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Abstract

Automated target recognition is an application area
that requires special-purpose hardware to achieve rea-
sonable performance. FPGA-based platforms can pro-
vide a high level of performance for ATR systems if
the implementation can be adapted to the limited
FPGA and routing resources of these architectures,
This paper discusses a mapping experiment where a
linear-systolic implementation of an ATR algorithm is
mapped to the SPLASH 2 platform. Simple column-
oriented processors were used throughout the design
to achieve high performance with limited nearest-
neighbor communication, The distributed Sprasu 2
memories are also exploited to achieve a high degree
of parallelism. The resulting design is scalable and
can be spread across multiple SPLAsH 2 boards with
a linear increase in performance.

1 Introduction

Automated target recognition (ATR) is a compu-
tationally demanding application area that typically
requires special-purpose hardware to achieve desirable
performance. ASICs are not an option for these sys-
tems due to high non-recurring engineering (NRE)
costs and because the algorithms are constantly evolv-
ing. Existing FPGA-based computing platforms can
potentially provide the necessary performance and
flexibility for evolving ATR. systems; however, map-
ping applications to these existing platforms can be
very challenging because they lack abundant intercon-
nect and FPGA resources. The key to achieving a
high-performance implementation of ATR algorithms
with existing platforms is to carefully organize the de-
sign of the ATR implementation so that it can commu-
nicate via the limited interconnect and can be easily
partitioned among the FPGA devices.

This paper presents a linear systolic implementa-
tion of an existing ATR algorithm on SPLASH 2 that
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is well-suited to the SPLAsy 2 architecture. Inter-
FPGA communication is limited and easily accommo-
dated by the SPLASH 2 interconnect. Moreover, the
implementation can be scaled across any number of
SPLASH 2 boards and achieves high performance with
limited resources.

This paper briefly discusses the entire ATR algo-
rithm as developed by Sandia National Labs, and
then overviews the design and implementation of the
most computationally demanding part of the algo-
rithm: Chunky SLD. The Sprasn 2 implementation
is presented in some detail with future directions and
possible improvements.

2 Automatic Target Recognition

_ The goal of a typical ATR system is to analyze a
digital representation of a scene and locate/identify
objects that are of interest. Although this goal is
conceptually simple, ATR systems have extremely de-
manding I/O and computational requirements: image
data are large, can be generated in real-time, and must
be processed quickly so that results remain relevant in
a dynamic environment. The common use of special-
purpose hardware in nearly all high-performance ATR
systems is a clear indication of the computational com.-
plexity of these systems,

This paper details the implementation of an exist-~
ing ATR algorithm on SpLAsH 2. The algorithm in
question was developed at Sandia National Labora-
tories and was designed to detect partially obscured
targets in Synthetic Aperture Radar (SAR) images,
It is commonly referred to as Chunky SLD, so named
for the second step of the algorithm that differenti-
ates this algorithm from others developed at Sandia.
This algorithm consists of the following three steps:
(1) Focus of Attention (FOA), (2) Second-Level De-
tection (SLD), and (3) Final Identification (FI). Each
of these steps will now be introduced so that the al-
gorithm implementation can be understood in its op-
erating context. '
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Figure 1: ATR Block Diagram.

2.1 Focus of Attention (FOA)

Focus of attention is the first step of the ATR pro-
cess and uses image morphology techniques to de-
tect potential targets in SAR data. FOA operates on
“down-sampled” SAR images that are approximately
600-1000 pixels on a side. Once FOA detects a poten-
tial target, it determines the approximate center of the
potential target and creates 2x down-sampled sub-
images of the original SAR data where each subimage
contains a single target centered within the subim-
age. These subimages are referred to as chips and are
128 x 128 pixels.

2.2 Second Level Detection (SLD)

The SLD step processes the chips generated by the
FOA step. SLD further restricts the areas of interest
by giving the potential targets coordinates and angu-
lar orientation. SLD does this by correlating prede-
fined binary templates to the areas of interest. The
templates represent different object orientation an-
gles. Templates are oriented between 5 and 10 de-
grees apart. SLD also uses adaptive threshold levels
determined by the overall image intensity.

The algorithm studied in the paper is a variation
of SLD called Chunky SLD. Chunky SLD adds a level
of complexity to SLD by using more templates to rep-
resent objects that have been partially obscured (par-
tially hidden by camouflage or objects overhead). This
allows better target recognition at a cost of higher
computational requirements. Chunky SLD is dis-
cussed in more detail later in this section.

2.3 Final Identification (FI)

The FI algorithm correlates full resolution image
data and templates with finer angular resolution (3 to
5 degrees). FI also uses adaptive threshold levels. The
output of FI is a location of the target, and confidence
level corresponding to the level of correlation between
the object and the FI templates.

2.4 The Chunky SLD Algorithm

The general goal of the Chunky-SLD algorithm is
to recognize targets that are partially concealed or ob-
scured in some way. To achieve this goal, the designers
of this algorithm treat the target as a set of 40 tem-
plate pairs where each pair of templates is a digital
representation of some salient feature of the specific
target. If the majority of the template pairs strongly
correlate with the image data, then a match of the
overall target is assumed. Each pair of templates con-
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Figure 2: Chunky SLD

sists of a Bright template and a Surround template.
The Bright template is a representation of expected
reflections directly from surfaces of a salient target fea-
ture while the Surround template represents expected
absorption in the immediate area surrounding the tar-
get feature. Each pair of a Bright and Surround tem-
plate is referred to as a chunk, so called because each
pair of templates represents a “chunk” of the overall
target. Each set of 40 chunks represents a single target
at a specific rotation. There are 72 orientations, each
representing a different target orientation and radar
incidence angle. Each set of 72 orientations is referred
to as a class and is the complete set of templates that
must be correlated with a chip to detect the presence
of a specific target.

Class

All the templates
r“on:‘;’gjm} (40 Chunks)

Figure 3: Template Organization

The first step of the Chunky SLD algorithm is to
correlate the chip and the Bright template. This cor-
relation value is used to compute a value that will be
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used to threshold the incoming chip data, converting
the 8-bit chip image into a binary image. The equa-
tions describing this process are shown below.

15
Shapesum(z,y) = 3" Biomp(a,b)*Chip(z+a,y+b)

a,b=0

Shapesum(z, y)

Thresholdid,y) = Bright_template_pizel_count

The values obtained by correlating the Bright and
Surround templates with the binarized chip (B,um and
Ssum) are checked against minimum values to generate
a “hit value” for each offset in the chip. The threshold
value is also checked to see if it falls in an acceptable
range when generating the hit values.

if([Tnae = T > Trmin] AND
[Bsum > Bmin] AND
[Saum > Sm:‘n])

then (1)
Hit=1;

else
Hit=0;

The hit values are accumulated for each offset for a
specific orientation (40 chunks). The highest values
are used to identify the areas of interest for the final
identification step.

2.4.1 Template Characteristics

Template pairs exhibit useful properties: sparseness
and mutual exclusivity. The Bright template consists
mostly of zeros; only 3 to 10 percent of the template
values are ‘1’s and this limits the magnitude of the
Shapesum and B,y values. The Bright and Surround
templates are also mutually exclusive; that is, if the
two templates are overlaid no “on” pixels will overlap.
When carefully exploited, both of these properties lead
to more compact and higher performance hardware.

3 Other Implementations of Chunky-
SLD

As explained the ATR application is computation-
ally demanding. There are (128-15) x (128-15) offsets
per chunk x 40 chunks x 72 orientations & 36 x 105
hit values to compute per targeted object (or per class,
see Figure 3). The computational rate and I/O re-
quirements of this algorithm make it impossible to use
current microprocessors. Thus any high-performance
implementation of this algorithm will require special-
purpose hardware to meet performance goals.
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However, custom ASICs are also not an option be-
cause the algorithm is constantly evolving and also
because commercial-off-the-shelf components (COTS)
are often dictated by the ultimate customers of ATR
systems. The only remaining options are to construct
the system with commercially available fixed-function
devices such as correlaters, multipliers, etc., or to
use programmable logic, e.g., FPGAs [1, 2]. Thus
all known implementations of Chunky-SLD use either
fixed-function devices or programmable logic.

3.1 Sandia

Current Sandia implementations of ATR are based
on commercially available one-bit correlater chips,
Sandia designers adapted the basic Chunky-SLD al-
gorithm so they could exploit the capabilities of these
components to achieve high performance. Rather than
process the Shapesum and then process the final cor-
relation, the two steps were done in parallel. The cor-
relation was done at 8 discrete threshold levels and
the Shapesum determined which threshold to use for
each offset.

Shapesum
Correlation
Chip
128x128x8bit | | Templates
i
Bz
=
- Final
Correlation Final
Correlation
Out
Figure 4: Sandia’s Implementation.
3.2 UCLA

A group at UCLA (Headed by John Villasenor) [3]
is working on a FPGA based SLD implementation. By
doing bit level correlations they are able to do very
compact adder trees that take advantage of template
sparseness and FPGA on board lookup-table memory
capability. Their approach compiles template infor-
mation directly into the hardware and relies on fast
reconfiguration to switch template information. They
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also try and take advantage of template overlap by
computing the results of multiple correlations simul-
taneously.

4 Chunky-SLD on Splash 2

On SPLASE 2 a static implementation was done
to avoid the overhead of reconfiguring the hardware
during execution. In order to reduce the hardware
requirements without reducing throughput a deeply
pipelined design (~400 cycle latency) was imple-
mented. The Shapesum unit generates the threshold
value which is then used to generate the final corre-
lation values, (Note: There is a unique threshold for
each offset). By doing this only two final correlations
have to be computed per offset (one B,um and one
SsumJ- 3

The Sandia implementation computes the Shape-
sum and final correlation in parallel which forces them
to compute multiple final correlations. While our im-
plementation does them serially. This allows us to use
an exact threshold value. Also only one final correla-
tion needs to be computed because the threshold value
is computed before the final correlation begins. The
technique used was to look at the correlations by col-
umn, compute the partial correlation for that column,
and sum up the partial sums for all 16 columns. In
this method 16 different column correlations are going
on in parallel but only one column of data needs to be
available for processing.

4.1 Implementing the Correlation as Col-
umn Sums

Figure 5 depicts a simple example that demon-
strates a correlation of a 3x3 template with a binary
image. Each row in the table represents one clock cy-
cle. The first column is the clock cycle number. Cor-
responding numbers are found in the Pizel load order
box at the right. A new pixel is brought in on each
clock cycle. The Pl, P2, and P3 columns represent,
the three column processing units needed for a three
column template. The last column represents the ac-
tual output. Clock cycles 9 through 12 have been ex-
panded to show how data (pixels and partial sums)
are passed from column to column and illustrate the
data format. Once the pipeline is full, a new correla-
tion value is computed as each column arrives (three
pixels/cycles).

Note that valid output comes every three cycles be-
cause the template is three rows tall. All processing
elements are actively processing 3 pixel values at all
times. The SPLASH 2 implementation works Jjust like
the example except for the size of the columns (16
pixels instead of three) and the data format (eight-bit
instead of one-bit).
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Figure 5: Example Column Sum.

