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single match takes, say, one millisecond of CPU time, matching against a database
of one million fingerprints would require a total of 103 seconds of CPU time. If we
have to process 100 queries per day, we would need 105 seconds or 27.78 hours
of CPU time alone, not including the I/O time in reading the fingerprints from the
database.

In order to provide a reasonable response time for each query, commercial sys-

tems use dedicated hardware accelerators or application-specific integrated circuits

(ASICs). While application-specific architectures and ASICs have been designed to

meet the computing requirements of complex image processing tasks, such designs

have the following two major limitations: (i) once fabricated, they are difficult to

modify; and (ii) the cost of building special-purpose application accelerators is very

expensive for low—volume applications. Both of these limitations have been the driv-

ing force behind the design of custom computing machines (CCMs) using reconfig-
urable logic arrays known as field—programmable gate arrays (FPGAs). An attached

processor built with FPGAs can overcome the two limitations noted above. High

performance is achieved with FPGAs by exploiting an important principle: most of

the processing time of a compute-intensive job is spent within a small portion of
its execution code [3], and if an architecture can provide efficient execution sup—

port for the frequently executed code, then the overall performance can be improved

substantially. Portions of the matching algorithm have been identified for implemen-

tation on Splash 2, leaving the remainder to be implemented using software on the
host.

The goal of this chapter is threefold. First, it describes a successful application

using Splash 2. Second, we demonstrate that a suitable mapping of an algorithm

to a given architecture results in excellent performance. Third, we illustrate how

FPGAs can facilitate this mapping process without sacrificing speed and flexibility.

In fact, FPGAs offer greater flexibilty since the hardware is customized to meet the

requirements of the algorithm.

This chapter is organized as follows. In Section 2, a brief introduction to pat-

tern recognition systems is given, followed by definition of the terminology used

in fingerprint matching, and introduction of various stages in an AFIS. Section 3

briefly reviews the Splash 2 architecture and its programming paradigm. The finger-

print matching algorithm and its computational requirement are briefly presented in
Section 4. The hardware-software design is presented in Section 5. The hardware

component of the parallel algorithm has been simulated using the Splash simulator.

The results of simulation and synthesis are discussed in Section 6. The synthesized

logic has been executed on a set of actual fingerprints. For measuring execution

speed, a synthetic database of 10,000 fingerprints has been created from 100 real

fingerprints. The execution speed of the matching module is analyzed in Section 7,

followed by conclusions in Section 8.

10.2 BACKGROUND

This section is devoted to an introduction to pattern recognition systems, some

basic definitions with respect to fingerprints, and automatic fingerprint identification

systems (AFIS). '
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10.2.1 Pattern Recognition Systems

Pattern recognition techniques are used to classify or describe complex patterns or
objects by means of some measured properties or features. A pattern is an entity,
vaguely defined, that could be given a name. A speech waveform, a person’s face,
and a piston head are examples of patterns. The goals of pattern recognition are to
(i) assign a pattern to a heretofore unknown class of patterns (clustering) or (ii) iden-
tify a pattern as a member of an already known class (classification). Two examples
of the recognition problem are identifying a suspect in a criminal case based on
fingerprints, and finding defects in a printed circuit board.

A pattern recognition system (PRS) classifies an object into one of several
predefined classes. The input to a PRS is a set of N measurements represented
by an N—dimensional vector called a pattern vector. A PRS can be used to com-
pletely automate the decision-making process without any human intervention. A PRS
requires data acquisition via some sensors, data representation, and data analysis or
classification. The data are usually either in the form of pictures, as in the case of

fingerprint matching, or one-dimensional time signals, as in the case of speech recog-
nition. Although these images or signals can be interpreted, analyzed, or classified
by trained human operators, pattern recognition systems can provide more reliable
and faster analysis, often at a lower cost.

The design of a PRS involves the following three steps:

0 Sensing

0 Representation

0 Decision making

The problem domain influences the choice of sensor, representation, and decision
making model. An ideal representation is characterized by the following desirable
properties; it is

. Provided with discriminatory information at several levels of resolution (detail)

Easily computable

Amenable to automated matching algorithms

Stable and invariant to noise and distortions

. Efficient and compact

Ul-BSle-d
The compactness property of a representation often constrains its discriminating
power.

The pattern recognition problem is difficult because various sources of noise
distort the patterns, and often there exists a substantial amount of variability among
the patterns belonging to the same category [5]. For example, the character ‘A’
written by different people looks different, though we assign the same class label
‘A’ to all of them. Hence, it is not appropriate to use the raw pattern vector for
classification. Invariant features that characterize a set of patterns are used to represent

a class of patterns. Several issues arise, such as what features should be used and‘
how they should be extracted reliably. The features of a pattern are the input to a
classification stage. The challenge in designing a recognition system is in extraction
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of features that can tolerate the intra-class variations and still possess the inter-class

discriminating power. If the extracted features have sufficient discriminating power,

then the decision making stage is simple. Conversely, a sophisticated decision making

stage can compensate for an unreliable feature extraction stage. In practice, we never

have a noiseless input pattern, an ideal representation, perfect feature extraction, or

robust decision maker. Imperfections in any of these stages may result in classification

error. The goal of a pattern recognition system is to minimize the classification error.

Many successful pattern recognition systems have been built in the area of document

analysis, medical diagnosis, and fingerprint identification. A large number of books

and survey papers have been written on pattern recognition. Readers interested in
more details are referred to [5].

10.2.2 Terminology

The structural features that are commonly extracted from the gray-level input finger-

print image are ridge bifurcations and ridge endings. Each of the features has three

components, namely, the x-coordinate, the y-coordinate, and the local ridge direction

at the feature location, as shown in Figure 10.4. Many other features that have been

used for fingerprint matching are derived from this basic three-dimensional feature
vector [1].

Definitions of some relevant fingerprint—related terms are given below. Readers
interested in more details are referred to [2].

0 Fingerprint image: A digitized image of a fingerprint impression usually con-

taining 512 X 512 pixels and 256 gray levels.

0 Fingerprint card: A paper card with a provision to record impressions of all

10 fingers of a person, including other textual details (such as name, sex, and

age) useful for identification.

 
Minutia (x, y)

 X FIGURE 10.4 Components of a
Minutia Feature
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FIGURE 10.5 A Core Point Marked on

a Gray-level Fingerprint

Pattern area: The area of the image where the fingerprint pattern is located.

Ridge: A black line in a fingerprint image. See Figure 10.1.

Valley: A white line in a fingerprint image. See Figure 10.1.

Ridge bifurcation point: A point where a ridge branches into two ridges. See
Figure 10.2(a).

Ridge end point: A point where a ridge stops flowing. See Figure 10.2(b).

Minutia: A ridge ending or bifurcation point.

Classification: Based on the ridge flow type, the process of categorizing fin-

gerprints into one of the following five classes: (i) arch, (ii) loop, (iii) whorl,
(iv) double loop, and (V) accidental. The first three fingerprint classes are shown
in Figure 10.1.

Matching: The process of comparing a pair of fingerprints based on their minu—
tiae feature sets. The AFIS systems usually determine a list of probables (possi-

ble matches) from the database, often sorted on a matching score that indicates

the degree of match.

Core point: For whorls, loops, and double loops, the core point is defined as
the topmost point on the innermost ridge, assuming the fingerprint is oriented.
See Figure 10.5.

10.2.3 Stages in AFIS

An AFIS is a pattern recognition system for fingerprint matching. A typical AFIS

consists of various processing stages as shown in Figure 10.6. For the purpose of
automation, a suitable representation of fingerprints is essential. Clearly, the raw

digital image (set of pixels) of a fingerprint itself does not meet the requirements '
of an ideal representation described earlier. Hence, high-level structural features are
extracted from the fingerprint image for the purpose of representation and matching.
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Image Acquisition

Manual Feature Editing
(Optional)  

 
 

 
Feature Extraction

Matching

Manual Verification

FIGURE 10.6 Stages in an Automatic Fingerprint Identification System (AFIS)

The commercially available fingerprint systems typically use ridge bifurcations

and ridge endings as features (see Figure 10.2). Because of the large size of the fin-

gerprint database and the noisy fingerprints encountered in practice, it is very difficult
to achieve a reliable one-to-one matching in all test cases. Therefore, the commer-

cial systems provide a ranked list of possible matches (usually the top 10 matches)

that are then verified by a human expert. The matching stage uses the position and
orientation of these features and the total number of such features. As a result, the

accuracy of feature extraction has a strong impact on the overall accuracy of finger-

print matching. Reliable and robust features can simplify the matching algorithm and
obviate the manual verification stage.

One of the main problems in extracting structural features is the presence of

noise in the fingerprint image. Commonly used methods for taking fingerprint impres-

sions involve applying a uniform layer of ink on the finger and rolling the finger on

paper. This leads to the following problems. Smudgy areas in the image are created by
overinked areas of the finger, while breaks in ridges are created by underinked areas.

