MEAD80, TREL80b]. One
effective means of employing VLSI would
be parallel architectures composed of iden-
tical computing elements, each containing
integral capabilities for processing, com-
munication, and memory. Unfortunately
"general-purpose" organizations for inter-
connecting and programming such archi-
tectures based on the von Neumann prin-
ciples have not been forthcoming. Third,
there is the growing interest in new classes
of very high level programming languages.
The most well-developed such class of lan-
guages comprises the functional languages
such as LISP [McCA62], FP [BACK78],
LUCID [ASHC77], SASL [TURN79a], Id
[ARvI78], and VAL [ACKE79b]. Because of
the mismatch between the various princi-
ples on which these languages are based,
and those of the von Neumann computer,
conventional implementations tend to be
inefficient.

There is growing agreement, particularly
in Japan and the United Kingdom, that the
next generation of computers will be based
on non-von Neumann architecture. (A re-
port [JIPD81a] by Japan's Ministry of In-
ternational Trade and Industry contains a
good summary of the criteria for these fifth-
generation computers.) Both data-driven
and demand-driven computer architecture
are possible fifth-generation architectures.
The question then becomes, which archi-
tectural principles and features from the
various research projects will contribute to
this new generation of computers?

Work on data-driven and demand-driven
architecture falls into two principal re-
search areas, namely, data flow [DENN79b,
Gosw79a] and reduction [BERK75]. These
areas are distinguished by the way compu-
tation, stored programs, and machine re-

Comput ing Surveys, Vol 14, No. 1, March 1982

SRC00034171

Patent Owner Saint Regis Mohawk Tribe
Ex. 2047, p. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Data-Driven and Demand-Driven Computer Architecture • 95

sources are organized. Although research
groups in each area share a basic set of
concepts, each group has augmented the
concepts often by introducing ideas from
other areas {including traditional control-
flow architectures) to overcome difficulties.
The aim of this paper is to identify the
concepts and relationships that exist both
within and between these areas of research.
We start by presenting simple operational
models for control flow, data flow, and re-
duction. Next we classify and analyze the
way computation, stored programs, and
machine resources are organized across the
three groups. Finally, a survey of various
novel computer architectures under devel-
opment is given in terms of these classifi-
cations.

1. BASIC CONCEPTS

Here we present simple operational models
of control flow, data flow, and reduction. In
order to compare these three models we
discuss each in terms of a simple machine
code representation. These representations
are viewed as instructions consisting of se-
quences of arguments--operators, literal
operands, references--dehmited by paren-
theses:

(argO argl arg2 arg3 . . . a r g n - 1 argn).

However, the terms "instruction" and "ref-
erence" are given a considerably more gen-
eral meaning than their counterparts in
conventional computers. To facilitate com-
parisons of control flow, data flow, and re-
duction, simple program representations
for the statement a = (b + 1) • (b - c) are
used. Although this statement consists of
simple operators and operands, the con-
cepts illustrated are equally applicable to
more complex operations and data struc-
tures.

1.1 Control Flow

We start by examining control flow, the
most familiar model. In the control-flow
program representations shown in Figure 1,
the statement a = (b + 1)*(b - c) is
specified by a series of instructions each
consisting of an operator followed by one or
more operands, which are literals or refer-
ences. For instance, a dyadic operation such

as + is followed by three operands; the f'~rst
two, b and 1, provide the input data and
the last, t l , is the reference to the shared
memory cell for the result. Shared memory
cells are the means by which data are
passed between instructions. Each refer-
ence in Figure 1 is also shown as a unidi-
rectional arc. Solid arcs show the access to
stored data, while dotted arcs define the
flow of control.

In traditional sequential (von Neumann)
control flow there is a single thread of con-
trol, as in Figure la, which is passed from
instruction to instruction. When control
reaches an instruction, the operator is ini-
tially examined to determine the number
and usage of the following operands. Next
the input addresses are dereferenced, the
operator is executed, the result is stored in
a memory cell, and control is passed im-
plicitly to the next instruction in sequence.
Explicit control transfers are caused by op-
erators such as GOTO.

There are also parallel forms of control
flow [FARR79, HOPK79]. In the parallel form
of control flow, shown in Figure lb, the
implicit sequential control-flow model is
augmented by parallel control operators.
These parallel operators allow more than
one thread of control to be active at an
instance and also provide means for syn-
chronizing these threads. For example, in
Figure lb the FORK operator activates the
subtraction instruction at address i2 and
passes an implicit flow of control on to the
addition instruction. The addition and sub-
traction may then be executed in parallel.
When the addition finishes execution, con-
trol is passed via the GOTO i3 instruction
to the JOIN instruction. The task of the
JOIN is to synchronize the two threads of
control that are released by the addition
and subtraction instruction, and release a
single thread to activate the multiply in-
struction.

