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We performed a systematic analysis of gene upstream regions in the yeast genome for occurrences of regular
expression-type patterns with the goal of identifying potential regulatory elements. To achieve this goal, we
have developed a new sequence pattern discovery algorithm that searches exhaustively for a priori unknown
regular expression-type patterns that are over-represented in a given set of sequences. We applied the algorithm
in two cases, (1) discovery of patterns in the complete set of >6000 sequences taken upstream of the putative
yeast genes and (2) discovery of patterns in the regions upstream of the genes with similar expression profiles.
In the first case, we looked for patterns that occur more frequently in the gene upstream regions than in the
genome overall. In the second case, first we clustered the upstream regions of all the genes by similarity of their
expression profiles on the basis of publicly available gene expression data and then looked for sequence patterns
that are over-represented in each cluster. In both cases we considered each pattern that occurred at least in
some minimum number of sequences, and rated them on the basis of their over-representation. Among the
highest rating patterns, most have matches to substrings in known yeast transcription factor-binding sites.
Moreover, several of them are known to be relevant to the expression of the genes from the respective clusters.
Experiments on simulated data show that the majority of the discovered patterns are not expected to occur by
chance.

Completely sequenced genomes, together with the
emerging DNA microarray technologies enabling
the measurement of the gene expression levels in
cell cultures (Schena et al. 1995; for a survey, see
Ramsay 1998), are opening new possibilities for
studying gene regulation. The sequencing of the
first eukaryotic genome (the yeast Saccharomyces cer-
evisiae) was completed in 1996 (Goffeau et al. 1996;
Mewes et al. 1997). Data about the expression levels
of almost all of the ∼6000 yeast genes have been
obtained (DeRisi et al. 1997; Velculescu et al. 1997;
Wodicka et al. 1997) during 1997. In particular, De-
Risi et al. (1997) measured the relative expression
levels of the yeast genes at seven consecutive time
points (in 2-hr intervals) during a shift from anaero-
bic to aerobic metabolism (diauxic shift). They
showed that some of the genes that are known to be
involved in metabolic pathways related to the di-
auxic shift underwent a very significant change in
their expression level during the shift. By treating
the expression measurements as a time series, it is

possible to cluster genes according to similarities in
their expression profiles. It may be hypothesized
that at least some of the genes in a cluster are regu-
lated by similar mechanisms.

The transcription regulation mechanisms in eu-
karyotic genomes are not well understood. Evi-
dently, however, an essential role is played by tran-
scription factors, which can bind to particular DNA
sequences, called transcription factor-binding sites,
believed to be about 5–25 bp long. In yeast, these
sites are usually within several hundred base pairs
upstream of the respective ORFs (Mellor 1993).

Regular expression type patterns, as well as
nucleotide distribution matrices, have both been
used for describing transcription factor-binding
sites, (e.g., see Bucher 1990; Ghosh 1990; Chen et al.
1995; Wingender et al. 1996). Inference of such de-
scriptions from the sequences that are assumed to
contain a site for a particular transcription factor is
a difficult problem as the consensus of the different
binding sites of the same transcription factor is of-
ten rather weak. Algorithms have been proposed for
inferring such descriptions from sets of relatively
small number of sequences (about 20) in which all
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or almost all of the sequences are known to contain
the site for the respective transcription factor (e.g.,
see Stormo and Hartzell 1989; Wolfertstetter et al.
1996; van Helden et al. 1998). More recently, van
Helden et al. (1998) and Yada et al. (1998) have
proposed methods for the discovery of putative
transcription factor-binding sites from larger data
sets. Yada et al. (1998) applied their method to ana-
lyze about 400 human promotor sequences.

Apparently, an even more difficult problem is
identifying potential binding sites or other regula-
tory elements from sets of sequences only suspected
to contain such elements. In this report, we con-
sider the case when only a small portion of the se-
quences in the given set may actually contain a
common regulatory element, and the total number
of sequences may be up to thousands. In this set-
ting, it may not be possible to infer precise binding
site descriptions; still, if the number of sequences
containing a common regulatory element is larger
than would be expected by chance, it may be pos-
sible to obtain hints about sequence properties of
such an element and in which particular sequences
it may be present.

