
61

Application of Pfortran and Co-Array Fortran
in the parallelization of the GROMOS96
molecular dynamics module

Piotr Bałaa, Terry Clarkb and L. Ridgway Scottb
aFaculty of Mathematics and Computer Science, N.
Copernicus University, Chopina 12/18, 87-100 Toruń,
Poland
Tel.: +48 56 611 3468; Fax: +48 56 622 8979;
E-mail: bala@mat.uni.torun.pl
bDepartment of Computer Science, University of
Chicago and Computation Institute, 1100 E. 58th
Street, Chicago, IL 60637, USA
E-mail: {ridg,twclark}@cs.uchicago.edu

After at least a decade of parallel tool development, paral-
lelization of scientific applications remains a significant un-
dertaking. Typically parallelization is a specialized activity
supported only partially by the programming tool set, with
the programmer involved with parallel issues in addition to
sequential ones. The details of concern range from algo-
rithm design down to low-level data movement details. The
aim of parallel programming tools is to automate the latter
without sacrificing performance and portability, allowing the
programmer to focus on algorithm specification and develop-
ment. We present our use of two similar parallelization tools,
Pfortran and Cray’s Co-Array Fortran, in the parallelization
of the GROMOS96 molecular dynamics module. Our paral-
lelization started from the GROMOS96 distribution’s shared-
memory implementation of the replicated algorithm, but used
little of that existing parallel structure. Consequently, our par-
allelization was close to starting with the sequential version.
We found the intuitive extensions to Pfortran and Co-Array
Fortran helpful in the rapid parallelization of the project. We
present performance figures for both the Pfortran and Co-
Array Fortran parallelizations showing linear speedup within
the range expected by these parallelization methods.

1. Introduction

Molecular dynamics (MD) is widely used to inves-
tigate function of biomolecular systems with large size
and long time scales. Biomolecular complexes con-

sisting of components such as proteins, lipids, DNA
and RNA, and solvent are typically large in simulation
terms. The explosive growth in interest in investigat-
ing inherently complex biomolecular systems such as
solvated protein complexes leads to molecular systems
with tens to hundreds of thousands of atoms, as for
example in [39]. Parallel algorithms are critical to the
application and progress of MD in order to 1) improve
the accuracy of simulation models, 2) extend the length
of simulations, and 3) simulate large, complex systems.
Numerous MD parallelizations have been described in
the literature, ranging from the easy to implement repli-
cated algorithm [6,20] to the more difficult to imple-
ment spatial decomposition [9,30], which is generally
more scalable. The force decomposition algorithm is
an intermediate approach in that it is generally more
efficient than the replicated algorithm and easier to im-
plement than the spatial decomposition [27].

The ease of implementation of an MD algorithm is
important given the need for multiple algorithms to ad-
dress the variability encountered in mapping molecu-
lar dynamics algorithms onto parallel architectures [8,
9]. In addition, experimenting with MD algorithms
on novel parallel architectures is facilitated by tools
aiding the parallelization process. Various tools have
been applied to molecular dynamics simulations with
varying success. Data parallel approaches have been
found to be problematic due to the irregularity inherent
to molecular dynamics [38], which is compounded by
unstructured legacy applications [7]. Low-level tools
such as MPI have been successful for performance [27],
but do compromise readability and consequently main-
tenance after the development period. Many good tools
have been developed for problems structured similar-
ly to molecular dynamics, but often target regularly
structured applications, for example [12].

There remains a long way to go in expediting the
development of robust molecular dynamics algorithms.
At the moment, there are tools which we have found

Scientific Programming 9 (2001) 61–68
ISSN 1058-9244 / $8.00 © 2001, IOS Press. All rights reserved

Petitioner Microsoft Corporation - Ex. 1057, p. 61
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

62 P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module

to fill somewhat the void. We used the tool Pfortran
to implement the replicated algorithm for the GRO-
MOS96 MD module [36], followed by a parallelization
using Co-Array Fortran. Our Pfortran parallelization
was completed after an aggregate of about 60 hours for
a team of two over a period of one week. The effort
started with an SGI parallelization based on SGI direc-
tives. The parallelization is machine independent and
performs robustly.

