
MorphoSys: A Reconfigurable Architecture for Multimedia Applications

Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J. Kurdahi, Nader Bagherzadeh
University of California, Irvine, CA (United States),

and Eliseu M.C. Filho, Federal University of Rio de Janeiro (Brazil)

Abstract

We describe the MorphoSys reconfigurable system,
which combines a reconfigurable array of processor cells
with a RISC processor core and a high bandwidth memory
interface unit. We introduce the array architecture, its
configuration memory, inter-connection network, role of
the control processor and related components.
Architecture implementation is described in brief and the
efficacy of MorphoSys is demonstrated through simulation
of video compression (MPEG-2) and target-recognition
applications. Comparison with other implementations
illustrates that MorphoSys achieves higher performance by
up to 10X.

1. Introduction

Reconfigurable computing systems are systems that
combine reconfigurable hardware with software
programmable processors. These systems allow the user to
configure or customize some part of the hardware for
different applications. Reconfigurable computing adheres
to a hybrid approach between the extremes of ASICs
(Application-specific ICs) and general-purpose processors.
A reconfigurable system typically has wider applicability
than an ASIC and better performance than a general-
purpose processor for target applications.

Conventionally, field-programmable gate arrays
(FPGAs) have been used for reconfigurable computing.
These allow designers to manipulate gate-level devices.
However, FPGAs are slower than ASICs, have lower logic
density and are inefficient for word operations. Several
researchers have proposed other reconfigurable systems
such as PADDI [1], rDPA [2], DPGA [3], and REMARC
[4]. These are described briefly in a following section.

1.1. MorphoSys: Reconfigurable architecture

This paper describes MorphoSys, a novel architecture
for reconfigurable computing systems. This design model,

shown in Fig. 1, involves a reconfigurable SIMD
component on the same die with a general-purpose RISC
processor, and a high bandwidth memory interface. This
integrated architecture model will hopefully provide the
potential to satisfy the increasing demand for low cost
stream/frame data processing in multimedia applications.

MorphoSys targets applications with inherent
parallelism, high regularity, computation-intensive nature
and word-level granularity. Some examples of these
applications are video compression (DCT/IDCT, motion
estimation), template matching, etc. MorphoSys also
supports complex bit-level applications such as ATR
(Automatic Target Recognition).

Main Processor
(e.g. advanced RISC) Reconfigurable

Processor Array

External Memory
(e.g. SDRAM, RDRAM)

System Bus

High Bandwidth
Memory Interface

Instruction,
Data Cache

MorphoSys

Fig. 1: Integrated architectural model for
reconfigurable systems

1.2. Organization of paper

Section 2 explains some important terms relevant to
reconfigurable computing. A brief review of related
research contributions follows. Section 4 introduces the
architecture of M1, the first version of MorphoSys
reconfigurable system, and describes the reconfigurable
cell array and other components. Section 5 describes the
physical design process with area and delay estimates. We
provide performance estimates in Section 6 for a set of
applications (video compression and ATR).

Petitioner Microsoft Corporation - Ex. 1058, p. 134
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2. Important concepts

Different parameters are used to characterize the design
of a reconfigurable computing system. Some of these are:

(a) Granularity (fine or coarse): refers to the data size
for operations. Bit-level operations (gates or look-up
tables) are fine-grain but coarse-grain granularity
implies operations on word-size data, using ALUs.

(b) Depth of Programmability (single versus multiple):
This pertains to the number of configuration planes
resident in a system. Systems with multiple contexts
(each of which specifies a configuration plane) may
perform different functions without reload of
configuration data.

(c) Reconfigurability (static versus dynamic): System
reconfiguration is either static (execution is stopped)
or dynamic (parallel with execution). Single context
systems have static re-configuration. Multi-context
systems may be dynamically reconfigurable.

(d) Interface (remote versus local): A local interface
implies that the host processor and programmable
component reside on the same chip.

(e) Computation model: The computation model may
be described as either SIMD or MIMD. Some
systems may also follow the VLIW model.