An obvious difficulty in attacking this problem
is the computational complexity of the algorithmic
problem of discovering interesting sequence pat-
terns in a large collection of sequences only some of
which may contain a common pattern. Ultimately
the results of such discoveries should be taken as
predictions that must be verified by independent,
that is, wet biology, means. Still, some validation
can be obtained by comparing the discovered site
descriptions to the transcription factor database en-
tries, or by statistical means by comparing the dis-
tribution of the discovered patterns to the distribu-
tion in simulated data.

Pattern discovery methods basically fall into
two groups; sequence-driven and pattern-driven
methods (for a survey, see Brazma et al. 1998a,b).
Algorithms in the first group normally work by
combining the results of pairwise sequence com-
parisons to form patterns that match the subsets of
the sequences. These algorithms are too slow to find
patterns that occur in arbitrarily sized subsets of
thousands of sequences. Pattern-driven algorithms
work by enumerating or searching a predefined pat-
tern class to find patterns and their occurrence fre-
quencies. In these methods, one needs a very fast
method for locating all matches of each pattern
from the search space. Special data structures and
pattern occurrence lists have been used for this pur-
pose, but the methods have been limited to the
analysis of smaller data sets.

We have developed a new, more powerful, pat-
tern discovery algorithm that is able to discover
various subclasses of regular expression type pat-
terns of unlimited length common to as few as ten
sequences from thousands. We used this algorithm
for predicting regulatory elements from gene up-
stream regions in the yeast S. cerevisiae.

We considered two cases. First, we looked for
patterns that occur more frequently in the gene up-
stream regions than in randomly chosen regions in
the yeast genome. For each pattern present in at
least 10 sequences (from >12,000), we calculated a
score equal to the ratio of the number of upstream
regions that contain the pattern divided by the
number of random regions (of the same length and
number) that contain the pattern, and rated the pat-
terns according to this ratio.

In the second case, we used information from
the yeast genome expression data (DeRisi et al.
1997) to cluster the genes according to their expres-
sion profiles. After clustering the upstream regions
(treating the expression measurements as time se-
ries) we selected characteristic clusters according to
some rigorous criteria. We hypothesized that some
of the genes in a cluster may contain binding sites
for the same transcription factors or other common
regulatory elements. We used our algorithm to look
for patterns that are over-represented in each cluster
as compared with other upstream regions.

We systematically compared the high-scoring
patterns that we discovered to the transcription fac-
tor-binding site descriptions for the yeast in TRANS-
FAC database (Wingender et al. 1996). We found
that most of the discovered patterns (both from the
total set of upstream regions and from the clusters)
have matches to substrings of genome regions that
contain transcription factor-binding sites. We also
compared the distribution of patterns present in up-
stream regions to the distribution of the patterns
that can be discovered in random regions of the
genome and showed that the distributions are
rather different. The comparison with the TRANS-
FAC database as well as the overall statistics of the
discovered patterns suggest that many of the discov-
ered patterns can be important for the expression
profile of the particular clusters of genes or for the
transcription or translation initiation in general.

RESULTS
First, we describe the pattern discovery in the com-
plete set of yeast gene upstream regions, then the
clustering of the yeast gene expression data, and
finally, the results obtained by pattern discovery
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from within the subsets of upstream regions of
genes sharing similar expression profiles.

We considered three different types of patterns:
(P1) substring patterns (i.e., words in the alphabet A,
T, G, C); (P2) substring patterns with wild cards (of
fixed length); and (P3) patterns with character
groups [such patterns can be represented as words
over IUPAC code (Corhish-Bowden 1984) charac-
ters; here we will use a more explicit notation].