Additionally, the elastic nature of the skin can change the positional characteristics

of the fingerprint features depending on the pressure applied on the fingers. Though

inkless methods for taking fingerprint impressions are now available, these methods

still suffer from the positional shifting caused by the skin elasticity. The AFIS used
for criminal identification poses yet another problem. A noncooperative attitude of

suspects or criminals in providing the impressions leads to smearing parts of the

fingerprint impression. Thus, noisy features are inevitable in real fingerprint images.
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The matching module must be robust to overcome the noisy features generated by
the feature extraction module.

The functioning of an AFIS can be described starting with the input stage. A

gray-scale fingerprint image is obtained using a scanner or a camera. Recently, inkless
methods have been used for this stage [7]. The input image needs enhancement before

further processing can be done. This stage involves image processing techniques to
minimize noise and enhance image contrast. A feature extraction stage locates the

minutiae points in the enhanced image. Often, it is difficult to extract minutiae reliably
from noisy inputs. In such cases, a human fingerprint expert interactively updates the
location of the minutiae. The set of minutiae forms the input to a matcher. The

matcher reads fingerprint features from the database and matches these with the
query fingerprint feature set. It outputs a list of probables from the database in order
of their degree of match. The system output is verified by the human expert to arrive
at the final decision for each query fingerprint.

10.3 SPLASH 2 ARCHITECTURE AND PROGRAMMING MODELS

We review the major components of the Splash 2 system that are used by our finger—
print matching algorithm. (For details, refer to the chapters on Splash 2 architecture
and programming.)

Each Splash 2 processing board has 16 Xilinx 40108 as Processing Elements
(PEs X1—X16) in addition to a seventeenth Xilinx 4010 (X0) that controls the data
flow into the processor board. Each PE has 512 KB of memory. The Sun SPARC-
station host can read/write this memory. The PEs are connected through a crossbar

that is programmed by X0. There is a 36-bit linear data path (SIMD Bus) running
through all the PBS. The PEs can read data either from their respective memory or
from any other PE. A broadcast path also exists by suitably programming X0.

The Splash 2 system supports several models of computation, including PEs
executing a single instruction on multiple data (SIMD mode) and PBS executing
multiple instructions on multiple data (MIMD mode). It can also execute the same or
different instructions on single data by receiving data through the global broadcast
bus. The most common mode of operation is systolic, in which the SIMD Bus is
used for data transfer. Also, individual memory available with each PE is used to

conveniently store temporary results and tables.

To program Splash 2, we need to program each of the PEs (X1—Xl6), the
crossbar, and the host interface. The crossbar sets the communication paths for any

arbitrary pattern of communication between PEs. In case the crossbar is used, X0
needs to be programmed. The host interface handles data transfers in and out of the
Splash 2 board.

10.4 FINGERPRINT MATCHING ALGORITHM

The feature extraction process takes the input fingerprint gray—level image and‘
extracts the minutiae features described in Section 1, making no efforts to distinguish

between the two categories (ridge endings and ridge bifurcations). Figure 10.7 shows
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FIGURE 10.7 Feature Extraction. (a) A gray—scale image of a fingerprint; (b) its skeleton
with features

a gray-scale fingerprint image and its skeleton image where these features are marked.

In this section, an algorithm for matching rolled fingerprints against a database of

rolled fingerprints is presented. A query fingerprint is matched with every fingerprint

in the database, discarding candidates whose matching scores are below a user-

specified threshold. Rolled fingerprints usually contain a large number of minutiae

(between 50 and 100). Since the main focus of this chapter is on parallelizing the

matching algorithm, we assume that the features have been extracted from the fin-

gerprint images and the important information is available. In particular, we assume

that the core point of the fingerprint is known and that the fingerprints are oriented

properly.

10.4.1 Minutia Matching

Matching a query and database fingerprint is equivalent to matching their minutiae

sets. Each query fingerprint minutia is examined to determine whether there is a

corresponding database fingerprint minutia. Two minutiae are said to be paired or

matched if their components (x, y, 6) are equal within some tolerance after regis—

tration, which is the process of aligning the two sets of minutiae along a common

core point (see section 4.2 for precise definitions). Three situations arise as shown in

Figure 10.8.

1. A database fingerprint minutia matches the query fingerprint minutia in all the

components (paired minutiae);

2. A database fingerprint minutia matches the query fingerprint minutia in the x

and y coordinates, but does not match in the direction (minutiae with unmatched

angle);

3. No database fingerprint minutia matches the query fingerprint minutia
(unmatched minutia). '
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Paired minutiae Paired minutiae Minutiae with
unmatched angle

Unmatched minutiae Unmatched minutiae

(Lying outside tolerance box) (No pairing possible)

L____,____J

  
CI Tolerance box

. Query fingerprint minutiae FIGURE 10.8 Different Situations in
0 Database fingerprint minutiae Minutia Matching

Of the three cases described above, only in the first case are the minutiae said to be

paired.

10.4.2 Matching Algorithm

The following notation is used in the sequential and parallel algorithms described
below. Let the query fingerprint be represented as an n-dimensional feature vec-
tor fq = (fq,fq, ...... ,fg). Note that each of the n elements is a feature vector cor-
responding to one minutia, and the ith feature vector contains three components,
fi = (fl-(X), My), 15(0))-

The components of a feature vector are shown geometrically in Figure 10.4.
The query fingerprint core point is located at (C3, C3). Similarly, let the rth ref—
erence (database) fingerprint be represented as an mr-dimensional feature vector
f r = (f', 5, ..... IL), and the reference fingerprint core point is located at
(0;, C5).

Let (x3451) and (x2, y2) define the bounding box for the query fingerprint,
where x; is the x-coordinate of the top—left comer of the box and x"; is the x-
coordinate of the bottom—right corner of the box. Quantities y; and y"; are defined
similarly. A bounding box is the smallest rectangle that encloses all the feature points.
Note that the query fingerprint f q may or may not belong to the fingerprint database
fD. The fingerprints are assumed to be registered with a known orientation. Hence,
there is no need of normalization for rotation.

The matching algorithm is based on finding the number of paired minutiae
between each database fingerprint and the query fingerprint. It uses the concept of
minutiae matching described in Section 4.1. A tolerance box is shown graphically in
Figure 10.9. In order to reduce the amount of computation, the matching algorithm
takes into account only those minutiae that fall within a common bounding box.

Petitioner Microsoft Corporation - Ex. 1007, p. 127



Petitioner Microsoft Corporation - Ex. 1007, p. 128

 

128 Fingerprint Matching on Splash 2 Chapter 10

  
 

Minutia point

Idsin(<I))

Idcos(<I>)

Core point ——-—> .1
X

FIGURE 10.9 Tolerance Box for X- and Y-components of a Minutia Point

The common bounding box is the intersection of the bounding box for query and

reference (database) fingerprints. Once the count of matching minutiae is obtained, a

matching score is computed. The matching score is used for deciding the degree of

match. Finally, a set of top-scoring reference fingerprints is obtained as a result of

matching.
In order to accommodate the shift in the minutia features, a tolerance box is

created around each feature. The size of the box depends on the ridge widths and

distance from the core point in the fingerprint.

The sequential matching algorithm is described in Figure 10.10. In the

sequential algorithm, the tolerance box (shown in Figure 10.9 with respect to a query

fingerprint minutia) is calculated for the reference (database) fingerprint minutia. In

the parallel algorithm described in the next section, it is calculated for the query

fingerprint (as in Figure 10.9). A similar sequential matching algorithm is described

by Wegstein [9]. Depending on the desired accuracy, more than one finger could be

used in matching. In that case, a composite score is computed for each set.

10.5 PARALLEL MATCHING ALGORITHM

We parallelize the matching algorithm so that it utilizes the specific characteristics

of the Splash 2 architecture. While performing this mapping, we need to take into

account the limitations of the available FPGA technology. This is consistent with the

approaches taken in hardware-software codesign. Any preprocessing needed on the

query minutiae set is a one-time operation, whereas reference fingerprint minutiae
matching is a repetitive operation. Computing the matching score involves floating-

point division. The floating-point operations and one-time operations are performed

in software on the host, whereas the repetitive operations are delegated to the FPGA-

based PEs of Splash 2. The parallel version of the algorithm involves operations on
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Input: Query fingerprint n—dimensional feature vector fq and the rolled fingerprint database fD = {f r}:v=1.
The rth database fingerprint is represented as an mr-dimensional featurevector.