3. Related research

There has been considerable research effort to develop
reconfigurable computing systems. Some of these research
prototypes are described below.
• The Splash [5], a linear array of processing elements,

is useful for linear systolic applications. DECPeRLe-1
[6] is a two-dimensional array of 16 FPGAs. Both
systems are fine-grained, with single configuration
and static reconfigurability.

• PADDI [1] has a set of concurrently executing 16-bit
(coarse-grain) functional units (EXUs). PADDI targets
real-time DSP applications (filters, convolvers, etc.)

• rDPA [2]: The reconfigurable data-path architecture
consists of an array of data-path units (DPUs). Each
DPU consists of ALU, micro-programmable control
and four registers. It is dynamically reconfigurable.

• REMARC: This [4] consists of a reconfigurable
coprocessor, with 64 programmable units. Each 16-bit
unit has a 32 entry instruction RAM, a 16-bit ALU, 16
entry data RAM, instruction register, and several other
registers. This system targets multimedia applications.

• DPGA: A fine-grain prototype system, the
Dynamically Programmable Gate Arrays (DPGA) [3]
use traditional 4-input lookup tables as the basic array
element. Array elements are grouped as sub-arrays
that have complete row and column connectivity.

4. MorphoSys: System architecture

Fig. 2 shows the organization of the MorphoSys
system. It is composed of an array of reconfigurable cells
(RC Array) with configuration data memory (Context
Memory), a control processor (Tiny RISC), a data buffer
(Frame Buffer) and a DMA controller.

4.1. System components

Reconfigurable Cell Array: The main component of
MorphoSys is the 8 x 8 RC (Reconfigurable Cell) Array.
Each RC has an ALU-multiplier, a register file and is
configured through a 32-bit context word.

Host/Control processor: The controlling component of
MorphoSys is a 32-bit processor, called Tiny RISC, based
on [7]. Tiny RISC handles serial operations, initiates data
transfers and controls operation of the RC array.

Frame Buffer: The two-set Frame Buffer enables
stream-lined data transfers between RC Array and main
memory, by overlapping of computation with data load
and store, alternately using the two sets.

Tiny_RISC
Core Processor

Frame Buffer
(2x2x64x64)

Context
Memory

2x8x
16x32

RC
Array

(8 X 8)
DMA

Controller

16
16

22

9

6
4

16

64

6464
32

10

SDRAM
Main

Memory

Instr
Data

Cache

M1 Chip

256

32

32

Fig. 2: MorphoSys (M1 chip) components

4.2. Salient features of MorphoSys

The RC Array follows SIMD model of computation.
All RCs in the same row/column share same configuration
data. In brief, important features of MorphoSys are:
• Coarse grain: MorphoSys operates on 8 / 16-bit data.
• Configuration: RC array is configured by context

words, which specify an instruction opcode for RC.
• Depth of programmability: The Context Memory can

store up to 32 planes of configuration.
• Dynamic reconfiguration: Contexts are loaded into

Context Memory without interrupting RC operation.
• Local/Host Processor: The control processor (Tiny

RISC) and RC Array are resident on the same chip.
• Fast Memory Interface: Through DMA controller.

Petitioner Microsoft Corporation - Ex. 1058, p. 135
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4.3. Tiny RISC instructions for MorphoSys

Several new instructions were introduced in the Tiny RISC
instruction set for effective control of the MorphoSys RC
Array operations. They perform the following functions:
• data transfer between main memory (SDRAM) and

Frame Buffer,
• loading of context words from main memory into

Context Memory, and
• control of execution of the RC Array.

4.4. Architecture of the Reconfigurable Cell

The reconfigurable cell (RC) array consists of an 8x8 array
of identical Reconfigurable Cells (RC). As Fig. 3 shows,
each RC comprises of an ALU-multiplier, a shift unit, and
two multiplexers for ALU inputs. It has an output register,
a feedback register, and a small register file. A context
word, loaded from Context Memory and stored in the
context register (Section 4.5), defines the ALU function,
input multiplexer control bits, result storage, and the
direction/amount of output shift. The context word can
also specify an immediate value.

