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the mask being scanned across the image, in this case the
opposite is occurring—the template is hard-wired into
the FPGA while the image pixels are clocked past it.

Anorher important opportunity for increased effi-
ciency lies in the potential to combine multiple templates
on a single FPGA. The simplest way to do this is to spa-
tially partition the FPGA into several smaller blocks, each
ofwhich handles the logic for a single template. Alterna~
lively, one can seek to identify templates having some
topological commonality, and winch can therefore share

parts of adder trees. This is illustrated in Big. 11, which

 

shows two templates that share several pixels in common,
and which can be mapped using a set of adder trees-that
leverage this overlap- The advantage of using FPGAs is
that FPGAs can be dynamically optimized at the gate
level to exploit template characteristics. A gen-
eral—purpose correlatot would have to provide large gen-
eral—purpose adder trees to handle the sunnrfing of all
possible template bits. The FPGA, however, exploits the
sparse nature of the templates, and only constructs the
small adder trees required. FPGAs can Exploit other fac-
tors such as collapsing adder trees With common ele-
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Template 1

     
 l____ _l t_

A I 0. Example binary template with five ”on”pixels (rap) and
corresponding adder flee (bottom).

meats, and storing pixels that are not needed by the adder
trees using RAM~basod shift registers.

Table 2 illustrates the FPGA resource trade-offs in-

volved in template mapping. The table gives the FPGA
utilization for the Xilinx 4062 when four through seven
template pairs are simultaneously mapped into the FPGA
using the approach described above. Each template pair
consists ot'hivo 32 x 32 binary images and is represented
in the hardware using two template-specific adder trees.
The number oftemplates per second thatcan becvaluated
using this approach is a function of many factors includ-
ing the clock rate, the FPGA configuration time, the
number oftemplates per configuration, the candidate im-
age and target sizes, the number ofclock cycles needed to
evaluate the templates at each relative imageltcmplatc oil'-
set, and on I/O considerations. The performance can be
upper bounded by assuming that the 1/0 is fully efficient;
i.e., that the FPGA is always either computing correla-
tions or being reconfigured. Assuming efficient MO is
fairly reasonable in the prototype systems we have con—
stmcted, we have been able to avoid letting the FPGA be
idle by using scaled down versions of the templates.
When all ofthese factors are considered together, we find
that configuration can consume more time than compu-
tation; i.e. there is a significant perfiirmance penalty due
to reconfiguration. This overhead will diminish to 10%

or less when partially reconfigurable FPGAs become
more widely available. However, for parts that are not
partially reconfigurable, the benefits of increased
computation power offered by larger FPGAs are to some
extent mitigated by the larger configuration bitstreants
and longer reconfiguration times that these parm require.
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A l l. Template commonalities are exploited to reduce hardware
toqulrements for computing multiple correlations.

Figure 12 shows a configurable computing board
that was construcred at UCLA as a prototype for the
template-matching problem. The board contains a “dy—
namic” FPGA that is used for template correlations and
is run—time reconfigured, a “static” FPGA for control,
SRAM for storage of pixels and results, EPROM for
configuration bitstream storage, and an interface to an
i960 embedded processor for more advanced configura-
tion control.

Ongoing Research

Configurable computing has growu from a field with a
handful of researchers in 1989 [45] Lo one that now re-
ceives the attention of hundreds of researchers and engi-
neers in academia, industry, defense, and a rapidly
increasing number of start—up companies. In this section
we identify some of the open issues in this field and de-
scribe selected recent and ongoing projects that aim to ad-
dress them.

One ofthe most interesting questions in configurable
computing concerns the exrent to which current FPGA
device and machine architectures should be altered to

better support computing as opPOsed to the prototyping
that drove much of the early evolution of FPGAs. Aca-
demic researchers pursuing this question face the obvious
challenge of being unable to fully exploit the existing in-
fiastmcrure of commercial FPGAs and design tools. and
typically design custom FPGAs to validate their architec-

ture proposals. Various projects are underway, each at—
tacking one or more of the well-known weaknesses of

commercial FPGAs. For example, some researchers are
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investigating architecnnes that are based on relatively
wide 16-bit datapaths (as opposed to the 1-bit datapaths
found in today’s FPGAs). While less flexiblethan FPGAs,
these computing devices are much more efficient in sili-

con terms and achieve higher arithmetic performance on
16—bit mmger data. Other Inscarchcrs are hivestiganng
novel configuration approaches that either reduce config-
uration time through context-switching or that distribute
configuration data with data to be processed. Still other
researchers are merging general~purpose processors and
FPGA resources on the same die in an attempt to com-
bine the besr features of both technologies.

Peter Athanas’ group at Virginia Tech is exploring
16-bit computing devices based on the “wormhole” tech—
nique: a computing approach that dish-ibutes configura»
tion data with the data to be processed [33]. Consisting
ofa single multiplier and a 4 x 4 array ofI 6—bit arithmetic
logic units (Allis) interconnecncd by a crossbar, their
COLT device combines configuration data and data into
a single packet. Resemhljng dataflow computing in many
aspects, configuration data in one packet are used to route
data through the array and to configure ALUs for subse-
quent processing. COLT has been fabricated and is cur-
rently being tested.

Carl Ebeling‘s group at the University ofWashington
is working on RAPID, another device based on 16-bit
datapaths [14]. A RAPID arrayeonsisrs ofa mosrlylinear
array of RAPID cells, each cell consisting of an integer
multiplier, three integer ALUs, six registers, and finer
small memories. RAPID is primarilysntically configured
but uses limited dynamic control to provide run—time
flexibility.

Matrix, developed by Andre DeHon and others at
MIT, is based on a cell that can serve as an instruction
store, a memory element, or a computational clement. All
datapaths are 8-bit and these cells are interconnected
with multilevel interconnect that can be used both for
data and instruction distribution. Matrix is currently on-
dergoing commercial development by a new startup
company, Silicon Spice. Del-Ion has also conducted an

in—depth study that sets FPGA—based computing in a
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general-purpose computing context and has suggested
several machine architectures [12.]. :

FPGA vendors are also pursuing their own research
and development projects as well as more aggressive fab-
rication processes. For example, over the next taro years,
devices using supply voltages of2.5 Volts and below will
become common. In addition, the technology lag of
FPGAs with respect to ASICS in terms offeature sine and

number of metal layers is rapidly shrinking, with
3—5~layer FPGAs fabricated using sub .3 micron technol~
ogy expecred to become common. The vendors are also
likely to both introduce and adopt arcifiteCtural irniova-
tions that have shown promise in academic research.
Since future FPGAs will track ASIC technology more
closely and will benefit from a richer set of architectural
features, they are likely to compare more favorabiygwith
ASICs for many applications than that of today. :

The BRASS projecr at U.C. Berkeley under John
Wawrzynelc [22] is developing a single chip (Garp) that
incorporates a MIPS~II processor and an FPGA: core
Whose elements roughlycorrcspond to those found in the
Xilinx 4000 series. The BRASS researchers have modified
the bill’s-II protessor, replacing the floating-point unit
with an FPGA core of their own design, and have ang~
mcnted the instruction set to include operations that
manage the FPGA resources. Their goal is to execute
data-intensive operations on the FPGA core andileave
general-pnrpoae operations on the processor. A related
effort at National Semiconductor Corporation is build—
ing an FPGA thatwill combine a programmable proces-
sor and a fine—grained FPGA on the same chip [13].

Other researchers are investigating solutions to hinting
eonfigtnable computing. elements with more traditional

processors. For example, Ian Rabaey of U.C. Berkeley
has examined die allocation of tasks in typical digital sig-
nal processing and has proposed amultigtanulan‘tyarehi—
tecture that alans computations to he directed to the
hardWare that best supports them [34]. Rabaey is also in-
vestigating strategies for low-power FPGAS. Though
some power reduction will occur automatically due to
technology changes, there is substantial opportunity to

SEPTEMBER 1993

Petitioner Microsoft Corporation - EX. 1066, p. 160
—-——-————________________________



Petitioner Microsoft Corporation - Ex. 1066, p. 161

redesign the logical units in FPGAs with powcras a prin-
cipal constraint.

Several groups are looking at FPGAs that have multi—
ple configurations, or contexts, stored on-chip simulta-
neously. At any given time one context is active and the
others are stored in Iowa planes. Contexts can be
swapped extremely quickly—“requiring from one to sev—
eral hundred clock cycles to complete—pocentially elimi—
nating much of the overhead involved in loading
configuration bitstreams from off~chip. Of course, con-
text switching involves other overheads such as the rc~

sources needed tohold multiple contexts on-chip, and the
hardware and tools to manage context~switching The
earliest Work on contest-snatched FPGAs was done at
Xilinx beginning in 1991, though it remained proprietary
until very recently [42]. In the academic community con-
text switching was studied by Tom Knight, DeHon, and
their colleagues at MIT [11, All].

Work to develop new configurable computing devices
also benefits from an understanding of how algorithms
map intoche range ot'architecnires represented by today’s
FPGAs and FPGA systems. Some of the most extensive
algorithm mapping work has been performed by the
BYU group led by Brad Hutchings, which has experi-
mented with most commercially available (and noncom—
mercially available} FPGAs as well as prototype systems
such as the HP Terarnac [2] and Splash—2 [4]. BYU has

demonstrated applications in the following areas: neural
networks [15], morphology [48], ATR [35] and genetic
algorithms [19]. BYU has also developed a variety ofde—
sign and implementation strategies [25] and provides tu—
torials for many different FPGA platforms via their web
site: http:f;’splish.ee.byu.edu. A large bibliography ofre~
lated papers is also available at this site.

BYU‘S early research agenda was twofold: one, deter-
mine what characreristics make an application a good
candidate for implementation on an FPGA—based com—
pucing platform, and two, research and understand the

strengths and weaknesses ofcurrent devices, system orga—
nizations, and tools. Following up on this basic research,
BYU is now in the process of developing new system. or-
ganizations and application-development strategies that
are based upon high-performance circuit libraries, do-
main-specific compilation, and RTR. BYU also contin—
ues to experiment with applications in an effort to find

additional applications that can exploit this technology.
Iohn Villascnor and his colleagues at UCLA have

demonstrated a video conununications system in which a
single SOOO-gate FPGA was reconfigured four times per
image frame to allow compression and transmission ofan

image [26]. The Mojave project at UCLA, led by John
Villasenor and Bill Mangione-Smjth, has resulted in sev-
eral generations of boards and domain-specific design li-
braries for the ATE. application described previously.

These boards included an interface to  

   
an embedded processor that. per-
formcd on-the-fly analysis of results
and modified the PPGA configura-
tion sequence accordingly [43, 4-4].

Researchers including Mohammad
Shajaan and John Sorenscn of die

Technical University of Denmark
[38] have examined architectures for

performing digital filtering using
FPGAs. Because today’s FPGAs per-
form multiplications poorly, much of
the attention in filtering using FPGAs
has focused on middply—fiee imple-
mentations. In the funire, it is also

likely that adaptive filtering algo-
rithms will find application in FPGAS
disc are partially reconfigured as the
filter coefficients evolve.

Anorhet area of research focus is in

compilers and tools for configurable
computing platforms. Ian Page ofOx-
ford University has developed Han—
del, a programming language that
allows programmers to simulta-

 
 

A :2. a configurable computing board forflfR Duittat UCLA. the board Includes a “the
nomic" FPGA that implements template correlations and is rapidly reconfigured during
execution, a ”static” FPGA for control, SRAM for image data storage,
configuration bftstream storage. The board resides in a host PC andacross a PC: bus.
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neously develop the FPGA eiucuit cle~

scriptions and processor software

with a single description language
based on OCCAM. [31}. Reine:-
Hartenstein of the University of

and an mom for

receives images
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Kaisetslautern has developed a machine-level abstrac-
tion called the Xputer [21] that also derives the target
machine description and its program From the same de-
scription. Wayne Luk. at Imperial College is investigat-
ing formal approaches to FPGA design based on the
language RUBY [29]. Transmogrifier-C [l7], devel—
oped by researchers. at the University ofToronto, is a
programming approach targeted at Toronto’s TM-Z

custom platform, which is currently under develop-
ment [27]. Anant Agarwal and his col—
leagues at MIT are working on a utomated
programming approaches for very large
configurable—computing platforms [6].
In addition, HP developed a very
easy-to-usc compiler for their Terarnac

system that automatically partitioned,
placed, and routed 'a netlist of l—million
gates into the nearly 1000 custom FPGAs

that formed Teramac [2].
Configurable computing is represented

by a growing presence in the commercial
world. In addition to FPGA vendors in-

cluding Xilins and Alters there is a rapidly growing list of
start-up companies with producrs that are based on

configurable computing. These including Annapolis
Microsystems of Annapolis Maryland, which common
cialized the SPLASH-U architecture; Virtual Computing
Corporation of Reseda, California; Morphologic of
Nashua, New Hampshire; and Giga Operations of
Berkeley.