Output: A list of top ten records from the database with matching score > T.
Begin

For r = 1 to N do

1. Register the database fingerprint with respect to the core point (C3, C3) of the
query fingerprint:

Fori=1tomr do

mx) = f,-’(x) ~ CE
flm=flm—d

2. Compute the common bounding box for the query and reference fingerprints:

Let (x51, yfl) and (x5, y5) define the bounding box for the query fingerprint.
Let (xi, yfi) and (xf, yf) define the bounding box for the rth reference fingerprint.
The intersection of these two boxes is the common bounding box.

Let the query print have Mg and reference print have N; minutiae in this box.
3. Compute the tolerance vector for ith feature vector fir:

If the distance from the reference core point to the current reference feature is less than K
then

ti’(x) = Id cos(¢),
t,” (y) = Id sin(¢), and
IKE) = k3,

else

if“) = k1,

t{(y) 2 kg, and
IN“) = k3,
where l, k1, kg and k3 are prespecified constants determined

empirically based on the average ridge width,
4) is the angle of the line joining the core point and the i th feature with the x—axis,
and d is the distance of the feature from the core point.
Tolerance box is shown geometrically in Figure 10.9.

4. Match minutiae:

Two minutiae ff and f? are said to match if the following conditions are satisfied:
qu(x) - 4’06) 5 f,’(X) S 1706) + t,’(X),
f,~"(y) - 4’0) 5 f,’(y) : f,-”(y) + t{(y). and
fl—rw)sflw)sfiwr+mm.
where ti’ = (2‘1? (x), t,’ (y), t} (6)) is the tolerance vector.

Set the number of paired features, m; :2 0;

For all query features f?, j = 1,2, ...Meq, do
If f}! matches with any feature in ff i = 1,2, . . ., N; , then increment m
Mark the corresponding feature in f r as paired.

5. Compute the matching score (MS (q,r)):m’ *m’

MS(q’ r) = (MEWEY
Sort the database fingerprints and obtain top 10 scoring database fingerprints.

r
P‘

 

End

FIGURE 10.10 Sequential Fingerprint Matching Algorithm
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X16

Collect_flag
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FIGURE 10.11 Fingerprint Matching in Splash 2

the host, on X0, and on each PE. The schematic of fingerprint matching algorithm
using Splash 2 is shown in Figure 10.11.

One of the main constructs of the parallel algorithm is a lookup table. The
lookup table consists of all possible points within the tolerance box that a feature

may be mapped to. The Splash 2 data paths for the parallel algorithm are shown in
Figure 10.12. ,

Petitioner Microsoft Corporation - EX. 1007, p. 130



Petitioner Microsoft Corporation - Ex. 1007, p. 131

Section 10.5 Parallel Matching Algorithm 131

  
 

Broadcast Bus (Using crossbar)

Global OR Bus

FIGURE 10.12 Data Flow in Parallel Matching Algorithm

10.5.1 Preprocessing on the Host

The host processes the query and database fingerprints as follows. The query finger-

print is read first and the following preprocessing is done:

1. The core point is assumed to be available. For each query feature f?, j = 1, 2,
. . .n, generate a tolerance box. Enumerate a total of (IX X 1), X t9) grid points

in this box, where tJr is the tolerance in x, ty is the tolerance in y and t9 is
tolerance in 9.

2. Allocate each feature to one PE in Splash 2. Repeat this cyclically, that is,
features 1—16 are allocated to PBS X1 to X16, features 17—32 are allocated to

PBS X1 to X16, and so on.

3. Initialize the lookup tables by loading the grid points within each tolerance box

in step (1) into the memory.

In this algorithm, the tolerance box is computed with respect to the query

fingerprint features. The host then reads the database of fingerprints and sends their

feature vectors for matching to the Splash 2 board.

For each database fingerprint, the host performs the following operations:

1. Read the feature vectors.

2. Register the features as described in step (1) of the sequential algorithm in
Figure 10.10.

3. Send each of the feature vectors over the broadcast bus to all PEs if it is within

the bounding box of the query fingerprint.
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(2) Broadcast feature vector Broadcast Bus

 

 
 

(3) Check for paired feature Global OR Bus

   
(X, Y, 6) (1) Feature vector received from host

—i Fingerprint Database

Host (Sun SPARC)

FIGURE 10.13 Data Flow in X0

(4) Increment counter if paired
feature; store in memory and
reset after all features

processed.

(5) Host reads count from X0

For each database fingerprint, the host then reads the number of paired features m;
that was computed by the Splash 2 system, r = 1, .. . N. Finally, the matching score

is computed as in the sequential method.

10.5.2 Computations on Splash

The computations carried out on each PE of Splash 2 are described below. As men-

tioned earlier, X0 plays a special role in controlling the crossbar in Splash 2.

1. Operations on X0:
Each database feature vector received from the host is broadcast to all PEs. If

it is matched with a feature in a lookup table, the PE drives the Global OR bus

high. When the OR bus is high, X0 increments a counter. The host reads this

counter value (mg) after all the feature vectors for the current database finger-
print have been processed. Operations on X0 are highlighted in Figure 10.13.

2. Operations on each PE:

On receiving the broadcasted feature, a PE computes its address in the lookup

table through a hashing function. If the data at the computed address is a ‘1’,

then the feature is paired, and the PE drives the Global OR bus high. Operations

on a PE are highlighted in Figure 1014.
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(2) Check Lookup Table for ’1’
at address of feature vector;

indicates paired.

 
(3) If paired drive OR (X, Y, 0) from Database Global OR Bus

Bus to ’1’.

FIGURE 10.14 Data Flow in a PE

10.5.3 VHDL Specification for X0

We illustrate how the operations on X0 are customized by describing segments of

its VHDL code. The tasks carried out by the other PEs are relatively simpler. The

following functions are carried out by X0:

1. Broadcast feature vector to all PEs

2. Update a counter if at least one of the bits of the Global OR bus is ‘1’, and

3. Reset the counter after all the minutiae of a database fingerprint are processed

and the result is updated in X0 memory.

Five segments of VHDL code are shown in Figure 10.15 and are briefly

described here. Segment 1 (lines 1.1—1.7) shows the signal declarations. The hard—

ware buses have been directly mapped to bit vectors in VHDL. Some of the program

variables have been tailored for the range needed based on the application require-

ment (such as count, features). Segment 2 describes the padding instructions. Note

that because of using input-output pads, there is a delay in a signal reaching all the

PEs after it has been seen by X0. The delay is accounted for by using a data pipeline

of suitable length (in our case the pipeline is 6 stages deep). The code in line 1.7

combined with code segment 5 (line 5.1) show the use of the pipeline. X0 maintains

this pipeline by writing data into the pipeline and flushing out the last data sets by

writing zeros. The code in X0 looks at the end of the pipeline. Thus, the data is seen

by X0 code when it would have reached other PEs.

By setting suitable configuration parameters, X0 can be set to broadcast the

contents of the SIMD Bus to all PEs. To set this mode, code segment 3 is used.

In code segment 4, the collection of OR flags from all 16 PEs (PE X1 through

Xl6) is being checked for any possible match by comparing with a bit vector of all

0’s. If any of the bits is a ‘l’, we increment the counter count.

If the input for a new database record is initiated, indicated by the 33rd bit of

the SIMD bus, then the final paired count and the number of features for the previous

record is stored in memory. The two counters count and features are reset to zero.

These activities are carried out in code segment 5.
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— Signal declarations — (Segment 1)

1.1— SIGNAL Data : Bit_Vector(15 downto 0);
1.2— SIGNAL Address : Bit_Vector(17 downto O);

1.3- SIGNAL count : natural range 0 to 255 := 0;
1.4— SIGNAL features : natural range 0 to 255 := 0;
1.5— SIGNAL SIMD : Bit_Vector(35 downto 0);

1.6— SIGNAL Collect-flag : Bit_Vector(15 downto 0);
1.7— SIGNAL feat_pipeline pipeline;

——« Connections to I/O pads — (Segment 2)

2.1— pad_output (XOMemA, Address);
2.2— pad_output (X0.Mem_D, Data);
2.3— pad_Input (X0_SIMD, SIMD);
2.4— pad-Output (XOXB.Data, XbarrOut);
2.5— padanut (X0_GOR_Result_in, CollecLflag);

- Setting X0 to be the crossbar master — (Segment 3)

3.1—— XO_Xbar_En_L <= ’0’;

3.2— X0_Xl6_Disable <= ’1’;
3.3— X0)(bar-Send <= ’1’;

— ..... — (Segment 4)

4.1— IF (CollecLfiag /= itobv(0,16)) THEN
4.2— count <= count + 1;
4.3— END IF;

—— New person record, store present counters and then reset ~— (Segment 5)

5.1— IF (feat_pipeline(0)(32) = ’1’) THEN
5.2— Data(7 downto 0) <= itobv(count,8);

5.3~ Data(15 downto 8) <= itobv(features,8);
5.4—— count <: 0;
5.5— features <= 0;

5.6— Address <= itobv(bvtoi(Address) + 1,18);
5.7— END IF;

FIGURE 10.15 VHDL Specification Segments for X0

10.6 SIMULATION AND SYNTHESIS RESULTS

The VHDL behavioral modeling code for PBS X0—X16 has been tested using the

Splash simulation environment. The simulation environment loads the lookup tables

and crossbar configuration file into the simulator. Note that the Splash simulator runs

independently of the Splash 2 hardware and runs on the host. The input data are read

from a specified file, and the data on each of the signals declared in the VHDL code

can be traced as a function of time. A sample output of simulation using test inputs
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FIGURE 10.16 Simulation Waveforms for Test Data

is shown in Figure 10.16. The waveforms show the changes in signals with respect

to the system clock on each of the PEs of Splash 2. For example, on X0, the signals

count and features (11th and 10th lines, respectively) show the number of minutiae

paired and the number of minutiae sent for matching to all the PEs, respectively.