1616

MUXA

XQ
R

M

ALU+MULT

O/P REGO/P REG

ALU_OP

Constant

T
C

B

MUXB

SHIFT
ALU_SFT

Register File

R0 - R3

L

FB REGFB REG

L
FB

E
I

IU D

FLAGFLAG

1616 1616

1616
1212

2828

Packing Packing
RegisterRegister

C
o
n
t
e
x
t

R
e
g
i
s
t
e
r WR_BUS, WR_Exp

R
0

R
3

R
2

R
1

C
on

te
xt

 w
or

d
 fr

om
 C

on
te

xt
 M

em
or

y

Fig. 3: Architecture of a reconfigurable cell
ALU-Multiplier: The ALU has 16-bit inputs, and the

multiplier has 16 by 12 bit inputs. Two ALU ports, Port A
and Port B are for data from input multiplexers. The third
input (12 bits) is from the constant field in the context
register (Fig. 4). The fourth port takes input from the
output register. The ALU adder is 28 bits wide to prevent
loss of precision during multiply-accumulate operation.
Besides standard functions, the ALU has several additional
functions e.g. absolute value of difference of two numbers
and a single cycle multiply-accumulate operation.

Multiplexer (Input): The two input multiplexers (Fig.
3) select one of several inputs for the ALU. Mux A (16-to-
1) provides values from the array data bus, outputs of the
four nearest neighbors and other cells in the same row and

column and the register file. Mux B (8-to-1) takes its
inputs from register file, an array data bus and three of the
nearest neighbors.

4.5. Context Memory

The Context Memory is organized into two blocks (for row
and column contexts) with each block having eight sets of
sixteen context words. The RC Array configuration plane
comprises eight context words (one from each set) from
either the row or column block. Thus the Context Memory
can store 32 configuration planes or 256 context words.

Context register: Each RC is configured through a
context word stored in a 32-bit Context Register. It is a
part of each RC, whereas the Context Memory is separate
from the RC Array. The different fields for the context
word are defined in Fig. 4. The field ALU_OP specifies
ALU function. The control bits for Mux A and Mux B are
specified in the fields MUX_A and MUX_B. Other fields
determine the registers to which the result of an operation
is written (REG #), and the direction (RS_LS) and amount
of shift (ALU_SFT) applied to output. The context
includes a 12-bit field for the constant.

2 73 03 1 2 9 - 2 8 1 5 - 1 21 8 - 1 6 1 1 - 02 2 - 1 92 6 - 2 3

W R - B u s R E G # A L U _ S F T M U X _ B C o n s t a n t

W R _ E x p R S _ L S M U X _ A A L U _ O P

Fig. 4: Definition of context word for RC
The context word also specifies whether a particular

RC writes to its row/column express lane (WR_Exp).
Depending upon the context, an RC can access the input of
any other RC in its column or row within the same
quadrant, or else select an input from its own register file.

Context broadcast: The context is broadcast in either
of two modes: row-wise or column-wise. Thus, all eight
RCs in a row (or column) execute the same context.

Context Memory organization: The Context memory
has two blocks (one for each broadcast mode), each of
which stores eight sets (since there are 8 rows/columns) of
sixteen 32-bit context words.

Selective context enabling: It is possible to enable one
specific row or column for operation in the RC Array. This
feature is primarily useful in loading data into the RC
Array, but also allows irregular operations in the RC
Array, for e.g. zigzag re-arrangement of array elements.

4.6. Interconnection network
The RC interconnection network is comprised of three

hierarchical levels.

Petitioner Microsoft Corporation - Ex. 1058, p. 136
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

RC Array mesh: The primary network in the array is a
2-D mesh that provides nearest neighbor connectivity.

Complete row/column connectivity: Within each
quadrant, each cell can access the output of any other cell
in its row and column.