Conclusions and Future Directions

It is now clear that for applications requiring deeply
pipeline-d, highly parallel, bit—level operations including
cryptography, target recognition, and some types of im-
age prOcessing, configurable computing machines ofi‘er
compelling Speed and cost advantages over alternative
implementations. For these types of applications,
configurable computing machines are likely to become
solutions of choice. What is less clear is the extent to
which configurable computing techniques will become
useful in more general computing environments, in par
ticular for applications that inmlve high arithmetic com~
plexity. Given the dominance and ever—increasing
(zip-abilities ofmicroprocessors for general-purpose com-
puting, it seems highly unlikely that any other Computing
model, including that offered by configurable compue
log, will make significant inroads against microploccs—
sors in the foreseeable futul‘t. Widespread adoption of
configurable computing is also hampered by the lack of
exactly what microprocessors possess in abundance: 21 set
ofrelatively easy to use, widely known software program—
ming languages and associated compilers or interpreters
that allow a user with little or no knowledge ofthe under-
lying hardware to instruct a computing platform to per-
form a desired task.
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The lack of a sufficiently general high-level software
programming model is of course a well-known problem
among researchers performing work in configurable
computing, and there are many ongoing efforts in which
creation of a design tool infrastructure is a goal. EVen if
such languages can be developed, tested, and adopted1
there remains die problem ofthe “compiler,” whiCh in the
domain of FPGAS means the tool chain That translates a
filnttional or structural description ofthe task into aton—

M

Configurable computing is likely to benefit
from architectural innovations both '
in FPGAs and in the hardware to
interface to them.

figuration bitstteam that fiilly describes the circuit in the
FPGA. PPGA place and route tools have always benefited
from place and route teclmiques used in ASIC design,
which involves many ofthe same challenges and tradeofih
interms ofcloclt speed, design complexity, etc. Herrera,
the several hours needed by current-generation conirner—
cial FPGA tools to synthesize, place, and route a design
on an PPGA, while fasr when viewed in the context of
ASIC design, are unacceptably slow when compared to
software compilers. To make configurable compllting
practical will require that FPGA place and route tools he
made faS‘ECl' by several orders ofmagnitude, most liliiely at
the cost of highly suboptimal mappings of tasks into
hardware. One exciting, but as yet unproven, appioach
Illat has been advocated by William Mangione~Smith of
UCLA is dynamic compilation, in which small units of
precompiled FPGA configuration bitstreams can bcicom-
bined extremely quicldy at run time to constitutee fiJll
FPGA configuration bitstteam. There are many: chal-
lenges in dynanuc compilation, not the least of “filth is
the proprietary nature of configuration bitstteanas for
most commercial FPGfls. '

.As configurable computing advances it is also impor—
tant to distinguish techniques that are truly new, such as
large—scale run—time hardware reconfigurationLfi-om
techniques that have existed in computing For imany
years. Many of the “new” approaches in configurable
computing are in fact existing computing concepts that
are being implemented in a new domain. For example,
the ATR algorithm described previously gains its effi—
ciency from RTR, which can legitimately be claimed as an
innovation due to configurable computing, and; from
mapping target templates into template—specific adder
trees, which is an example of the years~old technique of
partial evaluation.
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In addition to due obvious trend toward larger devices,
configurable computing is likely to benefit from architec—
rural innovations both in FPGAs and in the hardware to

interface to them. Configurable computing is a young
field with enormous potential to grow as FPGAs, their
derivatives, and the tools to use them advance. The

FPGAs that will be emerging in the next Few years will be
in excess ofhalf a million equivalent gates, which is large
enough to support a very diverse range ofapplications. In
addition, the state of the art in architectures for

configurable computing devices will be significantly en-
riched by the many ongoing research efl‘orts studying ar-
clutccturc issues. Existing and perhaps new vendors of
configurable computing devices, who are now well aware

of the potential of configurable computing, can be my
peered produce devices and the associated tools that will
make FPGAS oftoday look primitive.

John Wiles-om is a Professor at UCLA‘s Electrical Engi-
neering Department in Los Angeles, California. Brim!
Hatching: is an Associate Professor at Brigham Young
University’s Electrical and Computer Engineering De—
partment in Provo, Utah.
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Data-Driven Multicomputers in Digital
Signal Processing

JEAN-LUC GAUDIOT, MEMBER, IEEE

New technologies of integration allow the design of powerful
systems which may include several thousands ot'elernentary pro-
cessors. These multipmcessors may be used for a range of pli-
carions in signal and data processing. However. assuring the properinteraction of a large number of processors and the ultimate sale
execution of the user programs presents a crucial scheduling prob-

cution are also studied. A ntulii—level approach to high-speed dig-ital signal processing is then evaluated.

i. lNTitDDUcTtON

period as low as a nanosecond. This approach is inevitably
bounded by physical limits such as the speed of light.
Therefore, instead of considering the technological
approach to performance improvement, we emphasize

Manuscript received Septeinberrt, 1986,- revised Ianuary23, 193?.
This work was supported in part by the Department oiEnergy under
Grant DE-FCOli-BJTR 25043. The views expressed in this paper are
not necessarily endorsed by the U.S. Department of Energy.

Theauthoris with the Computerifiesearch institute, Deparlment
of Electrical Engineering—Systems, University of Southern Cali-fornia, Los Angeles. CA 90039, USA.

IEEE Log Number 5716205.

advantage of im
complex numer posing no “software retooling.” However,

'icaI applications will not be easily parti-
tioned and much potential parallelism may remain unde~
tected by the com

Ada, CSP [26],
the other hand,

piler.

extended Fortran (e.g., HEP, Sequenl), on
allow the programmer to deal with parallel

processes by the use of primitives for parallel task spawn—
ing. synchronization, and message passing. However, while
the programmer can express some of the parallelism char-acteristic oi the

application, much potential concurrency
may never be uncovered because of the inherent sequen-tial concepts oi
through the use
tions.A|so,deve

the language which must be countered
of special ”parallelism spawning" instruc-
lopmenttimebecomesimportantsincethe

to rammerntust‘"u le"withntan aralleltaskstos n~P B l 88 YD l’chronize. In ad
dition, debugging becomes correspond»

ingly more difficult due to the sometimes undeterministicappearance of errors.

For these reasons, an impiicitapproach must be devised.
In the above two methods, instruction scheduling is based

tiprocessors: instructions can be scheduled by the avail:
ability oitheiroperands. This model ofexecution is a subset
of the functional model of execution [9]. It provides a sig—
nificant improvement to the programmability of multipro-
cessors by excluding the notion of global state and intro-
ducing the notion of values applied to functions instead of
instructions fetching the contents of memory cells as theyare in the conve

The overall ob
ntional “control-flow" model.
jective of this paper is to demonstrate the

applicability of data-driven principles of execution to the
design of high-performance signal and data processing
architecture-5.5everal approaches will be demonstrated and
their particular domain of application will be contrasted.
The description of low-level processing systems is beyondthe scepe of this

paper and the interested reader is referred
to an excellent survey by Allen [31. Instead, we will con—
centrate here on the issues related to building high—per-
formance multiprocessors for signal processing applica—

In Section II, we show the type of problems
considered in signal processing. The data-flow principles
of execution as they relate to digital signal processing prob-
lems are described in detail in Section III while several exist-

tlfl'll}3219lfl7l09llfl"l231501.00 '5" 1987 IEEl.
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int: tlala-rlriven architectures are described in Section IV.
In ht't'iir'tn V, we analyze a multilevel data~driven archi-
1“, illi't‘ and examine its programming environment. Con-
t Iii-lions are drawn in Section VI.

II. it” RLQLJIIEEMENTS or SIGNAL Prtocesstuo

Digital signal processing techniques are applied to many
ritilercnt technical problems. These include radar and sonar

cygiuttlh, image processing, speech recognition. etc. The

eltunentary building blocks of these were originally con—
centrated on such tasks as convolution, correlation, and

Fourier transform. More complex algorithms {matrix oper—
ations, linear systems solvers, etc.) are now considered.

Higher order operations include not only simple problems
such as elementary filtering tllR, FIR, etc.], but also more

complex functions such as adaptive and Kalman filtering
[451. Also, such complex problems as Computer—Aided
Tomography or Synthetic Aperture Radar can be consid-

ul'tltl {191, [16]. Signal processing algorithms are very app")-
priale l'or description by functional languages. indeed, a

signal processing algorithm is often represented in a graph
I'orm [3s] and can be decomposed in two levels:

a regular level which can be implemented by a vector
operation (i.e., a loop in which all iterations present no
dependencies among themselves};

a level which contains conditional operations and heu-
risiic decision making.

this description shows that the lower operational levels

can easily deliver parallelism {by compiler analysis or pro-
grammer inspection]. This layer usually consists of simple
constructs (arithmetic instructions, FFT butterfly networks,

simple l'ilters, etc.i. However, the higher levels will require
more complex problem insight and even runtime depen—
ilencycletection in order to allow maximum parallelism. We
will now describe principles of execution which will allow
lie to deliver this concurrency.

| I l . Dara-How PRINCI PL E5

The datavflow solution to the progran'imability problems
of large-scale multiproCEssors [5] has been pioneered by
“Want-‘3 [3L Cl‘lamberlin [1'1], and Rodriguez [43]. it is now
described in detail in this section.

a. itasic Principles of Execution

in the conventional von Neuntann model of execution,

an instruction is declared executable when a Program
Counter of the machine points to it. This event is usually
underdirectprogrammercontrol.Whileacontrol-flowpro-
gram is a sequential listing of instructions, a data-flow pro-
gram can be represented as a graph where the nodes are
ill? instructions (actors) which communicate with other

nodes over arcs (Fig. 1}. An instruction is declared execut—
able when it has all its operands. In the graph represen—
lation chosen above, this means that all the input arcs to
an actor must carry data values {referred to as tokens} before

this actor can be executed. Execution proceeds by first
absorbing the input tokens, processing the input values
according to the op. code of the actor, and accordingly pro-
ducing result tokens on the output arcs. In summary, it can

(LAUIJIFJT: DA'IA-DRWEN MULTlCOh-lPUTEREIIN USP,

 
Fig. i. A simple data—flow graph.

be said that the data-flow model of execution obeys two
fundamental principles:

* Asynclirony of operations: The executability of an
instruction is decided by a local criterion only. The pres—

ence of the operands can be sensed "locally” by each
instruction. This is an attractive property for an implemen—
tation in a distributed environment where no central con—

troller should be used for global scheduling.
' Functionality of tlte operations: The effect of each

operation is limited to the production of results to be con-
su med by a specific number of other actors. This precludes

the existence of ”side-efiects." These side-effects may be
long—ranging in that the execution of an instruction may
effect the state of a cell of memory which will be used only

much later by another unrelated operation.

8. Data-Flow interpreters

When iterations are executed, the underlying principle
of data-flow (single assignment ofvariabi‘es) most invariably
be violated. Indeed, for an actor to be repeatedly evaluated
as in an iteration, its input arcs must carry several tokens

(from different iterations). Several solutions have been pro
posed to allow the controlled violation oi these rules with—

out compromising the sal'e execution of the program.
Among these, the Acknowledgment scheme and the

U—interpreter have been given the most consideration.
1) AcknowledgmentScheme [74}.- Proper matching of the

tokens can be observed by ordering the token production.
This would be done byacareful design of the program graph
so as to insure that tokens of two different iterations can

never overtake each other. In addition, it must be guar-
anteed that no token pileup is encountered on anyone arc.
This condition can be verified by allowing the firing of an
actor when tokens are on all input arcs and there are no
tokens on any output arCs. In order to en force this last con—

dition, an acknowledgment must be sent by the succes—
sorlsi to the predecessor when the token has been con-
somecl (Fig. 2). Note that an actor is execulable when it has

received its input arguments as well as all acknowledg—
ments. The parallelism which can be exploited from this
scheme is mostly pipeli ning between the actors of di tierent
iterations. Thus when the number of instructions in the

body of an iteration is the same as the number of available

processors, the speedup observed by this mechanism of
execution is maximal. HOWever, for small iterations {com-

pared to the size of the machine], the exploited parallelism

Petitioner Microsoft Corporation - EX. 1066, p. 170
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‘ACK‘

Fig. 2. The acknowledgment scheme.

interpreter {Udnterpreter}: The
U—interpreter [4] provides the most asynchronous possible
operation. In order to allow safe execution of actors in an
iterative construct, tokens are tagged with information per-

be found. This tag includes the iteration number. indeed,
the U-interpreter closely follows these principles: to each
data token is attached a lag of the form o.P.s.i, where Piden~

is used to recirculate the data from one iteration to the next.
its input is tagged with u.P.t.iwhile its output value is iden-
tical but has become tagged with u.P.t".i + 1. Nested iter-
ations are handled by isolating the inner from the outer iter—

graph. The function of this actor is to create a new context
for the execution of the iteration: the input tokens are
tagged by u.P.s.'iwhile the output tokens are identical but
are tagged with u’.P.t‘.1 where u' is itseltu.i. Note that this
mechanism is sufficient to create an entirely different set
of tokens fortwo nested iterations. indeed, assume that two
tokens both belong to the same inner iteration i,-but belong
to the i, and 1'2 outer iterations respectively. The first token

177‘]

 
Fig. 3. A typical iterative construct in the U-interpreter.

would be tagged u1.P.s.ilu1 = u.i.} while the second is
tagged with u2.P.s.iiu2 = wig). This shows that an appro-
priate differentiation has been made between the two
instances. The originaicontext o Is retrieved by the L' ' actor
before exiting.

Contrarily to the acknowledgment scheme. this dynamic
data-flow scheme a lows full asynchronous execution of the

instances of the same instruction may exist simuita-
neousiy. Vector operations may be executed in parallel
without compiler-induced replication oi the graph. Like-

expense of added hardware complexity. indeed, it will be
shown in Section iV-D that implementation of the U—interv
preter requires an associative memory for fast tag match-
ing. Several machines based on these principles have been
studied: the MIT tagged token data-flow machine [6], the
ESL DDSP [28], the University of Manchester machine [23],
the ETL Sign1a~1 [25], etc.

C; Structure Handiing

principles states that an output is a function of its inputs
only, regardless of the state of the machine at the time of
execution. When a structure of elementary elements must
be processed, the absence oiside-effects means that it may
not be updated for this would imply its transition through
several states instead, if any updates are needed, a new
array which contains the new elements must be created.
Copying of all elements must be undertaken for the mod-
ification of a single one. This solution imposes an inordi—
nate overhead. This is whythe implementation schemes we
will now describe can shortcut this com plete copying while
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preserving the meaning ol'the program during array update
operations.

it Heaps: Dennis [141] has proposed to represent arrays
1,5; directed acyclic graphs (also called lieapsi. Each value
it, represented as the leaf of a graph tree. The modification

,,I' ,—. single element in a heap is represented in Fig. 4. Note

A W

L1 1.3 |.3 2.! 1,9- 1.3 ”293*
Fig, 4. A heap update.

that the complexity of the modification of a single element
oi the array is 0th for a copy operation, while it is
()(log hi [or the heap. Several instructions are exclusively
devoted to the access of heaps [15]: SELECT receives a
pointer to the root node, an index value, and returns a
pointerto the substructure (which may bea leaf node) asso—
ciated with the index; APPEND also needs the same two

operands in addition to the value ofthe element to appendto the structure.

21 l—Stroctures: A heap must be entirely ready beiore it
can be consumed because no consumption (SELECT actors}
can take place until the pointer token appears ti.e., the cre-
ation of the array is completed}. In the I-structure scheme

[7'] constraints on the creation of arrays allow the selection

ol individual elements (or substructures} from the array
before its complete production. One possible implemen-
tation of I—structu res makes use of a ”presence” bit which
indicates when an element of an array has been calculated
and is ready for consumption. An attempt to read an empty
cell would cause the read to be deferred un til such ti me that

the cell presence bit is marked. Conversely, a write into a
cell, the presence bit ofwhich indicates valid stored data,
could be cause for the generation of an error signal. The
advantages of this scheme are:

. better performance because pipelining is allowed
between l-structu re consumers and producers:

- less “serialization” of operations such as APPENDS,
because they are allowed to occur independently on
the same structure.

