the mask being scanned across the image, in this case the
opposite is occurring—the template is hard-wired into
the FPGA while the image pixels are clocked past it.
Another important opportunity for increased cffi-
ciency lies in the potential to combine multiple templates
on a single FPGA. The simplest way to do this is to spa-
tially partition the FPGA into several smaller blocks, each
of which handles the logic for a single template. Alterna-
tively, one can seek to identify templates having some
topological commonality, and which can therefore share
parts of adder trees. This is illustrated in Fig. 11, which

vel block diagram for A

e -

rocessing. The facus of atte

AR T

A 8. High-le

R

ntion

shows two templates that share several pixels in common,
and which can be mapped using a set of adder trees that
leverage this overlap. The advantage of using FPGAs is
that FPGAs can be dynamically optimized at the gate
level to exploit template characteristics. A gen-
eral-purpose correlator would have to provide large gen-
eral-purpose adder trees to handle the summing of all
possible template bits. The FPGA, however, exploits the
sparse nature of the templates, and only constructs the
small adder trees required. FPGAs can exploit other fac-
tors such as collapsing adder trees with common ele-

i
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algorithm identifies regions of interest in SAR images. Pixels in

regions of interest are correlated against a series of binary target template pairs, with each pair containing a bright template (identi-
fying pixels of strong expected radar return) and a surround template (strong radar absorption). Templates with the highest correla-

tion are selected in the peak detection step.
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A 9. Correlation eperation showing shapesum calculation top) and thresholding/correlation (bottom).
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4 70. Example binary template with five “on” pixels (top) and
correspending adder tree (bottom),

ments, and storing pixels that are not needed by the adder
trees using RAM-based shift registers.

Tabie 2 illustrates the FPGA resource trade-offs in-
valved in template mapping. The table gives the FPGA
utilization for the Xilinx 4062 when four through seven
template pairs are simultaneously mapped into the FPGA
using the approach described above. Each template pair
consists of two 32 x 32 binary images and is represented
in the hardware using two template-specific adder trees,
The number of templates per second that can be evaluared
using this approach is a function of many factors includ-
ing the clock rate, the FPGA configuration time, the
number of templates per configuration, the candidate irn-
age and rarget sizes, the number of clock cycles needed to
evaluate the templates ar each relative image/tcmplare off-
set, and on I/O considerations. The performance can be
upper bounded by assuming that the 1/0 is fully efficient;
Le., that the FPGA is always cither computing carrela-
tions or being reconfigured. Assuming efficient 1/O is
fairly reasonable in the prototype systems we have con-
structed, we have been able to avoid letting the FPGA be
wdle by using scaled down versions of the templates,
When all of these factors are considered together, we find
that configuration can consume more time than compu-
tation; i.e. there is a significant performance penalty due
to reconfiguration. This overhead will diminish to 10%
or less when partially reconfigurable FPGAs become
more widely available. However, for parts thar are not
partially reconfigurable, the benefits of increased
computation power offered by larger FPGAs are to some
extent mitigated by the larger configuration bitstreams
and longer reconfiguration times that these parts require.
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A 11. Template commonalities are exploited to reduce hardware
requirements for computing multiple correlations,

Figure 12 shows a configurable computing board
that was constructed at UCLA as a prototype for the
template-matching problem. The board contains a “dy-
namic” FPGA that is used for template correlations and
is run-time reconfigured, a “static® FPGA for control,
SRAM for storage of pixels and results, EPROM for
configuration bitstream storage, and an interface to an
1960 embedded processor for more advanced configura-
tion control.

Ongoing Research

Configurable computing has grown from a field with a
handful of researchers in 1989 [45] to one that now re-
ceives the attention of hundreds of rescarchers and engi-
neers in academia, industry, defense, and a rapidly
increasing number of start-up companies, In this section
we identify some of the open issues in this field and de-
seribe selected recent and ongoing projects thar aim to ad-
dress them.

One of the most interesting questions in configurable
computing concerns the extent to which current FPGA
device and machine architectures should be altered to
better support computing as opposed to the prototyping
that drove much of the early evolution of FPGAs. Aca-
demic researchers pursuing this question face the obvious
challenge of being unable to fully exploit the existing in-
frastrucrure of commercial FPGAs and design tools, and
typically design custom FPGAS to validate their architec-
ture proposals. Various projects are underway, cach at-
tacking one or more of the well-known weaknesses of
commercial FPGAs. For example, some rescarchers are
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investigaring architecrures that are based on relatively
wide 16-bit datapaths (as opposed to the 1-bit datapaths
found in today’s EPGAs). While less flexible than EPGAs,
these computing devices are much more efficient in sili-
con terms and achieve higher arithmetic performance on
16-bit integer data. Other rescarchers are investigating
novel configuration approaches that cither reduce config-
uration time through context-switching or that distribute
configuration data with data to be processed. Still other
researchers are merging general-purpose processors and
FPGA resources on the same dic in an attempt to com-
bine the best features of both technologies.

Peter Athanas® group ar Virginia Tech is exploring
16-bit computing devices based on the “wormhole” tech.
nique: a computing approach that distribures configura-
tion data with the data to be processed [33]. Consisting
of asingle multiplierand a 4 x 4 array of 16-bit arithmetic
logic units (ALUs) interconnecred by a crossbar, their
COLT device combines configuration data and data into
asingle packet. Resembling dataflow computing in many
aspects, configuration dara in rhe packet are used to route
dara through the array and to configure ALUs for subse-
quent processing. COLT has been fabricated and is cur-
rently being rested.

Carl Ebeling’s group at the University of Washington
is working on RAPID, another device based on 16-bit
datapaths [14]. ARAPID array consists of a mostly linear
array of RAPTID cells, each cell consisting of an integer
multiplicr, three integer ALUs, six registers, and three
small memories, RAPID is primarily statically configured
bur uses limited dynamic control to provide run-time
flexibiliry.

Magrix, developed by Andre DeHon and others at
MIT, is based on a cell that can serve as an instruction
store, a memory element, ora computational element. All
datapaths are 8-bit and these cells are interconnected
with mulrilevel interconnect that can be used both for
dara and instruction distribution, Matrix is currently un-
dergoing commercial development by a new startup
company, Silicon Spice. DeHon has also conducted an
in-depth study that sets FPGA-based computing in a
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genetal-purpose computing context and has suggested
several machine architecrures [12)]. f

FPGA vendors are also pursuing their own research
and development projects as well as more aggressive fab-
rication processes. For example, over the next two years,
devices using supply voltages of 2.5 Volts and below will
become common, In addition, the technology lag of
FPGAs with respect to ASICS in terms of feature size and
number of metal layers is rapidly shrinking, with
3-5-layer FPGASs fabricated using sub .3 micron technol-
ogy expected to become common. The vendors are also
likely o both introduce and adopt architectural infova-
tions that have shown promise in academic rescarch.
Since future FPGAs will track ASIC technology more
closely and will benefit from a richer set of architectural
features, they are likely to compare more favorably with
ASICs for many applications than that of today. |

The BRASS project at U.C. Berkeley under John
Wawrzynek [22] is developing a single chip (Garp) that
incorporates a MIPS-IT processor and an FPGA core
whose elements roughly correspond to those found in the
Xilinx 4000 series. The BRASS researchers have modified
the MIPS-II processor, replacing the floating-point unit
with an FPGA core of their own design, and have aug-
mented the instruction set 1o include operations thar
manage the FPGA resources. Their goal is to execure
data-intensive operations on the FPGA core and leave
general-purpose operations on the processor. A related
cffort at Narional Semiconductor Corporation is build-
ing an FPGA that will combine a programmable proces-
sor and a fine-grained FPGA on the same chip [18].

Other researchers are investigating solutions to mixing
configurable computing elements with more traditional
processors. For example, Jan Rabaey of U.C. Berkeley
has examined the allocation of tasks in typical digiral sig-
nal processing and has proposed a multigranularity archi-
tecture that allows computations to be directed to the
hardware that best supports them [34]. Rabaey is also in-
vestigating strategies for low-power FPGAs, Though
some power reduction will occur automatically due to
technology changes, there is substantial Opportunity to
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redesign the logical units in FPGAs with power as a prin-
cipal constraint.

Several groups are looking at FPGAs that have multi-
ple configurations, or contexts, stored on-chip simulta-
neously. Ar any given time one context is active and the
others are stored in lower planes. Contexts can be
swapped extremely quickly—requiring from one to sev-
cral hundred clock cycles to complete—potentially elimi-
nating much of the overhead involved in loadin g
configuration bitstreams from off-chip. Of course, con-
text switching involves other overheads such as the re-
sources needed to hold multiple contexts on-chip, and the
hardware and tools to manage context-switching. The
carliest work on context-switched FPGAs was donc at
Xilinx beginning in 1991, though it remained proprietary
until very recently [42]. In the academic community con-
text switching was studied by Tom Knight, DeHon, and
their colleagues at MIT [11, 41].

Work to develop new configurable computing devices
also benefits from an understanding of how algorithms
map into the range of architectures represented by today’s
FPGAs and FPGA systems. Some of the most extensive
algorithm mapping work has been performed by the
BYU group led by Brad Hutchings, which has experi-
mented with most commercially available (and noncom-
mercially available) FPGAs as well as prototype systems
such as the HP Teramac [2] and Splash-2 [4]. BYU has

demonstrated applications in the following areas: neural
networks [15], morphology [48], ATR [35] and genetic
algorithms [19]. BYU has also developed a variety of de-
sign and implementation strategies [25] and provides tu-
torials for many different FPGA platforms via their web
site: http://splish.ce.byu.edu, A large bibliography of re-
lated papers is also available ar this sire.

BYU’s early research agenda was rwofold: one, deter-
mine what characteristics make an application a good
candidate for implementation on an FPGA-based com-
puting platform, and two, research and understand the
strengths and weaknesses of current devices, system orga-
nizations, and tools. Following up on this basic research,
BYU is now in the process of developing new system or-
ganizations and application-development strategies that
are based upon high-performance circuir libraries, do-
main-specific compilation, and RTR. BYU also contin-
ues to experiment with applications in an effort to find
additional applications that can exploit this technology.

John Villasenor and his colleagues ar UCLA have
demonstrated a video communications system in which a
single 5000-gate FPGA was reconfigured four times per
image frame to allow compression and transmission of an
image [26]. The Mojave project ar UCLA, led by John
Villasenor and Bill Mangione-Smith, has resulted in sey-
eral generations of boards and domain-specific design i-
braries for the ATR application described previously.

These boards included an interface 1o

an embedded processor that per-
formed on-the-fly analysis of results
and modified the FPGA configura-
tion sequence accordingly [43, 44].

Researchers including Mohammad
Shajaan and John Sorensen of the
Technical University of Denmark
[38] have examined architectures for
performing digital filtering using
FPGAs. Because roday’s FPGAs per-
form multiplications poorly, much of
the attention in filtering using FPGAs
has focused on multiply-free imple-
mentations. In the future, it is also
likely that adaprive filtering algo-
rithms will find application in FPGAs
thar are partially reconfigured as the
filrer coefficients evolve,

Another area of research focus is in
compilers and tools for configurable
computing platforms, Jan Page of Ox-
ford University has developed Han-
del, a programming language that
allows programmers to simulta-

i

A 12. A configurable computing board for ATR built at UCLA, The board Includes a “dy-
namic” FPGA that implements template correlations and Is rapidly reconfigured during
execution, a “static” FPGA for cantrol, SRAM for image data storage,
configuration bitstream storage. The board resides in a host PC and receives images

across a PCl bus.

SEPTEMBER 1998

ncously develop the FPGA circuir de-
scriptions and processor software
with a single description language
based on OCCAM [31). Reiner
Hartenstein of the University of

and an EPROM for
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Kaiserslautern has developed a machine-level abstrac-
tion called the Xputer [21] that also derives the target
machine description and its program from the same de-
scription. Wayne Luk at Imperial College is investigat-
ing formal approaches to FPGA design based on the
language RUBY [29]. Transmogrifier-C [17], devel-
oped by researchers at the University of Toronto, is a
programming approach targeted at Toronto’s TM-2
custom pladform, which is currently undet develop-
ment [27]. Anant Agarwal and his cal-

leagues at MIT are working on automated

programming approaches for very large :
couﬁgurablt:—computhlg plalforn'm [6] M

In addition, HP developed a very

The lack of a sufficiently general high-level software
programming model is of course a well-known problem
among researchers performing work in configurable
computing, and there are many ongoing efforts in which
creation of a design tool infrastructure is a goal, Even if
such languages can be developed, tested, and adopted,
there remains the problem of the “compiler,” which in the
domain of FPGAs means the tool chain that translates a
funcrional or structural description of the task into a.con-

casy-to-use compiler for their Teramac CONfigurable computing is likely to benefit
system that automatically partitioned, from architectural innovations both

placed, and routed a netlist of 1-million

gates into the nearly 1000 custom FPGAs 1N FPGAs and in the hardware to

that formed Teramac [2].

Configurable computing is represented
by a growing presence in the commercial
world, In addition to FPGA vendors in-
cluding Xilinx and Alrera thereis a rapidly growing list of
start-up companies with products that are based on
configurable computing. These including Annapolis
Microsystems of Annapolis Maryland, which commer-
cialized the SPLASH-II architecture; Virtual Computing
Corporation of Reseda, California; Morphologic of
Nashua, New Hampshire; and Giga Operations of
Berkeley.

