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Systolic architectures, which permit multiple computations

for each memory access, can speed execution of
compute-bound problems without increasing I/0 requirements. 
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.. High-performance, special-purpose computer sys—
tems are typically used to meet specific application re—

quirements or to off—load computations that are especial—
ly taxing to general-purpose computers. As hardware cost

and size continue to drop and processing requirements
become well-understood in areas such as signal and image

processing, more special—purpose systems are being con-
structed. However, since most of these systems are built

on an ad hoc basis for specific tasks, methodological
work in this area is rare. Because the knowledge gained

from individual experiences is neither accumulated nor
properly organized, the same errors are repeated. 1/0 and
computation imbalance is a notable example—often, the
fact that 1/0 interfaces cannot keep up with device speed
is discovered only after constructing a high-speed,
special-purpose device.

We intend to help correct this ad hoc approach by pro—
viding a general guideline—specifically, the concept of
systolic architecture, a general methodology for mapping
high-level computations into hardware structures. In a
systolic system, data flows from the computer memory in
a rhythmic fashion, passing through many processing
elements before it returns to memory, much as blood cir—
culates to and from the heart. The system works like an
automobile assembly line where different people work on
the same car at different times and many cars are assem-
bled simultaneously. An assembly line is always linear,

however, and systolic systems are sometimes two-dimen-
sional. They can be rectangular, triangular, or hexagonal
to make use of higher degrees of parallelism. Moreover,

to implement a variety of computations, data flow in a
systolic system may be at multiple speeds in multiple di-

rections—both inputs and (partial) results flow, whereas
only results flow in classical pipelined systems. Generally
speaking, a systolic system is easy to implement because
of its regularity and easy to reconfigure (to meet various
outside constraints) because of its modularity.

The systolic architectural concept was developed at

Carnegie-Mellon University,"7 and versions of systolic

processors are being designed and built by several indus—
trial and governmental organizations.3'10 This article
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Why Systolic Architectures?

H. T. Kung

Carnegie-Mellon University

reviews the basic principle ofsystolic architectures and ex-

plains why they should result in cost—effective, high-
performance specialApurpose systems for a wide range of
problems.

Key architectural issues in designing
special-purpose systems

Roughly, the cycle for developing a special-purpose
system can be divided into three phases—task definition,
design, and implementation. During task definition,

some system performance bottleneck is identified, and a
decision on whether or not, to resolve it with special—
purpose hardware is made. The evaluation required for
task definition is most fundamental, but since it is often

application—dependent, we will concentrate only on archi-
tectural issues related to the design phase and will assume
routine implementation.

Simple and regular design. Cost—effectiveness has
always been a chief concern in designing special-purpose
systems; their cost must be low enough to justify their
limited applicability. Costs can be classified as nonrecur—
ring (design) and recurring (parts) costs. Part costs are
dropping rapidly due to advances in integrated—circuit

technology, but this advantage applies equally to both
special-purpose and general—piirpose systems. Further-
more, since special-purpose systems are seldom produced
in large quantities, part costs are less important than
design costs. Hence, the design cost of a special—purpose

system must be relatively small for it to be more attractive
than a general—purpose approach.

Fortunately, special-purpose design costs can be reduced

by the use of appropriate architectures. If a structure can
truly be decomposed into a few types of simple substruc-
tures or building blocks, which are used repetitively with
simple interfaces, great savings can be achieved. This is

especially true for VLSI designs where a single chip com—
prises hundreds of thousands of components. To cope
with that complexity, simple and regular designs, similar
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to some of the techniques used in constructing large soft-

ware systems, are essential. ” In addition, special—purpose
systems based on simple, regular designs are likely to be

modular and therefore adjustable to various performance
goals—that is, system cost can be made proportional to
the performance required. This suggests that meeting the
architectural challenge for simple, regular designs yields
cost-effective special-purpose systems.