3) HDFM Arrays: A special scheme for handling arrays in
a VAL highwlevel environment has been designed for the
Hughes Data—Flow Machine lHDFMliZ‘I]. It uses tl'teiactthat
data—flow arrays as described above are overly ”asynchro-
nous,” i.e., they do not take advantage of the data depen-
dency information carried by the program graph. Safety of
accesses is respected by not allowing the updating of an
array before all the reads from the current version of the

array have been performed. Only then can the array be
directly modified. Safety and correct execution of WRITE
operations are a compile-time task. This has the advantage
of reducing the number of memory accesses (no complex
graph of pointers must be [revered as in heaps) as well as
of offering a better possibilityofdistribution of an array (no
root node). However, spurious data dependencies may he
introduced because the compiler is not necessarily aware

(IAUDlU'l: DATA-DRIVEN MULTlCDh-lPUTFlZS IN D5?

of the possibility oi parallelism that can Ire detected only
at runlime. For instance, tlependencu—rs on A and (-3 related

by riiFllil = iitil may he artificially imposed. l-ltjn-vr-3vt1-r, the
applications Iargetied by the HDFM include some amount

of regularity which can be easily detected by the compiler
and implemented as conventional arrays.

cl} Token Relabeling {78}: In the U-lnterpreter, the notion
of array can be entirely ignored at the lowest level of exe-
cution. Instead, the tag aSsociated with each token under
the rules of the U-interpretalion is used as identification or

the index of the arrayelemenl of the high-level language.
In other words, it can be simply said that, when an arrayvt
is created, its All) element will be tagged with i thereafter
denoted Ali'lm). if the elements are produced in the logical
order. in the ”production” of a unidimensional array, the
iteration number can usually be directly interpreted as the
index of the array element just produced by the iteration.

Special token relabeling program graphs can be created
to handle scatter and gather program constructs [27] (Fig.
5(a)). This ligure shows that an inversion function F"

norm
[Reinbeimgl

r .rH I

Emit! ‘ All warrior
\ it"l ll III

C 1:

l r rm
oer r=r.mu

i err; =— no; + art'rrii
tall

Irv...i‘:""'*.';-i ’3‘”

Fig. 5. (a) A gather operation. {hi Token Relabeling gather.

This demonstrates that, without recourse to the calculation
of F", the proper relabeling of the A elements has been
effectively produced.

This algorithm requires no intermediary storage, does
not need array operations, and imposes smaller hardware
and execution overhead. This relabeling approach elimi-
nates a large portion of the overhead associated with the

production and consumption olarrayA. Pipelining between
the source and the sink of a data structure is the goal of this
unknown at compile time would be needed to perform the
relabeling ofdata-flowtoltens. Such a calculation is not truly
necessary. Instead, we introduce (Fig. Bibi) a sequence gen-
erator which produces the Ft ,ii‘s, tagged by 3‘. An exchanger
actor (called \‘l swaps the tag and the data value and pro—
duces fly-”,1. Both streams {the A's and ,imml are input to a
special relabeling actor 5 which only modifies the iteration
portion of the tag. By the principles of the U—interpreter,
only tokens which bear the same lag will be matched as
proper inputs to the :5 actor. In other words, the mate of

l'l‘l]
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_ ,, ”rm”. um: special nt'tor ['1 is

a tetaoeirng actor which takes the ri input and rt-Iahels It
with the data carried by the token on the other input arc,
In other Worth, it oulputs Ali-tit)” . Since i is a dummy var-
iable, and since Fis biieclive, it can he said that. on a globalpoint of view:

filiFit'li-n '5 Add” ‘Ilrii'
scheme. iust as it was the idea behind the design of the
I-strurtures. However. the token relabeling approach bringsa better runlime memory management since tokens cor-
responding to the various elements of the array still exist
and must still be temporarily stored, they need not gothrough an additional storage as a data structure. Also, there
is no need for ”requests” for data as woulcl be the case in
an t-stt‘uct ure envtronrnent: When an I-st ructure is created,
actors which need data from it must demand the element
in question until it has arrived. This may introduce heavyoverheads as unsatisfied requasls must be queued in the
slrurture itseli'. Garbage collection is automatically han-
dled since when the "array token" is matched, ii is auto—
matically removed from the arc. In other words, when it has
been used, it is swalloWed by applying data-t'low principles.

In addition to the low«level mechanisms of execution
which were described earlier, special high—level data-flow
languages have been designed tor easier translation into
dala—ilow graphs. To be sure. these high-level languages are
not a necessity: the Texas Instruments data—flow project [31]
relied upon Furtran programming through the use of a
modified version of a vectorizing compiler originally des-
tined to the Tl ASC. However, many high-level languages
have been designed for data-flow prototypes. Most notable
are VAL {Value Algorithmic Languages} for the MIT static
data-flow project [37], [1}, Id ilrvine Datal‘lowi for the MIT
tagged token data-flow architecture [4], LUCID [8], [30], etc.
SISAI. (Streams and Iterations in Single Assignment Lan-
gUageI has been designed by McGraw and Skedzielewski
[38] and is intended as the definition of a "universal" lan—
guage tor the programming of future multiprocessors.

lions. These include the SIGNAL language designed by
Le Guernlc et ai. [36}. The intent of the language is to pro~
vide a formal specification of signal processing problems
and to ease the design oi signal processing multiproces-
sor-s, be they special- or general-purpose. One oi the main

opposed to asynchronous languages such as CSP and
Occam [‘IG]. SDF (Synchronous Data Flow) is another formal
description of signal processing algorithms based on data-
driven principles ol‘ execution proposed by Lee and Mes-serschmitl [351.

IV. DaiwDatvti-q Aitcnnrcrueis

We now describe in detail several systems which operate
at tuntime, compile-time, orciesign-time under data~driven
execution. Although it is generallyconsidered that claIa-I'low
principles ol‘ execution are in eltecl at runlime, we extend

their domain of application to design or compile time and
refer to them as data—drivensystems-“We thus initially exam-
ine mu ltiprocessor systems where data dependencies have
been I'rozen al design time (systolic arrays}. We then con-
sider programmable systolic arrays (the Wavefront ArrayProcessor) and multiprocessors scheduled at compile time
by the use ol‘ data-flow program graphs (the ESL polycyclic
processor}. Finally, we study systems where the data depen-
dencies provide scheduling information at tuntime [the
Hughes Data-Flow Machine} and examine the influence of
the level oi resolution upon the performance (the USCTX'lt‘ai.

A. Systolic at rrays {32}

cessing problems, matrix operations, image processing, etc.
In summary, a systolic array is simply a collection of inter-
connect-ed Processing Elements tPEs). In order to incor-
porate as many processors as possible, the structure of the

neighbor lopolog r in order to minimize communication
delays as well as power distribution issues. Note that topol-
ogies include two netghbors {linear arrays), four neighbors
tsquare arrays}, or six neighbors (hexagonal arrays} as

 
Fig. (1. A linear systolic array.

' . 173Petitioner Microsoft Corporation - EX. 1066, p



Petitioner Microsoft Corporation - Ex. 1066, p. 174

noted that systolic arrays are very efficient at computa-
tionally intensive problems which involve many repetitive
low—level calculations. Also. the very nature ol their design
tenders their function fixed at design lime.

it. The Wavefront Array Processor (WA P) [33}, {34}

Execution on the WA? is similar at runtime to the exe-

LUIIOH of a program on a systolic array. Indeed, both
approaches rely upon the scheduling of operations based

on the availability of their operands. However, the analysis
or the data dependencies is effected during the design of
a systolic array while the WAP is scheduled by compiler
detection of parallelism: the WAP is a "programmable sys—
tolic array." it has been shown that most signal and data
processing algorithms possess a certain amount of locality
and recursivlty. They will thus exhibit the phenomenon of
computational wavefront. This has an important implica-
tion in that an entire front of processors can be pro—
grammed for the same operation. In addition, it can be
shown that two successive wavefronts cannot intersect. This

enables the proper implementation of data-driven princi—
ples of execution. For instance, a matrix multiplication can
be executed as a computational wavefront (Fig. 7]. A special

of, = c",§—'+_-t,,xo.,

ME MUR‘I‘ MODULES
PRCIG RAM
CODE   
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Fig. 7. Matrix multiply in the WAP.

 

 
language called the Matrix Data-Flow Language (MDFL) has
been designed to express such algorithms on the WAP.

C. ESL Polycyclic Architecture {41}

The ESL polycyclic architecture is a horizontally micro-
programmed multifunctional vector proeessor. it com-
prises several functional units (adders, multipliers, storage
units} connected by a cross-bar interconnection network.
Entire vector loops [no data dependencies across the iter—
ations) can be scheduled by using the model presented in
[40]. The essential idea is to discourage "greedy" sched-
uling by insertion of ”non-compute” delays in the train of
calculations. The elfect of these delays is to enable an opti—
mal schedule. A pipeline is viewed as a certain number of
resources {the various segments of the pipe?) which can be
reserved by tasks. The problem is reduced to the produc-

GAUDIOT: DATA-DRIVEN metricowursas IN osr

lion of a rest-irvation lfll‘llt". with nt- collisions t1.t'.. no two

tasks can reserve Il‘lt' samr- st-mnrrnt o! the ltittt‘llt'tt' :It the
same time-t. For that purpose. a usage interval is tll’lillt't'l .n.
the time interval lJetwr-ren two t'tt'at-‘I'Vs'tllut'lhrtl .I w .{ltlt‘lll Irv

a single task. Two tasks will collidt'when they have ll‘lt} same-
initiation time as one of the usage intervals. For a homo
geneous multiprocessor tidentical i’Es), the method is cluni'
in two steps:

ll Determine the h-linlntum Initiation inter-val Mil n:-

Mtl = lN/P]. N is the number of instructions in the body
of the loop, and P is the number of processors available tor
execution. The initiation interval is the length m lli'Tll'
between the initiation of two consecutive iterations. Suc-
cessive iterations will be scheduled at Mll units intervaifill

the iterations will be identically scheduled.
2) Schedule the operations in accordance with the data

dependences. However, no more than Poperations maybe
scheduled for the same time modulo Mil. Note that this last

constraint also implies that delays must be inserted in the
schedule.

The following example shows the scheduling of a simple-
vector operation (Fig. titall on a polycyclic procesmr with

two adders and one multiplier {note that for simplification,
communication costs have been assumed to be null). There

are two multiply operations fora single multiplier while
there are. three additions on two adders. The Mil would

therefore he 2. This means that one iletal ion or the loop ca n
be performed at a rate of one for every two cycles. By using
the data dependency graph ot‘ the example (Fig. athti, the
optimal schedule can he used by applying the Mil of 2 tFig.
Btcit. Proper"dovetailing"ot'successiveiterations is assured

no i i. i v

| .‘.'t!l=ll.tll]‘lltlIl-t-lt’tlI-dlrlt’l'llz'rl|--.‘Jul
tat

.r': E , L1 l: I—I . .' . f
\ . I; _'

r' .r .\ 1“

MG) 63 «~63. J

 
lLl

tas-__\t;t..\.1tt_t_steein=.ut _.'_‘L.'.'5 51.:t-1JL5':

II I erll \lll- \'.‘-l-I Will
I: ‘ .\1l|‘.‘l \iw \.-.'-
t l tam
II \lt_‘-tl \L'I-‘i'I. \‘.{| it . t |

id)

Fig. 8. (aiA simple vector operation. {bi Corresponding data
dependency graph. (cl Scheduling a single iteration.
ldi Dovetailing iterations.
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”y um- sciieuunng algorithm when the iterations are pro-
cessed at the rate of one for every two cycles tFig. Btclil. This
architecture applies particularly well to signal processing
applications where the same computation must be repeh
itively applied to adil‘lerentelement in a steady data stream.

For example, a butterfly block in an n—point FF'I operation
would be executed n x log n times. However, in addition
to the purely computational actors shown above, "store”
and “retrieve" operations should also be considered. This
is demonstrated in the data—flow graph of Fig. 9(a) which

'I lode-I K ind-:23 W IttJea-Sr.» __a -‘ .

  
lat

PM1". sum-i -|-.-r Adi-.LEL Ltd-3e: \tpru L. \Lz-I " iii-'- -i ‘-’-'- tri - - it its — -- t-::: .
Mt _

.-\l \2 - - -
_ _ . . n, \t':

tbi

Fig. 9. {at Fl-T butterfly block. (bl Scheduling oi an FFT bub-lerfly.

corresponds to a single iteration (butterfly block} ol‘ :1 real
FFI'. Note that the indexes {for reads and writes} have been
assumed to be generated elsewhere le.g., table look-up.l and
are ignored in this discussion for simplification. Assuming
that two adders and one multiplier can be used, and that
we have fou r memory modules at our disposal, the M It can
be determined as the maximum of the N/P ratio for each
kind of resource. This yields an Mil oi 2(Fig. 9tbli. Note that
further work in the scheduling of iterations has been car-
ried out in [44]. This research is also applied to SSIMD archi-
tectures and allows the existence ot'dependencies betweeniterations.

D. The MIT Tagged Token Data-Flow Machine {6]

This machine implements a version of the U-lnlerpreter.
in this distributed architecture model, each PE is inde-
pendent from its neighbor and there is no global controller.
A hypercube communication network allows the trans-
mission of data-flow tokens between PEs. Store-and-for-
ward capabilities are provided so that a pair of PEs which
is not directly linked may still communicate.

The structure of each PE is shown in Fig. 10. A switch
receives tokens from the network and determines whether
the incoming packet is a data token or a structure request
to be processed by the I-Structu re Memory. In the Matching
Store Unit, the tag of the incoming token is associatively
checked against that of previously arrived. tokens to deter—
mine whether it is the first or the second token to arrive at
a given instruction. The first token should be stored in the

 

il-lSi L‘UC .‘I'Dl-l'
FETCH LlNIT 

  
lOKEll

FCNMATTING UNIT

l
t

Fig. 10. A PE in the tagged token data—flow machine.

associative memory of the Matching Store Unit and held
until its mate arrives. For the second token, the corre-
sponding instance of the instruction can be activated by
sending an argument packet to the neat unit. The instruc—
tion Fetch Unit receives this packet and ietches the param~
et'ers ofthe instruction. Note that the template contains not
only the op.code but also poinlei'tsi to the destination
actorls) to which the result of the operation should be sent.
A complete instruction—readypacket can be formed and sent
for execution to the ALU. The ALU blindly executes the
operation indicated by the incoming template and pro-
duces result tokens which are received by the Token For-
matting Unit. Finally, the Token Formatting Unit receives
tokens which have been produced bytheALU. These tokens
comprise several fields: the tag associated with the oper-
ation (after modification if the operation was a tag-modi~
tying operation], the data themselves, as well as an aiio-
cation function field. This field is used by the Token
Formatting Unit to determine the destination PE of the
token. Indeed, this determination cannot often be made
solely on the basis of destination actor for this would mean
allocating to the same PE all the iterations ot'an actorin loop.
This is clearly unacceptable if parallelism is to be extracted
across the iterations of the loop. An often used heuristic
allocation function is based upon calculation of the itera-
tion number modulothetotal number ofPEs. This function
has the advantage of allowing proper distribution of a loop
across the machine. Depending upon existing conditions,
different allocation functions may be used within the same
graph. However, it must be noted that the function must
be the same for the two tokens destined to the same actor.
Failing the verification of this condition, the two tokens
would never be matched for they would be sent to different
PEs. This demonstrates the need to implement this allo~
cation operation at compile time.