Conclusions and Future Directions

It is now clear that for applications requiring deeply
pipelined, highly parallel, bit-level operations including:
cryptography, target recognition, and some types of im-
age processing, configurable computing machines offer
compelling speed and cost advantages over alrernative
implementations. For these rypes of applications,
configurable computing machines are likely to become
solutions of choice. What is less clear is the extent to
which configurable computing techniques will become
useful in more general computing environments, in par-
ticular for applications that irvolve hi gh arithmeric com-
plexity. Given the dominance and ever-increasing
capabilities of microprocessors for general-purpose com-
puting, it scems highly unlikely that any other commpuring
model, including thar offered by configurable comput-
ing, will make significant inroads against microproces-
sots in the foreseeable future. Widespread adoption of
configurable computing is also hampered by the lack of
exactly what microprocessors possess in abundance: a set
of relatively easy to use, widely known software program-
ming languages and associated compilers or interpreters
that allow a user with little or no knowledge of the under-
lying hardware to instruct a computing plarform to per-
form a desired task.
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interface to them.

figuration bitstream thar fully describes the circuit in the
FPGA. FPGA place and route tools have always benefited
from place and roure technigues used in ASIC design,
which involves many of the same challenges and tradeoffs
in terms of clock speed, design complexity, etc. However,
the several hours needed by current-generation commet-
cial FPGA tools to synthesize, place, and route a design
on an FPGA, while fast when viewed in the context of
ASIC design, are unacceptably slow when compared to
software compilers. To make configurable computing
practical will require that FPGA place and route tools be
made faster by several orders of magnitude, most lilkiely at
the cost of highly suboptimal mappings of tasks into
hardware. One exciting, but as yet unproven, approach
that has been advocated by William Mangione-Smith of
UCLA is dynamic compilation, in which small units of
precompiled FPGA configuration bitstreams can beicom-
bined extremely quickly at run fime to constitutea full
FPGA configuration bitstream, There are many; chal-
lenges in dynamic compilation, not the least of which is
the proprictary nature of configuration bitstreams for
most commercial FPGAs. :

As configurable computing advances it is also impor-
tant to distinguish techniques that are truly new, such as
large-scale run-time hardware reconfiguration, from
techniques that have existed in computing for many
years. Many of the “new” approaches in configurable
computing are in fact existing computing concepts that
are being implemented in 2 new domain, For example,
the ATR algorithm described previously gains its cffi-
clency from RTR, which can legitimately be claimed as an
innovation due to configurable computing, and from
mapping target templates into template-specific adder
trees, which is an example of the years-old technique of
partial evaluation.
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In addition to the obvious trend toward larger devices,
configurable computing is likely to benefit from architec-
tural innovations both in FPGAs and in the hardware o
interface to them. Configurable computing is a young
field with enormous potential to grow as FPGAs, their
derivarives, and the tools to use them advance. The
FPGAs that will be emerging in the next few years will be
in excess of half a million equivalent gates, which is large
enough to support a very diverse range of applications. In
addition, the state of the art in architectures for
configurable computing devices will be significantly en-
riched by the many ongoing research efforts studying ar-
chitecture issues. Existing and perhaps new vendors of
configurable computing devices, who are now well aware
of the potental of configurable computing, can be ex-
pected produce devices and the associated rools that will
make PPGAs of today look primitive,

Jolm Villasenor is a Professor at UCLA’s Electrical Engi-

veering Department in Los Angeles, California. Brad
Hutchings is an Associate Professor at Brigham Young
University’s Electrical and Compurer Engineering De-
partment in Provo, Utah,
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Data-Driven Multicomputers in Digital

Signal Processing

JEAN-LUC GAUDIOT, MEMBER, |EEE

New technolagies of integration allow the design of powerfyl
systems which may include several thousands of elementary pro-
cessors. These multiprocessors max y be used for a range of gopl;-
cations in signal and cata Processing. However, assuring the proper
interaction of a large number of processors and the ultimate safe
execulion of the user Programs presents a crucial scheduling prob-
lem, The scheduling of Operations upon the availability of their
Operands has been termed the data-driven made of execution an
offers an elegant sofution to the issue. This approach is deseribec/

or implemented (systolic arrays, data-flow machines, etc) are
examined in detail, The problems associated with data-driven gxe-
cution are also stucfied, 4 multi-level approach o high-speed dig-
ftal signal Processing is then evaluated,

I, INTRODUCTION

If we are to approach the computational throughputs
equivalent to billions of instructions per second which will
be required from the processing systems of the future,
improvements on al| levels of computer design must be
made. Faster tech nologyand better packaging methods can
be applied to raise clock rates. However, a one billion
instructions per second machine would require a clock

bounded by physical limits such as the speed of light.
Therefore, instead of considering  the technological
approach to performance improvement, we emphasize

Manuscript recejved Septemberd, 1986; revised January23, 1987,
This work was supparted in part by the Department of Energy under
Grant DE-FG03-87ER 25043, The views expressed in this paper are
not necessarily endorsec by the U.S. Department of Energy.

Theauthor is with the ComputerResearch Institute, Department
of Electrical Engineering-—Syslems, University of Southern Cali-
fornia, Los Angeles, CA 90089, USA,

IEEE Log Number 8716208,

1018-9219/87/0900.122

advantage of IMposing no “software retooling.” However,
complex numerical applications will not he easily partj-
tioned and much potential parallelism may remain unde-
tected by the compiler,

Ada, CSPp (26
the other hand

1, extended Fortran (e.g., HEP, Sequent), on
«allow the programmer to deal with paralle|

processes by the use of primitives for parallel task spawn-
ing, synchronization, and message passing. However, while
the programmer can eXpress some of the parallelism char-

acteristic of the application, much

may never be uncovered becayse of the inherent sequen-
tial concepts of the language which must be countered
through the use of special “parallelism spawning" instruc-
tions. Also, development time becomesimporlantsincethe
Programmer must “Juggle” with many parallel tasks to Syn-

chronize. In addition,

debugging becomes correspond-

ingly more difficult due to the sometimes undelerminjstic
appearance of errors,

For these reasons, an implicitapproach must be devised.
Inthe above two methods, instruction schedufing is based
4pon a central program counter. We pPropose to demon-
strate here the data-driven approach to programming mul-
tiprocessors; instructions can be scheduled by the avajl.
ability oftheiroperands. This mode| of execution is a subset
of the functional model of execution [9]. It provides a sig-
nificant improvement to the Programmability of multipro-
cessors by excluding the notion of global state and intro-
ducing the notion of values applied to functions instead of
instructions fetching the contents of memory cells as they
are in the conventional “control-flow” model,

The overall objective of this papet is to demonstrate the

applicability of
design of high
architectures. s

data-driven principles of execution to the
-performance signal and data processing
everal approaches will be demonstrated and

their particular domain of application will be contrasted.
The description of low-level Processing systems is beyond
the scope of this Paperand the interested reader i referrec

to an excellent survey by Allen [31.

Instead, we will con-

centrate here on the issues related to building high-per-
formance multiprocessors for sighal processing applica-

tions, In Section I,

we show the type of problems

considered in signal processing. The data-flow principles
of execution as they relate to digital signal processing prob-
lemsare described in detajl in Section 11 while several exist-

030100 & 1947 [EEE
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ing data-driven architectures are described in Section IV,
I Section V, we analyze a multi-level data-driven archi-
fecture and examine its programming environment. Con-
clusions are drawn in Section VI.

[, THI REQUIREMENTS OF SIGNAL PROCESSING

Digital signal processing techniques are applied to many
different technical problems. These include radar and sonar
systems, image processing, speech recognition, etc. The
elementary building blocks of these were originally con-
cenirated an such tasks as convolution, correlation, and
Fouriet transfarm. More complex algorithms (matrix oper-
ations, linear systems solvers, etc.) are now considered.
Higher order operations include not only simple problems
such as elementary filtering (IR, FIR, etc,)), but alsa more
complex functions such as adaptive and Kalman filtering
[45]. Also, such complex problems as Computer-Aidecd
Tomography or Synthetic Aperture Radar can be consid-
ered (39], [16]. Signal processing algorithms are very appro-
priate for description by functional languages. Indeed, a
signal processing algorithm is often represented in a graph
form (36] and can be decomposed in two levels:

a regular level which can be implemented by a vector
operation (i.e., aloopin which all iterations present no
dependencies among themselves);

alevel which contains conditional operations and heu-
tistic decision making.

[his description shows that the lower operational levels
can easily deliver parallelism (by compiler analysis or pro-
grammer inspection). This layer usually consists of simple
constructs (arithmetic instructions, FFT butterfly networks,
simple filters, etc.). However, the higher levels will require
more complex problem insight and even runtime depen-
dency detectionin order to allow maximum parallelism. We
will now describe principles of execution which will allow
1s to deliver this concurrency.

I DATA-FLOW PrINCIPLES

The data-flow solution to the programmability problems
of large-scale multiprocessors [5] has been pioneered by
Adarms (2], Chamberlin [11], and Rodriguez [43]. It is now
tescribed in detail in this section.

A. Basic Principles of Execution

In the conventional von Neumann model of execution,
an instruction is declared executable when a Program
Counter of the machine points to it. This event is usually
under direct programmer control. Whilea control-flow pro-
gram is a sequential listing of instructions, a data-flow pro-
gram can be represented as a graph where the nodes are
the instructions (actors) which communicate with other
nodes over arcs (Fig. 1). An instruction is declared execut-
able when it has all its operands. In the graph represen-
lation chosen above, this means that all the input arcs to
anactor must carry data values (referred to as tokens) before
this actor can be executed, Execution proceeds by first
absorbing the input tokens, processing the input values
According to the op. code of the actor, and accordingly pro-
ducing result tokens on the outputarcs, In summary, it can

GAUDIET: DAY ADRIVEN MULTICO:\-'-PUTEES‘IN Dsp,

Fig. 1. A simple dala-flow graph.

be said that the data-flow model of execution obeys two
fundamental principles:

+ Asynchrony of operations: The executability of an
instruction is decided by a local criterion only. The pres-
ence of the operands can be sensed “locally” by each
instruction. This is an attractive property for an implemen-
tation in a distributed environment where no central con-
troller should be used for global scheduling.

= Functionality of the operations: The effect of each
operation is limited to the production of results to be con-
sumed by a specific number of other actors. This precludes
the existence of “side-effects.” These side-effects may be
long-ranging in that the execution of an instruction may
effect the state of a cell of memory which will be used only
much later by another unrelated operation.

B. Data-Flow Interpreters

When iterations are executed, the underlying principle
of data-flow (single assignment of variables) must invariably
be violated. Indeed, for an actor to be repeatedly evaluated
as in an iteration, its input arcs must carry several tokens
(from different iterations). Several solutions have been pro-
posed to allow the controlled violation of these rules with-
out compromising the sale execution of the program.
Among these, the Acknowledgmenl scheme and ihe
U-interpreter have been given the most consideration.

1) Acknowledgment Scheme [14]: Proper matching of the
tokens can be observed by ordering the token production.
Thiswould be done by a careful design of the program graph
so as Lo insure that tokens of two differenlt iterations can
never overtake each other. In addition, it must be guar-
anteed that no token pileup is encountered on any onearc.
This condition can be verified by allowing the firing of an
actor when tokens are on all input arcs and there are no
tokens on any output arcs. In order to enforce this last con-
dition, an acknowledgment must be sent by the succes-
sor(s) to the predecessor when the token has been con-
sumed (Fig. 2). Note that an actor is execulable when it has
received its input arguments as well as all acknowledg-
ments. The parallelism which can be exploited from this
scheme is mostly pipelining between the actors of different
iterations. Thus when the number of instructions in the
body of an iteration is the same as the number of available
processors, the speedup observed by this mechanism of
execution is maximal. However, for small iterations (com-
pared to the size of the machine), the exploited parallelism
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Fig. 2. The acknowledgment scheme.

falls below its Potential. Thus it may be required that the
compiler effect a code expansion for vector operations.

N important characteristic of this static model of exe.
cution is the fact that it allows only one instance of an
instruction to exist at one given time. In other words, it is
primarily relied upon pipelining for the exploitation of par-
allelism in iterations, However, the basic acknowledgment

scheme does not allow (he implementation of multiple

2) The Unraveling Interpreter (U-Interpreter); The
U-interpreter [4] provides the most asynchronous possible
Qperation. In order to allow safe execution of actors in an
iterative construct, tokens are tagged with information per-

be found. This tag includes the iteration number. Indeed,
the U-interpreter closely follows these principles; to each
data token is attached 3 tag ofthe form u.P.s.i, where Piden-
fifies the procedure name of the destination actor, while s
is the address of this actor within procedyre p. The i field

isusedto recirculate the datafrom one iteration to the next,
Its input is tagged with u.P.t.i while its output valye js iden-
tical but has become tagged with ..t + 1. Nested iter-

graph. The function of (his actor is to create a new contexy
for the execution of the iteration: the input tokens are
tagged by u.P.s.i while the output tokens are identical but
are tagged with u'.P,',1 where g’ 15 itself u.i. Note that this
mechanism is sufficient fo create an entirely different set
of tokens for two nested iterations, Indeed, assume that lwo
tokens both belang tothesameinner iteration j but be!ong
to the j, and f, outer iterations respectively. The first token

1227

MNEW x

l

Fig. 3. A typical jterative ranstruct in the U-interpreter.

would be tagged u1.Ps.i (u1 = tjy) while the second s
tagged with u2.P.5.f (2 = U.f3). This shows that an appro-
priate differentiation has been made between the two
instances. The original context uis retrieved by the L~ actor
before exijting.

Contrarily to the acknowledgment scheme, this dynamic
data-flow scheme allows fullasynchronous execution of the
Program graph. Indeed, due ta the scheme of tags, several
instances of the same instruction may  exist simulta-
neously. Vecior operations may be executed in paralle|
without compiler-indyced replication of the graph. Like-
wise, multiple function calls and more particularly recyr-
sionsare allowed since each Newactorinstantiation recejves
a different tag. This means that the U-interpreter would be

expense of added hardware complexity. Indeed, it will be
shown in Section 1V-D that implementation of the U-inter-
preter requires an associative memory far fast tag match-
ing. Several machines based on these principles have been
studied: the MIT tagged token data-flow machine [6], the
ESL DDSP [28], the University of Manchester machine [23],
the ETL Sigma-1 [25], etc,

C. Structure Handling

pipelined fashion. One of the basic premises of data-flow
principles states that an output is a function of jts inputs
only, regardless of the state of the machine at the time of
execution. When a structure of elementary elements must
be processed, the absence of side-effects means that jt may
not be updated for this would imply its transition through
several states, Instead, i any updates are needed, a new
array which contains the new elements must be created.
Copying of all elements must be undertaken for the mod-
ification of a single ane, This solution imposes an inordi-
nateoverhead, This js why theimplementation schemeswe
will now describe can shortcut this com plete copying while
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preserving the meaning of the program during array u pelate
operilions.

1) Heaps: Dennis [14] has proposed to represent arrays
by directed acyclic graphs (also called heaps). Each value
is represented as the leaf of a graph tree. The modification
of a single element in a heap is represented in Fig. 4. Note

A A

%2 1,3 0 22 23 "29\'

Fig. 4. A heap update.

fhat the complexity of the madification of a single element
of the array is O(n) for a copy operation, while it is
Oflog n) for the heap. Several instructions are exclusively
devoted to the access of heaps [15]: SELECT receives a
pointer (o the root node, an index value, and returns a
pointerto the substructure (which may be a leai node) asso-
ciated with the index; APPEND also needs the same two
operands in addition to the value of the element to append
o the structure,

) kStructures: A heap must be entirely ready before it
can be consumed because no consumption (SELECT actors)
can take place until the pointer token appears (i.e., the cre-
ation of the array is completed). In the I-structure scheme
[71 constraints on the creation of arrays allow the selection
of individual elements (or substructures) from the array
before its complete production. One possible im plemen-
tation of I-structures makes use of a “presence” bit which
indicates when an element of an array has been calculated
and s ready for consumption. An altempt to read an empty
cellwould cause the read to be deferred until such time that
the cell presence bit is marked. Conversely, a write into a
cell, the presence bit of which indicates valid stored data,
could be cause for the generation of an error signal. The
advantages of this scheme are:

* belter performance because pipelining is allowed
between I-structure consumers and producers;

* less “serfalization” of operations such as APPENDs,
because they are allowed to accur independently an
the same structure,

3) HDFM Arrays: A special scheme for handling arrays in
a VAL high-level environment has been designed for the
Hughes Data-Flow Machine (HDFM) [21]. Ituses the fact that
data-flow arrays as described above are overly “asynchro-
nous,” i.e., they do not take advantage of the data depen-
tdency information carried by the program graph, Safety of
accesses is respected by not allowing the updating of an
array before all the reads from the current version of the
array have been performed. Only then can the array be
directly modified. Safety and correct execution of WRITE
Operations are a compile-time task. This has the advantage
of reducing the number of memory accesses (no complex
graph of pointers must be travered as in heaps) as well as
of offering a better possibility of distribution of an array (no
root node). However, spurious data dependencies may he
introduced because the compiler is not necessarily aware

GAUDIOT: DATA-DRIVEN MULTiCD:\-iFUT'EiZS IN D5P

of the possibility of parallelism that can be detected only
at runtime, For instance, dependencies on A and 8 related
by ACF(i)) = Bii) may he artific ially imposed, However, (he
applications targetied by the HDFM include some amount
of regularity which can be easily detected by the compiler
and implemented as conventional arrays.