We denote wild-card positions by a dot in the
pattern (e.g., TA.A), and the group positions by en-
listing all possible characters in square brackets (e.g.,
T[AT]A). A wild-card position is group position
[ATCG], that is, all characters are allowed. For in-
stance, pattern A[TG].Cmatches all strings that con-
tain a substring beginning with A, followed by ei-
ther T or G, followed by any character, followed by
C. In practice, for reasons of efficiency, we restrict
ourselves to various subclasses of these pattern
classes (e.g., limiting the number of possible wild
cards or group symbols). The implementation of the
algorithm, results, data, and additional images are
available on the worldwide web at http://
www.cs.Helsinki.FI/∼vilo/Yeast/.

Discovering Patterns from the Total Set
of Upstream Regions
We extracted upstream regions relative to all ORFs,
as annotated in the MIPS Yeast genome database
(Mewes et al. 1997). Concretely, we extracted seven
sets of upstream regions of length 100 from the po-
sitions 1100 to 0, 1150 to 150, 1200 to 1100,
1250 to 1150, 1300 to 1200, 1350 to 1250, and
1400 to 1300, a set of regions of length 300 from
positions 1300 to 0, and a set of regions of length
600 from positions 1600 to 0 (all positions are rela-
tive to the start codon of the ORF; see Methods).
Also we extracted two sets of sequences of the same
number and length from randomly selected loca-
tions of the same chromosome. These sets of ran-
dom regions were used as random samples of the
yeast genome sequences (the nucleotide and di-
nucleotide distribution in the random regions re-
flected that in the genome in general) (1) to com-
pare the upstream regions to random regions for
identifying patterns that are more frequent in up-
stream regions than in the genome in general and
(2) to compare the two random sets against each
other for testing whether the pattern occurrence sta-
tistics resulting from the comparison of upstream
and random regions can be explained by chance.

We analyzed these data sets for occurrences of

patterns. We presented each pattern that occurred
at least 10 times in upstream or random regions as a
dot in a two-dimensional plot (see Fig. 1, left col-
umn). The vertical axis shows the number of up-
stream regions, and the horizontal axis the number
of random regions, where the pattern is present.

Figure 1 The distribution of all patterns (of unre-
stricted length) with at most one wild-card symbol in
the regions 1250 to 1150 (upstream from the ORFs)
and randomly chosen genomic regions of length 100
bp. Dots in graphs in the left correspond to patterns
that occur in x sequences from the random regions
(along horizontal axis) and y sequences from the up-
stream regions (vertical axis). In graphs on the right,
the upstream regions are replaced by another set of
random regions; therefore, these plots show the ex-
pected statistics if the regions are chosen at random.
(Top row) All patterns with at least 10 occurrences.
(Second row) Subset of top row with all patterns con-
taining at least two characters C or G and not contain-
ing any of the substrings AAAA, TTTT, ATAT, or TATA.
(Bottom two rows) Same plots as in the first two rows,
but only including patterns with at most 200 occur-
rences in upstream or random regions (i.e., zoomed to
the lower left corner).
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Hence a dot in plot location (x; y) indicates that
there is a pattern that occurs in x random regions
and y upstream regions. The patterns deviating from
the diagonal, and particularly, being above the di-
agonal, are the ones that can distinguish the up-
stream regions from the random regions (and,
therefore, are likely to distinguish the upstream re-
gions from the genome in general), in contrast to
the patterns that fall close to the diagonal and thus
occur with the same frequency in upstream and ran-
dom regions. The dots farthest above the diagonal
correspond to the patterns that are potential candi-
dates for regulatory elements. For each pattern we
calculated a score as defined by equation (2) in
Methods, which is essentially the number of occur-
rences in the upstream regions divided by the sum
of the number of occurrences in the random regions
and a correcting constant.