E. The Hughes Data-Flow Machine (HDFM) i2 1}

The goal of this project is to provide a high-performance
parallel architecture which is highly programmable and at
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the same time offers advantages of modularity and sim-

[Jlii'ily‘ of implementation for signal and data processing
applications. All com m unications are based on the message
passing model. A maximum of 512 PEs can be organized in
a cube network. Each PE is attached to three busses trow,
cnltu‘rln, and plane}. Design of the PEs has been made for

easy implementation in VLSI. PEs can easily be added
because of the modular nature of the communication net-

work. Traffic on each bus is based upon contention before

data can be transmitted. Any two PEs can communicate by
a maximum of three “hops" (Fig. 111-. The execution model

 
- 'coLumtvs

Fig. 'l 1. Structure of the HDFM communication network.

is based upon the acknowledgment scheme. Instead of
using ”hardwired" acknowledgment arcs between two

communicating actors, this machine is based upon the
principle of ”software" acknowledgments. The compiler
partitions the data-flow graph into blocks. Special acknowl-
edgment arcs are introduced between the blocks. Note that

this method allows pipelining between iterations at the
block level.

One of the primary requirements of the machine was to

incorporate as few component parts as possible. This

implies a high level of integration for the individual I-‘Es.

Indeed, each PE consists ofoniv two cuslrtin-designed chips
in addition to several commercially available mentorv rir-

culls. The overall architecture of a PE is shown in Fig. l2.
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Fig. 12. A PE in the HDFM.

The COM chip handles all the communication functions
and interfaces the actual PE with the three—bus commu-

nication network. It implements the necessary “store-and-

forward” and performs in addition a buffering function in
order to even packets rates. Note that the chip pin-outs
requirements limit the number of outside husses to 3. The

PROC chip is the actual PE which contains three pipelined
stages: 1] instructionfoperand fetch and dala~ilow firing rule
check, 2) instruction execution, and 3} result token for~

matting. it can be easily represented schematicallthig. 13}.
Tokens arriving from the COM chip are first checked to

determine whether they complete an instruction packet or
not. Ready instructions are then dispatched to the exe—

 
MiCH‘OMACHINES
COM: COMMUNICATIONSJFAULT TOLERANCE
TMC: TEMPLATE MEMORY CONTROLLED
ALU: ALUlMICRUPROCE-‘SSOR FIND MICHOMEMOHY
DT: DESTINATION TAGGEH
DMC: DESTINhTION MEMORY CONTROLLER
MEMORIES
DM: DESTINATION MEMORY
TM: TEMPLATE MEMORY
FDM: FIRE DETECT MEMORY

Fig. 13. The PROC chip in the HDFM.

GAUDIDT: DATA-DRIVEN MULTICOMPUTERS IN DSP,

DUEUES
FCO: FROM COMMUNICATION GUEUE
FBO: FEEDEACK OUEUE
FD: FIRING OUEUE
HO: RESULT QUEUE
DO: DESTINATION OUE'LIE
AID: assocmreo INFORMATION OUEUE
TCO: TO COMMUNICATION OUEUE
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the input Token Unit as the case may be. The Template
Memory Controller {TMCJ enforces the data—flow rules of
execution and checks the completion oian inputset before
it sends a complete instruction packet to the ALU for exe~
cution. Results are sent by the ALU to the Destination Tag-
ger (01“). In collaboration with the Destination Memory
Controller tDMCJ. this unit associates the data values pro-
duced by the ALU with their proper destination address
(which can be found in the Destination Memory DM). Note
that in the Cell Block architecture, the templates are wholly
stored in one location. in this architecture, the templates

he found in two points: first, this allows a better space man-
agement since the destination list of any template may be
of undeterminate length. Second, if the whole template
were to be stored in the Template Memory, the Destination

its most Important application is image processing. Some

hancement, compression, and pattern recognition. It is
based on a data-flow model oi computation and imple-
ments such complex operations as multiplication in the
 
 

the multiprocessor architecture invisible to the [Jittgl'alt'h
mer. Another characteristic of the. ,ut’ifJP’Btti is that it can be
cascaded with several other identical chips in a ring; archi
tecture. indeed, the architecture of thc iti‘DHtJ'l enables
the design of multiprocessor systems for improved per-
formance. By cascading several such PEs, a high degree oi
pipelining can be observed. in addition to the high—level
organization of the chips, each chip is itself organixed in
a ring architecture (Fig. 14} which operates in a pipelinedfashion.

Constants may be stored in the Data Memory for storage
during execution. The program is represented in both the
Function Table and the Link Table. In the Function Table,
the actors themselves are stored. Similarly, the Link Table

Table always contains the first of the two operands that
arrive. The Address Generator and Flow Controller are used
to generate addreSses of constants. Note that after actual
processing of a data-flow actor in the Processing Unit, the
resulting token is again processed by the Link Table of the
same Processing Element. When the ultimate consumer of

- CONVO (Convolvei which can be used to perform
cumulative operations such as

”f" tic-B,-l

 
 

 
Fig. 14. the rec ,uF‘DFZE'l.
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Fig. 15. A convolver actor.

(Fig. ‘l5i. Note that this operation is not strictly speak-
ing a data—flow actor in that the summation implies a
”state” of the actor. Formally, it would correspond to
a ”macro~actor" [20] which includes a graph of several
elementary data-flow actors.

. ACC (Accumulative Addition instruction).

. Bit manipulation, data conversion instructions, etc.

The multiplication ofa 3 X 3 matrix by a 3~element vector
is illustrated in Fig. 16. It is assumed that the A matrix has

 

 
*  

 
 "1tlll'l_rlll.'i;tlll it,“ w,

"I'll?” Ail.” rialul fl: = i"_
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Fig. 16. Matrix vector multiplication.

already been allocated to the data memory. Each element
of the vector 8 is received and is replicated three times by
the COPYBK actors. Note that one or the internal param-
eters of the actor is 3, the number of required replications.
The multiply actor is a coupled with a readAriii actor so as
to perform the multiplication of B,- with flail). The results
from the three multiplications are matched and accumu—

GNJDIOT‘. DATA—DRIVEN MULTICOMPUT'E'RS IN QSF

lated to produce the result C,. Note that the queue actors
enable a better pipelinrng of the successive computation
waves. They allow an execution similar to the model pre-
sented by the Acknowledgment scheme (Section lit-Bi},
However, while in the Ac knowledgment scheme only one
token is allowed at any time on any single arc. this model
of execution allows as many tokens per arc as the size of
the queues. Benchmark evaluations have shown a near lin-
ear speedup with increasing numbers ot' chips from 'I to 3:
 

 Algorithm 1 PE 3 PE

512 x 512 binary image rotation 1.5 ms (1.5 ms
512 X 512 binary image ._-l shrinking 30 ms 30 ms
512 X 512 binary image smoothing Li 5 [1.4 s
512 x 512 binary image 3 x 3 conv. 3.0 s 1.1 s
64 stage FIR filter (17 bits} 50 its '18 its
costs} (33 bits} 40 as 15 ,us 

C. The USC TX'ifi [19}

The TX'lE: is based upon the lnmos Transputer. The Inmos
Transputer has been heralded as the first of a new gen-
eration of microprocessors. indeed, while conventional
microprocessors are interfaced with the external world

through a single memory bus (address, data, and control),
the Transputer possesses in addition four serial commu—
nication links. Each of these communication links allows
point-to-poinl transmissions beIWeen tonransputers. This
architecture is reflected at the language level: the arrival of
data on a link will trigger a process inside the receiving
Transputer.

The programming language Occam allows the presence
of several different processes while only one is active at a
time. Message transmission with other processes is based
upon the synchronous principles of CSP [26], ['ID]. This
means that when the active process must communicate an

intermediary result with another process (possibly located
in another processor), the active process is held until the
other process has been found to be ready for the trans-
mission. While the process is held, it is stacked into the
inactive process queue. Another ready process is then acti-
vated untii it either terminates or is itself hung because of
a required transmission. This low-level context change
mechanism compares favorably to the busy—wait model
found in conventional multiprocessor systems. Instead of
idling a processor while waiting for an intermediary oper—
and to arrive, the system allows context switching to another
ready process.

The system consists of 16 interconnected Tt‘ansputers
interconnected in an lLLlAC-IV topology. The four links of
each Transputer are used for scalar data communications

and for interprocess synchronization messages. Each PE
owns a single bank of the memory system (Fig. ”17}. A pro-
cessor can directly access its own memory bank through
the external memory bus of the Transputer (local access}.
A remote access can be made into the bank owned by
another processor. In this case, the Bus Controller formats
the request from the PE into a packet and takes control of
the bus. The request is then forwarded to the destination

PE. When the request is a read request, a response will be
sent in the same fashion back to the originator.

The data—flow language SISAL (Section Ill-D) was chosen
as the high-level interface for the TX16 because the data-flow
principles ol'execution can be directly mapped into Occam.
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Fig. 17. A Processing Element in the TX1E.

The converse is not true, however, since it is possible to
design unsafe Occam programs which would have no cor-
responding part in the data-flow world. This mapping is
made possible by the fact that both programming
approaches rely upon the principles of scheduling upon
data availability. Several numerical algorithms have been
tested on a simulated machine and have demonstrated a
near linear speedup forthe size ofthe machine considered.
It should be noted that this was obtained without the inter—
vention of a sophisticated high-level language compiler.
instead, a data-flow language was used to provide the pro-
grammability needed. indeed, for the same programming
effort,a higher speedup would be obtained bythedata-flow
approach.

H. Comparison of Data-Driven Architectures

The different architectures presented in the above sec-
tions all represent different approaches to the problem of
specifying scheduling in multiprocessor systems for digital
signal processing applications. They each fit a different
niche in the realm of problems encountered in this domain:

- The systolic method efficiently and cheaply imple-
ments parallel algorithms on potentially large numbers of
simple processing elements. However, the design of the
algorithm on the array ofprocessors remains fixed and con—
strains the system to consistently solve the same problem.

- Architectures such as the WAP and the ESL poiycylic
processor possess a greater degree of programntability.
The WAP notably has no global synchronization mech~
anism since it relies upon the notion of a computationalwavefront.

- The data-flow multiprocessors which we have
described (the HDFM, the MIT tagged tolten data—flow
machine, and the USC TX16) offer much more flexibility in
that their scheduling is in a larger part decided at compile
time. They possess no notion of central control and can
deliver maximum parallelism in very complex algorithms
without any intervention from the designer, programmer,
or compiler. Data-flow machines find their applications in
two cases: 'i] in problems which involve large amounts of
heuristics and decision making, or 2) in applications which
require frequent reprogramming, thereby requiring the
high programmability characteristic of data~fiow systems.
The data-flow interpretation model also presents the cru-
cial advantage of scalability in that the same programming
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meuiuti UI agiven algorithm can be used, regardless oi the

size and topology of the target machine. Finally, the pro»
grammability afforded by this approach translates into a
higher performance for a given amount of programmingeffort.

V. A Dara-FLOW Aitcuirrcruar. WITi-i NlUl'lll’l.E LEVELS oritssotuuou

The data-driven model of execution has thus been dem—
onstrated to provide a very efficient programming envi-
ronment for the parallel execution of programs. We now
show how the concentration of the model on small atomic
operations can lead to many runtime inefficiencies. We
examine the performance of a multi—level architecture.

at. The Mufti-Level Approach

it has been observed ['i 7] that the data—flow model of exe-
cution was often applied at too low a level and imposed
much overhead at runtime. For instance, as was demon-
strated in Section ill, the description ofa simple loop under
the principles of the U-interpreter can impose a large num—
ber of overhead actors such as D, L, etc. For each loop, a
minimum of five actors must be included. in addition, since
we are in a data-driven environment, each datapath in the
same loop (for instance, the index anti the iterated variable}
must ”own" their own set of iteration actors, thereby mul—
tiplying the overhead. Let us consider a simple vector oper-
ation (Fig. 'IBiali which would be translated into the graph
of Fig. 13th). This is obviouslya large overhead. Indeed, the
data-flow interpretation mode should be used to uncovei
at runtime parallelism which would be difficult or impos-
sible for a compiler to detect. Here, a relatively easy com-
piler intervention would quickly detect and exploit the pain
allelism available in the vector operation while the data~flow
constructs would impose a large overhead.

Th is shows that the data-flow principles of execution can
be advantageously applied with a higher granularity as it
has been demonstrated [20], [42]. it is indeed intended to
retain much of the distributed concepts introduced in the
tagged token data-flow machine [22]. The architecture we
consider comprises a large number of independent PEs
which can communicate over a packet-switched intercon»
nection network. The size and structure of the individual
PEs, however, should match the higher granularity envi-
sioned in this project and would implement powerful prim-
itives such as complex vector operations.

The architecture of the machine is to be organized in a
hierarchical fashion. it respects at the higher level the data-
flow principles of execution but comprises powerful PEs at
the lowest level. The PEs are to be vector processors. The
advantages brought by this approach are several-fold:

- The principles of data—flow are maintained at all levels
of execution which implies the same programming model.
[I ndeed, a vector operation can easily be detected in a higher
level data-flow language}

' A continuous succession of more powarful but con-
versely more tightly coupled levels is implemented.

- The increase in performance brought by higher gran-
u larity can be directly implemented on this hierarchy of lev-
els with increasing communication costs.
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3. The Elementary Processing Element

In order to apply the data-flow principles of execution at
a higher level of granularity, it appears that the individual
PEs should be dealing with complex constructs which are
more representative of the application under study. In the
case of large signal and data processing problems, the input

GAUDIDT: DATA-DRIVEN MULTICOit-iPU'lERS'lN DSI’ -

data which are processed are usually rer c-ived at .I high rate.
Each datum undergoes Ilte same opt-ration and iiill.'l.1t_f:~
only slightly with other data olenu-snls.. lhis in |l|I-‘ I't-t'st: nu
image processing applications in ninth int-at transforms
are usually undertaken. This demonstrates that signal pro-
cessing pI'olJIeIt‘Is usually entail a low level which corre-
sponds to vector operations. However, the highest level of
operations includes such constructs as conditional, deci-
sion making, etc., for which the data dependencies cannot
be identified clearly at compile time as they can he in a vec«
tor operation. Instead, ruotime dependencies must he
detected in order to provide safety of execution and ade—
quate scheduling of our multiprocessor organization.