4.2 Platforms/Implementations

Chunky SLD was implemented on the SPLASH 2
board. SPLASH 2 has shown itself to be a useful plat-
form and has had numerous applications mapped to it
[4,5,6,7,8,9, 10, 11]. The implementation was done
in VHDL and simulated/synthesized using Synopsis.
All place and route was done automatically using Xil-
inx place and route tools.

One of the goals of the implementation was to run
the system so that it consumed a pixel per cycle. This
means that each cycle all processing elements (PE)
need to be able to process a new pixel. This im-
plementation follows Sandia National Labs algorithms
(not implementation) as closely as possible (see Sec-
tion 2.4).

The SpLAsH 2 board was developed by SRC (Su-
percomputing Research Center Institute for Defense
Analyses) [12]. The SPLASH 2 board is a linear sys-
tolic array of processing elements (FPGAs), each with
their own memory.

4.2.1 Splash 2 Hardware

From a conceptual point of view, the SpLAsH 2 system
consists of a linear array of processing elements. This
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makes SPLASH 2 a good candidate for linear-systolic
applications with limited neighbor-to-neighbor inter-
connect. Because of limited routing resources Sprasy
2 has difficulty implementing multi-chip systems that
are not linear systolic, though they are possible (8].
The actual SPLASH 2 platform consists of a board
with 16 Xilinx 4010 chips (plus one for control) ar-
ranged in a linear systolic array. Each chip has a lim-
ited 36-bit connection to its two nearest neighbors.
Each Xilinx 4010 is connected to a 512 kbyte memory

Memory

address T~ 18 data T~ 16

Processing
Element

(Xilinx 4010)
36 36

22

crossbar

left
neighbor

right
neighbor

Figure 6: Single Processing Element of SPLASH 2.

(16-bit word size). The memory can handle back-to-
back reads, or back-to-back writes, but requires one
‘dead’ (or turn around) cycle when changing from
write to read. There is also a crossbar connected to
all of the chips that allows some level of random con-
nection between chips. Up to 16 boards can be daisy-
chained together to provide a large linear-systolic ar-
ray of 256 elements.

4.3 ATR Implementation on Splash 2

Similar to the example, the SprLasu 2 implemen-
tation processes one pixel at a time and loads them
in column order so that the partial sums can be gen-
erated and passed from column to column. All tem-
plate data are stored in the memories adjacent to the
FPGAs on the SPLASH 2 boards. Each memory can
hold several thousand templates thus making it pos-
sible to store all of the templates for a single class
(6760) on a single SPLASH 2 board. There is sufficient
room in the FPGA design to store a single template.
The templates are switched by reading the new tem-
plate data out of the memory and storing it within
the FPGA. However, because this implementation is
deeply pipelined, it is necessary to flush all current
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Figure 7: SPLASH 2 platform.

data from the system when switching to a new tem-

plate. The overll:ea.hd f;om the flushing operation is
1 318 e B
I'lllﬂlllla.l (331424 co':r:pu?g ,;y.d“ —-) 0.14%

During each clock cycle, a new pixel arrives at the
FPGA. If the template bit corresponding to this pixel
is on then the incoming pixel is added to the current
partial sum. Each 16 clock cycles, this partial sum is
then passed on to the next column and a new partial
sum is received from the previous column. The last
column computes a complete Shapesum every 16 cy-
cles (one column). The final correlation of the Bright
and Surround templates with the thresholded chip
data works similarly except there are two correlations
(one for each template).

Intermediate hit values are stored in a table, re-
ferred to as the hit-table, in one of the local memories.
Each location in the table corresponds to an x-y off-
set of a chip, the origin of a single correlation. For
each offset, if a chunk “hits”, then the corresponding
location in this table is incremented. Thus the table
contains the accumulated hit values for all chunks and
all offsets that have been computed to that point.

Hits are computed according to Equation 1. First,
each B, and S,um value is compared to its corre-
sponding minimum value. Second, the threshold value
corresponding to each By, and S,u. is checked to
see if it is between a certain minimum and maximum
valye. For reasons of efficiency, the threshold value is
actually examined earlier in the process and a zero for
the threshold is stored in lookup-table memory if it
is out of bounds. This works correctly because if the
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threshold is zero, it will cause the Bsum to be zero,
which will in turn cause the B,qp, comparison to fail.
Otherwise, if all three of these tests come back true
then a hit has been found for the corresponding offset
(see Equation 1) and the corresponding location in the
hit-table is incremented. After the 40 templates are
tested against the same chip the two offsets with the
highest accumulated hit values are written into mem-
ory where the host computer can read them. This is
accomplished by examining the hit values during this
process and retaining the top two values_in special
memory locations. These final two hit values (which
represent the top two orientations for a specific class)
are used in the FI step. .

For the SPLASH 2 board, as with most FPGA sys-
tems, partitioning is a major issue. The design needed
to be modular so that different design modules could
be reassigned to different FPGAs as necessary. This
is where the column modules were so valuable (see
Figure 8).

4.4 Special Features

This implementation has several notable character-
istics. They include control distribution, modular de-
sign for partitioning and memory utilization,

4.4.1 Distributed Control

The control in this system is distributed throughout
the array. Each column module has it’s own state
machine based control. Module synchronization is
achieved by distributing a control token through the
pipeline along with the data. When a module re-
ceives this signal, it resets its internal state machines
and retrieves template data from its local memory, A
memory controller resides in each processing element
(FPGA) to retrieve template data and give memory
access to all other modules.

4.4.2 Modular Design (Design for Partition-
ing)

Bach column in both the Shapesum and final corre-
lation use totally self contained modules that can be
easily migrated from processing element to processing
element. This was done to simplify the partitioning
onto SPLASH 2 [13]. Memory data had to be care-
fully partitioned as well so that the data could follow
the module to which it applied. The regularity of the
design was an important concern; it allowed the place-
ment of specific circuit modules to be dictated by the
requirements of the algorithm and not by the limited
interconnect of the platform. There are 16 identical
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modules in the Shapesum and 16 more identical mod-
ules in the final correlation. Along with these there is
a divide, a hit accumulator and 2 delay modules (see
Figure 8),

4.4.3 Memory Usage

The memories in SPLASH 2 serve several purposes.
The template information is stored in them. They
are used to implement video shift registers that cor-
rect for the latency incurred during threshold compu-
tation. These shift registers require that two mem-
ories be used in tandem because every clock cycle a
new pixel (8 bits) had to be written to memory and a
delayed pixel had to be read from memory. The band-
width of one memory was such that it can handle two
pixels (load and store) every three cycles. Thus one
memory would delay two pixels and skip two pixels,
while the other memory would delay the two pixels
that the first memory skipped and skip the two pixels
that the first memory delayed. The divide unit and
the final result including the accumulated hit values
are also stored in memory,

4.5 Performance Metrics

There are many metrics that could be used to mea-
sure the value of this implementation. This section is
devoted to discussing some of these metrics.

4.5.1 Performance

This implementation runs at a frequency of 19 MHz
using a test template that tests all column modules,
Xdelay (a Xilinx timing tool) reports a guaranteed
frequency of 13.2 MHz. Designs that will run in the
10 to 20 MHz range are typical [8, 10].

Using the above frequency a single system could
process one orientation every .487 seconds (.701 sec-
onds using a 13.2 MHz clock).

128 col x (128 - 15) row x 162 4oChunks _
19 MHz — " Orient =
Chunks

(12 ma/Chunk) X 40m —
[487 ms @ 19 MHz|

or

128 col x (128 — 15) row x 168 a0 Chunks _
13.2 MHz % Orient —

Chunks
(17.5 ms/Chunk) x MO——_ﬁcntaiion =

1701 ms @ 13.2 MHz |

e -

———— =

—

3
%
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_ Figure 8: SpLasH 2 Implementation.

Using a brute force approach it takes 59 seconds to
compute the same data on an HP 770 (110 MHz).
That is two orders of magnitude slower. On one
SPLASH 2 board two processing units can be in-
stalled yielding the ability to process 1 orientation
(40 chunks) every .244 seconds (.350 seconds at 13.2
MHz).

4.5.2 Multi-board Splash 2

If a 16-board system were used then 256 processing
elements would be available. this would make 42 pro-
cessing units (256 PEs + 6 PE per PU) and 42x the
throughput. Thus one orientation can be processed
every 11.6 ms (16.7 ms at 13.2 MHz). This is equal
to covering 86 orientation per second (60 orientations
per second at 13.2 MHz).

4.5.3 Memory Bandwidth

The distributed memory and aggregate memory band-
width is what makes this implementation possible. Be-
cause the memory is distributed to each chip this im-
plementation can be extended to a multi-board system
quite easily. Consider that a processing unit consists
of 6 FPGAs and their corresponding memories. Each
processing unit performs 10 reads and 13 writes each
16 clock cycles. The SPLASH 2 memories require 3
clock cycles to perform a read and a write for a total
available bandwidth of 2 reads and 2 writes every cy-
cle (Semeries) Thus a processing unit consumes ap-
proximately 1/2 of the available memory bandwidth.
If there were only two or three memories available for
the six-chip system this implementation would not be
possible.
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4.5.4 Memory stored templates

The decision to use statically configured hardware
and memory-stored templates was made early in the
design process. Another approach would be to use
hard-coded templates, e.g., hardware with the tem-
plate data compiled in as constants. A hard-coded
template implementation could possibly use less hard-
ware by removing unused accumulators and template
reading logic, however it would require the hardware
to be reconfigured during run-time in order to switch
templates. This would take significantly longer than
the memory read done in the memory-stored tem-
plate version. The SPLASH 2 system requires approxi-
mately 17 ms per chip to configure. The system would
have to be reconfigured each time a new template was
used. In order to process one orientation the sys-
tem would have to be configured 40 different times.
This would adversely impact system throughput. In
fact even if the system could be reconfigured in one
cycle the performance wouldn’t improve because the
time spent reading templates from memory is hidden
while the pipeline is initially filling (during the flush
cycles). There are other advantages as well. Design
time is simplified because new hardware bit streams
don’t have to be generated and tested to use new tem-
plates. Re-compilation may improve hardware utiliza-
tion, however that would come at a cost of repartition-
ing difficulty.

5 Future work

In the future, additional related research will be
conducted on possible improvements to the implemen-
tation described in this paper. In addition, alternative
implementations that are not currently possible with
the SPLASH 2 platform are under examination. Fi-
nally, work is underway on a bit-serial version of this
implementation.
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5.1 Splash 2 Improvements

Although SprLAsH 2 was suitable for this project,
there are many possible architectural improvements
that could be made that would increase performance
significantly. A faster memory interface that sup-
ports a two-cycle read-write operation or perhaps a
dual-ported memory interface would provide improved
memory bandwidth., A larger processing element

would give more resources and make implementations

more flexible. Updated VHDL libraries that conform
to standard data types would help design portability
and simplicity.

If chip-to-chip I/O were increased on SPLASH 2 a
full column could be processed each clock cycle. This
would require at least 339 I/O pins ([128 pixel bits
+ 13 bit partial sum + 8 bit threshold + 2 bits of
control] x 2 (in and out) + 16-bit memory data + 21-
bit memory address = 339 pins). The current chips
(Xilinx 4010) has enough logic and routing to pro-
cess an entire column at one time, If this kind of I/0
bandwidth were available [14] the system would con-
sume 2 SPLASH 2 boards but would have 16 times the
throughput because 16 times as much data would be
processed each clock cycle.