The synthesis process starts by translating the VHDL code to a Xilinx net

list format (XNF). The vendor-specific ‘ppr’ utility (in our case Xilinx) generates

placement, partitioning, and routing information from the XNF net list. The final

bitstream file is generated using the utility ‘xnf2bit’. The ‘timing’ utility produces a

graphical histogram of the speed at which the logic can be executed. The output of

the ‘timing’ utility is shown in Figure 10.17. The logic synthesized for X0 can run at

a clock rate of 17.1 MHZ, and the logic for the PEs X1 to X16 can run at 33.8 MHZ.

Observe that these clock rates correspond to the longest delay (critical) paths, even I
though most of the logic could be driven at higher rates. Increased processing speed

may be possible by optimizing the critical path.
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10.7 EXECUTION ON SPLASH 2

 
E The bitstream files for Splash 2 are generated from the VHDL code. Using the

C interface for Splash 2, a host version of the fingerprint matching application is
generated. The host version reads the fingerprint database from the disk and obtains
the final list of candidates after matching.

10.7.1 User Interface

An interactive user interface to the fingerprint matching application has been

developed using the X Window System. The interface provides pull—down menus
for selecting a query fingerprint for matching and for invoking tasks of feature
extraction, matching, and verification. The graphical user interface is shown in Fig-

! ure 10.18. The matching menu can select either the host or Splash 2 to perform the
computations during matching. The speed of matching is computed by obtaining the
elapsed time for the number of fingerprints in the database.

         
10.7.2 Performance Analysis

The sequential algorithm, described in Section 4.2, executed on a Sun SPARC-
station 10, performs at the rate of 70 matches per second on database and query
fingerprints that have approximately 65 features. A match is the process of determin-
ing the matching score between a query and a reference fingerprint. The Splash 2
implementation should perform matching at the rate of 2.6 x 105 matches per second.
This matching speed is obtained from the ‘timing’ utility. The host interface part can
run at 17.1 MHZ and each PE can run at 33.8 MHz (as shown in Figure 10.17).

Hence, the entire fingerprint matching will run at the slower of the two speeds, that
is, 17.1 MHz. Assuming 65 minutiae, on an average, in a database fingerprint, the
matching speed is estimated at 2.6 x 105 matches per second. We evaluated the
matching speed using a database of 10,000 fingerprints created from 100 real fin—
gerprints by randomly dropping, adding, and perturbing minutiae in a given set of

‘ minutiae. The measured speed on a Splash 2 system running at 1 MHz is of the order
of 6,300 matches per second on this database. The experimental Splash 2 system has

1 not been run at higher clock rates. Assuming a linear scaling of performance with an

; increase in clock rate, we would achieve approximately 110,000 matches per second.
We feel that the disparity in the projected and achieved speeds (2.6 x 105 versus
1.1 x 105) is due to different tasks being timed. The time to load the data buffers

onto Splash 2 has not been taken into account in the projected speed, whereas this
time is included in the time measured by the host in an actual run. We are in the

process of timing only the matching component of the code on the system.
The main advantage of the Splash 2 implementation is the higher performance

compared to the sequential implementation. The Splash 2 implementation is over
1,500 times faster than a sequential implementation on a SPARCstation 10. Another

advantage of the parallel implementation on Splash 2 is that the matching speed i
is independent of the number of minutiae in the query fingerprint. The number of ‘
minutiae affects only the lookup table initialization, which is done as preprocessing
by the host, and this time is amortized over a large number of database records.
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The matching algorithm can scale well as the number of Splash 2 boards on the

system is increased. Multiple query fingerprints can be loaded on different Splash 2

boards, each matching against the database records as they are transferred from the

host. This would result in a higher throughput from the system.

The processing speed can be further improved by replacing some of the soft

macros on the host interface part (X0) by hard macros. To sustain the matching rate,

the data throughput should be at a rate of over 250,000 fingerprint records per second

(with an average of 65 minutiae per record). This may be a bottleneck for the I/O

subsystem.

10.8 CONCLUSIONS

The Splash 2 architecture is highly suitable for rolled fingerprint matching. The paral—

lel algorithm has been designed to match the Splash 2 architecture, thereby resulting

in substantially better performance. The algorithm applies a hardware-software design

approach to maximize the performance of the overall system.

We will be coding our matching algorithm in dbC to evaluate the performance

of such a high-level language to express low—level parallelism. This effort will also

enable us to compare the development time needed to program Splash 2 using VHDL

versus dbC. In the next phase of the project, we plan to implement a minutiae

extraction algorithm and a latent fingerprint matching algorithm on Splash 2. Both of

these algorithms appear promising for achieving performance gains on the Splash 2

architecture. The minutiae extraction process involves two—dimensional convolution,

which has been successfully implemented on Splash 2 [8].
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High-Speed Image
Processing with Splash 2

Peter M. Athanas and A. Lynn Abbott

11.1 INTRODUCTION

Image processing is the problem of extracting useful information from an image
or from a sequence of images. Although images can be produced by many differ-
ent sources (including x-ray sensors, tomographic scanners, acoustic imagers, and
computer-graphics programs), the video camera is of particular interest because it
generates images that are easily interpreted by a human observer. Unfortunately, the
amount of data that is present in a single image is very large, and the methods that are

used in biological vision are not well understood. The challenge of image—processing
research is therefore to develop computational approachesw—both algorithms and

hardware—that can accept images and produce useful results at high speed.
Conventional von Neumann machines are commonly used for image processing

tasks, but their performance does not begin to approach real-time rates. The usual
alternative is to employ special—purpose architectures that have been designed specif-
ically for image processing. These systems can perform at sufficiently high speeds,
but at the expense of flexibility; they can perform only the tasks that they have been
designed to do. Splash 2 represents a third alternative. Custom computing platforms
such as Splash 2 are sufficiently flexible that new algorithms can be implemented on
existing hardware, and are fast enough that real—time or near—real-time operation is
possible.

This chapter describes a real-time image processing system that is based on
the Splash 2 general—purpose custom computing platform. Even though Splash 2 was.
not designed specifically for image processing, this platform possesses architectural
properties that make it well suited for the computation and data transfer rates that are

141
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characteristic of this class of problems. Furthermore, the price/performance of this

system makes it a competitive alternative to conventional real-time image processing
systems.

Other important factors for using Splash 2 are prototyping and design ver-
ification. The typical hardware design process requires extensive behavioral test-

ing of a new concept before proceeding with a hardware implementation. For any
image processing task of reasonable complexity, simulation of a VHDL model with

a representative data set on a workstation is prohibitive because of the enormous

simulation time required. Days, or even weeks, of processing time are commonly

needed to simulate the processing of a single image. Because of this, the designer
is often forced into a trade-off as to how much testing can be afforded versus an

acceptable risk of allowing an iteration in silicon. The Splash 2 approach permits an
automated (or near-automated) transformation of a structural or behavioral VHDL

representation into a real-time hardware implementation. The Splash 2 platform can

therefore serve not only as a means to evaluate the performance of an experimen-
tal algorithm/architecture, but also as a working component in the development and
testing of a much larger system.

The next section describes VTSPLASH, a laboratory system based on Splash 2

that has been developed at Virginia Tech [4]. Section 11.3 presents an overview of

image—processing fundamentals, and discusses architectural considerations for high-
speed operation. Sections 11.4 and 11.5 present two case studies in the development
of image processing tasks: a median filter, and Laplacian pyramid generation. Sec—

tion 11.6 discusses performance issues. Finally, Section 11.7 summarizes the chapter.

11.2 THE VTSPLASH SYSTEM

The adaptive nature of the Splash 2 architecture makes it well suited for the com—

putational demands of image processing. In addition, Splash 2 features a flexible
interface design that facilitates customized 1/0 for situations that cannot be accom—

modated by the host workstation. A real—time image processing custom computing

system (referred to as VTSPLASH) has been constructed based on Splash 2; this is
depicted in Figure 11.1.