The individual PE is organized around a vector processor
hut also includes the capability to perform scalar opera—
tions as needed. The vector architecture can remain
unspecified for the purpose of this section but could bean
SIMD processor, a pipelined vector architecture, etc. For
proper liO function ii.e., communication with other I’Es},
the Processing Element is separated in the actual Process—
ing Unit and the Communication Unit. The Processing Unit
implements the actual vector functions while the Com-
munication Unit is responsible for transferring data pack-
ets toifrom the communication network and for the fol“
warding data packets to other processors.

C. The Software Environment

The elementary principles of execution are hased upon
an application of multi-level data flow. it was earlier clem—
onstrated that the high granularity Would considerably and
positively affect the performance of a data-flow system.
However, it is also known thal the high-level, statically
scheduled data-flow programming methodology could he
used to design extremely powerful vector processors. The
architecture we have described comprises therefore two
levels: sophisticated processors are connected into a sec-
ond hierarchy. This hierarchy also exists on a software point
of view: program constructs must be partitioned together
in order to best utilize the characteristics of the architec-ture.

We have chosen for our high-level programming inter—
face the paradigm provided lay SlSAL (Streams and Itera—
[ions in a Single Assignment Language} as introduced by
McGraw and Skedzielewski [38]. As shown in Section lil,
SlSAL is a high-level language, the syntax of which resem-
bles Pascal. It is different from conventional languages, in
that it contains none of the sidefieffects associated with the
usual programming approaches. An example of the spec
ificatioo in SISAL of the addition of two arrays A and B was
given in Fig. title). The existing compiler provides an Inter-
mediate Form output tIFTi. Not only does this output include
the data-flow graph necessary for the runtime detection of
data dependencies (called Data-Flow Graph DFGJ, but it also
includes program structure. information (Program Struc—
tu re Graph PSGJ. As an example, the IF] representation of
the SlSAL program in Fig. Tfltai ls shown in Fig. 18m.“ shows
the Program Structure Graph (P56) in solid lines, while the
actual Data—Flow Graph (DFG) is represented lay dashed
lines. The forail pSEUdOAI'IOCle belongs to the PEG and is the
head of a three—pronged tree: the left-most node contains
the RangeGenerator actor which produces the index i from
‘Ito N [see SISAL program). The middle pointer is the actual
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, .,._ ....,,s. we tI5IIL‘IIlUSi node gathers the resulls
from the body of the loop. Note that in the DFG, the index
is received by both array selectors tAElement) which receive
it (respectively. 81, and land produce villi (respectively, But).
The Pitts operator adds the two. Partitioning can easily be
done along the edges of the i’SG, provided a cost matrix is
kept in order to easily assess the communication costs
among the modules so isolated. An immediate heuristic
comes to mind concerning the system under study: since
the atomic vector processing unit is so well tuned to the
scheduling of Generalized Vector Computations (GVCs),
the partitioning process should examine the P56 from Its
leaves until it encounters a FDRALL pseudo-node. A per-
tition which would comprise the whole subgraph can thus
be created. in addition, it should be noted that beyond this
relatively simple partitioning approach, several optimiza—
tion methods have been implemented For example, nested
loops can be exchanged or combined, code could be
hoisted when data dependencies allow. These and other
strategies have also been described in [29].

D. Applications

Kalman filtering [45] can be chosen as a representative
example of some signal processing algorithms. It maps
remarkably well on our architecture because of the mul~
tiple levels of hierarchy which are embedded in the algo-
rithm itself. indeed, the entire system could be described
at the low level used by “conventional” data-flow archi—
tectures (Section N). Hovvever, it should be immediately
noted that most of these low-level operations can be

pulational block which corresponds to covariance matrix
estimation implements a complex matrix inversion. This
algorithm itself entails repetitive applications of transposeoperations.

As an illustrative example of the matrix operations which
can be directly mapped onto on r architecture, we have cho~
sen the multiplication of two matrices. The SISAL code
which corresponds to matrix multiplication is shown in Fig.
19(al. The corresponding IF'I output is shown in Fig. 190)).
In the graph, actors "RangeGeneratori," and ”Range
Generator3” broadcast index values i and k to the actors
”AElement‘i” (Array Element select) and “AElementZ,”
respectively. Once the actors ”AElementt" and
"AElementP." have received the index values, they forward
the pointers Aii, "] and Silt, ‘] to the actors "AElement3”
and “AEIentenM.” “AElement3” and “AEIement4” are also
waiting for the index values k and [which are sent from the
actors ”RangeGenerator3“ and ”RangeCeneratorZ,” in
order to generate the elements Aii, k] and am, j], respec-
tively. The ”Times” actor receives the two elements Ali, k]
and BU, ,i] and sends the product to the "Reduce“ actor
which accumulates the received data and forwards the
result to actors "AGathefl" as well as ”AGatherZ” to form
a two-dimensional array. The allocatoranaiyzes the P36 and
determines that the lowest level consists of a vector oper-
ation which can be easily assigned to a single processor for
execution. However, it should be noted that for perfor—
mance improvement reasons, the allocator optimizes the
allocation of actors. Simple vectorizing compiler tech—
niq Lies can be applied to optimize the mapping of this appli-
cation on our hybrid multiprocessor system.
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Vi. Concmsrous

In this paper, we have demonstrated that data-driven
principles are particularly well suited to the determination
of the schedulability of operations in signal and data pro-
cessing problems on multiprocessor architectures. The
degree at which these principles are applied determines,
for a large part, the domain of application of the system.
When the various processors in the architecture are orga—
n ized in a systolic array, the executability of instructions has
been determined directly by the designer and the design
remains frozen. This means that the application is fixed.
However, comparatively high computational throughputs
can be obtained from such organizations. When operation
scheduling is decided by compiler intervention, systems
such as the ESL polycyclic multiprocessor or the Wavefront
Array Processor can be designed. These offer more pro-
grammability than systolic arrays. They also offert he poten—
tial for scaling up without a complex overall redesign. How-
ever, complex data-dependent operations cannot be easily
implemented on these architectures.
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In order to deliver high computational throughputs
tin ouph parallelism detection, the data—flow approach has
ppm-1 demonstrated. While conventional explicit parallel-
,-._,,. approaches can sometimes show high performance.
”my require a focused effort on the part of the programmer
in order to understand and describe the parallelism of the
programmed problem. On the other hand, the functional
programming approach allows the implicit detection of
parallelism at runtime. Al the same time, only a fraction of
the programming effort needs to be expended. This shows

that one ot' the main advantages brought by a data-flow
architecture is itsprogrammabilitywhich, in turn, translates

into higher performance for a given amount ol‘program-
lining effort. in addition, the approach is completely scal-
able and the configuration of the multiprocessor systems
can be adapted to the size of the application. On the other
hand, the runtime scheduling of instructions imposes over—
head on regular operations and lowers the expectable per-
formance. This expected loss of performance has been

traced to the high level of resolution (small ,grranularitylI
which has been adopted by many data~flow proiects. in a
signal processing application, the regularity of the low level
of processing makes it more appropriate to design a system
with multiple levels of resolution. Indeed, we have dem-

onstrated here an architecture with Mo hierarchy con-
structs. The lowest consists in a layer of vector processors
while the highest provides a true data—flow approach. Future
research will study how multiple layers could even include
systolicarrays asleafprocessorsfordedicated applications.
These would then be included into multiple hierarchy sys—terns.

In summary, it can be said that the data-driven principles
oiexecution are a necessity in the design of multiprocessor
systems, be they incorporated at design. compile. or run—
time. The granularity of the scheduling model often pre—
sents a tradeofi between delivering maximum amounts of
parallelism and reducing communication costs.
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Data-Driven Multicomputers in Digital
Signal Processing
\

lEAN-LUC GAUDIOT, MEMBER, lEEE

New technologies of integration allow the design of powerful
systems which may include several thousands of elementary pro-
cessors. These multiprocessors may be used for a range of appli~
cations in signal and data processing. However, assuring the proper
Interaction of a large number of processors and the ultimate safe
execution of the user programs presents a crucial scheduling prob-
lem. The scheduling of operations upon the availability of their
operands has been termed the data-driven mode ofexecution and
offers an elegant solution to the issue. This approach is described
in this paper and several architectures which have been proposed
or implemented (systolic arrays, data-flow machines, etc.) are
examined in detail. The problems associated with data-driven exe-
cution are also studied. A multi-level approach to high—speed dig-
ital signal processing is then evaluated.

l. lNTRODUCTIDN

If we are to approach the computational throughputs
equivalent to billions of Instructions per second which will
be required from the processing systems of the future,
improvements on all levels of computer design must be
made. Fastertechnology and better packaging methodscan
be applied to raise clock rates. However, a one billion
instructions per second machine would require a clock
period as low as a nanosecond. This approach is inevitably
bounded by physical limits such as the speed of light.
Therefore, instead of considering the technological
approach to performance improvement, We emphasize
here the architectural method. Indeed, instead of merely
increasingthe clock frequencyfora corresponding increase
in overall throughput, performance can also be improved
by allowing multiple processing elements to collaborate on
the same program. This inevitably introduces synchroniz-
ation problems, and issues of resource allocation and shar-
ing must be solved. Programmabllity is indeed the central
problem. In one solution, a conventional language such as
Fortran is used to program the application.A sophisticated
compiler is relied upon to partition a sequential program
for execution on a multiprocessor. This approach has the
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This work was supported in part by the Department of Energy u nder
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advantage of imposing no ”software retooling.” HoWever,
complex numerical applications will not be easily pani-
tioned and much potential parallelism may remain unde-
tected by the compiler.

Ada, CSP [26], extended Fortran (e.g., HEP, Sequent), on
the other hand, allow the programmer to deal with parallel
processes by the use of primitives for parallel task spawn-
ing, synchronization, and message passing. However, while
the programmer can express some of the parallelism char-
acteristic of the application, much potential concurrency
may never be uncovered because of the inherent sequen-
tial concepts of the language which must be countered
through the use of special “parallelism spawning” instruc»
tions. Also, developmenttime becomes important sincethe
programmer must “juggle" with many parallel tasks to syn-
chronize. in addition, debugging becomes correspond-
ingly more difficult due to the sometimes undeterministic
appearance of errors.

For these reasons, an implicitapproach must be devised.
In the above two methods, instruction scheduling is based
upon a central program counter. We propose to demon-
strate here the data-driven approach to programming mul-
tiprocessors: instructions can be scheduled by the avail-
abilityoftheiroperands. This model of execution is a subset
of the functional model of execution [9]. It provides a sig-
nificant improvement to the programmability of multipro-
cessors by excluding the notion of global state and intro—
ducing the notion of values applied to functions instead of

instructions fetching the contents of memory cells as they
are in the conventional “control-flow” model.

The overall objective of this paper is to demonstrate the
applicability of data-driven principles of execution to the
design of high-performance signal and data processing
architectures. Several approaches will be demonstrated and
their particular domain of application will be contrasted.
The description of low-level processing systems is beyond
the scope of this paper and the interested reader is referred
to an excellent survey by Allen [3]. Instead, we will con~

centrate here on the issues related to building high-per-
formance multiprocessors for signal processing applica-
tions. In Section II, we show the type of problems
considered in signal processing. The data-flow principles
of execution as they relate to digital signal processing prob-
lemsare described in detail in Section ill while several exist—
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ing data-driven architectures are described in Section IV. 3 6
In Section V, we analyze a multi-Ievel data-driven archi-
tecture and examine its programming environment. Con-
clusions are drawn in Section VI.

ll. THE REQUIREMENTS or SIGNN. Peocsssmo

Digital signal processing techniques are applied to many
differenttechnical problems. These include radar and sonar
systems, image processing, speech recognition, etc. The
elementary building blocks of these were originally con-
centrated on such tasks as convolution, correlation, and

Fourier transform. More complex algorithms (matrix oper- _ _
ations, linear systems solvers, etc.) are now considered. “3' 1' A s'mple data'flt’w graph.
Higher order operations include not only simple problems
such as elementary filtering “”2, FIR, etc), but also more
complex functions such as adaptive and Kalman filtering
{45]. Also, such complex problems as Computer-Aided

be said that the data-flow model of execution obeys two
fundamental principles:

Tomography or Synthetic Aperture Radar can be consid- - Asynchrony of operations: The executability of an
eredl39], [16]. Signal processing algorithms are very appro- instruction Is decided by a local criterion only. The pres-
priate for description by functional languages. Indeed, a ence of the Operands can be sensed “locally" by each
signal processing algorithm is often represented in a graph lnSirUCtiOfl- This is an afiTaCfiVE PI'OPEHY {Or an implemen-
fnrm [35] and can be decomposed in two levels: tation in a distributed environment where no central con-

troller should be used for global scheduling.
. a regular level which can be implemented bya vector - Functionality of the operations: The effect of Bach

OPE-“3‘50" (i.e., 3 loop in WhiCl'I all iterations present “0 operation is limited to the production of results to be con-
dependencies among themselves}; sumed bya specific number of other actors. This precludes

I a levelwhich contains conditional operations and heu- the existence of "5ide.effect5_” These side-effects may be
ristic decision making. long—ranging in that the execution of an instruction may

effectthe state of a cell of memory which will be used onlyThis description shows that the lower operational levels much later by another unrelated operation.can easily deliver parallelism (by compiler analysis or pro-
grammer inspection). This layer usually consists of simple
constructs (arithmetic instructions, FFT butterfly networks, B. Data-Flow interpreters
simple filters, etc.). However, the higher levels will require
more complex problem insight and even runtime depen-
dency detection in order to allow maximum parallelism. We
will now describe principles of execution which will allow
us to deliver this concurrency.

When iterations are executed, the underlying principle
of data-flow (single assignment of variables) must invariably
be violated. Indeed, for an actor to be repeatedly evaluated
as in an iteration, its input arcs must carry several tokens
(from different iterations). Several solutions have been pro-
posed to allow the controlled violation of these rules with-

lll' DATA‘FLOW PRWC'PLES out compromising the safe execution of the program.
The data—flow solution to the programmability problems Among “135% the Acknowledgment scheme and the

of Iargescale multiprocessors [5] has been pioneered by U-interpreter have been given the most consideration.
Adams [2], Chamberlin [11], and Rodriguez [43]. it is now 7) ACknDWlEdgmentScheme [74}: Proper matching of-the
described in detail in this section. tokens can be observed by ordering the token production.