Another option would be to distribute the chip im-
age to each FPGA memory and have a wide memory
data path. This would require at least 195 I/O pins
([13 bit partial sum + 8 bit threshold + 2 bit control]
x 2 (in and out) + 128 bit memory data path + 21
bit memory address = 195) but would have the same
throughput.

5.1.1 Interface Improvements

The current implementation assumes that all data
are loaded on the SPLASH 2 board before processing
commences. A more realistic implementation would
stream data to the system as it is produced. Thus,
DMA channels or other high-performance 1/0 hard-
ware, if added to the system, would make performance
more sustainable across multiple Images.

5.2 Other implementations

There are several ways this algorithm could be im-
plemented. The most obvious way is to to a full paral-
lel version that looks at a full 16x16 pixels at a time.
Another is a linear systolic version that looks at one
pixel at a time. A linear systolic implementation was
designed because SPLASH 2 is organized that way.

This implementation takes a relatively brute-force
approach and feeds the entire chip into the system
for processing. Whether or not a given pixel actu-
ally contributes to the calculation is determined after
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the image data are already in the pipeline. Other ap-
proaches may take a.more selective approach and only
access image pixels that actually contribute to the
calculation. This may reduce overall memory band-
width requirements and suggest other implementation
strategies. An implementation that only examined
pixels that will be used could potentially give a perfor-
mance increase when correlating the Bright template
because the majority of pixels in the template repre-
sent chip locations that do not contribute to the com-
putation. However, such an approach would require
a complicated control scheme and may not map well
onto SPLASH 2.

Here at BYU there is ongoing work targeting 3 dif-
ferent FPGA architectures, each looking to better un-
derstand the hardware and ATR algorithms. These
include a bit-serial version targeted at National Semi-
conductors Clay FPGA and a Xilinx 6200. Another
project is looking at a full parallel implementation tar-
geting an Altera Flex-10K part.

6 Conclusion

SPLASH 2 is organized as a linear array of FPGA
chips each connected to a separate memory. Because
of this, applications can only make effective use of
SPLASH 2 resources if (1) individual circuit modules
are small enough to easily fit into the limited resources
available within a single FPGA (Xilinx 4010) and (2)
circuit modules can be grouped together in such a way
that the interconnect requirements between modules
on separate chips will fit in the limited chip-to-chip
interconnect available on SPLASH 2.

Both of these requirements were met in this
application by carefully organizing all correlations
(both Shapesum and final correlation) as independent
column-oriented processing elements (PEs). Each PE
occupied only a small amount of FPGA resources
thereby making it possible to place several PEs into
a single FPGA. PEs that are integrated on a single
FPGA communicate via the available on-chip FPGA
routing; PEs that are located on different FPGAs can
easily communicate via the limited inter-chip routing
on SPLASH 2.

This repetitive, column-oriented organization also
eases the programming of SPLASH 2 considerably.
Much of the VHDL code was reused and because the
fourth and fifth chips are identical (because of the lin-
ear column layout, see Figure 8) it was possible to
down-load the same bit-stream into both chips.

This column organization presents a good tradeoff
between a fully parallel design and a.design that fits
within the restrictions of the SPLASH 2 architecture.
Each column operates in parallel computing a column
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sum that when complete is passed onto its neighboring
column. While it is possible to achieve higher levels of
parallelism, it is likely that such designs will require
denser interconnect than SPLASH 2 is capable of pro-
viding (see Section 5.1). By limiting communication
to only adjacent columns, significant parallelism is still
achieved with only moderate amounts of interconnect.

This implementation can also take advantage of
SPLASH 2’s extensibility giving it even higher perfor-
mance capability. Simply by passing the pixel data
from chip 6 (see Figure 8) to the next chip on the
SPLASH 2 board and configuring the next 6 chips in
the array with the same bit stream as the first 6 chips
the throughput on the system would be doubled. This
extensibility can also be expanded to multiple boards
giving a linear increase in system throughput.
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Automated Target Recognition on SPrAsH 2 1

Michael Rencher and Brad L. Hutchings
Department of Electrical and Computer Engineering
Brigham Young University
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Abstract

Automated target recognition is an application area
that requires special-purpose hardware to achieve rea-
sonable performance. FPGA-based platforms can pro-
vide a high level of performance for ATR systems if
the implementation can be adapted to the limited
FPGA and routing resources of these architectures.
This paper discusses a mapping experiment where a
linear-systolic implementation of an ATR. algorithm is
mapped to the Sprase 2 platform. Simple column-
oriented processors were used throughout the design
to achieve high performance with limited nearest-
neighbor communication. The distributed SPLASH 2
memories are also exploited to achieve a high degree
of parallelism. The resulting design is scalable and
can be spread across multiple SPLASH 2 boards with
a linear increase in performance.

1 Introduction

Automated target recognition (ATR) is a compu-
tationally demanding application area that typically
requires special-purpose hardware to achieve desirable
performance. ASICs are not an option for these sys-
tems due to high non-recurring engineering (NRE)
costs and because the algorithms are constantly evolv-
ing. Existing FPGA-based computing platforms can
potentially provide the necessary performance and
flexibility for evolving ATR systems; however, map-
ping applications to these existing platforms can be
very challenging because they lack abundant intercon-
nect and FPGA resources. The key to achieving a
high-performance implementation of ATR algorithms
with existing platforms is to carefully organize the de-
sign of the ATR implementation so that it can commu-
nicate via the limited interconnect and can be easily
partitioned among the FPGA devices.

This paper presents a linear systolic implementa-
tion of an existing ATR. algorithm on SPLAsSH 2 that

P'This work was supported by DARPA/CSTO under contract
number DABT63-94-C-0085 under a subcontract to National
Semiconductar

0-8186-8159-4/97 $10.00 © 1997 IEEE
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is well-suited to the SPLASH 2 architecture. Inter-
FPGA communication is limited and easily accommo-
dated by the SPLASH 2 interconnect. Moreaover, the
implementation can be scaled across any number of
SPLASH 2 boards and achieves high performance with
limited resources.

This paper briefly discusses the entire ATR algo-
rithm as developed by Sandia National Labs, and
then overviews the design and implementation of the
most computationally demanding part of the algo-
rithm: Chunky SLD. The SPLasy 2 implementation
is presented in some detail with future directions and
possible improvements.

2 Automatic Target Recognition

_ The goal of a typical ATR system is to analyze a
digital representation of a scene and locate /identify
objects that are of interest. Although this goal is
conceptually simple, ATR systems have extremely de-
manding I/O and computational requirements: image
data are large, can be generated in real-time, and must
be processed quickly so that results remain relevant in
a dynamic environment. The common use of special-
purpose hardware in nearly all high-performance ATR
systems is a clear indication of the computational com-
plexity of these systems.

This paper details the implementation of an exist-
ing ATR algorithm on SPLASH 2. The algorithm in
question was developed at Sandia National Labora-
tories and was designed to detect partially obscured
targets in Synthetic Aperture Radar (SAR) images.
It is commonly referred to as Chunky SLD, so named
for the second step of the algorithm that differenti-
ates this algorithm from others developed at Sandia.
This algorithm consists of the following three steps:
(1) Focus of Attention (FOA), (2) Second-Level De-
tection (SLD), and (3) Final Identification (FI). Each
of these steps will now be introduced so that the al-
gorithm implementation can be understood in its op-
erating context.
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Figure 1: ATR Block Diagram.

2.1 Focus of Attention (FOA)

Focus of attention is the first step of the ATR pro-
cess and uses image morphology techniques to de-
tect potential targets in SAR data. FOA operates on
“down-sampled” SAR images that are approximately
600-1000 pixels on a side. Once FOA detects a poten-
tial target, it determines the approximate center of the
potential target and creates 2x down-sampled sub-
images of the original SAR data where each subimage
contains a single target centered within the subim-
age. These subimages are referred to as chips and are
128 x 128 pixels.

2.2 Second Level Detection (SLD)

The SLD step processes the chips generated by the
FOA step. SLD further restricts the areas of interest
by giving the potential targets coordinates and angu-
lar orientation. SLD does this by correlating prede-
fined binary templates to the areas of interest. The
templates represent different object orientation an-
gles. Templates are oriented between 5 and 10 de-
grees apart. SLD also uses adaptive threshold levels
determined by the overall image intensity.

The algorithm studied in the paper is a variation
of SLD called Chunky SLD. Chunky SLD adds a level
of complexity to SLD by using more templates to rep-

resent objects that have been partially obscured (par-

tially hidden by camouflage or objects overhead). This
allows better target recognition at a cost of higher
computational requirements. Chunky SLD is dis-
cussed in more detail later in this section.

2.3 Final Identification (FI)

The FI algorithm correlates full resolution image
data and templates with finer angular resolution (3 to
5 degrees). FI also uses adaptive threshold levels. The
output of FI is a location of the target, and confidence
level corresponding to the level of correlation between
the object and the FI templates.
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2.4 The Chunky SLD Algorithm

The general goal of the Chunky-SLD algorithm is
to recognize targets that are partially concealed or ob-
scured in some way. To achieve this goal, the desi gners
of this algorithm treat the target as a set of 40 tem-
plate pairs where each pair of templates is a digital
representation of some salient feature of the specific
target. If the majority of the template pairs strongly
correlate with the image data, then a match of the
overall target is assumed. Each pair of templates con-

Chip
1282 128x8 bi Hit High
Computation
i
— Accumulation| Offset
Templates

Figure 2: Chunky SLD

sists of a Bright template and a Surround template.
The Bright template is a representation of expected
reflections directly from surfaces of a salient target fea-
ture while the Surround template represents expected
absorption in the immediate area surrounding the tar-
get feature. Each pair of a Bright and Surround tem-
plate is referred to as a chunk, so called because each
pair of templates represents a “chunk” of the overall
target. Each set of 40 chunks represents a single target
at a specific rotation. There are 72 orientations, each
representing a different target orientation and radar
incidence angle. Each set of 72 orientations is referred
to as a class and is the complete set of templates that
must be correlated with a chip to detect the presence
of a specific target.

Surround

Class
(72 Orientations-
All the templates
for one object)

Orientation
(40 Chunks)

| Bright

Figure 3: Template Organization

The first step of the Chunky SLD algorithm is to
correlate the chip and the Bright template. This cor-
relation value is used to compute a value that will be

Petitioner Microsoft Corporation - Ex. 1066, p. 130




used to threshold the incoming chip data, converting
the 8-bit chip image into a binary image. The equa-
tions describing this process are shown below.

15

Shapesum(z,y) = Z Biemp(a,b)% Chip(z+a, y+b)
a,b=0

Shapesum(z, y)
Bright_template_pizel_count

Threshold(z, y) =

The values obtained by correlating the Bright and
Surround templates with the binarized chip (B,y, and
Seum ) are checked against minimum values to generate
a “hit value” for each offset in the chip. The threshold
value is also checked to see if it falls in an acceptable
range when generating the hit values.