4) Token Relabeling [16]: In the U-Interpreter, the notion
of array can be entirely ignored at the lowest level of exe-
cution. Instead, the tag associated with each token under
the rules of the U-interpretation is used as identification of
the index of the array element of the high-level language.
In other words, it can be simply said that, when an array A
is created, its A() element will hbe tagged with i (hereafter
denoted Ali)y, if the elements are produced in the logical
order. In the “production” of a unidimensional array, the
iteration number can usually be directly interpreted as the
index of the array element just produced by the iteration.

Special token relabeling program graphs can be crealed
to handle scatter and gather program constructs [27] (Fig.
5(@). This figure shows that an inversion function £-'

Al
(Relobeling)
(Y
s S .
{#1] (vl
Clk
l )
DO =i, 100
fCH = B+ AfFLH)
{a)
'-'"ul!‘:'r‘l“_'g-l A
-
BT P i
...] .Z\[HI,F_IH Jl":ﬁ--l".lfhﬂl.I |
L= ,]
j [i]
()

Fig. 5. (a) A gather operation, (b) Token Relabeling gather.

This demonstrates that, without recourse to the calculation
of F~', the proper relabeling of the A elements has been
effectively produced,

This algorithm requires no intermediary storage, does
not need array operations, and imposes smaller hardware
and execution overhead. This relabeling approach elimi-
nates a large portion of the overhead associated with the
production and consumption of array A. Pipelining between
the source and the sink of a data structure is the goal of this
unknown at compile time would be needed to perform the
relabeling of data-flow tokens. Such a calculation is not truly
necessary. Instead, we introduce (Fig. 5(b)) a sequence gen-
eratorwhich produces the F{( j)'s, tagged by j. An exchanger
actor (called x) swaps the tag and the data value and pro-
duces fi,; Both streams (the A's and firm) are input to a
special relabeling actor 8 which only modifies the iteration
portion of the tag. By the principles of the U-interpreter,
only tokens which bear the same tag will be matched as
proper inputs to the 6 actor. In other words, the mate of
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o m U RIS el aElor a is
o UERRng actor which takes the A input ane relabels |y
with the data carried by the taken on the other input arc,
In ather worels, i oulputs ACE(D,,« Since | isa dummy var-
lable, and since Fis bijective, it can be said that, on 3 global
Point of view:

ﬁ'{{FU)J-,, = A”CJ” k) -

scheme, just as it Was the idea behind the design of the
Istructures, However, (he token relabeling approach brings
4 better runtime Memory management since tokens cor.
responding to the varioys elements of the array still exist
4nd must still he temporarily stored, they need not go
through an additional storage asadatasiructyre, Also, there
15 no need for “requests” for data as would be the case jp
an -structure environment: When an I-structure js Crealed,
4ctors which need data from it musi demand the elemen|
N question until it has arrived, This may introduce heavy
uverheads as unsatisfie requests must be queued in the
structure jtself, Garbage collection is automatically hap-
dled sipee when the “array token' is matched, it js aulo-
Matically remove fromthe are. In other words, when i( has
been used, it js swallowed by applying data-flow principles.

D. High-Level Data.-F, low Languages

In addition 10 the low-leye| mechanisms of execution
which were described earlier, special high-level data-flow
languages have been designed jor easier translation into
data-flow graphs. To be sure, these high-leyel languages are
hotanecessity: the Texas Instruments data-flow project[31]
relled upon Fortran programming through the use of a
modified version of 3 Vectorizing compiler originally des-
tined to the T Asc. However, many high-leve| languages
have been designed for data-flow Prototypes. Most notable
are VAL (Value Algorithmic Languages) for the MIT static
data-flow project [37], (11 1d (Irvipe Datallow) for the MIT
tagged 1oken data-flow architecture (41, LucID [8], [30], etc,
SISAL (Streams and Iterations ip Single Assignment Lan.
Suage) has been designed by McGraw ang Skedzielewski
[38] and is intended as the definition of 3 "Universal” lap-
Buage for the Programming of futyre multiprocessors,

cific purpose of Programming signal processing applica-
tions. These include the SIGNAL language designed by
Le Guernic e aj. [36]. The inten) of the language is to pro-
vide a formal specification of signal processing problems
and 1o ease the design of signal Processing multiproces-
s0rs, be they special- or general-purpose. One of the main
characteristics of the language s that it incorporates the

cessing tasks, This makes it a synchronous language as
opposed fo asynchronoys languages such as CSP and
Occam [10]. SDF (Synchronous Data Flow)is another formal
description of signal Processing algorithms basad on data-
driven principles of execution proposed by Lee and Mes-
serschmitt [35],

v, DATA-DRivin ARCHITFC TURES

We now describe in detail severa| systems which operate
dtruntime, co mpile-time, o5 design-time under data-driven
execution, Althoughitjs generally considered thag data-tlow
principles of execution are in effect a runtime, we extend

their domain of application (o design oy compile time and
referto them ag dar.'r-drfvensyn.'ems._‘v\/e thus initially exam.
ine multiprocessor systems where datq dependencies haye
been frozen a design time (sysiolic arrays), We then con.
sicder Programmahle systolic arrays (the Wavefrant Array
Processor) ang multiprocessors scheduled at compile time
by the use of data-flow Program graphs (the S| polycyclic
Processor), Finally, we study systems where the data depen-
dencies provide scheduling information at funtime (the
Hughes Data-Flaw Machine) and examine the influence of
the leve| gf resolution upon the Performance (the Usc
TX16),

A S ystolic Arra vs [32]

The primary goal of a systolic array is to make use of the
large amount of Processing power available in VLS| tech-
nology by using repetitive circuitry to perform signal pro-
cessing problems, matrix operations, image processing, etc.
In summary, a systolic array js simply a collection of inter-
Connected Processing Elements (PEs), n order to incor-
porate as many processors as possible, the structyre of the
PEs themselves is keptto a maximum simplicity and usually
includes only a few operation units. For design simplifi-
cation, there are few types of PEs in the same system. By
the same taken, Interconnections are kept L0 a nearest
neighbor topology in order 1o minimize communication
delays as well as power distribution issues. Note that topal-
ogies include twa neighbors (linear arrays), four neighbors
(square arrays), or Six neighbors (hexagonal arrays) as
required by the problem to solve, This is notably due to the
fact that scheduling mechanisms must be based upon foca/

CT
Lo

x i

Fig. 6. A linear systolic array.

how (he synchronization of the Processors and of the input
data rate has been Mapped to meet the requirements of the
problem. Note that each processor js designed to Operate
Upon the arrival of the arguments. |n summary, it should he
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poted that systolic arrays are very efficient al compulta-
tionally intensive problems which involve many repetitive
low-evel calculations. Also, the very nature of their design
renders their function fixed at design time,

. The Wavefront Array Processor (WAP) [33], [34]

Execution on the WAP is similar at runtime (o the exe-
cution of a program on a systolic array. Indeed, both
approaches rely upon the scheduling of operations based
on the availability of their operands. However, the analysis
of the data dependencies is effected during the design of
a systolic array while the WAP is scheduled by compiler
detection of parallelism: the WAP is a “'programmable sys-
tolic array.” It has been shown that most signal and data
processing algorithms possess a certain amount of locality
and recursivity. They will thus exhibit the phenomenon of
computational wavefront. This has an important implica-
tion in that an entire front of processors can be pro-
grammed for the same operation. In addition, it can be
shown that two successive wavefronts cannot intersect. This
enables the proper implementation of data-driven princi-
ples of execution. For instance, a matrix multiplication can
be executed as a computational wavefront (Fig. 7). A special

Ch = Ch e, xn, ¥

MEMORY MODULES

PROGRAM
CQDE

Tq_ X
MEMORY AL gt .

- £

MEMORY MODULES

————Firs) Wave
=<===-=-Sacand Wove

Fig. 7. Matrix multiply in the WAP,

language called the Matrix Data-Flow Language (MDFL) has
been designed to express such algorithms on the WAP,

C. ESL Polycyclic Architecture [41]

The ESL polycyclic architecture is a horizontally micro-
programmed multifunctional vector processor. It com-
prises several functional units (adders, multipliers, storage
units) connected by a cross-bar interconnection network.
Entire vector loops (no data dependencies across the iler-
ations) can be scheduled by using the model presented in
[40]. The essential idea is to discourage “greedy” sched-
uling by insertion of “non-compute” delays in the train of
calculations, The effect of these delays is to enable an opti-
mal schedule, A pipeline is viewed as a certain number of
resources (the various segments of the pipe) which can be
reserved by tasks. The problem is reduced to the produc-

GAUDIOT: DATA-DRIVEN MULTICOMPUTERS IN DSP

tion of a reservation lable with no collisions (i.e., no two
tasks can reseryve the same segment of the pipeline ar the
same time). For (hat purpose, a usage mterval ts dotined as
the time interval between two roservations of 4 se el by
asingletask. Two tasks will collide when they have the same
initiation time as one of the usage intervals. For 4 homo
geneous multiprocessor (identical PEs), the method is done
In two steps:

I} Determine the Minimum Initiation Interval MIl as
MIlL = |[N/PL. N is the pumber of instructions in the horly
of the loop, and P is the number of processors available for
execution. The initiation interval is the length of time
between the initiation of two consecutive jterations. Suc-
cessive iterations will be scheduled at MI1 units interval. All
the iterations will be identically scheduled.

2) Schedule the operations in accordance with the data
dependences. However, no more than Poperations may be
scheduled for the same time modulo MI1. Note that this last
constraint also implies that delays must be inserted in the
schedule,

The following example shows the scheduling of a simple
vector aperation (Fig. 8(a)) on a polycyclic processor with
two adders and one m ultiplier (note that for simplification,
communication costs have been assumed to be null), There
are lwo multiply operations for a single multiplier while
there are three additions on two adders., The MIl would
thereiore be 2. This means that one iteration of the loopcan
be performed at a rate of one for every two cycles, By using
the data dependency graph of the example (Fig. 8(b), the
optimal schedule can be used by applying the M| of 2 (Fig.
8(c)). Proper “dovetailing” of successive iterations is assured

DO L) N
| .';m=ll.u.'1-umf~!-|vm--mn]|-[r-::an--.r-r.l
(al
.r': a . L E P

7 . 7 A 7

% / I; X
/ 7 \/
W@ @ e
\ ]

(h)
Lime | Mubiiphir  Adder #1 Ay 82
i M1 Al K2
| - Al
* -
3 A2
(8]
Liene el MI | Mutilptler Adly )
0 NI AT
I l AiED)
1 | My AR YWy
i [ ) Alf 2]
" () AT A
1 Ay LR TR .
(1] o '
(ch)

Fig. 8. (a)Asimplevector operation. (b) Corresponding data
dependency graph. (c) Scheduling a single iteration.
(d) Dovetailing ilerations.
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e ee EHUIING algorithm when the iterations are jpro.
cessed at the rate of one for every two cycles (Fig, 8(cl)). This
architecture applies particularly well to signal processing
applications where the same computation must be repet-
itively appliedtoadifferent element in a steady datastream.

Forexample, a butterfly block inan -point FFT operation
would be executed n x log n times. However, in addition
to the purely computational actors shown above, “store”
and “retrieve” operations should also be considered. This
is demonstrated in the data-flow graph of Fig. 9(a) which

1 |n:l:;|i b Indax2 W Index3
y - ", 2

RZ | READ I RJI

MrE-I '

T
| Indaxd

(a)

Time | Mulviplor Aoy et Mogid Mg g il Aoy
0 - = ft1 i = .
lia :

M1

Al \a -
: : Wi W
(h)

Fig. 9. (a) FFT butterfly block, (b Scheduling of an FFT bul--
terfly.

corresponds to a single iteration (butterfly block) of a real
FFT. Note that the indexes (for reads and writes) have been
assumed to be generated elsewhere (e.g., table look-up) and
are ignored in this discussion for simplification. Assuming
that two adders and one multiplier can be used, and that
we have four memory modules al our disposal, the MIl can
be determined as the maximum of the N /P ratio for each
kind of resource. This yields an MII of 2 (Fig. 9(b)). Note that
further work in the scheduling of iterations has been car-
ried out in [44]. This research isalso applied to SSIMD archi-
fectures and allows the existence of dependencies between
iterations.,

D. The MIT Tagged Token Data-Flow Machine (6]

This machine implements a version of the U-Interpreter.
In this distributed architecture model, each PE is inde-
pendentfromits neighbor and there is no global controller.
A hypercube communication network allows the trans-
mission of data-flow tokens between PEs. Store-and-for-
ward capabilities are provided so that a pair of PEs whicl
is not directly linked may still communicate,

The structure of each PE is shown in Fig. 10. A switch
receives tokens from the network and determines whether
the incoming packet is a data token or astructure request
tobe processed by the I-Structure Memory. In the Matching
Store Unit, the tag of the incoming token is associatively
checked against that of previously arrived tokens to deter-
mine whether it is the first or the second token to arrive at
a given instruction. The first token should be stored in the

| MATCHING
| STORE upMIT

I=STRUC TURE
MEMORY

IMSTRUC T1oM
FETCH UIT

Fig. 10. A PE in the lagged token data-flow machine,

associative memory of the M;ilching Store Unit and held
until its mate arrives. For the second loken, the corre-
sponding instance of the instruction can be aclivated by
sending an argument packet to the next unit. The Instruc-
tion Fetch Unit receives this packet and fetches the param-
etersof the instruction. Note that the template contains not
anly the op.code but also pointer(s) to the destination
actor(s) to which the result of the operation should be sent,
Acomplete instruction-ready packet can be formed and sent
for execution to the ALU. The ALU blindly executes the
operation indicated by the incoming template and pro-
duces result tokens which are received by the Token For-
matting Unit. Finally, the Token Formatting Unit receives
tokens which have been produced bythe ALU. These tokens
comprise several fields: the tag associated with the oper-
ation (after modification if the operation was a tag-modi-
fying operation), the data themselves, as well as an allo-
cation function field. This field is used by the Token
Formatting Unit to determine the destination PE of the
token. Indeed, this determination cannot often be made
solely on the basis of destination actor for this would mean
allocating to the same PE al| the iterations of an actorin loop.
This is clearly unacceptable if parallelism is to be extracted
across the iterations of the loop. An often used heuristic
allocation function is based upon calculation of the jtera-
tion number modulo the total number of PEs. This function
has the advantage of allowing proper distribution of a loop
across the machine. Depending upon existing conditions,
different allocation functions may be used within the same
graph. However, it must be noted that the function must
be the same for the two tokens destined to the same actor.
Failing the verification of this condition, the two tokens
would never be matched for they would be sent to different
PEs. This demonstrates the need to implement this allo-
cation operation at compile time.