Thiswould be done bya careful design ofthe program graph
so as to insure that tokens of two different iterations can

’4‘ 835m Princrples offxecutron never overtake each other. in addition, it must be guar-
In the conventional von Neumann model of execution, anteed that no token pileup is encountered on anyone arc.

an instruction is declared executable when a Program This condition can be verified by allowing the firing of an
Counter of the machine points to it. This event is usually actor when tokens are on all input arcs and there are no
under direct programmercontrol. While a control-flow pro- tokens on any output arcs. In order to enforce this last con-
gram is a sequential listing of instructions, adata-flow pro- dition, an acknowledgment must be sent by the succes-
gram can be represented as a graph where the nodes are sorts) to the predecessor when the token has been con-
the instructions (actors) which communicate with other sumed (Fig. 2). Note that an actor is executable when it has
nodes over arcs (Fig. 1). An instruction is declared execut- received its input arguments as well as all acknowledg-
able when it has all its operands. In the graph represen- ments. The parallelism which can be exploited from this
tation chosen above, this means that all the input arcs to scheme is mostly pipelining between the actors of different
an actor mustcarrydatavalueslreferredtoastokens) before iterations. Thus when the number of instructions in the
this actor can be executed. Execution proceeds by first body of an iteration is the same as the number of available
absorbing the input tokens, processing the input values processors, the speedup observed by this mechanism of
according to the op. code ofthe actor, and accordingly pro- execution is maximal. HDWever, for small iterations [com-
ducing result tokens on the output arcs. In summary, it can pared to the size of the machine), the exploited parallelism
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‘ACK‘

Fig. 2. The acknowledgment scheme.

falls below its potential. Thus it may be required that the
compiler effect a code expansion for vector operations.

An important characteristic of this static model of exe-
cution is the fact that it allows only one instance of an
instruction to exist at one given time. In other words, it is
primarily relied upon pipeliningfor the exploitation of par-
allelism in iterations. However, the basic acknowledgment
scheme does not allow the implementation of multiple
simultaneous calls to the same function. Several machines
which obey these principles of execution have been
designed: the MIT cell block architecture [13], the Hughes
Data—Flow Machine [21], the DSFP [24], the USC TX16 [19],etc.

2) The Unraveling interpreter (U-lnterpreter}: The
U-interpreter [4] provides the most asynchronous possible
operation. In order to allow safe execution of actors in an

iterative construct, tokens are-tagged with information per-
taining to their context of creation. An actor Is only allowed
to execute when an input token pai rwith matching tags can
be found. This tag includes the iteration number. Indeed,
the U-interpreter closely follows these principles: to each
data token is attached a tag of the form u.P.s.i, where P iden-
tifies the procedure name of the destination actor, while s
is the address of this actor within procedure P. The i field
corresponds to the iteration number in which the token
was created, whilethe ufield is the context ofcreation. Note
that while the former is used to distinguish between tokens
destined to different iterations of the same actor, the latter
is used in situations involving multiple fu nction calls, oper-
tions with recursive function calls, or nested iterations.

Special actors are used which deal with the context and
iteration fields of the token tags. A typical iteration con-
struct in the U-interpreter is shown in Fig. 3. The D actOr
is used to recirculatethe datafrom one iterationto the next.
Its input is tagged with u.P.t.iwhile its output value is iden-
tical but has become tagged with u.P.t".i + 1. Nested iter-
ations are handled by isolatingthe inner from the outer iter-

ation by the introduction of the l. actor at the top of the
graph. The function of this actor is to create a new context
for the execution of the iteration: the input tokens are
tagged by u.P.s.i while the output tokens are identical but
are tagged with u’.P.t'.1 where u‘ is itself u.i. Note that this

mechanism is sufficient to create an entirely different set
of tokens for two nested iterations. Indeed, assu methattwo
tokens both belong tothe same inneriteration i, but belong
to they} and j; outer iterations respectively. The first token
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Fig. 3. A typical iterative construct in the Usinterpreter.

would be tagged u1.P.s.r' (in = u.j1} while the second is

tagged with u2.P.s.r' (:12 = v.13}. This shows that an appro-
priate differentiation has been made between the two

instances.The original contextuis retrieved bytheL‘Tactor
before exiting.

Contrarily to the acknowledgment scheme, this dynamic
data-flow scheme allows full asynch ronou s execution of the
program graph. Indeed, due to the scheme of tags, several
instances of the same instruction may exist simulta-
neously. Vector operations. may be executed in parallel
without compiler-induced replication of the graph. Like—
wise, multiple function calls and more particularly recur-
sions are allowed since each newactor instantiation receives
a different tag. This means that the U-interpreter would be
preferred to the static model when the ability for fast recur-
sive calls is required. However, this flexibility comes at the
expense of added hardware complexity. Indeed, it will be
shown in Section IV-D that implementation of the U-inter-
preter requires an associative memory for fast tag match-
ing. Several machines based on these principles have been
studied: the MIT tagged token data-flow machine {6], the
ESL DDSP {28], the University of Manchester machine [23],
the ETL Sigma-1 [25], etc.

C. Structure Handling

This is a crucial issue in signal processing for this kind
of application requires that many data elements which
belong to the same structure be processed in a parallel or
pipelined fashion. One of the basic premises of data-flow
principles states that an output is a function of its inputs
only, regardless of the state of the machine at the time of

execution. When a structure of elementary elements must
be processed, the absence of side-effects means that it may
not be updated for this would imply its transition through
several states. Instead, it any updates are needed, a new
array which contains the new elements must be created.
Copying of all elements must be undertaken for the mod-

ification of a single one. This solution imposes an inordi-
nate overhead. This is whythe implementation schemes we

will now describe can shortcutthis complete copying while
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preserving the meaning ofthe program duringarray update of the possibility of parallelism that can be detected only
operations. at runtime. For instance, dependencies on A and B related

1) Heaps: Dennis [14] has proposed to represent arrays by Ail-Tin = Bil) may be artificially imposed. However, the
by directed acyclic graphs {also called heaps}. Each value applications targetted by the HDFM include some amount
is represented as the leaf ofa graph tree. The modification of regularity which can be easily detected by the compiler
of a single element in a heap is represented in Fig.4. Note and implemented as conventional arrays.

4) Token Relabeling [18}: in the U~lnterpreter, the notion
a a. of array can be entirely ignored at the lowest level of exe-

cution. Instead, the tag associated with each token under
the rules of the U-interpretatlon is used as identification of

the index of the array element of the high-level language.
ln other words, it can be simply said that, when an arrayrl
is created, its All) element will be tagged with i (hereafter

U 1-1 IA 3-1 =2 23 '3'; denoted Aiilml, if the elements are produced in the logical
Fig. 4_ A heap update. order. In the "production" of a unidime'nsmnal array, the

iteration number can usually be directly Interpreted as the
index of the array element just produced by the iteration.

that the complexity of the modification of a single element Special token relabeling program graphs can be created
0“ the array '5 Oi”) for a COPY operation, While it i5 to handle scatter and gather program constructs [27] (Fig.
0(ng n} for the heap. Several instructions are exclusively 5(a)}. This figure shows that an inversion function F"
devoted to the access of heaps I15]: SELECT receives a
pointer to the root node, an index value, and returns a

. . All} .
pounter to the substructure (which may bealeaf node} asso- l Either I
ciated with the index; APPEND also needs the same two (Fr: W
operands in addition to the value of the element to append shim ‘ ’Nil ,,. “NFllllto the structure. is m] [ii

2,! l-Structures: A heap must be entirely ready before it

can be consumed because no consumption (SELECT actors} Cm!can take place until the pointer token appears li.e., the cre— l "1
ation of the array is completed}. In the l-structu re scheme

DO 1 1:11:30
[7] constraints on the creation of arrays allow the selection l cm = 3m + arm);
of individual elements (or substructures) from the array (3)
before its complete production. One possible implemen-
tation of l-structures makes use of a “presence” bit which
indicates when an element of an array has been calculated
and is ready for consumption. An attempt to read an empty
cell would cause the read to be deferred until such time that
the cell presence bit is marked. Conversely, a write into a
cell, the presence bit of which indicates valid stored data.
could be cause for the generation of an error signal. The
advantages of this scheme are:

” ashram 
1. better performance because pipelining is allowed Fig.5. (alAgather operationlbl Token Relabeling gather.

between l-structure consumers and producers;
«- less ”serialization" of operations such as APPENDS,

because they are allowed to occur independently on
the same structure.

This demonstrates that, without recourse to the calculation
of F“, the proper relabeling of the A elements has been
effectively produced.

3) HDFMArrays:A special scheme for handling arrays in This algorithm requires no intermediary storage, does
a VAL high-level environment has been designed for the not need array operations, and imposes smaller hardware
Hughes Data—FlowMachinelHDFM}[21}. ltusesthefactthat and execution overhead. This relabeling approach elimi-
data-flow arrays as described above are overly "asynchro- nates a large portion of the overhead associated with the
nous,” i.e., they do not take advantage of the data depen- production and consumption ofarrayA. Pipelining between
dency information carried by the program graph. Safety of the source and the sink of a data structure is the goal ofthis
accesses is respected by not allowing the updating of an unknoWn at compile time would be needed to perform the
array before all the reads from the current version of the relabelingof data-flowtokens. Such acalculation is nottruly
array have been performed. Only then can the array be necessary. lnstead,weintroduce{Fig. Stb)}asequencegen-
directly modified. Safety and correct execution of WRITE erator which produces the Fiji's, tagged byj.An exchanger
operations are a compile-time task. This has the advantage actor [called x) swaps the tag and the data value and pro-
of reducing the number of memory accesses (no complex duces llru'n- Both streams [the A’s and finial) are input to a
graph of pointers must be travered as in heaps) as well as special relabeling actor 6 which only modifies the iteration
of offering a better possibility ofdistribution of an arraylno portion of the tag. By the principles of the U-interpreter,
root node}. However, spurious data dependencies may be only tokens which bear the same tag will be matched as
introduced because the compiler is not necessarily aware proper inputs to the 5 actor. In other words, the mate of
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token from is the elementA [Flillmm- The special actor 5 is
a relabeling actor which takes the A input and relabels it
with the data carried by the token on the other input arc.
in other words, it outputs AiFir'llm. Since i is a dummy var-
iable, and since F is bijective, it can be said that, on a global
point of view:

Alleiri 9 Alkhr‘rm-

scheme, iust as it was the idea behind the design of the
l-structures. However,the token relabeling approach brings
a better runtime memory management since tokens cor-
responding to the various elements of the array still exist
and must still be temporarily stored, they need not go
through an additional storage as a data structure. Also, there
is no need for ”requests" for data as would be the case in
an l-structure environment: When an I-structure is created,
actors which need data from it must demand the element
in question until it has arrived. This may introduce heavy
overheads as unsatisfied requests must be queued in the
structure itself. Garbage collection is automatically han-
dled since when the ”array token" is matched, it is auto-
matically removed from the arc. in otherwords, when it has
been used, it is swallowed by applying data-flow principles.

D. High-Level Data-Flow Languages

in addition to the low-level mechanisms of execution
which were described earlier, special high-level data-flow
languages have been designed for easier translation into
data-flow graphs. To be sure, these high-level languages are
not a necessity: theTexas Instruments data-flow project [31]
relied upon Fortran programming through the use of a
modified version of a vectorizing compiler originally des-
tined to the Ti ASC. However, many high-level languages
have been designed for data-flow prototypes. Most notable
are VAL [Value Algorithmic Languages) for the MIT static
data-flow project [37], [1], Id (Irvine Dataflowi for the MIT
tagged token data-flow architecture [4], LUCID [B], [30], etc.
SISAL {Streams and iterations in Single Assignment Lan-
guage} has been designed by McGraw and Skedzielewski
[38] and is intended as the definition of a "universal" lan-
guage for the programming of future multiprocessors.

Data-flow languages have also been defined for the spe-
cific purpose of programming signal processing applica-
tions. These include the SIGNAL language designed by
Le Guernic er al. [36]. The intent of the language is to pro-
vide a formal specification of signal processing problems
and to ease the design of signal processing multiproces‘
sors, be they special- or general-purpose. One of the main
characteristics of the language is that it incorporates the
notion of time to describe the interaction ofthe varioUs pro-
cessing tasks. This makes it a synchronous language as
opposed to asynchronous languages such as CSP and
Occam (10]. SDF (Synchronous Data Flow) is another formal
description of signal processing algorithms based on data-
driven principles of execution proposed by Lee and Mes-
serschmitt [35].

IV. DATA-DRIVEN ARCHITECTURES

We now describe in detail several systems which operate
at runtime. compile-time, or design-time underdata-driven
execution. Although it is generally considered that data-flow
principles of execution are in effect at runtime, we extend
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their domain of application to design or compile time and
refer to them as da ta-driven systems. We th us initially exam-
ine multiprocessor systems where data dependencies have
been frozen at design time (systolic arrays). We then con-
sider programmable systolic arrays {the Wavefront Array
Processoriand multiprocessors scheduled at compile time
by the use of data-flow program graphs (the ESL polycyclic
processor}. Finally,we study systems where the data depen-
dencies provide scheduling information at runtime (the
Hughes Data~Flow Machine) and examine the influence of
the level of resolution upon the performance (the USC
TX'Ifi).