We briefly review the MD model; the interested read-
er is referred to [1,21,18] for detailed treatments. The
MD method provides a numerical solution of classical
(Newtonian) equations of motion

mi
d2ri
dt2

= Fi(r1, r2, . . . , rN) (1)

where the force Fi(r1, r2, . . . , rN) acting on particle i
is defined by the interaction potentialUi(r1, r2, . . . , rN).
The general functional form of the potential is

U(r1, r2, . . . , rN)

=
∑

bonds

Kb(rij − r0ij)
2 +

∑
angles

Ka(ψij − ψ0
ij)

2

+
∑

torsions

Kt

(
1 + Ctcos(mtφt − φ0

t)
)

(2)

+
∑
i<j

(
Aij

r6ij
+
Bij

r12ij

)
+

∑
i<j

(
qiqj
rij

)

+Uspecial

where rij is the distance between atoms i and j, and
other constants define force field parameters for dif-
ferent chemical atom types. Well known algorithms
such as leap-frog [34] and Verlet [33,22] are used to
calculate new positions and velocities.

2. Related work

The parallelization of molecular dynamics has been
explored widely in the literature [4,6,8,9,11,15,19,23,
27,29–31]. Fortunately, molecular dynamics simula-
tions of biomolecular systems are well suited for par-
allel computation since the forces acting on each atom
can be calculated independently with a small amount
of boundary information consisting of a neighborhood
of atomic coordinates and in some cases, velocities.
The leading computational component of the MD cal-
culation involves the nonbonded forces, a calculation
generally quadratic in the number of atoms that can be

reduced to close to a linear dependence with the cutoff
radius approximation coupled with strategic use of a
pairlist [16,37]. Other algorithms used to reduce the
cost of evaluation of nonbonded interactions include
reaction field methods [32] and multipole expansions
of coulombic interactions [1,5,10,28].

The shortcomings of parallel paradigm support for
molecular dynamics stems from the difficulties posed
by the irregularity of the calculation [12,14,40], and a
general shortage of integrated tools for parallelization.
Popular parallelization libraries such as PVM [13] and
MPI [24], while suitable for irregular applications, of-
fer little abstraction, requiring the programmer to man-
age low-level details in the communication mechanism
such as message identifiers. Higher-level methods such
as HPF [17] encounter difficulties in dealing with ir-
regular problems and legacy code [7].

3. Pfortran and Co-Array Fortran

A Fortran implementation of the Planguages, the
Pfortran compiler extends Fortran with the Planguage
operators which are designed for specifying off-process
access [2,3]. In a sequential program the assignment
statement specifies a move of a value at the memory
location represented by j to the memory location rep-
resented by i. Planguages allow the same type of as-
signment, however, the memory need not be local, as
in the following example in a two-process system

i@0 = j@1

stating the intention to move the value at the memory
location represented by j at process 1 to the memory
location represented by i at process 0.

With the aid of the @ operator one can efficiently
specify broadcast of the value at memory location a
for logical process 0 to the memory location a on all
processes:

a = a@0

The other Pfortran operator consists of a pair of curly
braces with a leading function, f{}. This operator
represents in one fell swoop the common case of a
reduction operation where the function f is applied to
data across all processes. For example, to sum an array
distributed across nProc processes, with one element
per process, one can write

sum = +{a}
Although a is a scalar at each process, it is logically

an array across nProc processes. With @ and {}, a

Petitioner Microsoft Corporation - Ex. 1057, p. 62
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module 63

variety of operations involving off-process data can be
concisely formulated.

In the Planguage model, processes interact through
the same statement. Programmers have access to the
local process identifier called myProc. With myProc,
the programmer distributes data and computational
workload. The Planguage translators transform user-
supplied expressions into algorithms with generic calls
to a system-dependent library using MPI, PVM, shared
memory libraries or other system-specific libraries.

Cray Co-Array Fortran is the other parallelization
tool considered in this study [25,26]. Co-Array For-
tran introduces an additional array dimension for arrays
distributed across processes. Co-Array Fortran gen-
erally requires more changes in the legacy code than
does Pfortran, however, Co-Array Fortran provides au-
tomatic distribution of user-defined arrays. Co-Array
Fortran does not supply intrinsic reduction-operation
syntax; these algorithms must be built on point-to-point
exchanges by the programmer.

4. Parallelization strategy

We noted in the introduction that the molecular dy-
namics parallelization methods of domain decomposi-
tion and the replicated algorithm are at the extremes in
implementation difficulty, domain decomposition be-
ing the more difficult. In terms of minimizing com-
munication, domain decomposition can be shown to
be optimal for various communication topologies and
switches. With the replicated model, on the other hand,
the accumulation of forces is a global operation. Both
algorithms scale with respect to increasing problem size
while maintaining a suitable workload per process [8,
9], however, the replicated algorithm reaches a scala-
bility limit as a function of the number of processes
as a result of the global force accumulation [8]. The
replicated algorithm, which was implemented in this
study, performs more robustly than the spatial decom-
position for a range of processor and problem configu-
rations [9], making it the preferred method under some
common conditions. In addition, the replicated algo-
rithm is straightforward to implement.