E. The Hughes Data-Flow Machine (HDFM) [2 7]

The goal of this project is to provide a high-performance
parallel architecture which s highly programmable and at
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the same time offers advantages of modularity and sim-
plicity of implementation for signal and data processing
applications. Allcommunications are based on the message
passing model. A maximum of 512 PEs can be organized in
a cube network. Each PE is attached to three busses (row,
column, and plane). Design of the PEs has been made for
easy implementation in VLSI. PEs can easily be added
hecause of the modular nature of the communication net-
work, Traffic on each bus is based upon contention before
data can be transmitted. Any two PEs can communicate by
a maximum of three “hops’’ (Fig. 11). The execution model

PLANE

0 o~ < __* COLUMNS

PLAMNE

|
PLANE
2

o A
PLANE

Fig. 11, Structure of the HDFM communication network.

is based upon the acknowledgment scheme. Instead of
using “hardwired’ acknowledgment arcs between two
communicating actors, this machine is based upon the
principle of “software’ acknowledgments. The compiler
partitions the data-flow graph into blocks. Special acknowl-
edgmentarcsare introduced between the blocks. Note that
this method allows pipelining belween iterations at the
block level,

One of the primary requirements of the machine was to
incorporate as few component parts as possible. This

implies a high level of integration for the individual PEs.
Indeed, each PE consists of only two custom-designed chips
in addition to several commercially available memaory cir-
cuits. The overall architecture of a PE is shown in Fig. 12.

PLANE COLUMN ROW

.

COMMUNICATIONS CHIP

® PACKET ROUTING
AND FAULT TOLERANCE

COM(1 VLED

!

DESTINATION TEMPLATE
MEMORY PROCESSING CHIF MEMODRY
(omi = OPERAND FETCH (T}
e—p| * DATA FLOW SEQUENCING A

* INSTRUCTION EXECUTION | |
= SEND QOUT RESULTS

MULTIPLE MULTIPLE
PROC (1 -

RAM CHIPS (3 NLSh RAM CHIPS

Fig. 12, A PE in the HDFM.

The COM chip handles all the communication functions
and interfaces the actual PE with the three-bus commu-
nication network. [t implements the necessary “'store-and-
forward” and performs in addition a buffering function in
order to even packets rates. Note that the chip pin-outs
requirements limit the number of outside busses to 3. The
PROC chip is the actual PE which contains three pipelined
stages: 1) instruction/operand fetch and data-flow firing rule
check, 2) instruction execution, and 3) result token for-
malting. It can be easily represented schematically (Fig. 13).
Tokens arriving from the COM chip are first checked to
determine whether they complete an instruction packet or
not. Ready instructions are then dispatched 1o the exe-

PROC ‘“4_' _______ _I
| Fta
| s | ADDR
4-ADDA | > Tty IRy *ltmm_
‘ o TCO (o | FOM I i
o | ) 2 ‘ | ™
' o bl =t DT FQ |
h | ) |
_ DATA, _ P ——]
9 l RO |
[ iAo 4 Y |
| > |
| ALU
! - |
] _
MICROMACHINES QUEUES

COM: COMMUNICATIONS/FAULT TOLERANCE
TMC: TEMPLATE MEMORY CONTROLLED

ALU: ALU/MICROPROCESSOR AND MICROMEMORY
DT: DESTINATION TAGGER

DMC: DESTINATION MEMORY CONTROLLER

MEMORIES

DM: DESTINATION MEMORY
TH: TEMPLATE MEMORY

FOM: FIRE DETECT MEMORY

Fig. 13. The PROC chip in the HDFM,
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FCO: FROM COMMUNICATION QUEUE
FBO: FEEDBACK QUEUE

FQ: FIRING QUEUE

RQ: RESULT QUEUE

DQ: DESTINATION QUEUE

AlQ: ASSOCIATED INFORMATION QUEUE
TCQ: TO COMMUNICATION QUEUE
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Lestination Tagger and sent to the COMm chip or back to
the input Token Unit as the case may be, The Template
Memory Controller (TMC) enfarces the data-flow rules of
executionand checks the completion of an input set before
itsends a complete instruction packet to the ALU for exe-
cution. Results are sent by the ALU to the Destination Tag-
ger (DT). In collaboration with the Destination Memory
Controller (DMC), this unit associates the data values pro-
duced by the ALU with their proper destination address
(which can be found in the Destination Memory DM), Note
thatin the Cell Block architecture, the lemplates are wholly
stored in one location, In this architecture, the templates
are, instead, split in two portions: the op. code and input
operand portion stored in the Template Memory TM, while
the corresponding result Pointers are stored in the Des-
tination Memory. The rationale for this design decision can
be found in two points: first, this allows a better space man-
asement since the destination list of any template may be
of undeterminale length, Second, if the whole template
wereto bestored in the Template Memory, the Destination
Pointer information would have to be Propagated through
the ALU before it could be used only in the last stage of the

F. The NEC uPD7281 [12]

The NEC uPD7281 s asingle-chip digital signal processor,
Its most important application js image processing. Some
immediate applications include image restoration, en-
hancement, compression, and pattern recognition, |t is
based on a data-flow model of computation and imple-
ments such complex Operations as multiplication in the
basic instruction set. More specifically, its primitives are
designed for an efficient execution of image processing
algorithms. The use of data-flow Principles of execution
increases the Programmability of the machine and renders

6
DB 0B, — Z

Fig. 14.  The NEC upD7281,

the multiprocessor architecture invisible (g the program.
mer, Another characteristic of (he #PO7281 is (hat it can b
cascaded with several other identical chips ina ring archi.
tecture, Indeed, the architecture of {he HPD7281 enables
the design of multiprocessor systems for Improved per-
formance, By cascading several such PEs, a high degree of
pipelining can he abserved. In addition Lo the high-leve|
organization of the chips, each chip is itself organized in
aring architecture (Fig. 14) which Operates in a pipelined
fashion,

Constants may be stored in the Data Memory for storage
during execution, The Program is represented In both the
Function Table and the Link Table. In the Function Table,
the actors themselves are stored. Similarly, the Link Table
contains a representation of the arcs between the actors,
After the initial loading of the PEs, when a token enters 4

Itis forwarded to the pext Processor along the chain, Oth-
erwise, it can be sent to the Link Table for processing. In
theLink Table and the DataMemory, itis matchecd with other
tokens before it can be sent lor actual Processing. The Linl
Table always contains the first of the two operands that
arrive, The Address Generator and Flow Controller are used
to generate addresses of constants. Note that after actyal
processing of a data-flow actor iy the Processing Unit, the
resulting ioken is again processec by the Link Table of the
same Processing Element. When the ultimate consumer of

tion is executed in the queue so that the loken can be
switched to the Output Controller, Overall, this circular
pipeline contains seven segments and can deliver 4 max-
imum throughput of one instruction per cycle. The prim-
itives of the uPD7281 are oriented towards image process-
ing applications:

* CONVO (Convolve) which can be used to perform
cumulative operations such as

AB,

ok

L

14
7 onn oo,
——= OREC
——DACK

circulor
pieeling
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Fig. 15. A convolver actor,

(Fig, 15). Note that this operation is not strictly speak-
ing a data-flow actor in that the summation implies a
“state” of the actor. Formally, it would correspond to
a "macro-actor” [20] which inclucdles a graph of several
elementary data-flow actors.

* ACC (Accumulative Addition Instruction),

« Bit manipulation, data conversion instructions, etc.

The multiplication of a3 x 3 matrix by a 3-element vectar
is illustrated in Fig. 16. It is assumed that the A matrix has

B Hy 8y
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*

AN
c# A
] < 3

AL 1) agln ml e,
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Fig. 16, Matrix vector multiplication.

already been allocated to the data memary. Each element
of the vector 8 is received and is replicated three times by
the COPYBK actors. Note that one of the internal param-
eters of the actor is 3, the number of required replications,
The multiply actor is a coupled with a readA,( j) actor so as
to perfarm the multiplication of 8; with Ai(f). The results
from the three multiplications are matched and accumu-

CAUDIOT: DATA-DRIVEN MULTICOMPUTERS IN D5k

lated to produce the result C,. Note that the queue actors
enable a better pipelining of the successive computation
waves. They allow an execution similar to the modal ppre-
sented by the Acknowledgment scheme (Section 111-B1),
However, while in the Acknowledgment scheme only one
token is allowed at any time on any single arc, this model
of execution allows as many tokens per arc as the size of
the queues. Benchmark evaluations have shown a near lin-
ear speedup with increasing numbers of chips from 1 ta 3:

1 PE 3 PE
312 % 512 binary image rotation 1.5 ms 0.6 ms
512 % 512 binary image 1 shrinking 80 ms 30 ms
512 % 512 binary image smoothing 15 0.4s
512 % 512 binary image 3 % 3 conv. 3.0s 11s
64 stage FIR filter (17 bits) 50 ps 18 ps
cos(x) (33 bits) 40 ps 15 ps

G. The USC TX16 [19]

TheTX16is based upon the Inmos Transputer, The Inmos
Transputer has been heralded as the first of a new gen-
eration of microprocessors. Indeed, while conventional
microprocessors are interfaced with the external world
through a single memory bus (address, data, and control),
the Transputer possesses in addition four serial commu-
nication links. Each of these communication links allows
point-to-point transmissions between two Transputers, This
architecture is reflected at the language level: the arrival of
data on a link will trigger a process inside the receiving

The programming language Occam allows the presence
of several different processes while only one is active at a
time. Message transmission with other processes is based
upon the synchronous principles of CSP [26], [10]. This
means that when the active process must communicate an
intermediary result with another process (possibly located
in another processor), the active process is held until the
other process has been found to be ready for the trans-
mission. While the process is held, it is stacked into the
inactive process queue. Another ready process is then acti-
vated until it either terminates or is itself hung because of
a required transmission. This low-level context change
mechanism compares favorably to the busy-wait model
found in conventional multiprocessor systems. Instead of
idling a processor while waiting for an intermediary oper-
and toarrive, the system allows context switching toanother
ready process.

The system consists of 16 interconnected Transputers
interconnected in an [LLIAC-IV topology. The four links of
each Transputer are used for scalar data communications
and for interprocess synchronization messages. Each PE
owns a single bank of the memory system (Fig. 17). A pro-
cessor can directly access its own memory bank through
the external memory bus of the Transputer (local access).
A remote access can be made into the bank owned by
anather processor. In this case, the Bus Cantroller formats
the request from the PE into a packet and takes control of
the bus. The request is then forwarded to the destination
PE. When the request is a read request, a response will be
sentin the same fashion back to the originator.

The data-flow language SISAL (Section 111-D) was chosen
asthe high-level interface for the TX'16 because the data-flow
principles of execution can be directly mappedinto Occam,
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The converse is not true, however, since it is possible to
design unsafe Occam programs which would have no cor-
responding part in the data-flow world. This mapping is
made possible by the fact that both programming
approaches rely upon the principles of scheduling upon
data availability. Several numerical algorithms have been
tested on a simulated machine and have demonstrated a
nearlinear speedup for the size of the machine considered.
Itshould be noted that this was obtained without the inter-
vention of a sophisticated high-level language compiler.
Instead, a data-flow language was used to provide the pro-
grammability needed. Indeed, for the same programming
effort, ahigher speedup would be obtained by the data-flow
approach,

H. Comparison of Data-Driven Architectures

The different architectures presented in the above sec-
tions all represent different approaches to the problem of
specifying scheduling in multiprocessor systems for digital
signal processing applications. They each fit a different
nichein the realm of problems encountered in thisdomain:

* The systolic method efficiently and cheaply imple-
ments parallel algorithms on potentially large numbers of
simple processing elements. However, the design of the
algorithm on thearray of processors remains fixed and con-
strains the system to consistently solve the same problem.

* Architectures such as the WAP and the ESL polycylic
processor possess a greater degree of programmability.
The WAP notably has no global synchronization mech-
anism since it relies upon the notion of a computational
wavefront.

* The data-flow multiprocessors which we  have
described (the HDFM, the MIT tagged token data-flow
machine, and the USC TX16) offer much more flexibility in
that their scheduling is in a larger part decided at compile
time. They possess no notion of central control and can
deliver maximum parallelism in very complex algorithms
without any intervention from the designer, programmer,
or compiler. Data-flow machines find their applications in
two cases: 1) in problems which involve large amounts of
heuristics and decision making, or 2) in applications which
require frequent reprogramming, therehy requiring the
high programmability characteristic of data-flow systems.
The data-flow interpretation model also presents the cru-
cial advantage of scalability in that the same programming
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VoM R S gt vEL g OTHnm Can be used, regardiess of the
size and topology of the target machine, Finally, the pro-
grammability afforded by (his approach translates into a
higher performance for a given amount of programming
effort.

V. A Data-FLow ARCHITECTURE WITH MULTIPLE Levers oF
REsoLUTION

The data-driven model of execution has thus been dem-
onstrated to provide a very efficient programming envi-
ronment for the parallel execution of programs. We now
show how the concentration of the model on small atomic
operations can lead to many runtime inefficiencies. We
examine the performance of a multi-level architecture,

A. The Multi-Level Approach

It has been observed [17) that the data-flow madel of exe-
cution was often applied at too low a level and imposed
much overhead at runtime. For instance, as was demaon-
strated in Section [11, the description of a simpleloop under
the principles of the U-interpreter can impose a large num-
ber of overhead aclors such as D, L, etc, For each loop, a
minimum of five actors must be included. In addition, since
we are in a data-driven environment, each datapath in the
same loop (for instance, the index and the iterated variahle)
must “own"’ their own set of iteration actors, thereby mul-
tiplying the overhead. Let us consider a simple vector oper-
ation (Fig, 18(a)) which would be transiated into the graph
of Fig. 18(b). This is obviously a large overhead. Indeed, the
data-flow interpretation mode should be used to uncove
at runtime parallelism which would be difficult or impos-
sible for a compiler to detect. Here, a relatively easy com-
pilerintervention would quickly detect and exploit the par-
allelism available in the vector operation while the data-flow
constructs would impose a large overhead.

This shows that the data-flow principles of execution can
be advantageously applied with a higher granularity as it
has been demonstrated [20], [42]. It is indeed intended to
retain much of the distributed concepts introduced in the
tagged token data-flow machine [22]. The architecture we
consider comprises a large number of independent PEs
which can communicate over a packet-switched intercon-
nection network. The size and structure of the individual
PEs, however, should match the higher granularity envi-
sioned in this project and would implement powerful prim-
itives such as complex vector operations.

The architecture of the machine is to be organized in a
hierarchical fashion. It respects at the higher level the data-
flow principles of execution but comprises powerful PEs at
the lowest level. The PEs are to be vector processors. The
advantages brought by this approach are several-iold:

* The principles of data-flow are maintained at all levels
of execution which implies the same programming model.
(Indeed, avector operaiion can easily be detected ina higher
level data-flow language.)

* A continuous succession of more powerful but con-
versely more tightly coupled levels is implemented.