A control experiment (right column in Fig. 1)
was done to estimate whether the difference in pat-
tern frequencies observed for upstream versus ran-
dom sequence segments could be explained by
chance. In the control experiments, we compared
two sets of random regions. The pattern occurrence
statistics obtained when comparing the upstream
regions to the random regions is rather different
from the statistics obtained when comparing two
sets of random regions. We also tested that this con-
siderable difference can be explained neither by
higher AT content in the upstream regions, nor by
poly(A), poly(T), or poly(AT) patterns. To achieve
this goal, we plotted the patterns containing at least
two characters C or G and not containing any of the
substrings AAAA, TTTT, ATAT, or TATA. The differ-
ence between the plots remained essentially as
strong (see Fig. 1). Therefore, we conclude that the
distribution of patterns in the upstream regions dif-
fers from the distribution in regions. In particular,
there are some specific patterns that occur consid-
erably more often in upstream regions than in ran-
dom regions.

The best distinction (as judged by visual inspec-
tion) between upstream and random regions by sub-
string patterns was achieved for upstream regions of
length 100 when counting matches only on the
gene’s strand. [The use of only one strand can be
justified because of the very distinct distribution of
different bases in a region of 300 bp upstream from
the start of the gene (see Fig. 3, below, in Methods).]
Similar differences were observed for all considered
lengths and region relative positions. We also ex-
perimented with the three sets of sequences of
length 600 and 300 bp, analyzing substring patterns
on either strand; and the sequences of length 100,

analyzing the patterns that contain up to one wild
card. Some results for patterns with at most one
wild-card symbol from regions of length 100 bp at
upstream positions 1250 to 1150 are shown in Fig-
ure 1.

Many of the top-scoring patterns, particularly,
for the region 1250 to 1150, are effectively poly(T)
sequences. Still, as mentioned above, these trivial
poly(T) patterns cannot explain the differences in
the pattern occurrence statistics compared with ran-
dom genomic regions; therefore, overall, the pat-
terns not containing poly(T) sequences are signifi-
cant. We removed from the list of discovered pat-
terns the ones that contain substrings TTTT or
AAAA (and additionally the patterns ending in the
wild-card—we call the remaining patterns non-
trivial) and the list of the 20 remaining highest scor-
ing patterns are given in Table 1 (the numbering of
the patterns is given for the total list of patterns
including the trivial ones).

We compared the groups of highest scoring
nontrivial patterns from each of the seven regions
of length 100 bp of various distances with the re-
spective ORFs. We used the program Pratt (Jonassen
1997) to try to find patterns that would be a con-
sensus for a substantial number of patterns for each
group. More concretely, we took the 20 highest
scoring patterns and used Pratt to discover patterns
matching at least 6 patterns. It turned out that only
for regions 1150 to 150, the highest scoring pat-
tern groups have a relatively good consensus pat-
tern GATG.G.T, the region 1200 to 1100 has two
consensus patterns, T.ACCCG and CGGGT.A,
which are mutually symmetric, and the region
1250 to 1150 has the consensus ACCCG (note
that it is a subpattern of T.ACCCG). No significant
consensus patterns have been found for other re-
gions.

We also matched the 50 highest scoring non-
trivial patterns for each of the regions against all the
transcription factor-binding site descriptions given
in the TRANSFAC (Wingender et al. 1996) database
for the yeast. The results of the exact matches are
given in the Table 2 (by an exact match, we mean
that the discovered pattern exactly matched a sub-
string in the binding site description). Note that al-
though the highest scoring patterns from neighbor-
ing regions are not necessarily similar themselves,
the number of coinciding binding sites (from
TRANSFAC) matched by patterns from two regions
show a considerable correlation with the distance
between the positions of the regions.

The complete list of the discovered patterns is
available on the World Wide Web.
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Clustering the Gene Expression Data
DeRisi et al. (1997) studied the relative expression
rate changes of yeast genes during the diauxic shift.
They inoculated yeast cells from an exponentially
growing yeast culture into fresh medium and after
some initial period, harvested samples at seven 2-hr
intervals, isolated their mRNA, and prepared fluo-
rescently labeled cDNA. Two different fluorescent
moieties were used—one for cells harvested in each
of the successive time points, the other for refer-
ence, from cells harvested at the first time point.
The cDNAs from each time point, together with the
reference cDNA were hybridized to the microarray
with ∼6400 DNA sequences representing ORFs of
the yeast genome. Measurement of the relative fluo-
rescence intensity for each of the ∼6400 2 7 ele-
ments reflect the relative abundance of the corre-
sponding mRNA in each cell population. The mea-
surement data is available on the Internet.