A video camera or a VCR is used to create a standard RS-170 video stream. The

signal produced from the camera is digitized with a custom—built frame grabber card.

This board not only captures images, but also performs any needed sequencing or
simple pixel operations before the data are presented to Splash 2. The frame grabber

card was built with a parallel interface that can be connected directly to the input
data stream of the Splash 2 processor. Two processor Array Boards are used in the

VTSPLASH laboratory system. The output data produced by Splash 2, which may be a
real—time video data stream, image overlay data, or some other form of information,

is first presented to another custom board for converting the data to an appropriate
format (if necessary). Once formatted, the data are then presented to a commercial

image acquisition/display card, which presents the images to a color video monitor. A

Sun SPARCstation serves as the Splash 2 host, and is responsible for configuring the
Splash 2 arrays and sending runtime commands intermixed with the video stream if

needed. The laboratory system can be rapidly reconfigured from one task to another
in just a few seconds.
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FIGURE 11.1 Components in the VTSPLASH Laboratory System

Although Splash 2 was not specifically designed for image processing, it is a
suitable testbed for implementing a wide range of image processing tasks, including

those requiring temporal processing. A single Splash 2 processor Array Board con—
tains slightly more than 69 megabits1 of memorywenough for 32 frames of image
data [27]. Not all of this storage is necessarily available to applications in a conve—
nient form; the actual available storage is dependent upon how individual applications
are constructed.

 
11.3 IMAGE PROCESSING TERMINOLOGY AND ARCHITECTURAL

ISSUES

 
A digitized image can be represented as a rectangular array 1( r, c), where r and c g
refer to the row and column location of a picture element, or pixel, in the image. ;

For a standard monochrome (black and white) video camera, common image sizes i
are 512 x 512 and 480 x 640 pixels (rows X columns), where each pixel is an
8—bit quantity representing the light intensity at one point. Since the standard video 1
rate is 30 images per second, even simple tasks represent a significant computational E
challenge because of the sheer quantity of data: 7.5 MB/s for images of size 512 g
x 512. Storage and I/O are also especially significant when real—time operation is
required.

The goal of many image processing tasks is to produce an output image 10“,
that is an enhanced or filtered version of an input image Ii". One way to accomplish ‘

this is to apply a linear filter, 101,,(r, c) = Zr 2]. [in (r +z', c+ j) - h(i, j), where his
the filter and where the summations are performed over a neighborhood determined

1This number is based upon seventeen 256K (16 static RAM devices plus 12,800 bits of storage
(maximum) in each of the seventeen Xilinx 4010 chips.
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[out

FIGURE 11.2 Example Image Arrays.
Each cell represents one pixel, which is
commonly 8 bits for a monochrome
image. The shaded area at the top
indicates a 3 x 3 neighborhood centered
about pixel (3, 4). The result of the
neighborhood operation is placed in the
shaded location at the bottom.

by the extent of h. For example, a smoothed image 10“, is produced if we define

h(i,j) ==
gfor—lgifland —lEjSl
0 otherwise

This is equivalent to averaging the pixels within a 3 x 3 neighborhood of [in to

produce a single output pixel of 10“,. This same low—pass filter can be represented as
follows:  

1 1

h=1/9X 1 1
1 1   

Conceptually, this template (often called a mask or operator) passes over It”,

producing an output pixel at each discrete step as illustrated in Figure 11.2. For the

linear case, “applying” the template at a given location in [in means to multiply each

template value by the associated underlying pixel value, and then to compute the

sum of the products. This sum is the pixel value for [0,”, and may no longer be an

8—bit quantity. It is assumed that h = 0 outside the specified grid. Special rules may

be needed for pixels near the image borders.
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Other linear filters can be implemented by changing the weights in such a tem-

plate. For example, the following high—pass filters are commonly used to enhance

intensity edges, which result from sharp changes in pixel values. Known as Sobel

operators, hl and fig can be used to detect vertical and horizontal intensity gradients,

respectively.   

 

      
—-1 0 1

In: —2 0 2 kg:

——1 0 1   

Larger templates are also possible, as illustrated below. Examples of images

produced using these templates are shown in Figure 11.3.
 

 

 

th = 1/64 X Low—pass filter template

(see Figure 11.3b)

   
1

1

T

1

1

1

1

1

 

 

OO‘
O

 

Sobel X—Y filter template

(see Figure 11.3c)

     0

0

0

7)—

0

0

    
After an image has been appropriately low-pass filtered, the image can be

subsampled without fear of violating the Nyquist criterion. If an image is recursively

filtered and subsampled, the resulting set of images can be considered a single unit

and is called a pyramid. This data structure facilitates image analysis at different

scales. Processing at the lower-resolution portion of the pyramid can be used to guide

processing at higher-resolution levels. For some tasks (such as surveillance and road

following) this approach can greatly reduce the overall amount of processing required.

In addition to low-pass pyramids, it is possible to generate band—pass pyramids,

in which each level of the pyramid contains information from a single frequency

band. A popular technique for generating these pyramids (known as Gaussian and

Petitioner Microsoft Corporation - Ex. 1007, p. 145

                    



Petitioner Microsoft Corporation - Ex. 1007, p. 146

 

146 High-Speed Image Processing with Splash 2 Chapter 11

    
(a) (b) (0)

FIGURE 11.3 Example of Filtering Operations. (a) Original image. (b) Smoothed image,
created by applying a low—pass filter to the original image. (c) Edge image, created by applying
a Sobel XY filter. All of these images are 512 X 512 in size. The output images were obtained

1- using 8 x 8 templates on VTSPLASH.

Laplacian pyramids) is described in [6]. A VTSPLASH implementation of a low—pass
and a band—pass pyramid generator will be presented in a later section.

Neighborhood operations are not necessarily linear. For example, the output
pixel value could be chosen as the median of the neighborhood in the input image.
This nonlinear filtering operation can be expressed as follows:

I(r, c) = median{ I(r —— l, c —~ 1), I(r — l, c), I(r — 1, 6+ 1), :
I(r, c — l), I(r, c), I(r, c+ l),

I(r+l,c—l), I(r+l,c), I(r+l,c+l)}

One advantage of this operation is reduced blurring, as compared with linear filtering.
The design of a median filtering system using VTSPLASH is also described in detail
in Section 11.4.

The remainder of this section presents a brief description of image processing

operations that have been implemented on VTSPLASH. For example, other nonlin—
ear operations can be implemented using the ideas of mathematical morphology i
[20, 2]. This is an algebra that uses multiplication, addition (subtraction), and max—
imum (minimum) operations to produce output pixels. The fundamental operations
are called dilation and erosion, which cause image regions to expand and shrink,

respectively. The gray—scale dilation of an image I,” by the structuring element h is
defined as

  
1014!:(IinEB (1)030) E max{1in(r “' i, C _ j) + ha: J)}v1)]

and erosion by h is defined as

[out = (Iin®h)(r, C) E minllm(r +116 + j) - h(i, j)}-[7.]

These operations can be pipelined, and often serve as building blocks for higher-level ,
processing. ; 
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Another operation that has been implemented on VTSPLASH is the 2-D discrete

Fourier transform (DFT). For an M x N image, this is defined as

1 MA le lr lc

10u;(r,C) = Iin(k,l)exp [~j2n’ <—— + __):l0 NMN k=0 1: M

 
 

where [out is composed of real and imaginary components. This can be rewritten as
follows,

1 Mwl 1 N—l . [c . lr

10m, C) = M Z N ; Iin(k, l)exp [—j27‘l’ (NH exp {—1271 6%)],k:0

which illustrates the fact that the 2—D DFT can be implemented as a sequence of

1-D DFTs. For example, the DFT of a 512 x 512 image can be obtained by first

computing 512 independent l-D DFTs (one for each row), and then computing 512

l-D DFTs of the resulting columns. This has been implemented on VTSPLASH using

floating-point arithmetic [22].

The Hough transform [10, 13] is a technique that can be used to detect lines

in an image. Assume that intensity edges have been detected, so that the Hough

algorithm processes only foreground (edge) or background values. The procedure

begins by initializing all values in an accumulator array to zero. For each edge point,

a parametric curve is traced through the accumulator array, and each array element

[ on the curve is incremented. Effectively, each edge point “votes” for all possible

g lines that pass through that point.
Referring to Figure 11.4, assume that a line is parameterized by d = r cos 9 +

csin6, where (r, c) represents an image location. The Hough transform is imple—

1 merited as follows:

          
El

e]
l

I
[

l

1

Algorithm Hough

Initialize all elements of accumulator array A to 0
for r = 0 to M —— l

for c = 0 to N — 1

if [in (r, c) is an edge point

for 6 = 0 to 27: in steps of A6

dz: (round) (r cos 6 + c sin 6)

A[d, 9] z: A[d, 9] +1
end for

end if

end for

end for

end Hough

This produces the accumulator array, and has been implemented on Splash

[11, 1]. The next step is to detect peaks in the array. Each local maximum represents

one line in the image In;- This procedure can be generalized to detect other parametric

i shapes, such as ellipses and polygons.