Concurrency and communication. There are essential-
ly two ways to build a fast computer system. One is to use
fast components, and the other is to use concurrency. The
last decade has seen an order of magnitude decrease in the
cost and size of computer components but only an incre-

mental increase in component speed.12 With current
technology, tens of thousands of gates can be put in a
single chip, but no gate is much faster than its TTL
counterpart of 10 years ago. Since the technological trend
clearly indicates a diminishing growth rate for component
speed, any major improvement in computation speed
must come from the concurrent use of many processing
elements. The degree of concurrency in a special-purpose
system is largely determined by the underlying algorithm.
Massive parallelism can be achieved if the algorithm is
designed to introduce high degrees of pipelining and
multiprocessing. When a large number of processing
elements work simultaneously, coordination and com-

munication become significant—especially with VLSI
technology where routing costs dominate the power,

time, and area required to implement a computation.”
The issue here is to design algorithms that support high
degrees of concurrency, and in the meantime to employ
only simple, regular communication and control to enable
efficient implementation.

Balancing computation with 1/0. Since a special-
purpose system typically receives data and outputs results
through an attached host, I/O considerations influence
overall performance. (The host in this context can mean a
computer, a memory, a real—time device, etc. In practice,
the special-purpose system may actually input from one
“physical” host and output to another.) The ultimate
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Figure 1. Basic principle of a systolic system.
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performance goal of a special-purpose system is~and
should be no more than—a computation rate that bal-
ances the available I/O bandwidth with the host. Since an

accurate a priori estimate ofavailable I/O bandwidth in a
complex system is usually impossible, the design of a
special-purpose system should be modular so that its

structure can be easily adjusted to match a variety of I/O
bandwidths.

Suppose that the I/O bandwidth between the host and a
special-purpose system is 10 million bytes per second, a
rather high bandwidth for present technology. Assuming
that at least two bytes are read from or written to the host
for each operation, the maximum rate will be only 5
million operations per second, no matter how fast the
special-purpose system can operate (see Figure 1). Orders
ofmagnitude improvements on this throughput are possi—
ble only if multiple computations are performed per I/O
access. However, the repetitive use of a data item requires
it to be stored inside the system for a sufficient length of
time. Thus, the [/0 problem is related not only to the
available I/O bandwidth, but also to the available

memory internal to the system. The question then is how
to arrange a computation together with an appropriate
memory structure so that computation time is balanced
with I/O time.

The [/0 problem becomes especially severe when a large
computation is performed on a small special-purpose sys-
tem. In this case, the computation must be decomposed.
Executing subcomputations one at a time may require a
substantial amount of I/O to store or retrieve intermediate

results. Consider, for example, performing the n—point fast
Fourier transform using an S-point device when n is large
and S is small. Figure 2 depicts the n—point FFT computa-
tion and a decomposition scheme for n = 16 and S = 4. Note
that each subcomputation block is sufficiently small so that
it can be handled by the 4-point device. During execution,
results of a block must be temporarily sent to the host and
later retrieved to be combined with results of other blocks

as they become available. With the decomposition scheme
shown in Figure 2b, the total number of I/O operations is
O(n log n/log S). In fact, it has been shown that, to per—
form the n—point FFT with a device of 0(5) memory, at
least this many [/0 operations are needed for any decom—
position scheme. 14 Thus, for the n-point FFT problem, an
S—point device cannot achieve more than an 0(log S)
speed—up ratio over the conventional O(n log n) software
implementation time, and since it is a consequence of the
I/O consideration, this upper bound holds independently
of device speed. Similar upper bounds have been estab—
lished for speed-up ratios achievable by devices for other

computations such as sorting and matrix multiplication. ”'15
Knowing the I/O-imposed performance limit helps pre-
vent overkill in the design of a special—purpose device.