A. Systolic Arrays i312}

The primary goal of a systolic array is to make use of the
large amount of processing power available in VLSI tech-
nology by using repetitive circuitry to perform signal pro-
cessing problems, matrix operations, image processing, etc.
in summary, a systolic array is simply a collection of inter
connected Processing Elements (PEs). In order to incor-
porate as many processors as possible, the structure of the

PEs themselves is kept to a maximum simplicity and usually
includes only a few operation units. For design simplifi-
cation, there are few types of PEs in the same system. By
the same token, interconnections are kept to a nearest
neighbor topology in order to minimize communication
delays as well as power distribution issues. Note that topol-
ogies include two neighbors (linear arrays), four neighbors
(square arrays), or six neighbors {hexagonal arrays) as
required by the problem to solve. This is notably due to the
fact that scheduling mechanisms must be based upon local
criteria such as data availability. However, it should be noted
that there is a global clock in all the computation cells. Lin-
ear systolic arrays can tolerate clock skews at both ends, but
multidimensional designs require slowerclocks in order to
compensate. in order to simplify runtime mechanisms, the
design of a systolic array emphasizes an efficient mapping
of the problem ontothe architecture. An example of a band
matrix-vector multiplication is shown in Fig. 6. It displays

an . a)? 1

ill

llll

 
Fig. 6. A linear systolic array.

howthe synchronization of the processors and ofthe input
data rate has been mapped to meet the requirements ofthe
problem. Note that each processor is designed to operate
it pon thearrival ofthe arguments. In summary, it should be
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noted that systolic arrays are very efficient at computa-
tionally intensive problems which involve many repetitive
low-level calculations. Also, the very nature of their design
renders their function fixed at design time.

ii. The Wavefront Array Processor (WAPJ {33}, [34]

Execution on the WAP is similar at runtime to the exe-
cution of a program on a systolic array. indeed, both
approaches rely upon the scheduling of operations based
on the availability of their operands. However, the analysis
of the data dependencies is effected during the design of
a systolic array while the WAP is scheduled by compiler
detection of parallelism: the WAP is a ”programmable sys-
tolic array.” It has been shown that most signal and data
processing algorithms possess a certain amount of iocaiity
and recursivity. They will thus exhibit the phenomenon of
computational wavefront. This has an important implica-
tion in that an entire front of processors can be pro-
grammed for the same operation. In addition, it can be
shown that two successive wavefronts cannot intersect. This
enables the proper implementation of data-driven princi-
ples of execution. For instance, a matrix multiplication can
be executed as a computatiorial wavefront (Fig. 7}. A special
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Fig. 7. Matrix multipiy in the WAP.

language called the Matrix Data-Flow Language (MDFL) has
been designed to express such algorithms on the WAP.

C. ESL Polycyclic Architecture {41}

The ESL polycyclic architecture is a horizontally micro-
programrned multifunctional vector processor. It com-
prises several functional units (adders, multipliers, storage
units} connected by a cross-bar interconnection network.
Entire vector loops [no data dependencies across the iter-
ationsl can be scheduled by using the model presented in
[40]. The essential idea is to discourage “greedy” sched-
uling by insertion of “non-compute” delays in the train of
calculations. The effect oi these delays is to enable an opti-
mal schedule. A pipeline is viewed as a certain number of
resources (the various segments of the pipe} which can be
reserved by tasks. The problem is reduced to the produc-

GAUDIOT: DATA-DRIVEN MULNCOMPUTERS IN 05?

tion of a reservation table with no collisions (i.e., no two
tasks can reserve the same segment of the pipeline at the
same time). For that purpose, a usage interval is defined as
the time interval between two reservations of a segment by
asingletask.Two tasks willcollidewhen they havethe same
initiation time as one of the usage intervals. For a homo-
geneous multiprocessor (identical PEs), the method is done
in two steps:

1) Determine the Minimum Initiation Interval Mil as

Mll = [N/P]. N is the number of instructions in the body
of the loop, and Pis the number of processors available for
execution. The initiation interval is the length of time
between the initiation of two consecutive iterations- Suc-
cessive iterations will be scheduled at M” units interval. All
the iterations will be identically scheduled.

2} Schedule the operations in accordance with the data

dependences. However, no more than Poperations may be
scheduled for the same time modulo MI I. Note thatthis last
constraint also implies that delays must be inserted in the
schedule.

The following example shows the scheduling of a simple
vector operation (Fig. 8(a)} on a polycyciic processor with
two adders and one multiplier (note that for simplification,
communication costs have been assumed to be null). There

are two multiply operations for a single multiplier while
there are three additions on two adders. The Mil Would
therefore be 2. This means that one iteration of the loop can
be performed at a rate of one for every two cycles. By using
the data dependency graph of the example (Fig. Bibi}. the
optimal schedule can be used by applying the Mll of 2 (Fig.
Bic». Proper ”dovetailing” ofsuccessive iterations is assured
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Fig. 9. (alAsimple vector operation. (bl Corresponding data
dependency graph. (cl Scheduling a single iteration.
{dl Dovetailing iterations.
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by this scheduling algorithm when the iterations are pro-
cessed at the rate of one for every two cycles (Fig. Bid». This
architecture applies particularly well to signal processing
applications where the same computation must be repet-
itively applied to a differentelement in asteadydatastream.

For example, a butterfly block in an n-point FFT operation
would be executed in x log n times. However, in addition
to the purely computational actors shown above, “store”
and “retrieve" operations should also be considered. This
is demonstrated in the data-flow graph of Fig. 9(a) which

 
(bl

Fig. 9. (a) FFI' butterfly block.le Scheduling of an FFT but-
terfly.

corresponds to a single iteration [butterfly block) of a real
FFT. Note that the indexes (for reads and writes) have been

assu med to be generated elsewhere (e.g., table look-u p] and
are ignored in this discussion for simplification. Assuming
that two adders and one multiplier can be used, and that
we have four memory modules at our disposal, the MM can
be determined as the maximum of the N/P ratio for each
kind of resource. This yields an Mil of2 (Fig. Qibii. Note that
further work in the scheduling of iterations has been car-
ried out in {44]. This research is also applied to SSIMD archi-
tectu res and allows the existence of dependencies between
iterations.

D. The MIT Tagged Token Data-Flow Machine {6]

This machine implements a version of the U-Interpreter.
In this distributed architecture model, each PE is inde-
pendentfrom its neighbor and there is noglobal controller.
A hypercube communication network allows the trans-
mission of data-flow tokens between PEs. Store-and~for—
ward capabilities are provided so that a pair of PB which
is not directly linked may still communicate-

The structure of each PE is shown in Fig. 10. A switch
receives tokens from the netwurk and determines whether

the incoming packet is a data token or a structure request
to be processed bythe I-Structure Memory. In the Matching
Store Unit, the tag of the incoming token is associatively
checked against that of previously arrived tokens to deter-
mine whether it is the first or the second token to arrive at
a given instruction. The first token should be stored in the
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Fig. 10. A PE in the tagged token data-flow machine.

  
associative memory of the Matching Store Unit and held
until its mate arrives. For the second token, the corre-
sponding Instance of the instruction can be activated by
sending an argument packet to the next unit. The Instruc-

tion Fetch Unit receives this packet and fetches the param-
eters of the instruction. Notethatthe templatecontains not
only the op.code but also pointer(s} to the destination
actoris) to which the result ofthe operation should be sent.
A complete instruction-readypacker can be formed and sent
for execution to the ALU. The ALU blindly executes the
operation indicated by the incoming template and pro
duces result tokens which are received by the Token For—
matting Unit. Finally, the Token Formatting Unit receives
tokens which have been produced bythe ALLI. Thesetokens
comprise several fields: the tag associated with the oper-
ation (after modification if the operation was a tag-modi-
fying operation), the data themselves, as wall as an allo-
cation function field. This field is used by the Token
Formatting Unit to determine the destination PE of the
token. Indeed, this determination cannot often be made
solely on the basis of destination actor for this would mean

allocating to the same PE all the iterations of an actor in loop.
This is clearly unacceptable if parallelism is to be extracted
across the iterations of the loop. An often used heuristic
allocation function is based upon calculation of the itera-
tion number modulo the total number of PEs. This function

has the advantage of allowing proper distribution of a loop
across the machine. Depending upon existing conditions,
different allocation functions may be used within the same
graph. However, it must be noted that the function must
be the same for the two tokens destined to the same actor.

Failing the verification of this condition, the two tokens
would never be matched for theywould be sentto different
PEs. This demonstrates the need to implement this allo-
cation operation at compile time.

E. The Hughes Data-Flow Machine (HDFM) {21}

The goal of this project is to provide a high—performance
parallel architecture which is highly programmable and at
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the same time offers advantages of moduiarity and sim-
plicity of implementation for signal and data processing
applications. All comm unications are based on the message
passing model. A maximum of 512 PEs can be organized in
a cube network. Each PE is attached to three busses (row,
column, and plane}. Design of the PEs has been made for

easy implementation in VLSI. PEs can easily be added
because of the modular nature of the communication net-
work. Traffic on each bus is based upon contention before
data can be transmitted. Any two PEs can communicate by
a maximum of three “hops" (Fig. 11}. The execution model

 
Fig. 11. Structure of the HDFM communication network.

is based upon the acknowledgment scheme. Instead of
using “hardwired” acknowledgment arcs between two
communicating actors, this machine is based upon the
principle of “software" acknowledgments. The compiler
partitions the data-flow graph into blocks. Special acknowl-
edgment arcs are introduced between the blocks. Notethat
this method allows pipelining between iterations at the
block level.

One of the primary requirements of the machine was to

incorporate as few component parts as possible. This

name

COM: WEATIDHSIFAULT TOLERANCE
THC: TENT! Em CDNTIIOUED
ALLI: ALUMWSSOR IND “MEMORY
DT: 058mm TIGER
one: DEWITDN HIDE? COHTHOLLEI
Meme
'0": DESTIIAT'DN MEMORY
TM: 'I'EHPLATEm
FD": FIRE DETECTMEHOHY

Fig. 13. The PROC chip in the HDFM.
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implies a high level of integration for the individual PEs-

Indeed, each PE consists of only two custom-designed chips
in addition to several commercially available memory cir~
cuits. The overall architecture of a PE is shown in Fig. 12.
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rt; 12. A PE in the HDFM.

The COM chip handles all the communication functions
and interfaces the actual PE with the three-bus commu-
nication network. it implements the necessary "store-and-
forwar " and performs in addition a buffering function in
order to even packets rates. Note that the chip pin-outs
requirements limit the number of outside busses to 3. The

PROC chip is the actual PE which contains three pipelined
stages: 1) instructioni‘operand fetch and data-flow firing rule
check, 2] instruction execution, and 3} result token for-

matting. It can be easily represented schematically (Fig. 13).
Tokens arriving from the COM chip are first checked to
determine whether they complete an instruction packet or
not. Ready instructions are then dispatched to the exe-
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cution unit. The results are formatted into tokens by the
Destination Tagger and sent to the COM chip or back to
the input Token Unit as the case may be. The Template
Memory Controller tTMC} enforces the data-flow rules of

execution and checks the completion of an in put set before
it sends a complete instruction packet to the ALU for exe-

cution. Results are sent by the ALU to the Destination Tag-
ger (Di). In collaboration with the Destination Memory
Controller (DMC), this unit associates the data values pro-
duced by the ALU with their proper destination address
{which can be found in the Destination Memory 0M}. Note
that in the Cell Block architecture, thetemplates are wholly
stored in one location. in this architecture, the templates
are, instead, split in two portions: the op. code and input
operand portion stored in the Template MemoryTM, while
the corresponding result pointers are stored in the Des-
tination Memory. The rationale for this design decision can
be found in two points: first, this allows a better space man-
agement since the destination list of any template may be
of undeterminate length. Second, if the whole template
were to be stored in the Template Memory, the Destination
pointer information would have to be propagated through
the ALU before it could be used only in the last stage of the
processor. This would prove particularly inefficient since
the whole processor must be integrated on a single chip,
thereby multiplying the area necessary for busses. Simu-
lation of radar processing algorithms has demonstrated that
each PE capable of a throughput of 2—4 MIPS while a 64 PE
could produce throughputs of 64 MIPS.

F. The NEC pPD728'i {12}

The NEC pPD7281 is asingle—chip digital signal processor.
its most important application is image processing. Some
immediate applications include image restoration, en-
hancement, compression, and pattern recognition. It is
based on a data-flow model of computation and imple-
ments such complex operations as multiplication in the
basic instruction set. More specifically, its primitives are
designed for an efficient execution of image processing
algorithms. The use of data-flow principles of execution
increases the programmability of the machine and renders

H514. The NEC lr.iPD728‘l.
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the multiprocessor architecture invisible to the program-
mer. Another characteristic of the pPD7231 is that it can be

cascaded with several other identical chips in a ring archi-
tecture. indeed, the architecture of the pPD7281 enables

the design of multiprocessor systems for improved per-
formance. By cascading several such PEs, a high degree of
pipelining can be observed. In addition to the high-level
organization of the chips, each chip is itself organized in
a ring architecture (Fig. 14) which operates in a pipelined
fashion. -

Constants may be stored in the Data Memory for storage
during execution. The program is represented in both the
Function Table and the Link Table. In the Function Table,
the actors themselves are stored. Similarly, the Link Table
contains a representation of the arcs between the actors.

After the initial loading of the PEs, when a token enters a
pPD7281, it is first checked to determine whether this PE

should process it. if not, it is directly transferred from the
Input Controller 00 to the Output Controller (DC) where

it is forwarded to the next processor along the chain. Oth-
envise, it can be sent to the Link Table for processing. In
the LinkTableandthe Data Memory, it is matched with other
tokens before it can be sent for actual processing. The Link
Table always contains the first of the two operands that
arrive.The Address Generatorand FlowControllerare used
to generate addresses of constants. Note that after actual

processing of a data-flow actor in the Processing Unit, the
resulting token is again processed by the Link Table of the
same Processing Element. When the ultimate consumer of

the token is allocated to another PE a special output instruc-
tion is executed in the queue so that the token can be
switched to the Output Controller. Overall, this circular
pipeline contains seven segments and can deliver a max-

imum throughput of one instruction per cycle. The prim-
itives of the pPD7231 are oriented towards image process-
ing applications:

- CONVO (Convolvel which can be used to perform
cumulative operations such as
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Fig. 15. A convolver actor.

(Fig. 15}. Note that this operation is not strictly speak-
ing a data-flow actor in that the summation implies a
"state“ of the actor. Formally, it would correspond to
a “macro-actor” [20] which includes a graph of several
elementary data-flow actors.

- ACC {Accumulative Addition Instruction}.
- Bit manipulation, data conversion instructions, etc.