4.1. Pairlist parallelization

Our parallelization of the replicated algorithm mod-
ified three parts of the program: 1) force calculation,
2) pairlist calculation, and 3) I/O. We consider the
principal components of the overall strategy shown in

Fig. 1. Parallelization Schematic. One cycle through the flowchart
constitutes a single timestep. The parallelized nonbonded pairlist
and force calculations are shown as branched regions of the flowchart
indicating the process-dependent control flow through that part of
the program. The single-line edges between components represent
portions of the program executed redundantly at each process. The
pairlist is calculated at intervals (roughly once every 10 timesteps);
inter-process data movement (black circle) follows to accumulate
energies and to exchange pairlist data used to retain an indexing
scheme compatible with the sequential code. The force calculation is
performed in parallel and at every timestep; immediately following,
the forces are accumulated with a reduction operation (second black
circle) as described in the text. The remainder of the timestep is
performed redundantly by all processes, with each process holding
the same system state.

Fig. 1. In the pairlist calculation all atom pairs are
scanned, and for each atom a list of atoms located with-
in the cut-off radius is tabulated:

do i = 1, n
jl = 0
do j = i+1, n
if (| X(i) - X(j) | < R) then
jl = jl + 1
JNBL(jl,i) = j

endif
enddo
JNB(i) = jl

enddo

GROMOS96 interactions models non-bonded inter-
actions collectively between charge groups, rather than
atoms. This modification does not change the algorithm

Petitioner Microsoft Corporation - Ex. 1057, p. 63
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

64 P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module

presented above, however its practical implementation
is more complicated (see [7] for details).

Based on the pair list, the forces can be evaluated
efficiently as given in this pseudo code:

do i = 1, n
F(i) = 0
do j = start(i), end(i)
tmpforce = force (X(i), X(JNB(j)))
F(i) = F(i) + tmpforce
F(JNB(j)) = F(JNB(j)) - tmpforce

enddo
enddo

Both the force and pairlist portions parallelization are
based on a modulo strategy implementing a cyclic dis-
tribution of pairs for the nonbonded-force routines [4],
where in pseudo code

if (MOD(chargeGroup-1,nProc).EQ.
myProc)

perform calculations
endif.

Our parallelization began with the GROMOS96 dis-
tribution’s SGI-specific shared-memory code where
each process calculates neighbors and forces for the
portion of the pairlist assigned to it by the cyclic dis-
tribution. In a distributed memory implementation is a
good idea to distribute (rather than replicate) the pairlist
array since it is the largest data structure in the pro-
gram. Note that the cyclic distribution approximately,
but effectively, distributes the load in the calculation.

4.2. Force calculation parallelization

At the end of the force-calculation loop the replicated
algorithm leaves processes with incomplete nonbonded
forces, making it necessary to accumulate the values
with a global summation. This step requires significant
communication and becomes the barrier to scalability
with the replicated algorithm. However, the algorithm
is effective over a wide range of process and problem
configurations where the computation costs dominates
the communication cost.

The partial results calculated at each process are
stored in a local copy of the force array (F in Pfortran
pseudo code and F dist where Co-Array Fortran is
used). Upon completion of the force calculation in
each timestep, the partial forces are summed into the
the force array at each process.

The global accumulation of the force array is ex-
pressed concisely by the Pfortran reduction operator
as

F(1:natoms*3) = +{F(1:natoms*3)}.
The notation specifies that the summation operator

be applied to each instance of F in the process group
with the mathematical meaning

Fi = F
(0)
i + F

(1)
i + · · · + F

(P−1)
i (3)

for 1 ≤ i ≤ natoms ∗ 3 and P processes.
Without reduction operators, the Co-Array Fortran

implementation of the force accumulation can be per-
formed through explicit point-to-point exchanges as

F(1:natoms) = 0.0
call sync images()
do iproc = 0, nProc-1
F(1:natoms*3) = F(1:natoms*3) +
F dist(1:natoms*3)[iproc]

enddo.

The co-array F dist is distributed across images,
the Co-Array Fortran equivalent to processes, with the
image specified by the index within the square brackets.
The array F is a usual sequential array, local to each
process and therefore considered replicated. So, in the
code segment above,each process accesses the co-array
portion of each other process to perform the sum in
Eq. 3. sync images is a familiar shared–memory
construct required to insure the one-sided accesses of
non-local memory are consistent with the point of ac-
cess in the program. In the Pfortran implementation,
the consistency determination is left to the implemen-
tation of the compiler. In the current Pfortran, synchro-
nization is achieved through message buffering.