In practice, problems are typically “larger” than
special-purpose devices. Therefore, questions such as
how a computation can be decomposed to minimize l/O,
how the I/O requirement is related to the size of a special—
purpose system and its memory, and how the I/O band-
width limits the speed—up ratio achievable by a special-
purpose system present another set of challenges to the
system architect.
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Systolic architectures: the basic principle

As a solution to the above challenges, we introduce
systolic architectures, an architectural concept originally
proposed for VLSI implementation of some matrix oper—

ations.5 Examples of systolic architectures follow in the
next section, which contains a walk—through of a family
of designs for the convolution computation.

A systolic system consists of a set of interconnected
cells, each capable of performing some simple operation.
Because simple, regular communication and control
structures have substantial advantages over complicated
ones in design and implementation, cells in a systolic
system are typically interconnected to form a systolic ar—
ray or a systolic tree. Information in a systolic system
flows between cells in a pipelined fashion, and communi—
cation with the outside world occurs only at the “bound—
ary cells.” For example, in a systolic array, only those
cells on the array boundaries may be I/O ports for the
system.

Computational tasks can be conceptually classified
into two families—compute-bound computations and
I/O—bound computations. In a computation, if the total
number of operations is larger than the total number of
input and output elements, then the computation is
compute-bound, otherwise it is I/O—bound. For example,
the ordinary matrix—matrix multiplication algorithm
represents a compute—bound task, since every entry in a

matrix is multiplied by all entries in some row or column
of the other matrix. Adding two matrices, on the other
hand, is I/O—bound, since the total number of adds is not

largerthanthetotalnumber ofentriesinthetwo matrices.
It should be clear that any attempt to speed up an I/O-
bound computation must rely on an increase in memory
bandwidth. Memory bandwidth can be increased by the
use of either fast components (which could be expensive)
or interleaved memories (which could create complicated
memory management problems). Speeding up a com—
pute-bound computation, however, may often be accom-
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plished in a relatively simple and inexpensive manner,
that is, by the systolic approach.

The basic principle of a systolic architecture, a systolic
array in particular, is illustrated in Figure 1. By replacing a
single processing element with an array of PBS, or cells in
the terminology of this article, a higher computation
throughput can be achieved without increasing memory
bandwidth. The function of the memory in the diagram is

analogoustothat ofthe heart; it “pulses” data(instead of
blood) through the array of cells. The crux of this ap-
proach is to ensure that once a‘data item is brought out
from the memory it can be used effectively at each cell it
passes while being “pumped” from cell to cell along the
array. This is possible for a wide class of compute-bound
computations where multiple operations are performed
on each data item in a repetitive manner.

Being able to use each input data item a number of
times (and thus achieving high computation throughput
with only modest memory bandwidth) is just one of the
many advantages of the systolic approach. Other advan—
tages, such as modular expansibility, simple and regular
data and control flows, use of simple and uniform cells,
elimination of global broadcasting, and fan-in and (pos—
sibly) fast response time, will be illustrated in various sys-
tolic designs in the next section.

A family of systolic designs
for the convolution computation

To provide concrete examples of various systolic struc—
tures, this section presents a family of systolic designs for
the convolution problem, which is defined as follows:

Given the sequence ofweights fwl, wz, . . . , Wki
and the input sequence {xl,x2, . . . ,xnl,

compute the result sequence Ly] , yz, . . . ,yn+1,kj
defined by

inWlXi+ W2Xi+1 + - - - + kai+k71

4-PT.
DEVICE

 
Figure 2. (a) 16-point tast-Fourier-transtorm graph; (b) decomposing the FFT computation with n = 16 and S = 4.
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Figure 3. Design 81: systolic convolution array(a)and cell
(b) where x,-‘s are broadcast, w,-’s stay, and y,-’s move
systolically.