Express lane connectivity: At the global level, there
are buses for routing connections between adjacent
quadrants. These buses, also called express lanes, run
across rows as well as columns. These supply data from
any one cell (out of four) in a row (column) of a quadrant
to other cells in adjacent quadrant but in same row
(column). The express lanes greatly enhance global
connectivity. Even irregular communication patterns, that
otherwise require extensive interconnections, can be
handled quite efficiently. For e.g., an eight-point butterfly
is accomplished in three cycles.

Data bus: A 128-bit data bus from Frame Buffer to RC
array is linked to column elements of the array. It provides
two eight bit operands to each of the eight column cells.
Eight cycles are required to load the entire RC array.

Context bus: The context bus transmits context data to
the Context Register in each cell in a row/column
depending upon the broadcast mode. Each context word is
32 bits wide, and there are eight rows (columns), hence the
context bus is 256 bits wide.

4.7. MorphoSys program flow

The typical operation of MorphoSys M1 system is as
follows: The Tiny RISC processor handles the general-
purpose operations itself. Specific parts of applications,
such as multimedia tasks, are mapped to the RC Array.
The Tiny RISC processor initiates the loading of the
context words (configuration data) and data from external
memory into the Context Memory through the DMA
Controller (Fig. 2).

Now, Tiny RISC issues one of several possible context
broadcast instructions to start execution of the RC Array.
While the RC Array is executing instructions, and using
data from the first set of the Frame Buffer, the Tiny RISC
initiates transfer of data for the next computation into the
second set of the Frame Buffer. When the RC Array
execution on the first data set completes, fresh data is
available in the second set. Thus the RC Array does not
have to wait for data load/store.

5. MorphoSys M1: Design implementation

In this section, we describe the physical design of major
components of M1: the reconfigurable cell, the frame
buffer, DMA controller, Tiny RISC and instr./data caches.
The target technology is 0.35 microns (four layer metal).
Target cycle time is 10 nanoseconds. The budgeted chip

area is 80 sq. mm. The chip layout will be completed by
October, and it will then be fabricated through MOSIS.

5.1. Design methodology

The design approach is two-fold. Components that offer
great potential for optimization through a regular structure
are custom designed (using Magic V.6.5), while other
components, such as controllers, are synthesized with
Synopsys behavioral synthesis tools. The resultant netlist
is converted into a layout using standard cell libraries and
Mentor Graphics tool Autocells. These layouts and custom
layouts will then be combined for floor planning and
global routing using MicroPlan and MicroRoute tools of
Mentor Graphics Corp. The final design will be verified
using Lsim simulator from Mentor Graphics.

5.2. Custom component layout

Reconfigurable Cell: It is important to optimize the
area for the ALU and multiplier, since there are 64
instances of this cell. The 28-bit ALU is designed with a
carry-skip adder. Worst case delay is around 2.5 ns. The
16x12 multiplier has a delay close to 3.5 ns. The critical
path is through the input multiplexers, multiplier, ALU,
other muxes and a logarithmic shifter and adds to approx.
9 ns (within the target of 10 ns). The total area for one RC
is close to 0.75 sq. mm.

Frame Buffer: This buffer or SRAM array has four
banks of 64words by 64 bits. A unit of four SRAM cells
was optimized for area, where each SRAM cell uses six
transistors. The unit was then instantiated to obtain the
array. Each bank has an address decoder (two-level 3 input
decoders), input and output latches (64 and 128 bits) and a
barrel shifter at the output for byte addressing. The access
times of the SRAM array are within 3 ns. The area of the
SRAM array and decoder is 0.7 sq. mm. The shifter and
latches will need an additional area of 0.15 sq. mm.

Tiny RISC: This is implemented as a 32-bit
(instruction and datapath) design, with the custom design
of instruction cache (2KB), data cache (1KB), register file
(16 registers) and ALU. Access times for the caches are 5
ns, while register file access time is 3 ns.