* Theincrease in performance brought by higher gran-
ularity can be directly implemented on this h ierarchy of lev-
els with increasing communication costs.
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Fig. 18. (@) A vector addition in SISAL. (b) U-interpreter
graph of a vector addition. (c) IF1 representation of a veclor
addition,

B. The Elemen tary Processing Flement

In order to apply the data-flow principles of execution at
a higher level of gran ularity, it appears that the individual
PEs should be dealing with complex constructs which are
mare representative of the application under study. In the
caseof large signal and data processing problems, the input

GAUDIOT: DATA-DRIVEN MULTICOMPUTERS IN DSP -

datawhichare processed are usually received al a high raie,
Each datum undergoes the same operation and inferacts
only slightly with other data elements.. This is (e case (o
image processing applications in which Jocal transforms
are usually undertaken. This demonstrates {hal signal pro-
cessing problems usually entail a low level which Corre-
sponds to vector operations. However, the highest level of
operations includes such constructs as conditional, deci-
sion making, etc., for which the data dependencies cannol
be identified clearly al com pile time as they can be in a vec-
tor operation. Inslead, runtime dependencies must he
detected in order to provide safety of execution and ade-
quate scheduling of our multiprocessor organizatian,

The individual PE is arganized around a vector processor
but also includes the capability to perform scalar opera-
tions as needed. The vector architecture can remain
unspecified for the purpose of this section but could be an
SIMD processor, a pipelined vector architecture, etc. For
proper /O function (i.e., communication with other PEs),
the Processing Element is separated in the actual Process.
ing Unitand the Communication Unit. The Processing Linit
implements the actual vector functions while the Com-
munication Unit is responsible for transferring data pacle-
ets toffrom the communication network and for the for-
warding data packets to other processors,

C. The Software Environment

The elementary principles of execution are based Lpon
an application of multi-level data flow. It was earlier dem-
onstrated that the high granularity would considerably ancl
positively affect the performance of a data-flow system,
However, it is also known that the high-level, statically
scheduled data-flow programming methodology could be
used to design extremely poweriul vector processors. The
architecture we have described comprises therefore two
levels: sophisticated processors are connecled inlo a sec-
ond hierarchy. This hierarchy also exists on a software poini
of view: program constructs must be partitioned together
in order to best utilize the characteristics of the architec.
ture.

We have chosen for our high-level programming inter-
face the paradigm provided by SISAL (Streams and [tera-
tions in a Single Assignment Language) as introduced by
McGraw and Skedzielewski [38). As shown in Section I,
SISAL is a high-level language, the syntax of which resem-
bles Pascal. It is different from conventional languages, in
that it contains none of the side-effects associated with the
usual programming approaches. An example of the spec-
ification in SISAL of the addition of two arrays A and 8 was
given in Fig, 18(a). The existing compiler provides an Inter-
mediate Form output (IF1). Not only does thisoutputinclude
the data-flow graph necessary for the runtime detection of
data dependencies (called Data-Flow Graph DFG), but it also
includes program structure information (Program Struc-
ture Graph PSG). As an example, the IF1 representation of
the SISAL program in Fig. 18() is shown in Fig. 18(c). I shows
the Program Structure Graph (PSG) in salid lines, while the
actual Data-Flow Graph (DFG) is represented by dashed
lines. The forall pseudo-node belongs to the PSG and is the
head of a three-pronged tree: the left-most node contains
the RangeGenerator actor which produces the index / from
1to N(see SISAL program). The middle pointer is the actual

1237

Petitioner Microsoft Corporation - Ex. 1066, p. 180




e b, e Hla LS TOde gathers the results
from the body of the loop. Note that in the DFG, the index
is received by hoth array selectors (Aflement) which receive
Al(respectively, B), and land produce A(l) (respectively, B(1)).
The Plus operatar adds the two. Partitioning can easily be
done along the edges of the PSG, provided a cost matrix is
kept in order to easily assess the communication costs
among the modules so isolated. An immediate heuristic
comes to mind concerning the system under study: since
the atomic vector Processing unit is so well tuned to the
scheduling of Generalized Vector Computations (GVCs),
the partitioning process should examine the PSG from its
leaves until it encounters a FORALL pseudo-node. A par-
titton which would comprise the whole subgraph can thus
be created. In addition, it should be noted that beyond this
relatively simple partitioning approach, several optimiza-
lion methods have been implemented, For example, nested
loops can be exchanged or combined, code could be
hoisted when data dependencies allow. These and other
strategies have also been described in [29].

D.  Applications

Kalman filtering [45] can be chosen as a represenlative
example of some signal Processing algorithms, It maps
remarkably well on our architecture because of the mul-
tiple levels of hierarchy which are embedded in the algo-
rithm itself. Indeed, the entire system could be described
at the low level used by ““conventional” data-flow archi-
lectures (Section |V), However, it should be immediately
noted that most of these low-leve operations can be
grouped into higher order tasks. For example, the com-
putational block which corresponds to covariance matrix
estimation implements a complex matrix inversion, This
algorithm itself entails repetitive applications of transpose
operations,

As an illustrative example of the matrix operations which
can be directly mapped onto our architecture, we have cho-
sen the multiplication of two matrices, The SISAL code
which corresponds to matrix multiplication is shown in Fig.
19(a). The corresponding IF1 output is shown in Fig. 19(b).
In the graph, actors “RangeGenerator1,” and “Range-
Generator3" broadcast index values j and k to the actors
“AElement1’’ (Array Element select) and “AElement2,”
respectively. Once the actors “AElement1”  and
“AElement2” have received the index values, they forward
the pointers A[i, *] and Blk, *] to the actors “AElement3”’
and "AElementd.” “AElement3” and "AElement4” are also
waiting for the index values k and [ which are sent from the
actors “RangeGenerator3” and "RangeGenerator2,” in
order to generate the elements A[j, k] and Blk, 1, respec-
tively. The “Times” actor receives the two elements A[j, k]
and B[, /] and sends the product to the “Reduce” actor
which accumulates the received data and forwards the
result to actors “AGather1" as well as “AGather2" to form
atwo-dimensional array. The allocator analyzes the PSG and
determines that the lowest |evel consists of a vector oper-
ation which can be easily assigned toa single processor for
execution, However, it should be noted that for perfor-
mance improvement reasons, the allocator optimizes the
allocation of actors, Simple vectorizing compiler tech-
niquescan beapplied to optimize the mapping of this appli-
cation on our hybrid multiprocessor system.
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Fig, 19. (a) Matrix multiplication in SISAL. (b) Matrix mul-
tiplication in 1F1.

VI, ConcLusions

In this paper, we have demonstrated that data-driven
principles are particula rly well suited to the determination
of the schedulability of operations in signal and data pro-
cessing problems on multiprocessor architectures, The
degree at which these principles are applied determines,
for a large part, the domain of application of the system,
When the various processors in the architecture are orga-
nizedinasystolicarray, the executability of instructions has
been determined directly by the designer and the design
remains frozen. This means that the application is fixed.
However, comparatively high computational throughputs
can be obtained from such organizations, When operation
scheduling is decided by compiler intervention, systems
such as the ESL polycyclic mu Itiprocessor or the Wavefront
Array Processor can he designed. These offer more pro-
grammability than systolic arrays. They also offer the poten-
tial for scaling up without a complexoverall redesign. How-
ever, complex data-dependent Operations cannot be easily
implemented on these architectures.
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In order to deliver high computational throughputs
(hrough parallelism detection, the data-flow approach has
been demonsirated, While conventional explicit parallel-
i« approaches can sometimes show high performance,
they require a focused effort on the part of the programmer
i order to understand and describe the parallelism of the
programmed problem. On the other hand, the functional
programming approach allows the implicit detection of
parallelism at runtime. Al the same time, only a fraction of
[he programming effort needs to be expended. This shows
that one of the main advantages brought by a data-flow
architecture is its programmability which, in turn, translates
into higher perlormance for a given amount of program-
ming effort. In addition, the approach is complelely scal-
able and the configuration of the multiprocessor systems
can be adapted to the size of the application. On the other
hand, the runtime scheduling of instructions imposes over-
head on regular operations and lowers the expectable per-
formance. This expected loss of performance has been
traced to the high level of resolution (small granularity)
which has been adopted by many data-flow projects. In a
signal processing application, the regularity of the low level
of processing makes it more appropriate to design a system
with multiple levels of resolution. Indeed, we have dem-
onstrated here an architecture with two hierarchy con-
structs. The lowest consists in a layer of vector processors
while the highest provides a true data-flow approach, Future
research will study how multiple layers could even include
systolicarrays as leaf processors for dedicated applications.
These would then be included into multiple hierarchy sys-
lems,

In summary, it can be said that the data-criven principles
of execution are anecessity in the design of multiprocessor
systems, be they incorporated at design, compile, or run-
lime. The granularity of the scheduling model often pre-
sents a tradeoff between delivering maximum amounts of
parallelism and reducing communication costs.
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Data-Driven Multicomputers in Digital

Signal Processing

JEAN-LUC GAUDIOT, MEMBER, IEEE

New technologies of integration allow the design of powerful
systems which may include several thousands of elementary pro-
cessors, These multiprocessors may be used for a range of appli-
cations in signal and data processing. However, assuring the proper
interaction of a large number of processors and the ultimate safe
execution of the user programs presents a crucial scheduling prob-
lem. The scheduling of operations upon the availability of their
operands has been termed the data-driven mode of execution and
offers an elegant solution to the issue. This approach is described
in this paper and several architectures which have been proposed
or implemented (systolic arrays, data-flow machines, etc.) are
examined in detail. The problems associated with data-driven exe-
cution are also studied. A multi-level approach to high-speed dig-
ital signal processing is then evaluated.

l. INTRODUCTION

If we are to approach the computational throughputs
equivalent to billions of instructions per second which will
be required from the processing systems of the future,
improvements on all levels of computer design must be
made. Faster technology and better packaging methods can
be applied to raise clock rates. However, a one billion
instructions per second machine would require a clock
period as low as a nanosecond. This approach is inevitably
bounded by physical limits such as the speed of light,
Therefore, instead of considering the technological
approach to performance improvement, we emphasize
here the architectural method. Indeed, instead of merely
increasing the clock frequency fora corresponding increase
in overall throughput, performance can also be improved
by allowing multiple processing elements to collaborate on
the same program. This inevitably introduces synchroniz-
ation problems, and issues of resource allocation and shar-
ing must be solved. Programmability is indeed the central
problem. In one solution, a conventional language such as
Fortran is used to program the application. A sophisticated
compiler is relied upon to partition a sequential program
for execution on a multiprocessor. This approach has the
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advantage of imposing no “software retooling.'” However,
complex numerical applications will not be easily parti-
tioned and much potential parallelism may remain unde-
tected by the compiler.

Ada, CSP [26], extended Fortran (e.g., HEP, Sequent), on
the other hand, allow the programmer to deal with parallel
processes by the use of primitives for parallel task spawn-
ing, synchronization, and message passing, However, while
the programmer can express some of the parallelism char-
acteristic of the application, much potential concurrency
may never be uncovered because of the inherent sequen-
tial concepts of the language which must be countered
through the use of special “parallelism spawning’’ instruc-
tions. Also, development time becomes important since the
programmer must “juggle” with many parallel tasks to syn-
chronize. In addition, debugging becomes correspond-
ingly more difficult due to the sometimes undeterministic
appearance of errors.

For these reasons, an implicit approach must be devised.
In the above two methods, instruction scheduling is based
upon a central program counter. We propose to demon-
strate here the data-driven approach to programming mul-
tiprocessors: instructions can be scheduled by the avail-
ability of theiroperands. This model of execution is a subset
of the functional model of execution (9]. It provides a sig-
nificant improvement to the programmability of multipro-
cessors by excluding the notion of global state and intro-
ducing the notion of values applied to functions instead of
instructions fetching the contents of memory cells as they
are in the conventional ““control-flow’’ model.

The averall objective of this paper is to demonstrate the
applicability of data-driven principles of execution to the
design of high-performance signal and data processing
architectures. Several approaches will be demonstrated and
their particular domain of application will be contrasted.
The description of low-level processing systems is beyond
the scope of this paper and the interested reader is referred
to an excellent survey by Allen [3]. Instead, we will con-
centrate here on the issues related to building high-per-
formance multiprocessors for signal processing applica-
tions. [n Section I, we show the type of problems
considered in signal processing. The data-flow principles
of execution as they relate to digital signal processing prob-
lems are described in detail in Section [1l while several exist-
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ing data-driven architectures are described in Section IV,
In Section V, we analyze a multi-level data-driven archi-
tecture and examine its programming environment. Con-
clusions are drawn in Section VI.

I, THE REQUIREMENTS OF SIGNAL PrOCESSING

Digital signal processing techniques are applied to many
different technical problems. These include radar and sonar
systems, image processing, speech recognition, etc, The
elementary building blocks of these were originally con-
centrated on such tasks as convolution, correlation, and
Fourier transform. More complex algorithms (matrix oper-
ations, linear systems solvers, etc.) are now considered.
Higher order operations include not only simple problems
such as elementary filtering ([IR, FIR, etc.), but also more
complex functions such as adaptive and Kalman filtering
[45]. Also, such complex problems as Computer-Aided
Tomography or Synthetic Aperture Radar can be consid-
ered [39], [16]. Signal processing algorithms are very appro-
priate for description by functional languages. Indeed, a
signal processing algorithm is often represented inagraph
form [36] and can be decomposed in two levels:

* aregular level which can be implemented by a vector
operation (i.e., a loop in which all iterations presentno
dependencies among themselves);

* alevelwhich contains conditional operations and heu-
ristic decision making,.

This description shows that the lower operational levels
can easily deliver parallelism (by compiler analysis or pro-
grammer inspection). This layer usually consists of simple
constructs (arithmetic instructions, FFT butterfly networks,
simple filters, etc.), However, the higher levels will require
more complex problem insight and even runtime depen-
dency detection in order to allow maximum parallelism. We
will now describe principles of execution which will allow
us to deliver this concurrency.

I, DATA-FLow PRINCIPLES

The data-flow solution to the programmability problems
of large-scale multiprocessors [5] has been pioneered by
Adams [2], Chamberlin [11], and Rodriguez [43]. It is now
described in detail in this section.

A. Basic Principles of Execution

In the conventional von Neumann model of execution,
an instruction is declared executable when a Program
Counter of the machine points to it. This event is usually
under direct programmer control. While a control-flow pro-
gram is a sequential listing of instructions, a data-flow pro-
gram can be represented as a graph where the nodes are
the instructions (actors) which communicate with other
nodes over arcs (Fig, 1). An instruction is declared execut-
able when it has all its operands. In the graph represen-
tation chosen above, this means that all the input arcs to
an actor must carry data values (referred to as tokens) befare
this actor can be executed. Execution proceeds by first
absorbing the input tokens, processing the input values
according to the op. code of the actor, and accordingly pro-
ducing result tokens on the output arcs. [n summary, it can

GAUDIOT: DATA-DRIVEN MULTICOMPUTERS IN DSsP

Fig. 1. A simple data-flow graph,

be said that the data-flow model of execution obeys two
fundamental principles:

* Asynchrony of operations: The executability of an
instruction is decided by a local criterion only. The pres-
ence of the operands can be sensed “locally” by each
instruction. This is an attractive property for an implemen-
tation in a distributed environment where no central con-
troller should be used for global scheduling.