The image processing operations described above can be broadly classified into

four generic classes [26]. An operation in the combination class takes two images
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FIGURE 11.4 The Hough
Transformation to Parameter Space.
Edge points (r1, of) in the image (a) map
to sinusoids in the d—O parameter space
(b). In this example, the two sinusoids
intersect at the values d and which

determine the line that passes through
(b) (r1, 61) and (r2, 62)-

 

 
and produces a new image of the same type. This is accomplished by combining each

pair of elements from the input images into a new element. The transformation class

accepts an image from a given class, and produces a new image in the same class.
The measurement class reduces an image of a given type into a scalar or vector.

The conversion class refers to those operations that take an image of a given type,

and convert it into a new class.2 Examples from each of these categories have been

modeled and synthesized using the VTSPLASH system, as summarized in Table 11.1.

Further descriptions of these and other image processing tasks are described in [14,
17], and [19].

These image processing tasks represent a considerable computational challenge

if near~real~time operation is needed. Image pixels are typically produced and con-

veyed in raster order—pixels are presented serially, left-to-right for each image row,

beginning with the top row. Consider again the 3 X 3 filtering operations discussed

above. Although the nine neighboring pixels are spatially localized in the actual

image, they are widely separated in the pixel stream from the camera. This is

illustrated in Figure 11.5. For processing purposes, the straightforward approach is

to store the entire input image into local memory, and then access pixels as needed

         
2Another class of operations that does not require an input image is the generation class, which

produces a new image from scratch. This class of operations is not considered here.
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TABLE 11.1 A Representative List of Image Processing Categories and Example Tasks 

 Class Example image task Description

Convolution Linear filtering operation.

Transformation Median filtering Nonlinear filter which can be used to eliminate
“salt and pepper” noise.

Morphological filtering Nonlinear operations that alter region shapes
in an image. Gray—scale erosion and dilation
operations have been implemented. 

Combination Laplacian Pyramid generation Produces an image hierarchy of decreasing image
size and spatial resolution. The image for each
pyramid level is formed by taking the difference
of two blurred versions of the original image. 

Measurement Histogram generation Statistical operation for computing intensity
distribution of pixels in an image. 

          
Fast Fourier Transform Converts an image from the spatial domain to the

frequency domain.

Conversion Hough Transform A voting scheme that detects the presence of lines
(or parametric curves) from a set of points in an
image.

Region detection and labeling Finds connected regions in an image, and assigns
a unique label to each. 

 lrowi~l Irowi |rowi+l

  
time —>

FIGURE 11.5 Example Image in Raster Order. Pixels are produced serially in row-
major order. The highlighted pixels represent a single 3 x 3 image neighborhood.

to produce the output image. However, this approach introduces a latency of at least

an entire image frame before the processor can begin to generate output pixels. This

latency can be reduced to less than the time of n rows (for an n x n template) if the

architecture is carefully designed to interleave memory reads and writes, effectively

utilizing memory as a delay line. Splash 2 has been used to implement both of these

processing methods. More discussion of image processing architectures can be found
in [9, 16], and [24].

The default image size that is used on VTSPLASH is 512 x 512, with a pixel

clock of 10 MHZ. Although the rest of this chapter will discuss images in terms

of monochrome light intensities, the same ideas also apply to other image types.

Examples are range images, for which each pixel represents a distance value; x-ray

images, where each pixel depends on object density; and computed tomography (CT)

images, where each 2—D image represents a reconstructed slice of density information

within a 3—D array of data.        
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11.4 CASE STUDY: MEDIAN FILTERING

Median filtering is a common approach for reducing noise in images [26]. Median

filtering is a computational operation that replaces each picture element, or pixel, of

an input image with the median value of several neighboring pixels in the image.

The result is an output image that is a smoothed version of the input. Compared with

traditional linear filtering, the median filter is more effective at removing impulsive

noise and at smoothing an image without blurring intensity edges. Unfortunately,

median filtering requires considerably more computations per pixel than linear filter-

ing for a given neighborhood size. This is a significant problem because of the large

number of pixels associated with a single image.

Rank-order filters such as the median filter are widely used for reducing noise

and periodic interference patterns in images, and are useful for cleaning impulsive

noise without blurring sharp edges. Implementing a median filter is computationally

costly on a general~purpose platform because of the need to sort a large number of

sets of pixel values repeatedly.

The median filtering operation may be stated mathematically in the following

manner. Let f0, f1, . . . , fN_1 represent the intensity values for input image [in within

an N —point neighborhood about the point (r, c) in the image. These values are ordered

so that fK _<_ fK+1. The output image Ion, is determined as:

[out (r, C) = f(N—1)/2 for odd N

101M", C) = %[f(N/2)_1 + f(N/2)] for even N

In most image processing applications, rectangular neighborhoods are assumed. Con—

ceptually, a median—filtered image is created by passing a small template over a source

image. At each location of the template, the median of the image values covered by

the template is selected as the corresponding value for the new image. Median fil—

tering is therefore a neighborhood operation, characterized by repeated comparisons

of neighboring pixel values.

Figure 11.6 illustrates again the concept of a 3 x 3 neighborhood operation.

The shaded 3 x 3 window is assumed to “slide” over I,-,, producing an output value

 

 

 

 

           
Input image: [in Resulting output image: In“,

FIGURE 11.6 Concept of a 3 X 3 Window-Based Operation. For the median filter,
the value of 10m (1', j) is the median of the nine pixels of 1;” which lie within the
3 X 3 window with center at ["10”, c).
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for 10”, at each location of the window. For median filtering, the value of the pixel

at any location in [out is the median of the nine values in the 3 X 3 window with
center at that position in I,-,,. Two window positions are shown in the figure, with
corresponding positions highlighted in 10“,. For an input image of size 512 x 512,
approximately 262,144 nine—point median values need to be extracted to produce 10“,.

The median filter does a good job of estimating the true pixel values in situ—

ations where the underlying neighborhood trend is flat or monotonic and the noise
distribution has flat tails. It is effective for removing impulsive noise. However, when

the neighborhood contains fine detail such as thin lines, they are distorted or lost.
Corners can be clipped. It can produce regions of constant or nearly constant values
that are perceived as patches, streaks, or amorphous blotches. Such artifacts may
suggest boundaries that really do not exist. In spite of these problems, median filter-
ing is often an attractive alternative to traditional linear filtering. Unfortunately, the
computational complexity of median filtering is much higher.

The median filter has been implemented on Splash 2 as a single—board design

[23]. The design and data flow within the Splash 2 processor Array Board are shown
in Figure 11.7. The design makes available all the pixels in a 3 X 3 window simulta-
neously so that a combinational sort can be performed on them. The median is then
chosen from the sorted values.

Input image pixels are presented to VTSPLASH in raster order (left to right for
the first image row, then repeating for each subsequent row). Pixels are presented to
the first Splash 2 Processing Element at a rate of 10 MHZ. The task of storing the
input image is so divided that six Processing Elements are required for the purpose.
Each receives the input pixel stream at the same time. This requires the input pixels
to be rearranged such that every four consecutive input pixels are packed together to
form a 32—bit data word. This packing of input pixels, and transferring the resulting
data stream to the crossbar, is done by Processing Elements PE—l and PE-2. The

packed input data is broadcast to PE-3 through PE-8, once every four clock cycles.
The effective input data rate remains unaltered.

Processing Elements PE-3 through PE—8 are responsible for storing and retriev-
ing the image pixels in local memory. This storage is organized such that all the

 

Video In
  

 
 
 
 
 

Video Out 
 

  
  
 

FIGURE 11.7 Communication Structure and Processing Element Layout for a Single Pro—

cessor Array Board Implementation. Note that solid blocks denote unused PEs.
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l pixels within a 3 X 3 window may be accessed simultaneously. Let I (i, j) represent
1 the pixel value stored at row i and column j. Pixels are presented left to right for

each row (j = O to 511), and top to bottom (i = 0 to 511). The first four pixels,
I (0, 0), I (0, 1), I (0, 2), I (0, 3) are directed by PE—2 simultaneously to PE—3 and PE-
4. [(0,0) and I (0, 1) are stored in the first location of PE-3’s memory while I (0, 2)
and I (0, 3) are stored in the first location of PE-4’s memory. Two pixels are packed

into each 16-bit memory location. The next four pixels I (0, 4)—I (0, 7) are stored in
similar fashion in the second locations of PE-3 and PE-4.