3f( [Tmn: > T ?. Tmin] AND

[Baum > Bmin] AND
[Saum 2 Srm‘ﬂ])

then (1)
Hit. =13

else
Hit =0,

The hit values are accumulated for each offset for a
specific orientation (40 chunks). The highest values
are used to identify the areas of interest for the final
identification step.

2.4.1 Template Characteristics

Template pairs exhibit useful properties: sparseness
and mutual exclusivity. The Bright template consists
mostly of zeros; only 3 to 10 percent of the template
values-are ‘1’s and this limits the magnitude of the
Shapesum and B,y values. The Bright and Surround
templates are also mutually exclusive; that is, if the
two templates are overlaid no “on” pixels will overlap.
When carefully exploited, both of these properties lead
to more compact and higher performance hardware.

3 Other Implementations of Chunky-
SLD

As explained the ATR application is computation-
ally demanding. There are (128-15) x (128-15) offsets
per chunk x 40 chunks x 72 orientations = 36 x 108
hit values to compute per targeted object (or per class,
see Figure 3). The computational rate and 1/0 re-
quirements of this algorithm make it im possible to use
current microprocessors. Thus any high-performance
implementation of this algorithm will require special-
purpose hardware to meet performance goals.
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However, custom ASICs are also not an option be-
cause the algorithm is constantly evolving and also
because commercial-off-the-shelf components (COTS)
are often dictated by the ultimate customers of ATR
systems. The only remaining options are to construct
the system with commercially available fixed-function
devices such as correlaters, multipliers, etc., or to
use programmable logic, e.g., FPGAs [1, 2). Thus
all known implementations of Chunky-SLD use either
fixed-function devices or programmable logic.

3.1 Sandia

Current Sandia implementations of ATR are based
on commercially available one-bit correlater chips.
Sandia designers adapted the basic Chunky-SLD al-
gorithm so they could exploit the capabilities of these
components to achieve high performance. Rather than
process the Shapesum and then process the final cor-
relation, the two steps were done in parallel. The cor-
relation was done at 8 discrete threshold levels and
the Shapesurn determined which threshold to use for
each offset.

Shapesum
Correlation
Chip
128x128x8bit Templates ;&.’
o
ala
=9
Final
3 Correlation Final
A Correlation
- Out

Figure 4: Sandia’s Implementation.

3.2 UCLA

A group at UCLA (Headed by John Villasenor) [3]
is working on a FPGA based SLD implementation. By
doing bit level correlations they are able to do very
compact adder trees that take advantage of template
sparseness and FPGA on board lockup-table memory
capability. Their approach compiles template infor-
mation directly into the hardware and relies on fast
reconfiguration to switch template information. They
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also try and take advantage of template overlap by
computing the results of multiple correlations simul-
taneously,

4 Chunky-SLD on Splash 2

On SpLASH 2 a static implementation was done
to avoid the overhead of reconfiguring the hardware
during execution. In order to reduce the hardware
requirements without reducing throughput a deeply
pipelined design (~400 cycle latency) was imple-
mented. The Shapesum unit generates the threshold
value which is then used to generate the fina] corre-
lation values. (Note: There is a unique threshold for
each offset). By doing this only two final correlations
have to be computed per offset (one Byym and one
S:um)-

The Sandia implementation computes the Shape-
sum and final correlation in parallel which forces them
to compute multiple final correlations, While our im-
plementation does them serially, This allows us to use
an exact threshold value. Also only one final correla-
tion needs to be computed because the threshold value
is computed before the final correlation begins. The
technique used was to look at the correlations by col-
umn, compute the partial correlation for that col umn,
and sum up the partial sums for all 16 columns. In
this method 16 different column correlations are going
on in parallel but only one column of data needs to be
available for processing.

4.1 Implementing the Correlation as Col-
umn Sums

Figure 5 depicts a simple example that demon-
strates a correlation of a 3x3 template with a binary
image. Each row in the table represents one clock cy-
cle. The first column is the clock cycle number. Cor-
responding numbers are found in the Pizel load order
box at the right. A new pixel is brought in on each
clock cycle. The P1, P2, and P3 columns represent
the three column processing units needed for a three
column template. The last column represents the ac-
tual output. Clock cycles 9 through 12 have been ex-
panded to show how data (pixels and partial sums)
are passed from column to column and illustrate the
data format. Once the pipeline is full, a new correla-
tion value is computed as each column arrives (three
pixels/cycles).

Note that valid output comes every three cycles be-
cause the template is three rows tall. All processing
elements are actively processing 3 pixel values at all
times. The SpLasu 2 implementation works just like
the example except for the size of the columns (16
pixels instead of three) and the data format (eight-bit
instead of one-bit),
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Figure 5: Example Column Sum.

4.2 Platforms/Implementations

Chunky SLD was implemented on the SPLaSH 2
board. SPLASH 2 has shown itself to be a useful plat-
form and has had numerous applications mapped to it
[4,5,6,7,8,9, 10, 11]. The implementation was done
in VHDL and simulated /synthesized using Synopsis.
All place and route was done automatically using Xil-
inx place and route tools.

One of the goals of the implementation was to run
the system so that it consumed a pixel per cycle. This
means that each cycle all processing elerents (PE)
need to be able to process a new pixel. This im-
plementation follows Sandia National Labs algorithms
(not implementation) as closely as possible (see Sec-
tion 2.4),

The SPLASH 2 board was developed by SRC (Su-
percomputing Research Center Institute for Defense
Analyses) [12]. The SpLASH 2 board is a linear sys-
tolic array of processing elements (FPGASs), each with
their own memory.

4.2.1 Splash 2 Hardware

From a conceptual point of view, the SPLASH 2 system
consists of a linear array of processing elements. This
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makes SPLASH 2 a good candidate for linear-systolic
applications with limited neighbor-to-neighbor inter-
connect. Because of limited routing resources SPLAsH
2 has difficulty implementing multi-chip systems that
are not linear systolic, though they are possible (8].
The actual SPLASH 2 platform consists of a board
with 16 Xilinx 4010 chips (plus one for control) ar-
ranged in a linear systolic array, Each chip has a lim-
ited 36-bit connection to its two nearest neighbors.
Each Xilinx 4010 is connected to a 512 kbyte memory

|

‘ Memory

address T~ 18 data 7]

i

Processing

Element
left

neighbar

nght
neighbor

e

(Xilinx 4010)
in 2%

1

crossbar

Figure 6: Single Processing Element of SprAsy 2.

(16-bit word size). The memory can handle back-to-
back reads, or back-to-back writes, but requires one
‘dead’ (or turn around) cycle when changing from
write to read. There is also a crossbar connected to
all of the chips that allows some level of random con-
nection between chips. Up to 16 boards can be daisy-
chained together to provide a large linear-systolic ar-
ray of 256 elements.

4.3 ATR Implementation on Splash 2

Similar to the example, the Sprasy 2 implemen-
tation processes one pixel at a time and loads themn
in column order so that the partial sums can be gen-
erated and passed from column to column. All tem-
plate data are stored in the memories adjacent to the
FPGAs on the SPLASH 2 boards. Each memory can
hold several thousand templates thus making it pos-
sible to store all of the templates for a single class
(6760) on a single SPLASH 2 board. There is sufficient
room in the FPGA design to store a single template.
The templates are switched by reading the new tem-
plate data out of the memory and storing it within
the FPGA. However, because this implementation is
deeply pipelined, it is necessary to flush all current
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data from the system when switching to a new tem-
plate. The overhead from the flushing operation is

N 318 jlush cycles .,
minimal (5757 compute cyctes =) 0-14%.

During each clock cycle, a new pixel arrives at the
FPGA. If the template bit corresponding to this pixel
18 on then the incoming pixel is added to the current
partial sum. Each 16 clock cycles, this partial sum is
then passed on to the next column and a new partial
sum is received from the previous column. The last
column computes a complete Shapesum every 16 cy-
cles (one column). The final correlation of the Bright
and Surround templates with the thresholded chip
data works similarly except there are two correlations
(one for each template).

Intermediate hit values are stored in a table, re-
ferred to as the hit-table, in one of the local memories.
Each location in the table corresponds to an x-y off-
set of a chip, the origin of a single correlation. For
each offset, if a chunk “hits”, then the corresponding
location in this table is incremented. Thus the table
contains the accumulated hit values for all chunks and
all offsets that have been computed to that point.

Hits are computed according to Equation 1. First,
each B,y,, and S,,,, value is compared to its corre-
sponding minimum value, Second, the threshold value
corresponding to each B,,,, and Ssum is checked to
see if it is between a certain minimum and maximum
value. For reasons of efficiency, the threshold value is
actually examined earlier in the process and a zero for
the threshold is stored in lookup-table memory if it
is out of bounds. This works correctly because if the
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threshold is zero, it will cause the Bsum to be zero,
which will in turn cause the B,um comparison to fail.
Otherwise, if all three of these tests come back true
then a hit has been found for the corresponding offset
(see Equation 1) and the corresponding location in the
hit-table is incremented. After the 40 templates are
tested against the same chip the two offsets with the
highest accumulated hit values are written into mem-
ory where the host computer can read them. This is
accomplished by examining the hit values during this
process and retaining the top two values in special
memory locations. These final two hit values (which
represent the top two orientations for a specific class)
are used in the FI step.

For the SPLASH 2 board, as with most FPGA sys-
tems, partitioning is a major issue. The design needed
to be modular so that different design modules could
be reassigned to different FPGAs as necessary. This
18 where the column modules were so valuable (see
Figure 8).

4.4 Special Features
This implementation has several notable character-

istics. They include control distribution, modular de-
sign for partitioning and memory utilization.

4.4.1 Distributed Control

The control in this system is distributed throughout
the array. Each column module has it’s own state
machine based control. Module synchronization is
achieved by distributing a control token through the
pipeline along with the data. When a module re-
ceives this signal, it resets its internal state machines
and retrieves template data from its local memory. A
memory controller resides in each processing element
(FPGA) to retrieve template data and give memory
access to all other modules,

4.4.2 Modular Design (Design for Partition-
ing)

Each column in both the Shapesum and final corre-
lation use totally self contained modules that can be
easily migrated from processing element to processing
element, This was done to simplify the partitioning
onto SPLASH 2 [13]. Memory data had to be care-
fully partitioned as well so that the data could follow
the module to which it applied. The regularity of the
design was an important concern; it allowed the place-
ment of specific circuit modules to be dictated by the
requirements of the algorithm and not by the limited
interconnect of the platform. There are 16 identical
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modules in the Shapesum and 16 more identical mod-
ules in the final correlation. Along with these there is
a divide, a hit accumulator and 2 delay modules (see
Figure 8).

4.4.3° Memory Usage

The memories in SPLASH 2 serve several purposes.
The template information is stored in them. They
are used to implement video shift registers that cor-
rect for the latency incurred during threshold compu-
tation, These shift registers require that two merm-
ories be used in tandem because every clock cycle a
new pixel (8 bits) had to be written to memory and a
delayed pixel had to be read from memory. The band-
width of one memory was such that it can handle two
pixels (load and store) every three cycles. Thus one
memory would delay two pixels and skip two pixels,
while the other memory would delay the two pixels
that the first memory skipped and skip the two pixels
that the first memory delayed. The divide unit and
the final result including the accumulated hit values
are also stored in memory.