¢ Functionality of the operations: The effect of each
operation is limited to the production of results to be con-
sumed by a specific number of other actors, This precludes
the existence of “side-effects.” These side-effects may be
long-ranging in that the execution of an instruction may
effect the state of a cell of memory which will be used only
much later by another unrelated operation,

B. Data-Flow Interpreters

When iterations are executed, the underlying principle
of data-flow (single assignment of variables) must invariably
be violated. Indeed, for an actor to be repeatedly evaluated
as in an iteration, its input arcs must carry several tokens
(from different iterations), Several solutions have been pro-
posed to allow the controlled violation of these rules with-
out compromising the safe execution of the program,
Among these, the Acknowledgment scheme and the
U-interpreter have been given the most cansideration,

1) Acknowledgment Scheme [14]: Proper matching of the
tokens can be observed by ordering the token production.
Thiswould be done by a careful design of the program graph
50 as to insure that tokens of two different iterations can
never overtake each other. In addition, it must be guar-
anteed that no token pileup is encountered on anyonearc.
This condition can be verified by allowing the firing of an
actor when tokens are on all input arcs and there are no
tokens on any output arcs. In order to enforce this Jast con-
dition, an acknowledgment must be sent by the succes-
sor(s) to the predecessor when the token has been con-
sumed (Fig. 2). Note that an actor is executable when it has
received its input arguments as well as all acknowledg-
ments. The parallelism which can be exploited from this
scheme is mostly pipelining between the actors of different
iterations. Thus when the number of instructions in the
body of an iteration is the same as the number of available
processors, the speedup observed by this mechanism of
execution is maximal. However, for small iterations (com-
pared to the size of the machine), the exploited parallelism
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‘ACK’

Fig. 2. The acknowledgment scheme,

falls below its potential. Thus it may be required that the
compiler effect a code expansion for vector operations.

An important characteristic of this static model of exe-
cution is the fact that it allows only one instance of an
instruction to exist at one given time. In other waords, it is
primarily relied upon pipelining for the exploitation of par-
allelism in iterations. However, the basic acknowledgment
scheme does not allow the implementation of multiple
simultaneous calls to the same function. Several machines
which obey these principles of execution have been
designed: the MIT cell block architecture [13], the Hughes
Data-Flow Machine [21], the DSFP [24], the USC TX16 [19],
etc.

2) The Unraveling Interpreter (U-Interpreter): The
U-interpreter [4] provides the most asynchronous possible
operation. In order to allow safe execution of actors in an
iterative construct, tokens are tagged with information per-
taining to their context of creation. An actor is only allowed
to execute when an input token pairwith matching tags can
be found. This tag includes the iteration number. Indeed,
the U-interpreter closely follows these principles: to each
data token is attached a tag of the form u.P.s.i, where Piden-
tifies the procedure name of the destination actor, while s
is the address of this actor within procedure P. The i field
corresponds to the iteration number in which the token
wascreated, while the u field is the context ofcreation. Note
thatwhile the former is used to distinguish between tokens
destined to different iterations of the same actor, the latter
is used in situations involving multiple function calls, oper-
tions with recursive function calls, or nested iterations.

Special actors are used which deal with the context and
iteration fields of the token tags. A typical iteration con-
struct in the U-interpreter is shown in Fig. 3. The D actor
is used to recirculate the data from one iteration to the next.
Its input is tagged with w.P.t.i while its output value is iden-
tical but has become tagged with u.P.t"i + 1, Nested iter-
ations are handled by isolating the inner from the outer iter-
ation by the introduction of the L actor at the top of the
graph. The function of this actor is to create a new context
for the execution of the iteration: the input tokens are
tagged by u.P.s.i while the output tokens are identical but
are tagged with u”.P.f".1 where u'is itself w.i. Note that this
mechanism is sufficient to create an entirely different set
of tokens for two nested iterations. Indeed, assume that two
tokens both belong to the same inner iteration i, but belong
to the j, and j, outer iterations respectively. The first token
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Fig. 3. A typical iterative construct in the U-interpreter.

would be tagged ul.P.s.i (1 = w.j;) while the second is
tagged with u2.P.s.i (2 = w.fy). This shows that an appro-
priate differentiation has been made between the two
instances. The original context u s retrieved bythe L~ 'actor
before exiting.

Contrarily to the acknowledgment scheme, this dynamic
data-flow scheme allows full asynchronous execution of the
program graph. Indeed, due to the scheme of tags, several
instances of the same instruction may exist simulta-
neously. Vector operations may be executed in parallel
without compiler-induced replication of the graph. Like-
wise, multiple function calls and more particularly recur-
sions areallowed since each new actor instantiation receives
adifferent tag. This means that the U-interpreter would be
preferred to the static model when the ability for fast recur-
sive calls is required. However, this flexibility comes at the
expense of added hardware complexity. Indeed, it will be
shown in Section IV-D that implementation of the U-inter-
preter requires an associative memory for fast tag match-
ing. Several machines based on these principles have been
studied: the MIT tagged token data-flow machine [6], the
ESL DDSP [28], the University of Manchester machine [23],
the ETL Sigma-1 [25], etc.

C. Structure Handling

This is a crucial issue in signal processing for this kind
of application requires that many data elements which
belong to the same structure be processed in a parallel or
pipelined fashion. One of the basic premises of data-flow
principles states that an output is a function of its inputs
only, regardless of the state of the machine at the time of
execution, When a structure of elementary elements must
be processed, the absence of side-effects means that it may
not be updated for this would imply its transition through
several states. Instead, if any updates are needed, a new
array which contains the new elements must be created.
Copying of all elements must be undertaken for the mod-
ification of a single one. This solution imposes an inordi-
nate overhead. This is why the implementation schemes we
will now describe can shortcut this complete copying while
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preserving the meaning of the program during array update
operations.

1) Heaps: Dennis [14] has proposed to represent arrays
by directed acyclic graphs (also called heaps). Each value
Is represented as the leaf of a graph tree. The modification
of a single element in a heap is represented in Fig. 4. Note

A A

2 NEW
o2 1a 2 23 %1

Fig. 4. A heap update,

that the complexity of the madification of a single element
of the array is O(n) for a copy operation, while it is
O(log n) for the heap. Several instructions are exclusively
devoted to the access of heaps [15]: SELECT receives a
pointer to the root node, an index value, and returns a
pointer to the substructure (which may be a leaf node) asso-
ciated with the index; APPEND also needs the same two
operands in addition to the value of the element to append
to the structure,

2) I-Structures: A heap must be entirely ready before it
can be consumed because no consumption (SELECT actors)
can take place until the pointer token appears (i.e., the cre-
ation of the array is completed). In the I-structure scheme
[7] constraints on the creation of arrays allow the selection
of individual elements (or substructures) from the array
before its complete production. One possible implemen-
tation of I-structures makes use of a “presence’ bit which
indicates when an element of an array has been calculated
and is ready for consumption. An attempt to read an empty
cell would cause the read to be deferred until such time that
the cell presence bit is marked. Conversely, a write into a
cell, the presence bit of which indicates valid stored data,
could be cause for the generation of an error signal. The
advantages of this scheme are:

 better performance because pipelining is allowed
between |-structure consumers and producers;

» less “serialization’ of operations such as APPENDs,
because they are allowed to occur independently on
the same structure.

3) HDFM Arrays: A special scheme for handling arrays in
a VAL high-level environment has been designed for the
Hughes Data-Flow Machine (HDFM) [21]. It uses the fact that
data-flow arrays as described above are overly "asynchro-
nous,” i.e., they do not take advantage of the data depen-
dency information carried by the program graph. Safety of
accesses is respected by not allowing the updating of an
array befare all the reads from the current version of the
array have been perfarmed. Only then can the array be
directly modified. Safety and correct execution of WRITE
operations are a compile-time task. This has the advantage
of reducing the number of memory accesses (no complex
graph of pointers must be travered as in heaps) as well as
of offering a better possibility of distribution of an array (no
root node). However, spurious data dependencies may be
introduced because the compiler is not necessarily aware

GAUDIOT: DATA-DRIVEN MULTICOMPUTERS IN Dsp

of the possibility of parallelism that can be detected only
at runtime. For instance, dependencies on A and B related
by A(F(i)) = B(i) may be artificially imposed. However, the
applications targetted by the HDFM include some amount
of regularity which can be easily detected by the compiler
and implemented as conventional arrays.

4) Token Relabeling [18]: In the U-Interpreter, the notion
of array can be entirely ignored at the lowest level of exe-
cution. Instead, the tag associated with each token under
the rules of the U-interpretation is used as identification of
the index of the array element of the high-level language.
In other words, it can be simply said that, when an array A
is created, its A(i) element will be tagged with i (hereafter
denoted A(i)y), if the elements are produced in the logical
order. In the “production” of a unidimensional array, the
iteration number can usually be directly interpreted as the
index of the array element just produced by the iteration.

Special token relabeling program graphs can be created
to handle scatter and gather program constructs [27] (Fig.
5(a)). This figure shows that an inversion function F-1

Ati]H
i (Relabeling)
s
\F1)
4

Bk .
iy ,Mib[r_“}]ﬂ ALFtR)

1(:“,['!]

DO 1 I=1 100
U efl) = BI) + A(F(1))
(a)
ey =F "y Al

!

j U
TP AR

0 Taw

Fig. 5. (a) A gather operation. (b) Token Relabeling gather.

This demonstrates that, without recourse to the calculation
of F7, the proper relabeling of the A elements has been
effectively produced.

This algorithm requires no intermediary storage, does
not need array operations, and imposes smaller hardware
and execution overhead. This relabeling approach elimi-
nates a large portion of the overhead associated with the
production and consumption of array A, Pipelining between
the source and the sink of a data structure is the goal of this
unknown at compile time would be needed to perform the
relabeling of data-flow tokens. Such a calculation is nottruly
necessary. Instead, we introduce (Fig. 5(b)) a sequence gen-
erator which produces the F()'s, tagged by j. An exchanger
actor (called x) swaps the tag and the data value and pro-
duces jir ;. Both streams (the A’s and Jirejy) are input to a
special relabeling actor 6 which only modifies the iteration
portion of the tag. By the principles of the U-interpreter,
only tokens which bear the same tag will be matched as
proper inputs to the & actor. In other words, the mate of
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token ji¢;y is the element A (FCj e (jy. The special actor 6 is
a relabeling actor which takes the A input and relabels it
with the data carried by the token on the othet input arc.
In other words, it outputs A(F(D)y. Since i is a dummy var-
iable, and since F s bijective, it can be said that, on a global
point of view:

A(F(); Afk}[r*‘rk)}-

scheme, just as it was the idea behind the design of the
I-structures. However, the token relabeling approach brings
a better runtime memaory management since tokens cor-
responding to the various elements of the array still exist
and must still be temporarily stored, they need not go
through an additional storage as adatastructure, Also, there
is no need for ““requests” for data as would be the case in
an l-structure environment: When an I-structure is created,
actors which need data from it must demand the element
in question until it has arrived. This may introduce heavy
overheads as unsatisfied requests must be queued in the
structure itself. Garbage collection is automatically han-
dled since when the “array token" is matched, it is auto-
matically removed from the arc. In otherwords, when it has
been used, it is swallowed by applying data-flow principles.

D. High-Level Data-Flow Languages

In addition to the low-level mechanisms of execution
which were described earlier, special high-level data-flow
languages have been designed for easier translation into
data-flow graphs. To be sure, these high-level languages are
notanecessity: the Texas Instruments data-flow project[31]
relied upon Fortran programming through the use of a
modified version of a vectorizing compiler originally des-
tined to the TI ASC. However, many high-level languages
have been designed for data-flow prototypes. Most notable
are VAL (Value Algorithmic Languages) for the MIT static
data-flow project [37], [1], Id (Irvine Dataflow) for the MIT
tagged token data-flow architecture [4], LUCID [8], [30], etc.
SISAL (Streams and [terations in Single Assignment Lan-
guage) has been designed by McGraw and Skedzielewski
(38] and is intended as the definition of a ““universal’ lan-
guage for the programming of future multiprocessors.

Data-flow languages have also been defined for the spe-
cific purpose of programming signal processing applica-
tions. These include the SIGNAL language designed by
Le Guernic et al. [36). The intent of the language is to pro-
vide a formal specification of signal processing problems
and to ease the design of signal processing multiproces-
sors, be they special- or general-purpose. One of the main
characteristics of the language is that it incorporates the
notion of time to describe the interaction of the various pro-
cessing tasks. This makes it a synchronous language as
opposed to asynchronous languages such as CSP and
Occam [10]. SDF (Synchronous Data Flow) is another formal
description of signal processing algorithms based on data-
driven principles of execution proposed by Lee and Mes-
serschmitt [35].

IV, DATA-DRIVEN ARCHITECTURES

We now describe in detail several systems which operate
atruntime, compile-time, or design-time under data-driven
execution. Although itis generally considered that data-flow
principles of execution are in effect at runtime, we extend
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their domain of application to design or compile time and
referto them as data-driven systems. We thus initially exam-
ine multiprocessor systems where data dependencies have
been frozen at design time (systolic arrays). We then con-
sider programmable systolic arrays (the Wavefront Array
Processor) and multiprocessors scheduled at compile time
by the use of data-flow program graphs (the ESL polycyclic
processor). Finally, we study systems where the data depen-
dencies provide scheduling information at runtime (the
Hughes Data-Flow Machine) and examine the influence of
the level of resolution upon the performance (the USC
TX16).

A. Systolic Arrays [32]

The primary goal of a systolic array is to make use of the
large amount of processing power available in VLSI tech-
nology by using repetitive circuitry to perform signal pro-
cessing problems, matrix operations, image processing, etc.
In summary, a systolic array is simply a collection of inter-
connected Processing Elements (PEs). In order to incor-
porate as many pracessors as possible, the structure of the
PEs themselves is kept to a maximum simplicity and usually
includes only a few operation units. For design simplifi-
cation, there are few types of PEs in the same system. By
the same token, interconnections are kept to a nearest
neighbor topology in order to minimize communication
delays as well as power distribution issues. Note that topol-
ogies include two neighbors (linear arrays), four neighbors
(square arrays), or six neighbors (hexagonal arrays) as
required by the problem to solve. This is notably due to the
fact that scheduling mechanisms must be based upon local
criteria such as data availability. However, it should be noted
that there is a global clock in all the computation cells. Lin-
ear systolicarrays can tolerate clock skews at both ends, but
multidimensional designs require slower clocks in order to
compensate. In order to simplify runtime mechanisms, the
design of a systolic array emphasizes an efficient mapping
of the problem onto the architecture. An example of a band
matrix-vector multiplication is shown in Fig. 6. It displays

523 . 032 [

g

Fig. 6. A linear systolic array.

how the synchronization of the processors and of the input
data rate has been mapped to meet the requirements of the
problem. Note that each processor is designed to operate
upon the arrival of the arguments. In summary, it should be
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noted that systolic arrays are very efficient at computa-
tionally intensive problems which involve many repetitive
low-level calculations. Also, the very nature of their design
renders their function fixed at design time.