The force calculation for covalent bonds, angles, di-
hedrals and torsions may be performed independently
and in parallel for each component. In the present im-
plementation this part of the program was not paral-
lelized due to its meager contribution to the total exe-
cution time.

4.3. I/O

A typical I/O strategy for SPMD codes is to use a
designated process to open and read data, then to com-
municate the data obtained from files to all other pro-
cesses over a network. Similarly, non-replicated data is
sent to, and then output from, a designated process. In
that way, sequential semantics are retained for file I/O.
In the Pfortran model, I/O from the sequential program
must be modified to retain the sequential semantics.
With the Cray Co-Array Fortran, however, the compil-
er allows for synchronous file operations; that is, the

Petitioner Microsoft Corporation - Ex. 1057, p. 64
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

P. Bała et al. / Application of Pfortran and Co-Array Fortran in the parallelization of the GROMOS96 molecular dynamics module 65

disk operations are performed by all nodes and data is
read by all images. Thus with Co-Array Fortran, I/O
modifications are not required in general.

A typical read operation is written using Pfortran as
follows

if (myProc.eq.0) then
read(unit,*) temperature

endif
temperature = temperature@0

with the designated process broadcasting the value
read. For the typical write operation, the designated
process outputs the values. In the following example,
partial energy terms are summed to the total energy
for the system, and output by the designated process:

energy = +{energy}
if (myProc.eq.0) then
write(unit,*) energy

endif

More complicated “gathers” of data to the designated
process may be required, however for the replicated
algorithm, the resulting replication of state simplifies
this step. Performed manually, the I/O modifications
were the most tedious aspect of our replicated algorithm
implementation using Pfortran.

4.4. Parallelization details

GROMOS96 is written in FORTRAN77 for which
Co-Array Fortran and Pfortran are supersets. The Pfor-
tran implementation can run on systems where Pfortran
is ported, independent of the underlying communica-
tion paradigm; at present, MPI, PVM and a parallel
simulator are targeted by Pfortran.1 A port to a new
communication library requires only changes in the
Pfortran communication library. The Co-Array Fortran
version is dependent on Cray systems, thus limiting the
portability.

The roughly 40,000 lines of GROMOS molecular
dynamics code required the introduction of 65 declara-
tions of co-arrays, about 300 lines containing co-array
syntax, and almost the same number of calls to the Co-
Array Fortran image-synchronization procedure. With
Pfortran, various reduction operations were required
33 times, with another 290 off-process data-access op-
erations. In both the Co-Array Fortran and Pfortran
parallelizations, most of modifications were associat-

1Other Pfortran ports exist, but for machines that are no longer
marketed.

ed with the I/O subroutines, a feature of the replicated
algorithm and I/O in general. The source code mod-
ifications to the code were reduced with the abstrac-
tions provided by Co-Array Fortran and Pfortran, com-
pared to an implementation using standard communi-
cation libraries such as MPI or PVM. Co-Array Fortran
and especially Pfortran requires just one additional line
for each point-to-point communication compared to at
least several lines of code using MPI or PVM libraries.
Moreover, the co-array syntax and Pfortran operators
provide an intuitive notation aiding the reasoning about
the program in a way not dissimilar to the “+” operator
in sequential languages.

5. Program performance

The performance of the parallelized GROMOS MD
codes was measured using HIV-1 protease in water.
The total system of 18,700 atoms consists of 1,970 pro-
tein atoms, 14 ions and 5,572 water molecules. Peri-
odic boundary conditions were used and a nonbonded-
interaction cut-off radius of 8 Å. The principal features
of the three multiprocessor systems used in this study
are summarized in Table 1.

We found close to linear speedup for the systems
tested (Fig. 2). On the Cray T3E the program scales
up to 32 processors (Fig. 3). With more processors we
expect the communication costs to dominate (Figs 2
and 3) for the HIV-1 system and parameters. Note that
the one-time cost of data inputting was not removed
from the total time. In practice this cost will be amor-
tized by runs longer than our short, 100-step run with
the I/O costs effectively going to zero and improving
prospects for scalability.

The communication costs are dominated by the re-
duction of the force array during each timestep. This
cost depends on the algorithm and the underlying
communication layer. From Fig. 4, as expected, the
O(N+logP) algorithm underlying Pfortran reductions
outperforms the Co-Array Fortran reduction algorithm
we implemented in this study, a collection of point-to-
point exchanges (see Fig. 3).

6. Concluding remarks

We completed an adaptation of the replicated algo-
rithm implemented in the GROMOS96 MD module (as
an SGI-specific implementation for shared-memory) to
a portable distributed-memory version in about 60 pro-

Petitioner Microsoft Corporation - Ex. 1057, p. 65
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