4.5 Performance Metrics

There are many metrics that could be used to mea-
sure the value of this implementation. This section is
devoted to discussing some of these metrics.

4.5.1 Performance

This implementation runs at a frequency of 19 MHz
using a test template that tests all column modules.
Xdelay (a Xilinx timing tool) reports a guaranteed
frequency of 13.2 MHz. Designs that will run in the
10 to 20 MHz range are typical [8, 10].

Using the above frequency a single system could
process one orientation every .487 seconds (.701 sec-
onds using a 13.2 MHz clock).

128 col x (128 - 15) row x 168F  ~Chunks _
19 MH:= Orient ~—
Chunks

(12 ms/C'hunk) x 40m =

[487 ms @ 19 MHz ]

or
128 col x (128 — 15) row x 165‘5 40 Chunks _
132 MA: W Orenr =

Chunks

17.5 ms/Chunk) x 40 =
(7.5 ma/ Chunk) % Orientation

(701 ms @ 13.2 MHz]
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Figure 8: SPLASH 2 Implementation.

Using a brute force approach it takes 59 seconds to
compute the same data on an HP 770 (110 MHz).
That is two orders of magnitude slower. On one
SPLASH 2 board two processing units can be in-
stalled yielding the ability to process 1 orientation
(40 chunks) every .244 seconds (.350 seconds at 13.2
MHz).

4.5.2 Muiti-board Splash 2

If a 16-board system were used then 256 processing
elements would be available. this would make 42 pro-
cessing units (256 PEs + 6 PE per PU) and 42x the
throughput. Thus one orientation can be processed
every 11.6 ms (16.7 ms at 13.2 MHz). This is equal
to covering 86 orientation per second (60 orientations
per second at 13.2 MHz).

4.5.3 Memory Bandwidth

The distributed memory and aggregate memory band-
width is what makes this implementation possible. Be-
cause the memory is distributed to each chip this im-
plementation can be extended to a multi-board system
quite easily. Consider that a processing unit consists
of 6 FPGAs and their corresponding memories. Each
processing unit performs 10 reads and 13 writes each
16 clock cycles. The SPLASH 2 memories require 3
clock cycles to perform a read and a write for a total
available bandwidth of 2 reads and 2 writes every cy-
cle (&-pemeries) Thys a processing unit consumes ap-
proximately 1/2 of the available memory bandwidth.
If there were only two or three memories available for
the six-chip system this implementation would not be
possible.
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4.5.4 Memory stored templates

The decision to use statically configured hardware
and memory-stored templates was made early in the
design process. Another approach would be to use
hard-coded templates, e.g., hardware with the tem-
plate data compiled in as constants. A hard-coded
template implementation could possibly use less hard-
ware by removing unused accumulators and template
reading logic, however it would require the hardware
to be reconfigured during run-time in order to switch
templates. This would take significantly longer than
the memory read done in the memory-stored tem-
plate version. The SPLASH 2 system requires approxi-
mately 17 ms per chip to configure. The system wounld
have to be reconfigured ecach time a new template was
used. In order to process one orientation the sys-
tem would have to be configured 40 different times.
This would adversely impact system throughput. In
fact even if the system could be reconfigured in one
cycle the performance wouldn’t improve because the
time spent reading templates from memory is hidden
while the pipeline is initially filling (during the flush
cycles). There are other advantages as well. Design
time is simplified because new hardware bit streams
don’t have to be generated and tested to use new tem-
plates. Re-compilation may improve hardware utiliza-
tion, however that would come at a cost of repartition-
ing difficulty.

5 Future work

In the future, additional related research will be
conducted on possible improvements to the implemen-
tation described in this paper. In addition, alternative
implementations that are not currently possible with
the SpLASH 2 platform are under examination. Fi-
nally, work is underway on a bit-serial version of this
implementation.
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5.1 Splash 2 Improvements

Although SPLASH 2 was suitable for this project,
there are many possible architectural improvements
that could be made that would increase performance
significantly. A faster memory interface that sup-
ports a two-cycle read-write operation or perhaps a
dual-ported memory interface would provide improved
memory bandwidth. A larger processing element

would give more resources and make implementations -

more flexible. Updated VHDL libraries that conform
to standard data types would help design portability
and simplicity.

If chip-to-chip I/O were increased on SPLASH 2 a
full column could be processed each clock cycle. This
would require at least 339 I/ pins ([128 pixel bits
+ 13 bit partial sum + 8 bit threshold + 2 bits of
control] x 2 (in and out) + 16-bit memory data + 21-
bit memory address = 339 pins). The current chips
(Xilinx 4010) has enough logic and routing to pro-
cess an entire column at one time. If this kind of I/0
bandwidth were available [14] the system would con-
sume 2 SPLASH 2 boards but would have 16 times the
throughput because 16 times as much data would be
processed each clock cycle.

Another option would be to distribute the chip im-
age to each FPGA memory and have a wide memory
data path. This would require at least 195 I/O pins
([13 bit partial sum + 8 bit threshold + 2 bit control|
x 2 (in and out) + 128 bit memory data path + 21
bit memory address = 195) but would have the same
throughput.

5.1.1 Interface Improvements

The current implementation assumnes that all data
are loaded on the SPLASH 2 board before processing
commences. A more realistic implementation would
stream data to the system as it is produced. Thus,
DMA channels or other high-performance I/0 hard-
ware, if added to the system, would make performance
more sustainable across multiple images.

5.2 Other implementations

There are several ways this algorithm could be im-
plemented. The most obvious way is to to a full paral-
lel version that looks at a full 16x 16 pixels at a time,
Another is a linear systolic version that looks at one
pixel at a time. A linear systolic implementation was
designed because SPLASH 2 is organized that way.

This implementation takes a relatively brute-force
approach and feeds the entire chip into the system
for processing. Whether or not a given pixel actu-
ally contributes to the calculation s determined after
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the image data are already in the pipeline. Other ap-
proaches may take a.more selective approach and only
access image pixels that actually contribute to the
calculation. This may reduce overall memory band-
width requirements and suggest other implementation
strategies. An implementation that only examined
pixels that will be used could potentiall y give a perfor-
mance increase when correlating the Bright template
because the majority of pixels in the template repre-
sent chip locations that do not contribute to the com-
putation. However, such an approach would require
a complicated control scheme and may not map well
onto SPLASH 2.

Here at BYU there is ongoing work targeting 3 dif-
ferent FPGA architectures, each looking to better un-
derstand the hardware and ATR algorithms. These
include a bit-serial version targeted at National Sermi-
conductors Clay FPGA and a Xilinx 6200. Another
project is looking at a full parallel implementation tar-
geting an Altera Flex-10K part.

6 Conclusion

SPLASH 2 is organized as a linear array of FPGA
chips each connected to a separate memory. Because
of this, applications can only make effective use of
SPLASH 2 resources if (1) individual circuit modules
are small enough to easily fit into the limited resources
available within a single FPGA (Xilinx 4010) and (2)
circuit modules can be grouped together in such a way
that the interconnect requirements between modules
on separate chips will fit in the limited chip-to-chip
interconnect available on SpLAsH 2.

Both of these requirements were met in this
application by carefully organizing all correlations
(both Shapesum and final correlation) as independent
column-oriented processing elements (PEs). Each PE
occupied only a small amount of FPGA resources
thereby making it possible to place several PEs into
a single FPGA. PEs that are integrated on a single
FPGA communicate via the available on-chip FPGA
routing; PEs that are located on different FPGAs can
easily communicate via the limited inter-chip routing
on SPLASH 2.

This repetitive, column-oriented organization also
eases the programming of SPLASH 2 considerably.
Much of the VHDL code was reused and because the
fourth and fifth chips are identical (because of the lin-
ear column layout, see Figure 8) it was possible to
down-load the same bit-stream into both chips.

This column organization presents a good fradeoff
between a fully parallel design and a.design that fits
within the restrictions of the SpLasH 2 architecture.
Each column operates in parallel computing a column
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sum that when complete is passed onto its neighboring
column. While it is possible to achieve higher levels of
parallelism, it is likely that such designs will require
denser interconnect than SPLASH 2 is capable of pro-
viding (see Section 5.1). By limiting communication
to only adjacent columns, significant parallelism is still
achieved with only moderate amounts of interconnect.

This implementation can also take advantage of
SPLASH 2’s extensibility giving it even higher perfor-
mance capability. Simply by passing the pixel data
from chip 6 (see Figure 8) to the next chip on the
SPLASH 2 board and configuring the next 6 chips in
the array with the same bit stream as the first 6 chips
the throughput on the system would be doubled. This
extensibility can also be expanded to multiple boards
giving a linear increase in system throughput.
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John Villasenor and Brad H utchings

The Flexibility of

CONFIGURAB
COMPUTING

Providing the Hardware for
Data-Intensive Real-Time Processing

LE

ne of the most fundamental tradeoffs in the
design of computing devices involves rhe
balance between flexibility and efficiency. At
one end of the specrrum are applica-
tion-specific integrated circuits (ASICs), which contain
dedicated circuitry optimized to a particular set of tasks.
ASICs have the advantages of low power dissipation and
high clock speeds, but suffer the drawback of being able
to perform only the tasks for which they were designed,
and thus become obsolete if the task is changed. Because
ASIC:s are highly specialized to a given application, they
typically achieve the highest possible performance at the
lowest silicon cost. However, this specialization comes at
the cost of flexibility and ASICs are only useful for rhe one
task for which they were designed. At the other end of the
Spectrum are programmable processors such as micro-
processors or DSPs. Programmable processors imple-
ment a limited and fixed sct of arithmetic and control
operations that can be organized and sequenced to imple-
ment any arbitrary computation. However, in cases
where the native processor operations are not well suited
to the rask at hand, or in cases where massive amounts of
parallclism can be exploited, programmable processors
are inefficient and deliver relatively poor performarce.
There has been growing recent interest in configurable
computing, which can be viewed as a hybrid between
ASICs and programmable processors. Configurable
computing machines are implemented with programiia-
ble logec: flexible hardware that can be programmed or,
more correctly, structured to fit the narural organization
and dataflow of a computation. Unlike programmable
processors where computations must be implemented as
some sequence of available operations, configurable com-
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puring machines allow a much more direct and natural
approach in which the hardware can be strucrured to di-
rectly implement the native operations required by the
application and also organized to exploit the concurrency
inherent in the computation. These systems can “track®
the computational requirements imposed by changes in
the processing task or data.