B. The Wavefront Array Processor (WAP) [33], [34]

Execution on the WAP is similar at runtime to the exe-
cution of a program on a systolic array. Indeed, both
approaches rely upon the scheduling of operations based
on the availability of their operands. However, the analysis
of the data dependencies is effected during the design of
a systolic array while the WAP is scheduled by compiler
detection of parallelism: the WAP is a “programmable sys-
tolic array,” It has been shown that most signal and data
Processing algorithms possess a certain amount of locality
and recursivity. They will thus exhibit the phenomenaon of
computational wavefront. This has an important implica-
tion in that an entire front of processors can be pro-
grammed for the same operation. In addition, it can be
shown that two successive wavefronts cannot intersect. This
enables the proper implementation of data-driven princi-
ples of execution. For instance, a matrix multiplication can
be executed as a computational wavefront (Fig. 7). A special
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Fig. 7. Matrix multiply in the WAP.

language called the Matrix Data-Flow Language (MDFL) has
been designed to express such algorithms on the WAP.

C. ESL Polycyclic Architecture [41]

The ESL polycyclic architecture is a horizontally micro-
programmed multifunctional vector processar. It com-
prises several functional units (adders, multipliers, storage
units) connected by a cross-bar interconnection network.
Entire vector loops (no data dependencies across the iter-
ations) can be scheduled by using the model presented in
[40]. The essential idea is to discourage “greedy” sched-
uling by insertion of “non-compute” delays in the train of
calculations. The effect of these delays is to enable an opti-
mal schedule. A pipeline is viewed as a certain number of
resources (the various segments of the pipe) which can be
reserved by tasks. The problem is reduced to the produc-

GAUDIOT: DATA-DRIVEN MULTICOMPUTERS IN DSP

tion of a reservation table with no collisions (i.e., no twa
tasks can reserve the same segment of the pipeline at the
same time). For that purpose, a usage interval is defined as
the time interval between two reservations of a segment by
asingletask. Two tasks will collide when they have the same
initiation time as one of the usage intervals. For a homo-
geneous multiprocessor (identical PEs), the method is done
in two steps:

1) Determine the Minimum Initiation Interval MIl as
MIl = [N/P]. N is the number of instructions in the body
of the loop, and P is the number of processors available for
execution. The initiation interval is the length of time
between the initiation of two consecutive iterations. Suc-
cessive iterations will be scheduled at MIl units interval. All
the iterations will be identically scheduled.

2) Schedule the operations in accordance with the data
dependences. However, no more than Poperations may be
scheduled for the same time modulo M. Note that this last
constraint also implies that delays must be inserted in the
schedule.

The following example shows the scheduling of a simple
vector operation (Fig. 8(a)) on a polycyclic processor with
two adders and one multiplier (note that for simplification,
communication costs have been assumed to be null), There
are two multiply operations for a single multiplier while
there are three additions on two adders. The Mi| would
therefore be 2. This means that one iteration of the loopcan
be performed at a rate of one for every two cycles. By using
the data dependency graph of the example (Fig. 8(b)), the
optimal schedule can be used by applying the MIi of 2 (Fig.
B(c))- Proper “dovetailing” of successive iterations is assured

DO Iy N
| x[n-mu)'am}q-[c(nwu}]]-[zum'u)]
(a)

(b)

wre-ofk
-
oz
ok

M
(c)

1] Mi(1 Al

1 A1

1] Mif2 All2 AN2)
1 M2(1 Ad(2

1] Mi(3 Alf3 A2(3)
1 M2(2 A3(3
4]

(d)

Fig- 8. (a) Asimplevectoroperation. (b) Corresponding data
dependency graph. (c) Scheduling a single iteration.
(d) Dovetailing iterations.
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by this scheduling algorithm when the iterations are pro-
cessed at the rate of one for every two cycles (Fig. 8(d)). This
architecture applies particularly well to signal processing
applications where the same computation must be repet-
itively applied to adifferent elementin asteady datastream.

For example, a butterfly block in an n-point FFT aperation
would be executed n x log n times, However, in addition
to the purely computational actors shown above, “store"”
and “retrieve” operations should also be considered. This
is demonstrated in the data-flow graph of Fig. 9(a) which

Y\\ ’I7:1 K\ ;nd/m:? w Index3

Rl: | READ RZ: | READ R3: | READ
MI: (=
Al (= Al [+
Indlexd IndexS
W1l | WRITE W2: | WRITE
(a)
0 - - - R1 R2 G :
1 - B - R3 - “ 2
2 M1 - - - z = e
| = Al A2 - - = .
4 - - - - W wa
(b)

Fig. 9. (a) FFT butterfly block. (b) Scheduling of an FFT but-
terfly.

corresponds to a single iteration (butterfly block) of a real
FFT. Note that the indexes (for reads and writes) have been
assumed to be generated elsewhere (e.g., table look-u p)and
are ignored in this discussion for simplification. Assuming
that two adders and one multiplier can be used, and that
we have four memory modules at our disposal, the MIl can
be determined as the maximum of the N /P ratio for each
kind of resource. This yields an MI| of 2 (Fig. 9(b)). Note that
further work in the scheduling of iterations has been car-
ried out in [44]. This research is also applied to SSIMD archi-
tectures and allows the existence of dependencies between
iterations.

D. The MIT Tagged Token Data-Flow Machine 6]

This machine implements a version of the U-Interpreter.
In this distributed architecture model, each PE is inde-
pendentfrom its neighbor and there is noglobal controller,
A hypercube communication network allows the trans-
mission of data-flow tokens between PEs. Store-and-for-
ward capabilities are provided so that a pair of PEs which
is not directly linked may still communicate.

The structure of each PE is shown in Fig. 10. A switch
receives tokens from the network and determines whether
the incoming packet is a data token or a structure request
to be processed by the I-Structure Memory. In the Matching
Store Unit, the tag of the incoming token is associatively
checked against that of previously arrived tokens to deter-
mine whether it is the first or the second token to arrive at
a given instruction. The first token should be stored in the

1226

! 0%

SWITCH

MATCHMNG
STORE UNIT

1=STRUCTURE INSTRUCTION
MEMCRY FETCH UNIT

ALl

|

TOKEN
FORMATTING UNIT

i

Fig. 10. A PE in the tagged token data-flow machine.

associative memory of the Matching Store Unit and held
until its mate arrives. For the second token, the corre-
sponding instance of the instruction can be activated by
sending an argument packet to the next unit. The Instruc-
tion Fetch Unit receives this packet and fetches the param-
eters of the instruction. Note that the template contains not
only the op.code but also pointer(s) to the destination
actor(s) to which the result of the operation should be sent.
A complete instruction-ready packet can be formed and sent
for execution to the ALU. The ALU blindly executes the
operation indicated by the incoming template and pro-
duces result tokens which are received by the Token For-
matting Unit. Finally, the Token Formatting Unit receives
tokens which have been produced by the ALU. These tokens
comprise several fields: the tag associated with the oper-
ation (after modification if the operation was a tag-modi-
fying operation), the data themselves, as well as an allo-
cation function field. This field is used by the Token
Formatting Unit to determine the destination PE of the
token. Indeed, this determination cannot often be made
solely on the basis of destination actor for this would mean
allocating to the same PE all the iterations of an actor in loop.
This is clearly unacceptable if parallelism is to be extracted
across the iterations of the loop. An often used heuristic
allocation function is based upon calculation of the itera-
tion number modulo the total number of PEs, This function
has the advantage of allowing proper distribution of a loop
across the machine. Depending upon existing conditions,
different allocation functions may be used within the same
graph. However, it must be noted that the function must
be the same for the two tokens destined to the same actor,
Failing the verification of this condition, the two tokens
would never be matched for they would be sent to different
PEs. This demonstrates the need to implement this allo-
cation operation at compile time.

E. The Hughes Data-Flow Machine (HDFM) 21]

The goal of this project is to provide a high-performance
parallel architecture which is highly programmable and at
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the same time offers advantages of modularity and sim-
plicity of implementation for signal and data processing
applications. All communications are based on the message
passing model. A maximum of 512 PEs can be organized in
a cube network. Each PE is attached to three busses (row,
column, and plane). Design of the PEs has been made for
easy implementation in VLSI. PEs can easily be added
because of the modular nature of the communication net-
work. Traffic on each bus is based upon contention before
data can be transmitted. Any two PEs can communicate by
a maximum of three “hops"’ (Fig. 11). The execution model
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_~_PLANE_-[170 CONTROLLERS |1

Fig. 11, Structure of the HDFM communication network.

is based upon the acknowledgment scheme. Instead of
using “hardwired” acknowledgment arcs between two
communicating actors, this machine is based upon the
principle of “software” acknowledgments. The compiler
partitions the data-flow graph into blocks. Special acknowl-
edgmentarcsare introduced between the blocks. Note that
this method allows pipelining between iterations at the
block level.

One of the primary requirements of the machine was to
incorporate as few component parts as possible. This

implies a high level of integration for the individual PEs.
Indeed, each PE consists of onlytwo custom-designed chips
in addition to several commercially available memory cir-
cuits. The overall architecture of a PE is shown in Fig. 12.
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!

COMMUNICATIONS CHIP

* PACKET ROUTING
AND FAULT TOLERANCE
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* DATA FLOW SEQUENCING &
® INSTRUCTION EXECUTION
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RAM CHIPS FROCT VSN RAM CHIPS

Fig. 12. A PE in the HDFM.

The COM chip handles all the communication functions
and interfaces the actual PE with the three-bus commu-
nication network, It implements the necessary ‘‘store-and-
forward” and performs in addition a buffering function in
order to even packets rates, Note that the chip pin-outs
requirements limit the number of outside busses to 3. The
PROC chip is the actual PE which contains three pipelined
stages: 1) instruction/operand fetch and data-flow firing rule
check, 2) instruction execution, and 3) result token for-
matting. It can be easily represented schematically (Fig.13).
Tokens arriving from the COM chip are first checked to
determine whether they complete an instruction packet or
not. Ready instructions are then dispatched to the exe-

f_rn?c'_'-_;—i'- "—'—_—_—_}
: * FCQ !ADDR .
[ T T™C | )
Q&f_ s = E = —! '.TL.
" t -

' ™ lolo oF £Q |

- nmn,l v) |

= RG |
} >4} [a s _ Y [
| B ALU |
s |

ROMAC! SRS e S czzg:g T

COM: COMMUNICATIONS/FAULT TOLERANCE
TMC: TEMPLATE MEMORY CONTROLLED

ALU: ALUMICROPROCESSOR AND MICROMEMORY
DT: DESTINATION TAGGER

DMC: DESTINATION MEMORY CONTROLLER

MEMORES

'DM: DESTINATION MEMORY
TM: TEMPLATE MEMORY
FDM: FIRE DETECT MEMORY

Fig. 13. The PROC chip in the HDFM.
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FCQ: FROM COMMUNICATION QUEUE
FBQ: FEEDBACK QUEUE

FQ: FIRNG QUEUE

RQ: RESULT QUEUE

DQ: DESTINATION QUEUE

AK): ASSOCIATED INFORMATION QUEUE
TCQ: TO COMMUNICATION QUEUE
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cution unit. The results are formatted into tokens by the
Destination Tagger and sent to the COM chip or back to
the input Token Unit as the case may be. The Template
Memory Controller (TMC) enforces the data-flow rules of
execution and checks the completion of an input set before
it sends a complete instruction packet to the ALU for exe-
cution. Results are sent by the ALU to the Destination Tag-
ger (DT). In collaboration with the Destination Memory
Controller (DMC), this unit associates the data values pro-
duced by the ALU with their proper destination address
(which can be found in the Destination Memory DM). Note
that in the Cell Block architecture, the templates are wholly
stored in one location. In this architecture, the templates
are, instead, split in two portions: the op. code and input
operand portion stored in the Template Memory TM, while
the corresponding result pointers are stored in the Des-
tination Memory. The rationale for this design decision can
be found in two points: first, this allows a better space man-
agement since the destination list of any template may be
of undeterminate length. Second, if the whole template
were to be stored in the Template Memory, the Destination
pointer information would have to be propagated through
the ALU before it could be used only in the last stage of the
processor. This would prove particularly inefficient since
the whole processor must be integrated on a single chip,
thereby multiplying the area necessary for busses. Simu-
lation of radar processing algorithms has demonstrated that
each PE capable of a throughput of 2-4 MIPS while a 64 PE
could produce throughputs of 64 MIPS,

F. The NEC uPD7281 [12]

The NEC zPD7281is asingle-chip digital signal processor.
Its most important application is image processing. Some
immediate applications include image restoration, en-
hancement, compression, and pattern recognition. It is
based on a data-flow model of computation and imple-
ments such complex operations as multiplication in the
basic instruction set. More specifically, its primitives are
designed for an efficient execution of image processing

the multiprocessor architecture invisible to the program-
mer. Another characteristic of the uPD7281 is that it can be
cascaded with several other identical chips in a ring archi-
tecture. Indeed, the architecture of the xPD7281 enables
the design of multiprocessor systems for improved per-
formance. By cascading several such PEs, a high degree of
pipelining can be observed. In addition to the high-level
organization of the chips, each chip is itself organized in
a ring architecture (Fig. 14) which operates in a pipelined
fashion. -

Constants may be stored in the Data Memory for storage
during execution, The program is represented in both the
Function Table and the Link Table. In the Function Table,
the actors themselves are stored. Similarly, the Link Table
contains a representation of the arcs between the actors.
After the initial loading of the PEs, when a token enters a
uPD7281, it is first checked to determine whether this PE
should process it. If not, it is directly transferred from the
Input Controller (IC) to the Qutput Controller (OC) where
it is forwarded to the next processor along the chain. Oth-
erwise, it can be sent to the Link Table for processing. In
the Link Table and the Data Memory, itis matched with other
tokens before it can be sent for actual processing. The Link
Table always contains the first of the two operands that
arrive. The Address Generator and Flow Controller are used
to generate addresses of constants. Note that after actual
processing of a data-flow actor in the Processing Unit, the
resulting token is again processed by the Link Table of the
same Processing Element. When the ultimate consumer of
the token is allocated to another PE a special output instruc-
tion is executed in the queue so that the token can be
switched to the Output Controller. Overall, this circular
pipeline contains seven segments and can deliver a max-
imum throughput of one instruction per cycle. The prim-
itives of the uPD7281 are oriented towards image process-
ing applications:

* CONVO (Convolve) which can be used ta perform
cumulative operations such as

. n
algorithms. The use of data-flow principles of execution S AB
increases the programmability of the machine and renders i=1 1

16 2 ) 16
mamma&ib 7 ) i>0031500%
IREQ——————am{ IC 32 OC | — = OREO
|ACK: f=— r— QACK

T
e'e)
28
’/,32 d/ c 59
Py
/ o
8l
| RC | L AG&FC circular
pipeline
37
DM
FT
a4

Fig. 14. The NEC pPD7281,
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Fig. 15. A convolver actor.

(Fig. 15). Note that this operation is not strictly speak-
ing a data-flow actor in that the summation implies a
“state”” of the actor. Formally, it would correspond to
a “macro-actor” [20] which includes a graph of several
elementary data-flow actors.

* ACC (Accumulative Addition Instruction).