The multiplication ofa 3 x 3 matrix byaB-element vector
is illustrated in Fig. 16. It is assumed that the A matrix has

 
2‘ :(Ql -"« 2(2) :1 at?)
31“] A2“) AJU]

Alla) Adlai-943(3)  
C:
Cr
C:ll

already been allocated to the data memory. Each element
of the vector 8 is received and is replicated three times by
the COPYBK actors. Note that one of the internal param-
eters of the actor is 3, the number of required replications.
The multiply actor is a coupled with a readAAl) actor so as
to perform the multiplication of 8, with Adj). The results
from the three multiplications are matched and accumu-

 
Fig. 16. Matrix vector multiplication.
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lated to produce the result C,. Note that the queue actors
enable a better pipelining of the successive computation
waves. They allow an execution similar to the model pre-
sented by the Acknowledgment scheme (Section lli~Bi).
However, while in the Acknowledgment scheme only one
token is allowad at any time on any single arc, this model
of execution allows as many tokens per arc as the size of
the queues. Benchmark evaluations have shown a near lin-
ear speedup with increasing numbers of chips from 1 to 3:
—————-—-——_._._.._____________

Algorithm 1 PE 3 PE

512 x 512 binary image rotation 1.5 ms 0.6 ms
512 x 512 binary image .1. shrinking 80 ms 30 ms
512 x 512 binary image smoothing 1.1 s 0.4 s
512 x 512 binary image 3 x 3 conv. 3.0 s 1.1 s
64 stage FIR filter [17 bits) 50 ,us 13 its
cosixl l33 bits} 40 its 15 its—--—-—————_________________

G. The USC 7706 H9}

TheTX16is based upon thelnmos Transputer.Thelnmos
Transputer has been heralded as the first of a new gen»
eration of microprocessors. indeed, while conventional
microprocessors are interfaced with the external world

through a single memory bus (address, data, and control),
the Transputer possesses in addition four serial comm u-
nication links. Each of these communication links allows
point-to—point transmissions between tonransputers. This
architecture is reflected at the language level: the arrival of
data on a link will trigger a process inside the receiving
Transputer.

The programming language Occam allows the presence
of several different processes while only one is active at a
time. Message transmission with other processes is based
upon the synchronous principles of CSP {26], [10]. This
means that when the active process must communicate an
intermediary result with another process {possibly located
in another processor), the active process is held until the
other process has been found to be ready for the trans-
mission. While the process is held, it is stacked into the
inactive process queue. Another ready process is then acti-
vated until it either terminates or is itself hung because of
a required transmission. This low-level context change
mechanism compares favorably to the busy—wait model
found in conventional multiprocessor systems. Instead of
idling a processor while waiting for an intermediary oper-
andto arrive,the system allows contextswitching to another
ready process.

The system consists of 16 interconnected Transputers
interconnected in an lLLIAC-iV topology. The four links of
each Transputer are used for scalar data communications
and for interprocess synchronization messages. Each PE
owns a single bank of the memory system (Fig. 17). A pro-
cessor can directly access its own memory bank through
the external memory bus of the Transputer (local access].
A remote access can be made into the bank owned by
another processor. In this case, the Bus Controller formats
the request from the PE into a packet and takes control of
the bus. The request is then forwarded to the destination
PE. When the request is a read request, a response will be
sent in the same fashion back to the originator.

The data-flow language SiSAL (Section Ill-Di was chosen
asthe high-level interiacefortheTX16 because the data-flow
principles ofexecution can be directly mapped into Occam.
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Fig. 17. A Processing Element in the TX16.

The converse is not true, however, since it is possible to
design unsafe Occam programs which would have no cor-
responding part in the data-flow world. This mapping is
made possible by the fact that both programming
approaches rely upon the principles of scheduling upon
data availability. Several numerical algorithms have been
tested on a simulated machine and have demonstrated a
near linear speedup forthe size ofthe machine considered.
it should be noted that this was obtained withoutthe inter~

vention of a sophisticated high-level language compiler.
Instead, a data-flow language was 'used to provide the pro-
grammability needed. Indeed, for the same programming
effort, a higher speedupwould beobtained bythedata-flow
approach.

H. Comparison of Data-Driven Architectures

The different architectures presented in the above sec-
tions all represent different approaches to the problem of
specifying scheduling in multiprocessor systems for digital
signal processing applications. They each fit a different
niche in the realm of problems encountered in this domain:

I The systolic method efficiently and cheaply imple-
ments parallel algorithms on potentially large numbers of
simple processing elements. However, the design of the
algorithm on the array of processors remains fixed and con-
strains the system to consistently solve the same problem.

I Architectures such as the WAP and the ESL polycylic
processor possess a greater degree of programmability.
The WAP notably has no global synchronization mech-
anism since it relies upon the notion of a computational
wavefront.

I The data-flow multiprocessors which we have

described {the HDFM, the MIT tagged token data-flow
machine, and the USC TX16) offer much more flexibility in
that their scheduling is in a larger part decided at compile
time. They possess no notion of central control and can

deliver maximum parallelism in very complex algorithms
without any intervention from the designer, programmer,
or compiler. Data-flow machines find their applications in
two cases: 1) in problems which involve large amounts of
heuristics and decision making, or 2} in applications which
require frequent reprogramming, thereby requiring the
high programmabiliiy characteristic of data-flow systems.
The data-flow interpretation model also presents the cru—
cial advantage of scalability in that the same programming

12.10

method of a given algorithm can be used, regardless of the
size and topology of the target machine. Finally, the pro-
grammability afforded by this approach translates into a
higher performance for a given amount of programmingeffort.

V. A DATA-FLOW ARCHITECTURE WITH MULTIPLE ststs or
RESOLUTlON

The data-driven model of execution has thus been dem-

onstrated to provide a very efficient programming envi-
ronment for the parallel execution of programs. We now
show how the concentration of the model on small atomic
operations can lead to many runtime inefficiencies. We
examine the performance of a multi-level architecture.

A. The Multi-Level Approach

It has been observed [17] that the data—flow model of exe-

cution was often applied at too low a level and imposed
much overhead at runtime. For instance, as was demon-

strated in Section lll,the description of a simple loop under
the principles of the U-interpreter can impose a large num—
ber of overhead actors such as D, 1, etc. For each loop, a
minimum of fiveactors must be included. in addition, since
we are in a data-driven environment, each datapath in the
same loop (for instance, the index and the iterated variable}
must ”own“ their own set of iteration actors, thereby mul-
tiplying the overhead. Let us considerasimple vectoroper-
ation (Fig. 1Biall which would be translated into the graph
of Fig. 18(b). This is obviously a large overhead. Indeed, the
data-flow interpretation mode should be used to uncover
at runtime parallelism which would be difficult or impos-
sible for a compiler to detect. Here, a relatively easy com-
piler intervention would quickly detect and exploit the par~
allelism availableinthevectoroperation whilethe data-flow
constructs would impose a large overhead.

This shows that the data-flow principles of execution can
be advantageously applied with a higher granularity as it
has been demonstrated [20}, [42}. it is indeed intended to
retain much of the distributed concepts introduced in the
tagged token data-flow machine [22]. The architecture we
consider comprises a large number of independent PEs
which can communicate over a packet-switched intercon-
nection network. The size and structure of the individual

PEs, however. should match the higher granularity envi-
sioned in this project and would implement powerful prim-
itives such as complex vector operations.

The architecture of the machine is to be organized in a
hierarchical fashion. lt respects at the higher level the data-
flow principles of execution but comprises powerful PEs at
the lowest level. The PEs are to be vector processors. The
advantages brought by this approach are several-fold:

I The principles of data-flow are maintained at all levels

of execution which implies the same programming model.
(indeed, avector operation can easily be detected in a higher
level data~flow language.)

I A continuous succession of more powerful but con-
versely more tightly coupled levels is implemented.

a The increase in performance brought by higher gran-
ularity can be directly implemented on this hierarchy of lev-
els with increasing communication costs.
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returns array of rENDFOR

 
Fig.18. (a) A vector addition in SISAL. (b) U-interpreter
graph of a vector addition. {:1 lF‘l representation of a vectoraddition.

8. The Elementary Processing Element

in order to apply the data-flow principles of execution at
a higher level of granularity, it appears that the individual
PEs should be dealing with complex constructs which are

more representative of the application under study. in the
case oflarge signal and data processing problems, the input

GAUDIDT: DATA-DRIVEN MULTICDMPUTERS IN DSP

datawhich are processed are usually received at ahigh rate.
Each datum undergoes the same operation and interacts
only slightly with other data elements. This is the case for
image processing applications in which local transforms

are usually undertaken. This demonstrates that signal pro-
cessing problems usually entail a low level which corre-

sponds to vector operations. However, the highest level of
operations includes such constructs as conditional, deci-
sion making, etc., for which the data dependencies cannot
be identified clearly at compile time as they can be in a vec-
tor operation. lnstead, runtime dependencies must be
detected in order to provide safety of execution and ade-
quate scheduling of our multiprocessor organization.

The individual PE is organized around a vector processor
but also includes the capability to perform scalar opera-
tions as needed. The vector architecture can remain
unspecified for the purpose of this section but could be an

SIMD processor, a pipelined vector architecture, etc. For
proper IiO function (i.e., communication with other PEs},
the Processing Element is separated in the actual Process-

ing Unit and the Com munication Unit. The Processing Unit
implements the actual vector functions while the Com

munication Unit is responsible for transferring data pack-
ets tolfrom the communication network and for the for-
warding data packets to other processors.

C. The Software Environment

The elementary principles of execution are based upon
an application of multi-Ievel data flow. It was earlier dem~
onstrated that the high granularity would considerably and
positively affect the performance of a data-flow system.
However, it is also known that the high-level, statically
scheduled data-flow programming methodology could be
used to design extremely powerful vector processors. The
architecture we have described comprises therefore two
levels: sophisticated processors are connected into a sec-

ond hierarchy.This hierarchy also exists on a software point
of view: program constructs must be partitioned together
in order to best utilize the characteristics of the architec-ture.

We have chosen for our high-level programming inter-
face the paradigm provided by SlSAL (Streams and Itera-

tions in a Single Assignment Language} as introduced by
McGraw and Skedzielewski [38]. As shown in Section Ill,
SISAL is a high-level language, the syntax of which resem~
bles Pascal. It is different from conventional languages, in
that it contains none of the side-effects associated with the
usual programming approaches. An example of the spec-
ification in SISAL of the addition of two arraysA and B was
given in Fig. 18(a]. The existing compiler provides an Inter-
mediate Form output (lF‘l). Notonlydoesthis output include
the data-flow graph necessary for the ru mime detection of
datadependencies (called Data-Flow Graph DFG), but itaiso
includes program structure information (Program Struc-
ture Graph PSG). As an example, the IF1 representation of
the SlSAl. program in Fig. 18ia) is shown in Fig. Talc). It shows
the Program Structure Graph (P56) in solid lines, while the
actual Data-Flow Graph (UPS) is represented by dashed
lines. The forallpseudo-node belongs to the P56 and is the
head of a three-pronged tree: the left-most node contains
the RangeGenerator actorwhich produces the index ifrom
1 to N {see SISAL program). The middle pointer is the actual

1131

Petitioner Microsoft Corporation - EX. 1066, p. 198
-————————._____________________



Petitioner Microsoft Corporation - Ex. 1066, p. 199

body of the loop. The right-most node gathers the results tree Onwii: : arrayi (int-9361: 1:from the body of the loop. Note that in the UFO, the index type m “a“ MD 1 ’

is received by both array selectors “Elementiwhich receive $233211 mmltéwgéifn; MD” -‘ "'3” ‘ ““39”
A (respectively, B), and l and produce/iii) (respectively, Bill).
The Plus operator adds the two. Partitioning can easily be f"; if“ 1'“ cm“ 1 in 1'1‘
clone along the edges of the P50, provided a cost matrix is for K in l; N
kept in order to easily assess the communication costs midgfifiifi $5.33 E' J 1
among the modules so isolated. An immediate heuristic and far

comes to mind concerning the system under study: since :35"??? “my Of 5
the atomic vector processing unit is so well tuned to the ”‘1 imam] “ "mm-t
scheduling of Generalized Vector Computations (GVCsi, (a)
the partitioning process should examine the PEG from its

leaves until it encounters a FORALL pseudo-node. A par-
tition which would comprise the whole subgraph can thus
be created. in addition, it should be noted that beyond this
relatively simple partitioning approach, several optimiza-
tion methods have been implemented. For example, nested
loops can be exchanged or combined, code could be
hoisted when data dependencies allow. These and other
strategies have also been described in [29].

D. Applications

Kalman filtering [45] can be chosen as a representative
example of some signal processing algorithms. It maps
remarkably well on our architecture because of the mul-

tiple levels of hierarchy which are embedded in the algo-
rithm itself. Indeed, the entire system could be described
at the low level used by ”conventional" data-flow archi-

tectures [Section IV}. However, it should be immediately
noted that most of these low-level operations can be
grouped into higher order tasks. For example, the com-
putational block which corresponds to covariance matrix
estimation implements a complex matrix inversion. This

algorithm itself entails repetitive applications of transpose
operations.

As an illustrative example of the matrix operations which
can be directly mapped onto ou r architectu re, we have cho-

 
sen the multiplication of two matrices. The SISAL code (b)
which corresponds to matrix multiplication is shown in Fig. Fig. 19. (a) Matrix multiplication in Sisat. (bi Matrix mul-
19lal. The corresponding iF‘I output is shown in Fig. 19th}. tiplication in In
In the graph, actors “RangeGenerator'l,” and “Range-
Generator3" broadcast index values i and k to the actors

"AElement'i" (Array Element select) and ”AEIementZ,” Vl‘ CONCLUSIONS

respectively. Once the actors "AElemenfi" and in this paper, we have demonstrated that data-driven
“AElementZ” have received the index values, they forward principles are particularly Well suited to the determination
the pointers A[i, *1 and B[k, *] to the actors ”AElementB” of the schedulability of operations in signal and data pro-
and "AElement4." "AEIementa" and "AEIement4" are also cessing problems on multiprocessor architectures. The
waiting for the index values it and jwhich are'sent from the degree at which these principles are applied determines,
actors “RangeGeneratorS” and ”RangeGeneratorZ," in for a large part, the domain of application of the system.
order to generate the elements AU, 1:] and Hit, i], respec- When the various processors in the architecture are orga-
tively. The “Times" actor receives the two elements Ali, k] nized in asystolicarray,theexecutabilityofinstructions has
and BU, j] and sends the product to the "Reduce" actor been determined directly by the designer and the design
which accumulates the received data and forwards the remains frozen. This means that the application is fixed.
result to actors "AGather‘l" as Well as “AGatherZ” to form However, comparatively high computational th roughputs
a two-dimensional array. The allocator analyzes the P50 and can be obtained from such organizations. When operation
determines that the lowest level consists of a vector oper- scheduling is decided by compiler intervention, systems
ation which can be easily assigned to a single processor for such as the ESL polycyclic multiprocessor or the Wavefront
execution. However, it should be noted that for perfor- Array Processor can be designed. These offer more pro
mance improvement reasons, the allocator optimizes the gram mobility than systolic arrays.They also offerthe poten-
allocation of actors. Simple vectorizing compiler tech- tialfor scaling up withoutacomplex overall redesign. How-
niquescan beappliedtooptimizethe mappingofthis appli- ever, complex data-dependent Operations cannot be easily
cation on our hybrid multiprocessor system. implemented on these architectures.
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