The enabling device for configurable computing is the
field-programmable gare array ( FPGA). FPGAs have
typically been used for prototyping of ASIC designs and
as low nonrecurring engineering (NRE) cost parts in ap-
plications where the cost of designing and fabricating an
ASIC is not justified. FPGAs have not traditionally been
viewed as cffective computing devices in their own right,
mostly because of their higher power requirements, low
clock speed, and relatively long (tens of ijJisecon; )
programming time. However, the combination of tech-
nology advances and some recent demonstrations] of
FPGA-based computing machines has led 0 a
te-evaluation of FPGASs as efficient compuring devices. It
is now clear that for applications characterized by deeply
pipelined, highly parallel, and integer arithmetic process-
ing, configurable compuring machines can outperform
aleernative solutions by up to an order of magnitude for
metrics such as cost and computation speed. Computa-
tional tasks having some or all of these characteristics in-
clude pattern matching, image processing, target
recognition, cryptography, and some darabase tasks. Be-
cause there are many other applications that require com-
putations that FPGAs do not perform as well,
configurable computing today is a niche sohution thar ap-
pears unlikely to make significant inroads
into the general-purpose computing appli-
cations currently dominated by micropro-
cessors. However, the advantages of
configurable computing for these niche ap-
plications are quite compelling. The com-
bination in a single device of dedicared
hardware and rapid, submillisecond-scale
reprogrammability constitiites an exciting
and promising development whose impli-
cations are only just beginning to be explored.

In this article we begin with a brief tutoral on FPGAs
that describes the mostcommon FPGA architectures and
how these architectures are used to support computation,
memoryaccess, and data flow. We then present FPGAs as
computing machines and focus on devices that are recon-
figured during run time. Ongoing research involving
FPGAs as well as future directions are also discussed.

Field-Programmable Gate Arrays
Architecture

EPGAs share with ASICS the capability to support appli-
cation-specific circuitry, with the key difference thar
FPGA circuits are programmed by means of a bitstream
thar completely specifies the logical functions and con-
nectivity to be implemented. Because FPGAs are

B8 IEEE SIGNAL PROCESSING MAGAZINE

static-random-access-memory (SRAM) devices, they can
be reprogrammed as often as desired, thereby allowing
the silicon resources in a single device to be time shared
across a wide range of functions. The flexibility of pro-
grammable hardware inevirably comes at a cost in cffi-
ciency relative to an ASIC, Therefore, while there is some
truth to the statement that FPGAs combine the adyan-
rages of ASICs with the flexibility of soft-
ware-programmable processors, the cavear must be
added that an FPGA never achieves the power, clock rate,
or die size that could be realized in a full custom chip opti-
mized for a particular task. :
Although there is a wide range of architectural ap-
proaches thatare used in FPGAs, all FPGAs consist of an
array of logical units distribured across a grid of program-
mable interconnect, or routing. For a given total dielsize,
the basic design issues facing an FPGA manufacrurer are
much. the same as those involved in the design of any
other computing device. These issues include the amount
of resources to devore ra routing as opposed to computa-
tion; the amount, granularity, and distribution of onschip
memory; and the quantity and accessibility of /0, -
Broadly speaking, FPGAs can be classified as cither
“coarse-grained,” meaning that they possess a smaller
number of relatively powerful logical units, or
“fine-grained,” which refers to'a larger number of very
clementary logic units. Most FPGAs in current use are
coarse-grained, and have logical units that are basél'd on
look-up tables (LUTs). For example, the Xilinx 4000 se-
ries family of FPGAs has logical units (referred to by
Xilinx as “configurable logic blocks) that each cohtain

To describe an FPGA in terms
of its gate count can be broadly useful |

but also deceptive. |

two 4-input, 1-output LUTs, one 3-input, 1-output
LUT, two flip flops, and several multiplexors to select
from among the lookup table and flip-flop inputs and
outputs. One Xilinx 4000 series configurable logic block
has the capacity to implement a two-bit adderior a
nine-bit parity checker. By contrast, the Xilinx 6200 se-
ries provides an example of a device tha lies at the other
end of the granularity spectrum. Each logical unit in the
6200 consists of two 4-to-1 multiplexors (though not all
of the inputs are independent), three 2-to-1
multiplexorsand a flip-flop, and can implement any one-
or two-input function as well as a single bit of storage.

Coarse-grained FPGA architecrures also providesome
form of distributed memory in addition to logic re-
sourees. For example, each LUT in a Xilinx 4K-series
FPGA can be used to implement a 16 x 1 RAM/ROM.
This makes it possible to trade logic for memory and vice
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versa. EPGAs manufactured by Altera provide dedicated
RAM blocks on the 10K-series that can each function as
either a 2048 x 1, 1024 x 2, 512 x 4, or 256 x 8 RAM.
Altcra RAMs are larger than the Xilink LUT-based
RAMs and are more efficient for implementing larger
memories but may go unused in designs that don’t need
them. It is anticipated that vendors of fine-grained
FPGAs will eventually introduce devices thar provide
RAM blocks, but there are no current fine-grained
FPGAs that provide distributed RAM resources (though
there is storage capacity in the flip flops that are part of
cach logical unir in a fine-grained FPGA).

LUTs, memory blocks, and flip-flops are all intercon-
nected via programmable routing. Programmable rout-
ing consists of fixed-length metal segments that are
interconnected with programmable switches, e.g., a sin-
gle MOSFET. Metal segments are of various lengths that
support nearest-neighbor interconnect, global intercon-
nect, and several lengths in between. Connections are

made by programming the switches that interconnect the
meral segments between the desired pins. The additional
resistance and capacitance introduced by the programma-
ble routing network is one of the primary performance
bottlenecks in FPGAs. Current-generation FPGAs are
typically clocked at berween 10 and 40 MHz, though cer-
tain types of algorithms can be optimized to run as fast as
250 MHz [23]. Figures 1 and 2 illustrate the routing and
logical unit of a coarse-grained and fine-grained FPGA,
respectively.

Logic Capacity

EPGA capacity is often expressed in terms of logic gates,
where one logic gate is understood to be a two-input
NAND gate. As in other types of computing, in which
the pressure placed on manufacturers to characterize per-
formance using a single number has led to oversimplifica-
tion, to describe an FPGA in terms ofits gate count can be
broadly useful but also deccptive. As is evident from the
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A 1. Exarnple of the logical unit and routing in a coarse-grained FPGA. The logical unit typically contains several look-up tables,
multipiexars, and flip-flops. Connectivity between logical units is hierarchical, including routing between adjacent logical units (solid
lines), among lagical units in a local neighborhood (dashed lines), and routing to connect widely separated logical units (dotted lines).

A 2. Example of a fine~grained FPGA. The

logical unit is much smaller than in a coarse-grained FPGA, typically containing the equivalent

of a single, small look-up table and a memory element. Routing permits a high degree of connectivity among logical units in a local

neighborhood as well as among widely separated logical units.
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contents of the logical units as described above, the logi-
cal functions that are realized in a given FPGA configura-
tionwill be highly dependent on computational demands
and algorithm-mapping strategies associated with the ap-
plication. In addition, within any given configuration,
some logical units will be extremely efficiently utilized
while others will receive little or no utilization. Another
complication is that for LUT-based FPGAs, logical ele-
ments can be used for logic, memory, or a combination of
both, thereby making it necessary to distinguish berween
logic gates and gates dedicated to storage.

For experienced users of FPGAs, a more meaningful
way to characterize capacity is to use the number of ven-
dor-specific logical units. Since vendors tend to scale
parts by increasing the array size as opposed to increasing
the complexity of the logical units that are elements in the
array, a designer with experience using a part with 1,024
logical units will readily understand what it means if the
vendor announces an FPGA with 1,600 logical units, In
the absence of experience with FPGA designs, using logi-
cal units as a size metric becomes less meaningful, As a
rough rule of thumb, each logical unit in Xilinx and Altera
FPGAs corresponds to between 20 and 50 gates of logic.
For example, the Xilinx 4062, which is an array of 48 by
48 logical units, will supporrt, depending on the computa-
tions needed, designs having between 40K and 130K
equivalent logic gates, Table I provides a summary of the
principal architecture features for a wide range of pres-
ently available FPGAs,

FPGA-Based Computing Platforms

Since ar least 1989 [7], FPGA-based computing plat-
forms have demonstrated the potential for achieving ex-
tremely high performance for many tasks such as image
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filtering [36], convolution [5,7], morphology [13],
feature extraction [1], and object tracking [32,39]. The
potential is real; prototype systems have been constructed
and applications developed that achieve performance that
is an order of magnitude faster than conventional ap-
proaches [3].

Although a wide variety of FPGA-based computing
systems have been constructed and reported in the litera.
ture, we focus here on two platforms thar stand our as
good examples of what can be achieved with FPGA-based
computing platforms: DECPeRLE, which was built by
researchers at Digital Equipment Corporation (DEC),
and SPLASH-2, which was built ar the Supercomputer
Research Center/Institute for Defense Analysis. These
two platforms are successful examples of FPGA-based
systems: each had clearly defined architectural goals, inte-
grated design and debug tools, and achieved significant
speedup for several imporrant applications.

Programmable Active Memory and

the DECPeRLE Systems

Programmable active memory (PAM) is designed to act
as a tightly coupled, general-purpose configurable hard-
ware co-processor. The main idea—as with many
FPGA-based systems—is to map the computationally
intense parts of an application to the FPGAs and execure
the remaining code on a host workstation. Designed and
developed at the DEC Paris Rescarch Laboratory
(PRL), PAM can be conceptually viewed as a latge array
of bit-level functional units called programmable active
memory cells. In practice PAMSs are implemented with
Xilinx 3K- and 4K-series FPGAs in a variety of
configurations: DECPeRLE-( (first generation),

DECPeRLE-1 (second-generation), and Pamerre, a
smaller PCI-based system. DECPeRLe-1 was a sec-
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ond-generation system and was the most successful of
the DEC PAM systems; to the best of our knowledge
more applications have been reported for DECPcRLE-1
than for any other single platform.

DECPeRLe-1 consists of 23 Xilinx 3090 FPGAs: 16
ina tightly coupled array of 4 x 4 FPGAs with the remain-
ing FPGAs providing interfaces to RAM and a host ma-
chine, which is typically a DEC Alpha workstation [7].In
addition, a programmable clock generator and additional
static logic is provided to manage the host bus interface
and download process. Figure 3 shows the architecture of
the DECPeRLe-1. As shown, the core array is connected
to four additional 3090s, one on each side of the array,
which are, in turn, connected to 1 MB (32-bits wide) of
static RAM. Three additional FPGAs are used to interface
the core to two FIFOs, which are connected to the host
through a turbo-channel interface.

Although PAMs can be programmed with commercial
CAD software, the PAM group developed custom design
software for use with DECPeRLe. Referred to as
PeRLe-1, the design tool is based on C++ and is a struc-
tural/physical design tool for capturing synchronous cir-
cuit designs. Standard C+ + syntax is used to describe
combinational logic. This is combined with a NET type
and a register primitive, thus making it possible to de-
scribe any synchronous circuit with PeR Le-1.

Designers can also annotate their circuits with place-
ment information that controls the final floorplan of the
resulting circuit. Application development proceeds by
first manually dividing the overall application into indi-
vidual FPGA circuits. Each circuit is then described with
asingle PeRLe-1 program that, when compiled, linked to

a technology library, and executed, generates a native
netlist (Xilinx Nedlist Format (XNF)) thar can then be
processed by Xilinx back-end software to route the design
and to finally create the downloadable bitstream.