* Bit manipulation, data conversion instructions, etc.

The multiplication of a3 x 3 matrix by a 3-element vector
is illustrated in Fig. 16. It is assumed that the A matrix has

SO NG,
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already been allocated to the data memory. Each element
of the vector B8 is received and is replicated three times by
the COPYBK actors. Note that one of the internal param-
eters of the actor is 3, the number of required replications.
The multiply actor is a coupled with a readA;( ) actor so as
to perform the multiplication of B, with A;( ). The results
from the three multiplications are matched and accumu-

A3(2) A4(2) A4(2)

A(3) A{3) A4(3)

44(1) Aq(l) A4(1) c,
Uy
Ca

Fig. 16, Matrix vector multiplication.
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lated to produce the result C;. Note that the queue actors
enable a better pipelining of the successive computation
waves. They allow an execution similar to the model pre-
sented by the Acknowledgment scheme (Section |I-B1).
However, while in the Acknowledgment scheme only one
token is allowed at any time on any single arc, this model
of execution allows as many tokens per arc as the size of
the queues. Benchmark evaluations have shown a near lin-
ear speedup with increasing numbers of chips from 1to 3:

Algorithm 1PE 3PE
512 % 512 binary image rotation 1.5 ms 0.6 ms
512 x 512 binary image } shrinking 80 ms 30 ms
512 x 512 binary image smoothing 1.1s 04s
512 x 572 binary image 3 x 3 conv. 30s 11s
64 stage FIR filter (17 bits) 50 ps 18 us
cos(x) (33 bits) 40 us 15 us

G. The USC TX16 [19]

The TX16 is based upon the Inmos Transputer. The Inmos
Transputer has been heralded as the first of a new gen-
eration of microprocessors. Indeed, while conventional
microprocessors are interfaced with the external world
through a single memory bus (address, data, and control),
the Transputer possesses in addition four serial commu-
nication links. Each of these communication links allows
point-to-point transmissions between two Transputers. This
architecture is reflected at the language level; the arrival of
data on a link will trigger a process inside the receiving
Transputer.

The programming language Occam allows the presence
of several different processes while only one is active at a
time, Message transmission with other processes Is based
upon the synchronous principles of CSP [26], [10]. This
means that when the active process must communicate an
intermediary result with another process (possibly located
in another processor), the active process is held until the
other process has been found to be ready for the trans-
mission. While the process is held, it is stacked into the
inactive process queue. Another ready process is then acti-
vated until it either terminates or is itself hu ng because of
a required transmission. This low-level context change
mechanism compares favorably to the busy-wait maodel
found in conventional multiprocessor systems. Instead of
idling a processor while waiting for an intermediary oper-
andtoarrive, the system allows contextswitching toanother
ready process.

The system consists of 16 interconnected Transputers
interconnected in an ILLIAC-IV topology. The four links of
each Transputer are used for scalar data communications
and for interprocess synchronization messages. Each PE
owns a single bank of the memory system (Fig. 17). A pro-
cessor can directly access its own memory bank through
the external memory bus of the Transputer (local access).
A remote access can be made into the bank owned by
another processor, In this case, the Bus Controller formats
the request from the PE into a packet and takes control of
the bus. The request is then forwarded to the destination
PE. When the request is a read request, a response will be
sent in the same fashion back to the originator,

The data-flow language SISAL (Section 11-D) was chosen
asthe high-level interface for the TX16 because the data-flow
principles of execution can be directly mapped into Occam.
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Fig. 17. A Processing Element in the TX16.

The converse is not true, however, since it is possible to
design unsafe Occam programs which would have no cor-
responding part in the data-flow world. This mapping is
made possible by the fact that both programming
approaches rely upon the principles of scheduling upon
data availability. Several numerical algorithms have been
tested on a simulated machine and have demonstrated a
near linear speedup for the size of the machine considered.
Itshould be noted that this was obtained without the inter-
vention of a sophisticated high-level language compiler.
Instead, a data-flow language was used ta provide the pro-
grammability needed, Indeed, for the same programming
effort, a higher speedup would be obtained by the data-flow
approach.

H. Comparison of Data-Driven Architectures

The different architectures presented in the above sec-
tions all represent different approaches to the problem of
specifying scheduling in multiprocessor systems for digital
signal processing applications. They each fit a different
nicheinthe realm of problems encountered in this domain:

* The systolic method efficiently and cheaply imple-
ments parallel algorithms on potentially large numbers of
simple processing elements. However, the design of the
algorithm on the array of processors remains fixed and con-
strains the system to consistently solve the same problem.

* Architectures such as the WAP and the ESL polycylic
processor possess a greater degree of programmability.
The WAP notably has no global synchronization mech-
anism since it relies upon the notion of a computational
wavefront.

* The data-flow multiprocessors which we have
described (the HDFM, the MIT tagged token data-flow
machine, and the USC TX16) offer much more flexibility in
that their scheduling is in a larger part decided at compile
time. They possess no notion of central control and can
deliver maximum parallelism in very complex algorithms
without any intervention from the designer, programmer,
or compiler. Data-flow machines find their applications in
two cases: 1) in problems which involve large amounts of
heuristics and decision making, or 2) in applications which
require frequent reprogramming, thereby requiring the
high programmability characteristic of data-flow systems.
The data-flow interpretation model also presents the cru-
cial advantage of scalability in that the same programming
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method of a given algorithm can be used, regardless of the
size and topology of the target machine. Finally, the pro-
grammability afforded by this approach translates into a
higher performance for a given amount of programming
effort.

V. A DATA-FLOW ARCHITECTURE WiITH MuLTiPLE LEVELS OF
REsOLUTION

The data-driven model of execution has thus been dem-
onstrated to provide a very efficient programming envi-
ronment for the parallel execution of programs. We now
show how the concentration of the model on small atomic
operations can lead to many runtime inefficiencies. We
examine the performance of a multi-level architecture.

A. The Multi-Level Approach

It has been observed [17] that the data-flow model of exe-
cution was often applied at too low a level and imposed
much overhead at runtime. For instance, as was demon-
strated in Section |11, the description of a simple loop under
the principles of the U-interpreter can impose a large num-
ber of overhead actors such as D, L, etc. For each loop, a
minimum of five actors must be included. In addition, since
we are in a data-driven environment, each datapath in the
same loop (for instance, the index and the iterated variable)
must “own” their own set of iteration actors, thereby mul-
tiplying the overhead, Let us consider a simple vector oper-
ation (Fig. 18(a)) which would be translated into the graph
of Fig. 18(b). This is obviously a large overhead. Indeed, the
data-flow interpretation mode should be used to uncover
at runtime parallelism which would be difficult or impos-
sible for a compiler to detect. Here, a relatively easy com-
piler intervention would quickly detect and exploit the par-
allelism available in the vector operation while the data-flow
constructs would impose a large overhead.

This shows that the data-flow principles of execution can
be advantageously applied with a higher granularity as it
has been demonstrated [20], [42). It is indeed intended to
retain much of the distributed concepts introduced in the
tagged token data-flow machine [22]. The architecture we
consider comprises a large number of independent PEs
which can communicate over a packet-switched intercon-
nection network. The size and structure of the individual
PEs, however, should match the higher granularity envi-
sioned in this project and would implement powerful prim-
itives such as complex vector operations.

The architecture of the machine is to be organized in a
hierarchical fashion. It respects at the higher level the data-
flow principles of execution but comprises powerful PEs at
the lowest level. The PEs are to be vector processors. The
advantages brought by this approach are several-fold:

' The principles of data-flow are maintained at all levels
of execution which implies the same programming model.
(Indeed, avector operation can easily be detected in a higher
level data-flow language.)

* A continuous succession of more powerful but con-
versely more tightly coupled levels is implemented.

* The increase in performance brought by higher gran-
ularity can be directly implemented on this hierarchy of lev-
els with increasing communication costs.
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FORALL 1w (1 N/
c/==af1)-+b(1)
returms array of ¢

ENDFOR

Fig. 18. (a) A vector addition in SISAL, (b) U-interpreter
graph of a vector addition. (c) IF1 representation of a vector
addition.

B. The Elementary Processing Element

In order to apply the data-flow principles of execution at
a higher level of granularity, it appears that the individual
PEs should be dealing with complex constructs which are
maore representative of the application under study. In the
case of large signal and data processing problems, the input

GAUDIOT: DATA-DRIVEN MULTICOMPUTERS IN DSP

datawhich are processed are usually received at ahigh rate.
Each datum undergoes the same operation and interacts
only slightly with other data elements. This is the case for
image processing applications in which local transforms
are usually undertaken. This demonstrates that signal pro-
cessing problems usually entail a low level which corre-
sponds to vector operations. However, the highest level of
operations includes such constructs as conditional, deci-
sion making, etc., for which the data dependencies cannot
be identified clearly at compile time as they can be in a vec-
tor operation. Instead, runtime dependencies must be
detected in order to provide safety of execution and ade-
quate scheduling of our multiprocessor organization.

The individual PE is organized around a vector processor
but also includes the capability to perform scalar opera-
tions as needed. The vector architecture can remain
unspecified for the purpose of this section but could be an
SIMD processor, a pipelined vector architecture, etc. For
proper I/O function (i.e., communication with other PEs),
the Processing Element is separated in the actual Process-
ing Unit and the Communication Unit. The Processing Unit
implements the actual vector functions while the Com-
munication Unit is responsible for transferring data pack-
ets to/from the communication network and for the for-
warding data packets to other processors.

C. The Software Environment

The elementary principles of execution are based upon
an application of multi-level data flow, It was earlier dem-
onstrated that the high granularity would considerably and
positively affect the performance of a data-flow system,
However, it is also known that the high-level, statically
scheduled data-flow programming methodology could be
used to design extremely powerful vector processors. The
architecture we have described comprises therefore two
levels: sophisticated processors are connected into a sec-
ond hierarchy. This hierarchy also exists on a software point
of view: program constructs must be partitioned together
in order to best utilize the characteristics of the architec-
ture.

We have chosen for our high-level programming inter-
face the paradigm provided by SISAL (Streams and Itera-
tions in a Single Assignment Language) as introduced by
McGraw and Skedzielewski [38]. As shown in Section liI,
SISAL is a high-level language, the syntax of which resem-
bles Pascal. It is different from conventional languages, in
that it contains none of the side-effects associated with the
usual programming approaches. An example of the spec-
ification in SISAL of the addition of two arrays A and B was
given in Fig. 18(a). The existing compiler provides an Inter-
mediate Form output (IF1). Notonly does this outputinclude
the data-flow graph necessary for the runtime detection of
data dependencies (called Data-Flow Graph DFG), butitalso
includes program structure information (Program Struc-
ture Graph PSG). As an example, the IF1 representation of
the SISAL program in Fig. 18(a) is shown in Fig. 18(c). It shows
the Program Structure Graph (PSG) in solid lines, while the
actual Data-Flow Graph (DFG) is represented by dashed
lines. The forall pseudo-node belongs to the PSG and is the
head of a three-pronged tree: the left-most node contains
the RangeGenerator actor which produces the index / from
Tto N(see SISAL program), The middle pointer is the actual
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body of the loop. The right-most node gathers the results
from the body of the loop. Note that in the DFG, the index
is received by both array selectors (AElement) which receive
A (respectively, B), and / and produce A(/) (respectively, B(/)).
The Plus operator adds the two. Partitioning can easily be
done along the edges of the PSG, provided a cost matrix is
kept in order to easily assess the communication costs
among the modules so isolated. An immediate heuristic
comes to mind concerning the system under study: since
the atomic vector processing unit is so well tuned to the
scheduling of Generalized Vector Computations (GVCs),
the partitioning process should examine the PSG from its
leaves until it encounters a FORALL pseudo-node. A par-
tition which would comprise the whole subgraph can thus
be created. in addition, it should be noted that beyond this
relatively simple partitioning approach, several optimiza-
tion methods have been implemented. For example, nested
loops can be exchanged or combined, code could be
hoisted when data dependencies allow. These and other
strategies have also been described in [29].

D. Applications

Kalman filtering [45] can be chosen as a representative
example of some signal processing algorithms. It maps
remarkably well on our architecture because of the mul-
tiple levels of hierarchy which are embedded in the algo-
rithm itself. Indeed, the entire system could be described
at the low level used by “conventional” data-flow archi-
tectures (Section V). However, it should be immediately
noted that most of these low-level operations can be
grouped into higher order tasks. For example, the com-
putational block which corresponds to covariance matrix
estimation implements a complex matrix inversion. This
algorithm itself entails repetitive applications of transpose
operations,

As an illustrative example of the matrix operations which
can be directly mapped onto our architecture, we have cho-
sen the multiplication of two matrices. The SISAL code
which corresponds to matrix multiplication is shown in Fig.
19(a). The corresponding IFT output is shown in Fig. 19(b).
In the graph, actors “RangeGenerator1,” and “Range-
Generator3” broadcast index values i and k to the actors
“AElement1” (Array Element select) and “AElement2,”
respectively. Once the actors “AElement!” and
“AElement2” have received the index values, they forward
the pointers A[j, *] and Blk, *] to the actors “AElement3’’
and “AElementd.” “AElement3” and “AElement4” are also
waiting for the index values k and j which are sent from the
actors “RangeGenerator3” and ‘'RangeGenerator2,” in
order to generate the elements Ali, k] and Blk, j], respec-
tively. The “Times" actor receives the two elements A[j, k]
and B[j, j] and sends the product to the “Reduce” actor
which accumulates the received data and forwards the
result to actors “AGather1” as well as “AGather2" to form
atwo-dimensional array. The allocator analyzes the PSG and
determines that the lowest level consists of a vector oper-
ation which can be easily assigned to a single processor for
execution. However, it should be noted that for perfor-
mance improvement reasons, the allocator optimizes the
allocation of actors. Simple vectorizing compiler tech-
niques can be applied to optimize the mapping of this appli-
cation on our hybrid multiprocessor system.
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type OneDim = array[ integer ],
type TwoDim = array[ OnebDim ];

function MatMult( A, B: TwoDim ; M,N,L : integer
returns TwoDim)

for i in 1,M Cross j ih 1,L
5 =
for K in 1,N
R := A[ I,K ] * B[ K, J]
returns value of sum R
end for
returns array of §
end for
end function % MatMult

(a)

(b)

Fig. 19. (a) Matrix multiplication in SISAL. (b) Matrix mul-
tiplication in IF1.

VI. ConcLUSIONS

In this paper, we have demonstrated that data-driven
principles are particularly well suited to the determination
of the schedulability of operations in signal and data pro-
cessing problems on multiprocessor architectures. The
degree at which these principles are applied determines,
for a large part, the domain of application of the system.
When the various processors in the architecture are orga-
nized in asystolic array, the executability of instructions has
been determined directly by the designer and the design
remains frozen, This means that the application is fixed.
However, comparatively high computational throughputs
can be obtained from such organizations. When operation
scheduling is decided by compiler intervention, systems
such as the ESL polycyclic multiprocessor or the Wavefront
Array Processor can be designed. These offer more pro-
grammability than systolic arrays. They also offer the poten-
tial for scaling up without a complex overall redesign. How-
ever, complex data-dependent operations cannot be easily
implemented on these architectures.
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