We used the data from these yeast gene expres-
sion studies (DeRisi et al. 1997) and clustered all the
genes by similarities in their expression profiles in
several alternative ways. To achieve this goal, we
developed and implemented a simple algorithm
based on discretizing the time series of the measure-
ment space into a simplified form and then cluster-
ing these simple time series. Some rigorous selection
criteria were used for defining good clusters (for de-
tails, see Methods). This produced 32 different clus-
ters containing from 10 to 77 ORFs each and 11
clusters containing at least 25 ORFs (see Table 3).

The most significant changes in gene expres-
sion rates during the diauxic shift occurred during
the last two time points. This significance is re-
flected in the clusters that we obtained (although
some fluctuations at earlier time points occur for
smaller groups of genes, which may be due to
noise). Many of the constructed clusters strongly
overlap. From the 11 clusters of at least 25 ORFs
each, in 8 clusters, the expression level is increasing
in the time point 6, in 2 it is decreasing, and in 1 it
is unchanged.

Discovering Patterns from the Gene Clusters
We studied whether clusters of genes with similar
expression profiles can help to discover sequence
patterns putatively describing transcription factor-
binding sites. For each cluster, we compared the cor-
responding upstream regions of length 300 bp
against all other upstream regions. The algorithm
was used to find the highest scoring patterns con-
taining up to three wild cards. The patterns were

Table 1. Highest Scoring Nontrivial
Patterns with (at Most) One
Wild-Card Symbol
No.a Pattern Scoreb N+c N!

d

A. Regions 1100..0
2 AAG.AAACAAA 6.54 37 1
6 A.TAAGAACA 5.79 27 0
8 A.AATAGGA 5.61 43 3
9 AAGAAA.CAAA 5.58 26 0
12 GTAACAA.C 5.36 25 0
13 AAA.AACTTA 5.36 25 0
20 ACAAC.TAA 5.09 39 3
21 AG.AAACAAA 5.06 64 8
23 ACAAACAA.A 4.97 48 5
26 AATAGTA.A 4.92 77 11
32 AATAGTATA 4.77 27 1
34 TCACTAC.T 4.72 22 0
35 CAAACA.ACA 4.72 22 0
37 ACA.ATAGA 4.72 55 7
42 AGAGA.ATA 4.63 54 7
47 AATAAACAA.A 4.59 26 1
50 AAAG.ACAAG 4.57 35 3
52 CTAAGAA.A 4.55 53 7
56 A.AAGGGAAG 4.51 21 0
57 CAAA.TAAC 4.50 48 6

B. Regions 1250..1150
14 TTACCCGC 6.22 29 0
58 GT.ACCCG 5.59 54 5
71 T.ACCCGC 5.48 42 3
126 CGGGTA.T 5.06 64 8
141 G.TACCCG 4.97 48 5
165 CGGGTAA.A 4.87 47 5
178 GTTACCCG 4.83 37 3
305 TACAT.TATA 4.43 65 10
353 TTTCTC.TTT 4.32 46 6
372 TTACCCG 4.30 119 23
379 TTTCCTGT.T 4.29 20 0
405 CTCATCTC.T 4.24 24 1
425 TCACGTGA 4.20 28 2
427 T.ATATATTC 4.20 28 2
454 CGGGTAA 4.12 114 23
460 TGTGT.GAT 4.08 19 0
465 ATTACCCG.A 4.08 19 0
474 G.ACATATAT 4.06 23 1
485 TA.GTAAAC 4.05 27 2
500 TTTCTCT.TT 4.03 47 7
Matches were only allowed on the W (gene) strand.
aNo. of the pattern enumerating them decreasingly by scores
(before trivial patterns were removed).
bFrom equation 2.
cNo. of upstream regions matching the pattern.
dNo. of random sequences matching the pattern.
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