PeRLE-1 is a relatively low-level design tool that
allows designers to finely craft high-performance de-
signs. Unlike vcrilog-hardware-dccription-language
(VHDL) synthesis environments where structural im-
plementations can be inferred from higher-level be-
havioral descriptions, PeRLe-1 requires the designer
to describe a circuit strictly in structural terms and de-
signers using PeRLe-1 often manually place signifi-
cant portions of the circuitry to achieve the highest
possible performance. The designers of PeR Le-1 con-
sciously chose this design path because the synthesis
tools available at the time when PeRLE-1 was under
development were often inefficient for
high-performance designs. This was a reasonable
tradeoff since one of the goals of the PAM project was
to outperform supercomputers.

DECPeRLE-1 also provides a rich run-time library
and set of debugging tools that allows design debugging
to take place on the actual hardware. The run-time envi.
ronment suppotts single-step and various tracing modes
that simulate for a single clock cycle and then retrieve
FPGA internal flip-flop state data for further analysis.
Signal values are accessible via the variable names that de-
noted them in the PeRLe-1 program as long as they are
registered in flip-flops. In addition, a graphical tool,
showRB, is available for analyzing readback traces. It can
graphically playback the stored state traces as a simple ani-
mation at about 100 Hz [45].

adrS
adriv

4 3. Architecture of the DECPeRlLe-1,
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DECPeRLe-1 achieved significant speedup for a wide
range of application areas including RSA cryptography,
molecular biology, heat and Laplace equations, neural
networks, and image classification [45]. In most cases, re-
ported applications were the fastest known implementa-
tions at that time (including ASICs and supercomputers)
and typically achieved a 10x speedup over other existing
solutions.

SPLASH-2

SPLASH-2 is another example of a well-known
FPGA-based computing platform. Created by research-
ers at the Supercompurer Research Center (SRC),
SPLASH-2 was specifically designed to support
high-performance linear systolic applications.
SPLASH-2 was also a second-generation system that was
constructed to overcome I/O limitations

and the lack of inter-FPGA communication

that limited the gcﬂcral_ applicatjon of the m

SPLASH-1, which preceded it [4].

ware almost always operates as predicted by simulations,
When differences oceur, it is typically caused by a bug in
the synthesis tool or by the use of signal initializers, which
are ignored by the synthesis rool.

A SPLASH-2 application is developed by first manu-
ally partitioning the design into FPGA-sized pieces and
then coding the VHDL thar describes the circuit; that
goces into each FPGA. This code is verified by simulation
in the SPLASH-2 environment with all of the other user
FPGA designs. Bach VHDL file is then synthesized sepa-
rately, placed and routed with the Xilinx backend soft-
ware, and finally downloaded to the SPLASH-2
hardware. Breaking the design into FPGA-sized pieces is
one of the challenges faced when desi gning for
SPLASH-2 because it is impossible to know if a design
will fit in an FPGA untl it is synthesized and placed and
routed. Thus, partitioning is typically an iterative affair

The SPLASH-2 system connects Xilin  R@econfiguration costs time because the

4010 FPGAs in a linear systolic array. In
addition to the linear systolic dara-path, a

logic being reconfigured is unavailable

global broadcast dara-path and for processing while the new bitstream

user-defined crossbar data path are avail-
able for custom communication networks.
The system scales well for linear-systolic
applications because the array can be easily _
extended simply by adding additional boards. Each of
the FPGAs is connected to a local 256K 16-bit memory
that is also mapped into the address space of the host
processor. FIFOs are placed at the input and output
sides of the systolic pipeline to maintain high through-
put and buffer data to the host processor, which is typi-
cally a Sun SPARC-II. Connections between
neighboring FPGAs and the crossbar are 36-bits wide,
cnough to support 32-bit data and 4-bits of rag, and use-
ful in pipelined applications. Figure 4 shows the organi-
zaton of the SPLASH TI system.

In contrast with DECPeRLe-1 and SPLASH-1,
SPLASH-2 uses commercial VEIDL synthesis tools for
application development. A VHDL model of the com-
plete system is provided thar includes all board-level in-
terconnect, memories, and the host interface. This body
of VHDL code serves not only as the simulation environ-
ment for SPLASH-2 designs but also as the definitive
documenration for the entirc platform. Applicadons arc
developed by creating a single VHIDL design for each of
the FPGAs thar will be used inthe system. Designers typi-
cally simulate these designs in the context of the system
VHDL model to verify that the circuitry will Operate cor-
rectly when downloaded to the acrual hardware.
Typically, oaly the initial simulations are performed in
the simulation environment; once the designer is satisfied
that the design is close to being correct, the VHDL is typ-
ically synthesized and downloaded for further verification
Via the run-time debugging tools. In practice, the hard-
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is being downloaded.

with designers attempting 2-3 times to converge on a de-
sign that meets the needs of the application and fits within
SPLASH-2 resources.

Although the commercial CAD tools used ‘with
SPLASH-2 do not make as efficient use of silicon as the
PeRLe-1 tools, they still allow design to proceed rapidly.
They are also based on a commonly-used HDI, language,
thus giving users a choice of commercial simulation and
synthesis environments. Although not recommended, it
is possible to floorplan postsynthesis designs if absolutely
necessary, but this tends to be extremely uawieldy with
current synthesis tools.

SPLASH-2 also provides an excellent run-time envi-
ronment that is similar to a typical software debugging
tool with support for reading back flip-flop state informa-
tion, single stepping, serting clock frequency, etc. De-
bugging is performed within T2, a TCL-based, textual
debugging tool. After download and during execution,
signal values that are registered in flip-flope are acceseible
via the VHDL signal names thar were used in the original
VHDL text.

SPLASH-1 and SPLASH-2 are perhaps best known
for their high-performance implementation of the ge-
netic edit-distance application. This application achieved
over two orders of magnitude of speedup over existung
supercomputer implementations [24, 28]. Peter Athanas
of Virginia Polytechnic University modified SPLASH-2
so that it would accept data directly from a video camera
and reported significant speedups for a wide variety of
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imag‘e-pmcessing algorithms [1, 5). In addition, Graham
and Nelson of Brigham Young reported significant
speedup of a genetic-programming algorithm [19, 207.

Configurable Computing:
Run-Time Reconfiguration

The key attribute distinguishing many of the recent and
ongoing efforts in FPGA-based computing from early
systems like SPLASH and DECPeR].E is the use of

limited reconfiguration during execution, Recent 8ys-
tems specifically target run-time reconfiguration (RTR)
a5 a means to enhance performance, Thie enables silicon
to be time shared across multiple tasks.

Reconfiguration is, of course, not free, and one of the
most interesting questions in configurable computing
concerns the costs and benefits of RTR for different algo-
rithms, FPGAs, and FPGA platforms. The basic tradeoffs
in RTR are relatively straightforward. Reconfiguration
costs time because the logic being reconfigured is unavail-
able for processing while the new bitstream is being
downloaded. Tr also costs power since configuration
bitstreams tend to be large (approximately a megabit for
the largest currently available FPGAs) and involve a cor-
respondingly large number of pin transitions when
loaded onto an FPGA. A few devices, most notably the

configuration.

It is only in the last five years or so that FPGAs have
supported reconfiguration at speeds fast enough to per-
mit RTR without intolerable overheads. Most FPGAs on
the marker today can be configured (depending on the
device and the size) in between 1 and 50 milliseconds.
There have been several proof-of-concept demonstra-
tions of RTR in recent years, and this has stirred interest
in the computing community as well as awareness by
FPGA vendors of the benefits of fast reconfiguration,
FPGA manufacturers, in turn, have made reconfiguration
speed a design issue in the newer and next-generation de-
vices, with the result that configuration times of a few
milliscconds or faster are likely to become common
within a few years.

A full evaluation and understanding of RTR will have
to wait several years until the infrastructure of design
tools, devices, and machines matures to the point where
its potential can be fully realized, and even then it will re-

main somewhat of a moving target as technology contin-

A 4. SPLASH It computing platform,
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tion of the advantages, or lack thereof, that this enables
refative to systems that perform the same task using other
computational approaches. One of us (Hutchings) [49]
has performed the first quantitative comparison of RTR
for a range of applications. A few other researchers are
also studying RTR, including Lysaght [30], Brebner (81,
Lulk [40], Singh [9], and Schmirr [37]. We expect that
many more such studies will become available in the pub-
lished literature in the next few years. To illustrate the na-
ture and tradeoffs involved in RTR in more detail, we
present two examples of systems below.

System Example 1: DISC

The first system example is DISC (Dynamic Instruction
Set Computer), which is a rescarch project started in
1994 at the Configurable Computing laboratory at
Brigham Young University [46, 47]. In this ongoing ex-
periment, researchers at BYU are experimenting with the
following:

A Systematic approaches that ease the design and imple-
mentation of RTR applications

4 New architecture configurations that integrate con-
ventional processors and configurable-computing de-
vices such as FPGAs

A Library-based techniques that promote the reuse of
previously designed circait modules to achieve both rapid
application development and fast compilation

These three imporrant research areas were motivated
by BYU’s past experiences with RTR applications. A sys-
tematic design framework is essential for RTR applica-
tions because these applications typically consist of many
different configurations; there must be some standard
means for these configurations to communicate results
both with each other and to the outside world. Proces-
sor-FPGA interfaces are imporrant because many of the
basic housekeeping tasks thatare unwieldy for FPGAs are
much easier and efficient to implement on simple, con-
ventional processors. Finally, a library-based approach is
important because it makes it possible to zeuse past ef-
forts: high-performance, FPGA circits require substan-
tial human design effort, and a library-based approach
makes it possible to exploit these efforts across many ap-
plications while also reducing compiler complexity and
compile time.

Conceprually, DISC is a general-purpose “core” pro-
cessor augmented with configurable hardware for per-
forming application-specific tasks. Each
application-specific function is treated as a custom in-
struction that augments the standard, general-purpose in-
struction set found in convenrional programmable
processors. For example, a DISC designed for im-
age-processing applications might have a custom instruc-
tion that implements application specific circuitry for
high-speed convolution. DISC avercomes the inherent
problems of conventional application-specific hardware
with a novel approach made possible by configurable
logic: treac application-specific hardware (instructions)
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as distinct circuit modules that are stored as FPGA
configurations in off-chip memory; at run-time, load and
execute these circuit modules only as demanded by the
application. Stored off-chip, these circuit modules only
occupy valuable silicon resources while performing pse-
ful work and as soon as they are no longer necessary,
they can be “swapped out” and replaced with other ap-
plication-specific instruction modules. In addition, this
library of application-specific circuit modules can be cx
tended and individual circuit modules can be modified
and redesigned over time to suit the needs of ongoing
applications. '

DISC System Architecture and Operation .

The DISC architecrure consists of two basic sections: a
stabic core processor and a dynamic application-specific in-
struction space, which is slaved to the core processor. The
basic organization is shown in Fig, 5. The main purpose
of the core processor is control: it manages the applica-
tion-specific instruction space and is responsible for load-
ing circuit modules, initiating the execution of
application-specific instructions, and managing I/O be-
tween the instruction space and the core processor. In

mOst cases the core processor is static, ie., implemented
“with circuitry that remains structurally unchanged

throughout operation, and can be implemented with ej-
ther a microprocessor or a statically configured
FPGA—the FPGA in turn implementing either a simple
state machine or programmable processor.