The second row of the image is stored similarly into the local memory of PBS
and PE-6. The third row is stored in the memory of PE—7 and PBS. This sequence

repeats, with the fourth row being stored in memories of PE-3 and PE-4, the fifth
in PE-5 and PE—6, the sixth in PE—7 and PE—8, and so on, until the entire image has

been captured.

The retrieval of the stored pixels begins as soon as three rows have been
received. As soon as the first three rows are stored in the memory of PE—3 through

PE-8, all six PEs (PE—3—PE-8) perform a read operation from the first location of

their local memory. With two pixels packed within each memory location, the six
PEs are capable of concurrently accessing a total of 12 pixels. At this point, data
corresponding to a 3 X 4 window is available for processing. The 3 X 4 window
referred to here lies within the range i = 0 to 2 and j = 0 to 3. Two complete 3 X 3
windows lie within this 3 X 4 window and may therefore be processed at once.

The two rightmost columns of data in the window (j = 2 and 3) are stored

in registers internal to the FPGAs. This storage helps create two additional 3 X 3
windows every time a 3 X 4 window is formed.

In the subsequent read cycle, four new pixels for each of the first three rows

(j = 4 to 7) are read from memory. Since two columns have been stored in internal
FPGA registers, the effective window size is 3 X 6 instead of 3 X 4. Four 3 X 3
windows may be formed from this window and thus four median values may be
computed simultaneously.

This process continues with the 3 X 4 window sliding four pixels to the right
in every read operation. Once the window reaches the extreme-right border of the
image (j = 488 to 511), it “wraps” around in a “snake-like” fashion such that it
moves one row to the bottom and starts from the leftmost border. The process of

sliding right is resumed. This procedure continues for the entire frame and the pixels
within each window are delivered to PE-9 through PE-12, which process them to

compute a median value.

The design does not require the entire image to be stored in memory. Only
three rows are sufficient at any point of time. The latency between the input and

output frames is approximately three rows—a latency that is typically achieved by
dedicated image processing hardware. A substantial number of data transfers are
required between the Processing Elements on the Array Board, and this requires
switching the crossbar configuration every clock cycle. This switching is controlled
by the Xilinx element PE-O. PE-O is programmed such that in every clock cycle, it
switches to one of the three possible crossbar configurations, which are user-specified.

This design has been tested using the image shown in Figure 11.8. Noise was
artificially introduced into the input image, and has been removed in the filtered
image produced by Splash 2. Also, careful observation reveals contours or regions of
small plateaus formed in the resulting image. This is another result that is expected

 

        
Petitioner Microsoft Corporati - Ex. 1007, p. 152

 



Petitioner Microsoft Corporation - Ex. 1007, p. 153

 

 
 

Section 11.5 Case Study: Image Pyramid Generation 153

  
(a) (b)

FIGURE 11.8 (a) Input test image for median filtering. This is a 512 X 512 gray—scale image
that is presented to Splash 2. To demonstrate the noise—cleaning effect of median filtering,
noise is deliberately introduced in the image. This is seen as black and white spots. (b) Median—
filtered image obtained from Splash 2. The noise that was introduced in the original image
has been filtered out. This demonstrates the noise—cleaning property of the median filter.

by median filtering. The image obtained by simulation using a C program compares
well with the result image obtained from Splash 2, differing only in the pixel values

at the frame edges. This difference arises because the border effect is ignored in the
Splash 2 design.

With a 10 MHZ clock on VTSPLASH (the video pixel rate), the time to process

one frame is 0.027 seconds. The same task, written in C, and compiled with the

appropriate optimizations, requires 8.0 seconds on a SPARCstation—2 and 3.75 sec-
onds on a SPARCstation—lO. The implementation presented here performs a number

of arithmetic and memory operations in parallel. Although this is difficult to quantify,
there are roughly 39 arithmetic/logical operations performed each clock cycle,3 and
effectively three memory operations per clock cycle. Based on these factors alone,
this application effectively performs 420 million operations per second.

11.5 CASE STUDY: IMAGE PYRAMID GENERATION

Multiresolution and multirate image processing techniques have become increasingly

popular over the past decade because of the advantages of processing image data
at different scales. A basic data structure used in multiresolution and multirate pro-

cessing is the image pyramid, which is a complete image representation at different

3In a hardware implementation, the process of identifying “operations” that correspond to in-
structions found in typical microprocessors is somewhat subjective. In this approximation, only major
“word”—wise operations (such as add or shift) were considered.
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levels of resolution. An image pyramid is constructed by recursively applying two

basic operations~filtering and subsampling—to an image, creating a set of images
of decreasing size and spatial resolution. Filtering is performed to convolve the input

image with a family of local, symmetric smoothing functions. Subsampling then pro-
duces samples for the images at the next-higher scale. The two most common image

pyramids are the Gaussian (low—pass) and the Laplacian (band-pass) pyramids [6].

11.5.1 Gaussian Pyramid

The sequence of images g0, g1, . . . , gk_1 as shown in Figure 11.9a is called a Gaus—
sian pyramid. A weighting function that resembles the Gaussian probability distribu—
tion is applied to each pixel neighborhood of the original video image go to generate
the lower—resolution image g1, which is used in turn to generate g2, and so on.

The level—to—level filtering and resampling can be expressed as a function REDUCE as
shown below:

gk 2 REDUCE(gk_1) (11.1)

where each pixel value in gk is obtained by a weighted sum of pixels from gk_1,

computed over a 5 x 5 neighborhood as follows [18]:

2 2

gum: Z Z w<m,n>gk_1<2i—m,2j—n> (11.2)m=~2 n=—2

To simplify the computational requirements, the 5 x 5 weighting function a) is
often chosen to be separable into two one-dimensional filters: a)(m, n) = cox (m)a)(n).

FIGURE 11.9 Example Data Produced from (a) a Gaussian Pyramid, and (b) a Laplacian
Pyramid (from [27]). ‘

 

: (a)

, <b>
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The function REDUCE in Equation (11.2) is then split into two functions, REDUCEX and
REDUCEYZ

2

gm, 1') = REDUCEX<gk_1> = Z wx(m>gk_1(2i — m, j)
i "1.7-2 (11.3)

gk(i, j) = REDUCEY(gk,x) = Z wx(n)gk,x(i, 21' — n)
m=—2

The 1—D weighting function in the vertical direction, coy, is usually the trans-

pose of the function in the horizontal direction, cox. The functions cox and my are con-

structed so that it is normalized (212:4 w(i) = 1), symmetric (w(i) = co(~i)), and
the equal contribution rule [25] which requires that a + 2c = 2b, where a = a)(0),
b = a)(—1) = 50(1), and c = w(—2) = a)(2). Although other solutions are pos-

sible, these three constraints are satisfied when a)(0) = a, a)(l) = 1/4, and a)(2) =

1/4 — a/2. The equivalent weighting function is particularly Gaussian—like when a is
around 0.4. For implementation in digital logic, it is convenient to choose a = 3/8,
b=1/16,andc=1/4. ,

Since the denominators of all weighting factors are powers of two, the multi- l
plication of image pixels by the weighting factors can be simply implemented using !
binary shift operations. For instance, a pixel multiplied by 3/8 is the sum of the value 5
shifted two places to the right plus the original value, all shifted three places to the !‘
right. i

To maintain numerical accuracy, the summation elements have been expanded

to 12 bits each. Four bits with values of O are appended to the right of each image 5

pixel value before computation. The eight most significant bits of the final result are
maintained.

11.5.2 Two Implementations for Gaussian Pyramid on Splash 2

Figure 11.103 shows the block diagram of a five-chip pyramid generation architecture
that has been developed for Splash 2 [1, 7]. This implementation is based on the
recirculating pipeline structure, and is designed to produce five levels of pyramids (go 1

through g5). Although compact, this architecture is capable of converting only every it
other image frame into pyramid form (15 frames per second). The Control Element 1
PE-O buffers image pixels, and passes the data to Processing Element PE-l through i
the crossbar. The processing steps of this architecture are horizontal convolution by i
cox (Processing Element PE—l), vertical convolution by (0, (Processing Elements PE-2 I
and PE—3), and recirculating and output image production (Processing Element PE—4). ‘

The Control Element PE-O broadcasts image pixels, representing go, through

the crossbar to Processing Elements PE-l through PE-3, which compute the first

' level of the Gaussian pyramid, g1. Image data is recirculated through the crossbar
to PE-l, and processed through the same path to form the higher pyramid levels.
Two different crossbar configurations are used to multiplex the original image data 1
and feedback pyramid data. PE—O controls the crossbar configuration, which is used [
during processing. ' '

Device PE-l receives image data from either PE~0 or PE—4 through the cross- J;
bar, computes the convolution by cox, and passes the result to PE-2. Resampling in
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FIGURE 11.10 Examples of the Communications Structure and Partitioning of One—Board
Pyramid Applications. a) simple five—level Gaussian Pyramid generator, b) Gaussian Pyramid

l generator using the hybrid pipeline architecture, and c) five—level Laplacian Pyramid generator.
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the horizontal dimension is performed during the convolution to eliminate half of
the computations. The image data that is passed to PE-Z has half of the pixels per
image row.