5.3. Behavioral synthesis for controllers

DMA controller: This is represented as an FSM with a
large number of states, and is suited for synthesis. The
synthesis constraints are time cycle of 10 ns and minimum
area. Estimated critical path delay is 7.5 ns. The netlist is
read into Mentor Graphics tool Autocells, after formatting,
and converted into a layout using standard cell libraries.

Tiny RISC controller: This will be synthesized using
Synopsys tools and converted into layout using Autocells.

Petitioner Microsoft Corporation - Ex. 1058, p. 137
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5.4. Design integration and verification

The custom layouts and synthesized layouts are input into
MicroPlan for final placement and output pad connections.
The standard cell layouts may be changed for better area
utilization, but custom blocks are not affected. Once the
floor-plan is accomplished, the design is input to
Microroute for routing of global buses and Power and
Ground buses from the pads to each block. The composite
design is then complete and verified for correctness using
Lsim, and through back-annotated synthesis re-runs.

Table 1: Area and delay estimates for M1
components

Component
Name

Delay
(ns)

Area
(sq. mm)

Reconfigurable Cell 9.0 0.8
RC Array -- 55
Tiny RISC and caches 9 (max) 8.5
Frame Buffer 4.0 3.5
Context Memory 4.0 4.0
DMA Controller 7.5 7.5

6. Mapping applications to M1

In this section, we discuss the mapping of video
compression and automatic target recognition (ATR) to the
MorphoSys M1 architecture. MPEG standards for video
compression are important for realization of digital video
services, such as video conferencing, video-on-demand,
HDTV and digital TV. The major functions required of a
typical MPEG encoder are:
• Motion Estimation and Motion Compensation:
• DCT and Quantization:
• Inverse Quantization and Inverse DCT

6.1. Motion Estimation for MPEG

Motion estimation helps to identify redundancy between
frames. The most popular technique for motion estimation
is the block-matching algorithm [9]. Among the different
block-matching methods, full search block matching
(FSBM) involves the maximum computations but gives an
optimal solution with low control overhead.

Computation cost: For a reference block size of 16x16,
it takes 36 clock cycles to finish the matching of three
candidate blocks. VHDL simulation results show that 5304
cycles are required to finish the matching of the whole
search area. If the image size is 352x288 pixels at 30
frames per second (MPEG-2 main profile, low level),
processing of an entire image frame would take 2.1 x 106

cycles. At clock rate of 100 MHz for MorphoSys, the
computation time is ≈ 21.0 ms.

Performance analysis: MorphoSys M1 performance is
compared with three ASIC architectures implemented in
[9], [10], [11] for matching one 8x8 reference block
against its search area of 8 pixels displacement.

581 631

1159 1020

0

300

600

900

1200

ASIC [9] ASIC [10] ASIC [11] MorphoSys
M1 (64
RCs)

Cycles

Fig. 5: Performance comparison for Motion
Estimation

6.2. Discrete cosine transform (DCT) for MPEG

The forward and inverse DCT are used in MPEG encoders
and decoders. In the following analysis, we consider an
algorithm for fast 8-point 1-D DCT [13]. The eight row
(column) DCTs may be computed in parallel. For row
(column) mode of operation, the configuration context is
broadcast along columns (rows). The coefficients needed
for the computation are provided as constants in context
words. When 1-D DCT along rows (columns) is complete,
the 1-D DCT along columns (rows) are computed in a
similar manner.

21 54

201
240

320

0

100

200

300

400

M
or

ph
oS

ys
M

1

R
EM

AR
C

V8
30

R
/A

V

Pe
nt

iu
m

M
M

X

TM
S3

20
C

80
M

VP

Cycles

Fig. 6: Performance comparison for DCT (cycles)
Performance analysis: MorphoSys requires 21 cycles

to complete 2-D DCT (or IDCT) on 8x8 block of pixel
data. This is in contrast to 240 cycles required by Pentium
MMX TM [12]. The relative performance figures for
MorphoSys and other implementations are given in Fig 6.

Petitioner Microsoft Corporation - Ex. 1058, p. 138
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