We consider the convolution problem because it is a sim—
ple problem with a variety of enlightening systolic solui
tions, because it is an important problem in its own right,
and more importantly, because it is representative of a
wide class ofcomputations suited to systolic designs. The
convolution problem can be viewed as a problem of com-

bining two data streams, w, ’s amd xj’s, in a certain man-
ner (for example, as in the above equation) to form a

resultant data stream ofy, ’s. This type of computation is
common to a number of computation routines, such as

filtering, pattern matching, correlation, interpolation,
polynomial evaluation (including discrete Fourier trans-
forms), and polynomial multiplication and division. For
example, if multiplication and addition are interpreted as
comparison and boolean AND, respectively, then the
convolution problem becomes the pattern matching

problem.1 Architectural concepts for the convolution
problem can thus be applied to these other problems as
well.

The convolution problem is compute—bound, since

each input x, is to be multiplied by each ofthe k weights. If
the X, is input separately from memory for each multi-
plication, then when k is large, memory bandwidth
becomes a bottleneck, precluding a high-performance
solution. As indicated earlier, a systolic architecture
resolves this 1/0 bottleneck by making multiple use of
each X, fetched from the memory. Based on this principle,
several systolic designs for solving the convolution prob—
lem are described below. For simplicity, all illustrations
assume that k : 3.

(Semi-) systolic convolution arrays with global data
communication. If an x,, once brought out from the
memory, is broadcast to a number of cells, then the same

x,- can be used by all the cells. This broadcasting technique
is probably one of the most obvious ways to make mul—
tiple use of each input element. The opposite of broad—
casting is fan—in, through which data items from a number

of cells can be collected. The fan—in technique can also be
used in a straightforward manner to resolve the I/O bot—

tleneck problem. In the following, we describe systolic
designs that utilize broadcasting and fan—in.

Design Bl—broadcast inputs, move results, weights
stay. The systolic array and its cell definition are depicted

 
Figure 4. Design 82: systolic convolution array (a) and cell
(b) where x,-’s are broadcast, y,-’s stay, and w,-’s move
systolically.

in Figure 3. Weights are preloaded to the cells, one at each
cell, and stay at the cells throughout the computation.
Partial results y,- move systolically from cell to cell in the
left—to—right direction, that is, each of them moves over
the cell to its right during each cycle. At the beginning

ofa cycle, one X,- is broadcast to all the cells and one y,, in—
itialized as zero, enters the left-most cell. During cycle

one, wl X) is accumulated to y, at the left-most cell, and
during cycle two, wl X2 and wz x2 are accumulated to y2
and y] at the left—most and middle cells, respectively.
Starting from cycle three, the final (and correct) values of
y1,y2, . . . are output from the right-most cell at the rate
ofone y,- per cycle. The basic principle of this design was
previously proposed for circuits to implement a pattern

matching processor16 and for circuits to implement
polynomial multiplication. ”'20

Design BZ—broadcast inputs, move weights, results
stay. In design 82 (see Figure 4), each y,- stays at a cell to
accumulate its terms, allowing efficient use of available
multiplier—accumulator hardware. (Indeed, this design is
described in an application booklet for the TRW multi-

plier—accumulator chips.21 The weights circulate around
the array ofcells, and the first weight wl is associated with
a tag bit that signals the accumulator to output and resets
its contents. * In design Bl (Figure 3), the systolic path for
moving y,~’s may be considerably wider than that for mov—

ing w,»’s in design B2 because for numerical accuracy y,-’s
typically carry more bits than w,-’s. The use ofmultiplier—
accumulators in design B2 may also help increase preci—
sion ofthe results, since extra bits can be kept in these ac—
cumulators with modest cost. Design Bl, however, does
have the advantage of not requiring a separate bus (or
other global network), denoted by a dashed line in Figure
4, for collecting outputs from individual cells.

Design F—fan-irz results, move inputs, weights stay. If
we consider the vector ofweights (wk, wk, 1, . . . , w] )as
being fixed in space and input vector (x,,, x”, 1, . . . ,xl)
as sliding over the weights in the left—to—right direction,
then the convolution problem is one that computes the in»
ner product of the weight vector and the section of input
vector it overlaps. This view suggests the systolic array

’To avoid complicated pictures, control structures such as the use of tag
bits to gate outputs from cells are omitted from the diagrams ofthis article.