In the second parallel form of control
flow, shown in Figure lc, each instruction
explicitly specifies its successor instruc-
tions. Such a reference, il/0, defines the
specific instruction and argument position
for the control signal, or control token. Ar-
gument positions, one for each control sig-
nal required, are represented by empty
bracket symbols () , and an instruction is

Computing Surveys, Vol. 14, No 1, March 1982

SRC00034172

Patent Owner Saint Regis Mohawk Tribe
Ex. 2047, p. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

96 • P.C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

() t 2 : () a : ()

..~)

(a)

s-- -~ i2:~--- -~i3:
(...FORK i2 ~ + b 1 tl GOTO i3 ~- b c t2 JOIN 2 * tl t2 a

b:(4 : tl:() t2:() a:()

(b)

. , .)

t0: (. . . il/o 12/o) bj,(4)¢,__ ¢: (2)
; \

i l : ((l~) + b 1 t l i 3 / 0) t 2 : ((4) - b c

i t

- " " t 2 : () I t l : () /

t3: ((~') (I,) t l t2 a . . .)

a : ()

(c)

t 2 i 3 / i)

Figure 1. Control~flow programs for a = (b + 1) * (b - c): (a) sequential, (b) parallel
"FORK-JOIN" ; (c) parallel "control tokens."

executed when it has received the required
control tokens. The two parallel forms of
control flow, illustrated by Figures lb and
lc, are semantically equivalent; FORKS are
equivalent to multiple successor instruction
addresses and JOINs are equivalent to mul-
tiple empty bracket arguments.

The sequential and parallel control-flow
models have a number of common features:
(1) data are passed indirectly between in-
structions via references t~ shared memory
cells; (2) literals may be stored in instruc-
tions, which can be viewed as an optimiza-
tion of using a reference to access the literal;
(3) flow of control is implicitly sequential,
but explicit control operators can be used
for parallelism, etc.; and (4) because the
flows of data and control are separate, they
can be made identical or distinct.

1.2 Data Flow

Data flow is very similar to the second form
of parallel control flow with instructions

Computing Surveys, Vol. 14, No 1, March 1982

activated by tokens and the requirement
for tokens being the indicated () symbols.
Data-flows programs are usually described
in terms of directed graphs, used to illus-
trate the flow of data between instructions.
In the data-flow program representation
shown in Figure 2, each instruction consists
of an operator, two inputs which are either
literal operands or "unknown" operands de-
fined by empty bracket () symbols, and a
reference, i3/1, defining the specific instruc-
tion and argument position for the result.
A reference, also shown as a unidirectional
arc, is used by the producer instruction to
store a data token (i.e., result) into the
consumer. Thus data are passed directly
between instructions.

An instruction is enabled for execution
when all arguments are known, that is,
when all unknowns have been replaced by
partial results made available by other in-
structions. The operator then executes, re-
moving the inputs from storage, processing
them according to the specified operation,

- >

+ BI tllo-= Ub ¢ wa t2 a

~

b:(4)

Cre

*

SRC00034173

Patent Owner Saint Regis Mohawk Tribe
Ex. 2047, p. 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Data-Driven and Demand-Driven Computer Architecture

14 i 1
13:) ()~ a/l)

(a)

97

!
!

11: (+ (~) 1 13/1) 12: (-

13: (*~()

(~) (I) i3 /2)

)

(b) 10

Figure 2. D a t a - f l o w p r o g r a m for a = (b + 1) * (b - c) (a) S t a g e
1; (b) S t a g e 4.

and using the embedded reference to store
the result a t an unknown operand in a
successor instruction. In t e rms of directed
graphs, an instruct ion is enabled when a
da ta token is present on each of its input
arcs. During execution the opera tor re-
moves one da ta token f rom each input arc
and releases a set of result tokens onto the
output arcs.

Figure 2 i l lustrates the sequence of exe-
cution for the p rogram f ragment a = (b +
1) * (b - c), using a black dot on an arc to
indicate the presence of a da ta token. The
two black dots at Stage 1 in Figure 2 indi-
cate tha t the data tokens corresponding to
the values of b and c have been genera ted
by predecessor instructions. Since b is re-
quired as input for two subsequent instruc-
tions, two copies of the token are genera ted
and stored into the respective locations in
each instruction. T h e availabili ty of these
inputs completes bo th the addit ion and the
subtract ion instruction, and enables their
operators for execution. Executing com-
pletely independently, each opera tor con-
sumes its input tokens and stores its result

into the mult ipl icat ion instruct ion "i3."
This enables the multiplication, which ex-
ecutes and stores its result corresponding
to the identifier "a," shown at Stage 4.

In the data-flow model there are a num-
ber of interesting features: (1) par t ia l re-
sults are passed directly as da ta tokens
between instructions; (2) literals m a y be
embedded in an instruction tha t can be
viewed as an optimizat ion of the data token
mechanism; (3) execution uses up da ta to-
k e n s m t h e values are no longer available as
inputs to this or any o ther instruction; (4)
there is no concept of shared da ta s torage
as embodied in the t radi t ional notion of a
variable; and (5) sequencing cons t ra in t s - -
flows of con t ro l - - a re t ied to the flow of
data.

1.3 Reduction

Control-flow and data-flow programs are
built f rom fixed-size instructions whose ar-
guments are primit ive opera tors and oper-
ands. Higher level p rogram st ructures are
built f rom linear sequences of these primi-
t ive instructions.

Computing Surveys, Vol. 14, No 1, March 1982

i l : (+ 1 43/1) 42: (- 13/2)

(*

\

SRC00034174

Patent Owner Saint Regis Mohawk Tribe
Ex. 2047, p. 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