The application-specific instruction space is an
undedicared array of reconfigurable logic; this is typically
implemented with reconfigurable FPGA(s). Configura-
tions thar implement application-specific circuitry are
loaded into this instruction space and execured as re-
quested by the core processor. The instruction space is ca-
pable of storing several instructions (circuit modules)
simultaneously and these instructions individually re-
spond 10 initiation signals from the core processor, The
control and I/O signals that form the interface berween

A 5. DISC system organization.
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the core and the instruction space are also shown in Fig. 5.
As shown in the figure, the core processorand instruction
Space share a common address and data bus, This particu-
lar organization requires mutually exclusive operation:
either the core processor is actively tetching instructions
or data from memory, ot the core processor is idle, wait-
ing for some application-specific instruction to complete.
However, this is not a requirement but rather a limitation
of the current implementation.

In current implementations the core processor is a
stripped-down programmable processor thar can be pro-
grammed via a modified version of the lcc compiler
[10,16]. A DISC program is then just a linear list of in-
structions that is assembled into machine code and stored
n program memory for later ferching by the processor.
The core processor fetches instructions from the program
memory in a conventional manner and then processes
them as shown in Fig. 6. Once the instruction i ferched,
it is decoded and the opcode is latched onto the opcode
pins (sce Fig. 5 for these signal connections). The instruc-
tion-space reads the opcode value and quickly searches to
see if the required circuit module is currently resident. If
the required instruction is not resident, the instruction
space requests the core to load the correct configuration,
Once the load is complete (or if the circuit module was al-
ready resident), the core initiates the exccution of the in-
struction module. The core processor then remains idle
until the custom instruction has completed execution,

Hardware Relocation and

Internal Architecture of Instruction Space

The internal architecture of the instruction space is orga-
nized to support a concept referred to as relocatable hard-
ware. This organization provides the necessary circuitry
that supports the execution of any custom instruction of
any size at any physical location within the instmction
space. The basic organization consists of several static ele-
ments: a global controller and three bundles of wires
(control, memory address, memory data) that are collec-
tively referred to as the “context,” as shown in Fig. 7(a).
The context provides a means for custom instruction
modules to communicate with external memory and per-
haps other devices, and to the global controller—inde-
pendent of the physical location they occupy while
executing. Memory address and data signals are used by
custom instructions to directly access the System memaory
as shown in Fig. 5.

Execution and control of custom instructions is coor-
dinated by the global controller via the global control sig-
nals. The opcode (supplied by the core processor) is
broadcast to all resident instruction modules via the
global control signals; each custom instruction is then re-
sponsible for decoding this signal and asserting a global
resident signal (another one of the global control signals).
It no custom-instruction module asserts the resident sig-
nal, the global controller requests a configuration load
from the core processor. Once the custom instruction is
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A 6. DISC operation,

resident, and if the execution signal is asserted, rhe
custom instruction begins execution and asserts the com-
pletion signal when finished, Supporting variable-size in-
structions is important; cusrom instructions vary greatly
in their hardware needs and allowing their size to vary as
dictated by their hardware requirements ensures efficient
use of the instruction space. In Fig. 7(b), the instruction
space is shown with two instructions resident: one gen-
eral-purpose (add) and one custom (histogram). Note
that while both instructions span the entire width of the
instruction space, they vary in size in the vertical direction
due to their hardware requirements.

Hardware relocation refers to dynamic physical reloca-
tion of circuit modules during system operation and is an
important part of the DISC system thar dramarically im-
proves efficiency. Because circuit modules are dynami-
cally loaded into the instruction space by the core
processor as dictated by the user program; it is nor possi-
ble to know a priori where a custom instruction will be
loaded during operation. Morcover, as custom instruc-
tions may be loaded, execured, removed, and reloaded
aver time, commonly used custom instructions will typi-
cally need to be loaded into different physical locations at
different times, depending upon where free space is avail-
able in the instruction space. The process for loading a
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new custom instruction is: 1) find an unused portion of the
instruction space, 2) process (relocate) the configuration
data such thatit can be placed in the unused portion, and 3)
load the relocated custom instruction into the instruction
space. If no free space exists, resident instructions are re-
placed according to a “least recently used” policy.

DISC Implementation
The system was implemented on the CLAYFUN board,
an [SA prototyping board supplied by National Semicon-
ductor. Consisting of two user-programmable CLAy
FPGAs and memory, this board was housed in a conven-
tional PC that provided disk storage for cus-
tom-instruction configurations and other
general-purpose OS functions. One user-programmable
CLAy FPGA was statically configured and implemented
the core processor; the other was dynamically configured
and implemented the instruction space. The CLAy device
implementing the instruction space was partially
configurable, thus making it possible to configure only
those FPGA locations that would be occupied by the
newly loaded custom instruction. Partial configuration
was essential for this project as it allows custom instruc-
tion modules to be selectively loaded without disturbing
the context of address, data, and control wires, global
state, and other custom instructons currently resident.
(At the time, partial configuration was supported only by
the Narional CLAy and Armel FPGAs, Xilinx has since 1n-
troduced the XC6200, another device supporting partial
configuration.) In addition, parrial configuration directly
reduces configuration time by reducing the number of
configuration bits that are loaded into the FPGA.
Because FPGA resources were cxtremely limited,
only a bare-bones processor with a single 16-bit accu-
mulator was possible. Because of the core Processor’s

limited performance, the actual process of bitstream
relocation was handled by the 486 CPU in the PG enclo-
sure; however, all of the functions that directly contrib-
uted to data processing were petformed by the core
processor. Although limited, the core Processor ‘was
completely programmable in “C” using a modified ver-
sion of lec [16] and a custom assembler developed for
this project [10]. In the assembler, application-specific
instructions are accessed just as any other native machine
instruction. In “C” code, these instructions are accessed
like inline function calls simply by prepending a special
prefix, native-, to the custom instruction identifier, The
modified “C” compiler processes these calls in a special
manner, replacing these custom function calls with na-
tive custom instructions in the generated assembly code,

A library of general-purpose and application-specific
instructions are available for application development,
The general-purpose instructions are a subset of those
found on conventional microprocessors: add, subtract,
shift, compare, etc. Custom instructions focused on im-
age-processing applications and consisted of: mean filter,
threshold, image subtract, morphological operations, ctc.
Early in the project the decision was made to implement
nearly all instructions as circuit modules that are executed
1 the instruction space. Thus, general-purpose instruc-
tions compete for space in the instruction space and get
swapped out when necessary to provide room for other
instructions, either general-purpose or applica-
tion-specific. Although this approach to general-purpose
instructions actually reduces performance for gen-
eral-purpose operations, it met the BYU research goalsat
the time.

To test the efficacy of the application-specific ap-
proach, a line-thinning (skeletonization) application was
developed that used many of the custom' im-

Global Control Citcuitry

Global Centrol Circuitry

Memory Interface

Memory Interface

4 7. DISC instruction space.
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age-processing instructions. Although high-performance
was not the focus of this early project, the laboratory pro-
totype still achieved good performance for the
line-thinning application: a speedup of nearly an order of
magnitude over a software implementation running on a
66 MHz DX-2 [48]. Note that these performance num-
bers include all configuration overhead and are for a sub-
stantially suboptimal system. The application required
active paging of both the custom and general-purpose in-
structions—many of the general-purpose instructions
were loaded more than once and to more than one loca-
tion in the instruction space. In addition to its perfor-
mance advantages, DISC also demonstrated significant
resource savings. The accumulared FPGA resource re-
quirements for all of the executed instructions would re-
quire three FPGA devices if statically configured. With
DISC, idle hardware could be immediately

reclaiimed by writing over idle circuitry e,
with new custom instructions as requested

What is less clear is the extent to which

by the core processor.

of magnitude the processing load most of the other steps
in the algorithm (though it should be norted thar the fo-
cus-of-attention step shown in Fig. 8 is also very
computationally intensive). While the precise system pa-
rameters vary with implementation, the work under way
at UCLA uses candidate image sizes of 128 by 128 and
template sizes of 32 by 32.

Figure 9 illustrates the correlation operation targeted
for FPGA implementation in more detail, Target tem-
plates are binary (e.g., 1 bit per pixel) and occur in pairs,
one member of which is called the bright remplate and
contains pixels from which a strong radar return is ex-
pected, and the other member of which is the surround
template and identifies pixels where strong radar absorp-
tion is expected. The templates tend to be sparsely popu-
lated, with only a relatively small percentage of the pixels

System Example 2: Template-Based  CONfigurable computing techniques will

Automatic Target Recognition
The second system example is from the area

become useful in more general computing

of automatic target recognition (ATR). €Nnvironments.

ATR is among the most demanding

real-time computational problems, and one

which maps particularly well to configurable compuring
platforms. ATR is the application focus of the
DARPA-sponsored UCLA Mojave project in
configurable computing, The challenge addressed by an
ATR system is conceptually simple—to analyze a digitally
represented inpur image or video sequence in order to au-
tomatically locate and identify all objects within the scene
of interest to the observer. Since there arc many types of
imaging devices and many algorithmic choices available
to a designer, there are clearly a large number of possible
ways to implement an ATR system. The Mojave project
uses ATR algorithms developed by Sandia National Labs
for the U.S. Departmenr of Defense Joint STARS air-
borne radar-imaging platform,

The processing used in ATR is illustrated in simplified
synthetic aperture radar (SAR) images consisting of 8-bit
pixels and measuring several thousand pixels on a side,
and they are generated in real time by a radar imager. Im-
ages are input to a focus-of-attention processor that iden-
tifies a set of regions of interest, each of which contains a
potential target. These regions of interest, referred to here
as candidate images, must then be correlated with a very
large number of target templates. Target tem plares are bi-
nary;e.g., each pixel is represented using one bit, The cor-
relation results arc output to a peak derector rhat
identifies the template and relative offset at which the
peak correlation value occurs. The correlation of candi-
date images with templates is an important computa-
tional bottleneck in the system, involving data rates and
compurarional requirements that exceed by several orders

SEPTEMBER 1998

set to 1. This property is important in obtaining high per-
formance in FPGA implementations. The first step of the
correlation is known as a shapesum calculation, in which
the 8-bit candidate image is correlated with the bright
template, proyiding for every pixel in the image a number
that is used for local gain control. The second step is the
actual correlation, which is performed on a binary version
of the image that is obtained via thresholding. The
shapesum value is used to select which threshold to apply
to generate the binary image,

Run-time reconfigured FPGAs offer an extremely at-
tractive solution to the ATR correlation problem. Firsr,
the operations being performed occur directly ar the bit
level and are dominated by shifts and adds, making them
easy to map into the hardware provided by the FPGA. In
addition, the sparse nature of the templates can be lever-
aged to achieve a far more efficient implementation in the
FPGA than could be realized in a general purpose
correlator. This can be illustrated using the example of the
simple template shown in Fig. 10,

In this example template, only five of the 24 pixels are
“on.” At any given relative offset berween the template
and image, the correlation outpuris the sum of the five bi-
nary pixels in the image that lie immediately above the
“on” pixels in the template. The templare can therefore be
implemented in the FPGA asa simple adder tree as shown
in Fig, 10. The image pixel values can be stored in
flip-flops and are shifted to the right by one flip flop with
each dock cycle. Though correlation of a large image with
a small mask is often understood conceptually in terms of
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