COMPUTER
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Figure 5. Design F: systolic convolution array (a) and cell
(b) where wi’s stay, x,-’s move systolically, and y,-’s are
formed through the tan-in of results from all the cells.

shown in Figure 5. Weights are preloaded to the cells and
stay there throughout the computation. During a cycle,
all X,‘s move one cell to the right, multiplications are per
formed at all cells simultaneously, and their results are
fanned-in and summed using an adder to form a new y,.
When the number of cells, k, is large, the adder can be im—
plemented as a pipelined adder tree to avoid large delays
in each cycle. Designs of this type using unbounded fan»in
have been known for quite a long time, for example, in the

context of signal processing33 and in the context of pat,
tern matching.“

(Pure-) systolic convolution arrays without global data
communication. Although global broadcasting or fan—in
solves the [/0 bottleneck problem, implementing it in a
modular, expandable way presents another problem.
Providing (or collecting) a data item to (or from) all the
cells of a systolic array, during each cycle, requires the use
of a bus or some sort of tree—like network. As the number

of cells increases, wires become long for either a bus or
tree structure; expanding these non—local communication
paths to meet the increasing load is difficult without slow—
ing down the system clock. This engineering difficulty of
extending global networks is significant at chip, board,
and higher levels of a computer system. Fortunately, as
will be demonstrated below, systolic convolution arrays
without global data communication do exist. Potentially,
these arrays can be extended to include an arbitrarily large
number of cells without encountering engineering diffii
culties (the problem of synchronizing a large systolic ar-
ray is discussed later).

Design RI—results stay, inputs and weights move in
opposite directions. In design R1 (see Figure 6) each par—

tial result y,- stays at a cell to accumulate its terms. The x,- ’s
and w, ’5 move systolically in opposite directions such that
when an x meets a w at a cell, they are multiplied and the
resulting product is accumulated to the y staying at that
cell. To ensure that each x, is able to meet every wi, con-
secutive x,-’s on the xdata stream are separated by two cy—
cle times and so are the w,-’s on the w data stream.

Like design B2, design R1 can make efficient use of
available multiplier-accumulator hardware; it can also
use a tag bit associated with the first weight, w, to trigger
the output and reset the accumulator contents of a cell.

January 1982

Figure 6. Design R1: systolic convolution array (a) and cell
(b) where y,- ‘s stay and x,- ’s and yi’s move in opposite direc-
tions systolically.

W5 W3
——>W4-—>W2
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Figure 7. Design R2: systolic convolution array (a) and cell
(b)where yi’s stay and x,-’s and w,-’s both move in the same
direction but at different speeds.

Design R1 has the advantage that it does not requirea bus,
or any other global network, for collecting output from
cells; a systolic output path (indicated by broken arrows

in Figure 6) is sufficient. Because consecutive w,’s are well
separated by two cycle times, a potential conflict—that
more than one y, may reach a single latch on the systolic
output path simultaneously—cannot occur. It can also be

easily checked that the y,’s will output from the systolic
output path in the natural orderingyl,yz,. . . .The basic
idea of this design, including that of the systolic output
path, has been used to implement a pattern matching

chip.1
Notice that in Figure 6 only about one—half the cells are

doing useful work at any time. To fully utilize the poten—
tial throughput, two independent convolution computa—
tions can be interleaved in the same systolic array, but
cells in the array would have to be modified slightly to
support the interleaved computation. For example, an
additional accumulator would be required at each cell to
hold a temporary result for the other convolution com-
putation.

Design R2—results stay, inputs and weights move in
the same direction but at different speeds. One version of
design R2 is illustrated in Figure 7. In this case both thex
and w data streams move from left to right systolically,

but the xi’s move twice as fast as the w,-’s. More precisely,
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