The image data' is presented into Splash 2 one row at a time in raster order.
The 8—bit image pixels that are presented to PE-l are grouped so that four pixels
are passed simultaneously on the crossbar. Four control bits on this data path are
appended to indicate data validity and the pyramid level.

PE-Z and PE-3 together implement the convolution by coy. Unlike the convo—
lution in the horizontal direction, the five pixels required by each computation are

not presented in the same image row, but in five consecutive rows. The image data,
therefore, needs to be stored in a delay line, which is implemented using the external
RAMs. One memory write and four memory reads are needed for sequencing the
data for each 5 x 1 convolution. Only one memory write and two memory reads
are allowed in four Splash 2 cycles because of access constraints. PE-2 computes
three of the five partial sums, and passes the 12-bit partial result directly to PE-3.
PE-3 performs the remaining three partial sums, and passes the rounded 8-bit value
to PE—4.

PE—4 resamples the image data in the vertical dimension to reduce the number
of pixels per image—column by half. The data are then recirculated to PE-l through
the crossbar to form the next level of the pyramid. Each pyramid level is also made
available to the next Processing Element, PE-S, for further analysis.

11.5.3 The Hybrid Pipeline Gaussian Pyramid Structure

The block diagram of a nine-chip hybrid structure of a Gaussian pyramid generator
is shown in Figure ll.10b. The original image pixel (g0) are passed to PE-l directly
from the input stream, and are processed through Processing Elements PE—l through
PE-4 to form the first—level Gaussian pyramid, g1. Processing Elements PE—S through
PE-S generate the remaining four levels of the pyramid. PE-9 takes data from PE—4
and PE—S to form the resulting pyramids.

The hybrid implementation requires five more PEs than the recalculating
implementation. The two stages comprised of PE-l through PE-4 and PE-S through
PE-8 are very similar in structure. The key advantage of this algorithm (at the cost
of four additional PEs) is that it is capable of generating Gaussian pyramids in real
time (30 frames per second).

11.5.4 The Laplacian Pyramid

The Laplacian pyramid as illustrated in Figure 11.9b is a sequence of difference
images, in which each image is the difference between two successive Gaussian
levels. Two types of Laplacian pyramids are in common use: the filter-subtract-
decimate (FSD) structure and the reduce—expand (RE) structure [6].

The FSD Laplacian is formed by subtracting a filtered image of the next-higher
Gaussian pyramid level from the same level of the pyramid image. The kth level of
the FSD Laplacian pyramid can be expressed as,

$300.1) = gm; 1) - gala,» (11.4)

where ng+1 is the (k + 1)th level of the filtered Gaussian image before subsampling.

Petitioner Microsoft Corporation - Ex. 1007, p. 157

 

           

 



Petitioner Microsoft Corporation - Ex. 1007, p. 158

 

158 High—Speed Image Processing with Splash 2 Chapter ll

The RE pyramid generation structure includes two basic operations: image

expansion and image subtraction. The EXPAND operation can be regarded

as the reverse of the REDUCE function in Gaussian pyramid generation. First, the

1 image size is doubled by inserting a pixel with a gray level of ‘0’ between two suc-
cessive pixels in every row and column. The expanded image is then convolved by

1 the same Gaussian-like weighting function. As was done for the REDUCE function, the
1 EXPAND operation is split into two l—D identical convolutions applied to the image in

1 both horizontal and vertical direction. The l-D operation can be expressed as below:
1

l . 2
1 .wo=223mmye~m) (no
1 m=—2

and

g (g) if x is even
i ge(x) = (11-6)

1 0 if x is odd

1 where g(x) is the Gaussian pyramid image, and gi (x) and ge (x) are the ID interpo-
1 lated and expanded image, respectively. The above equations can also be represented

1 in a more explicit way:

_ 2 x [w(—2) xg (3‘2—+1)+w(0) X g (g) + a)(2) x 543—1)], if x is even
1 8105) =
‘ 2x[w(—1)xg(%)+w(1)xg(£;—1)], ifx is odd

(11.7)

Replacing the weighting factors (w(——2), . . . , a)(2)) with their values [1—16- %, g, %, 11—6],
the equation can be simplified as follows: '

i . %x[g(§+1)+g(3‘2——1)]+%xg(§), ifxiseven
, 5,206): (11.8)

1x1g<¥>+g<§>11 ifxisodd

     
The odd—numbered pixel of the expanded image is equal to the weighted sum

of two pixels in the Gaussian pyramid, and the even—numbered pixel is the weighted

sum of three pixels, for instance pixels 1 and 4. The 1-D EXPAND operation can

be considered as functions of 2-by-1 convolutions and 3-by-l convolutions, with

weighting functions of B, i] and E, g, a, respectively. Both weighting functions
are normalized and symmetric as well. The edge pixels 0, 8, and 9 are not defined

in Equation (11.4). In this design, the first and last calculated values, pixels 1 and 7,

are duplicated to form the edge.

Once the pyramid is expanded to have the same size as the next-higher resolu—

tion pyramid, the subtraction operation is applied to obtain one Laplacian pyramid

level. The function is expressed as:

LVflD=a¢D—flflfl) (um .:

where gint is the interpolated image constructed from ge. 1
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11.5.5 Implementation of the Laplacian Pyramid on Splash 2

The Laplacian pyramid-generation system consists of two major parts: Gaussian pyra-

mid generation, and image subtraction. The system uses the recirculating pipeline

structure, as presented in the previous section, to generate a Gaussian image pyra—

mid. After the Gaussian pyramid is generated from Processing Elements PE-O through

PE-4, the Laplacian pyramid is computed by Processing Elements PE-5 through

PE-lO, as shown in Figure 5.2. The data is passed directly to Processing Ele-

ment PE-S, and to PE—7 and PE-8 through the crossbar. Devices PE-S and PE-6

implement the EXPAND operation in the horizontal and vertical directions, respec—

tively. The pixel-by-pixel SUBTRACTION operation is then implemented in chips PE-7

and PE—8 to generate a difference image. PE—9 and PE-10 reformat the images for
output.

As described in the previous section, the data output from PE-4 to PE-S is the

image data directly from the “XP_Right” port of device PE—3. The 36-bit-wide bus

carries only 20 bits of useful information: two 8-bit image pixels and four control
bits. Since PE—3 does not perform the subsampling function in the vertical direction,

the even-numbered rows of the image data are ignored in future data processing. A

depiction of this implementation is given in Figure 11.100.

11.6 PERFORMANCE

This section provides a quantitative summary of the performance of VTSPLASH for the

operations discussed in the previous section. The computational properties, commu—
nications architectures, and required resources vary significantly from one application

to the next. All of these examples operate at the pixel clock rate of 10 MHz with

512 x 512 images. Many of the applications presented here have been implemented

using a pipeline architecture. The pipeline accepts digitized image data in raster

order, often directly from a camera, and, in most cases, produces output data at the

same rate, possibly with some latency. Many of these applications can be chained

together to form higher-level image processing functions.

Simplified block diagrams illustrating the partitioning and communication
architecture for selected tasks are shown in Figure 11.11. For example, Figure 11.11a

shows the architecture for a region detection and labeling application [18]. This appli-

cation analyzes an image to distinguish foreground objects from background through

thresholding, and then for each foreground image, a unique label is assigned. This
task is a useful front end for applications such as recognition, industrial inspec-

tion, and tracking. After the image is appropriately thresholded, an initial estimate

is made of the disjoint regions in the image by the block labeled Pass 1 Labeling.

It may be subsequently discovered that regions that were initially disjoint are actu-

ally contiguous. Such regions need to be merged and assigned the same label. This

is accomplished in the following two blocks, Pass 2 Merging (EVEN) and Pass 2
Merging (ODD).

Conventional performance-benchmarking techniques are at best awkward

when applied to custom computing machinery. Figure 11.12 illustrates graphically‘

the computational performance of each of these tasks executing on the VTSPLASH

platform. In the figure, the application name is listed to the left of the graph. The
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FIGURE 11.11 Examples of the Communications Structure and Partitioning for Examples
that Use Only One Splash 2 Processor Array. a) region detection and labeling, b) FFT (forward
transform), and c) Hough transform. Solid squares at Processing Element sites denote unused
Processing Elements.
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performance bar associated with each task consists of two or three components. The
first component (arithmetic/logical) is an appraisal of the number of general-purpose
operations performed, on average, per second. (These are operations that are likely
to be found in the repertory of common RISC processors, such as MULTIPLY, XOR,
or COMPARE.) This number, when divided by the pixel clock frequency of 10 MHz,
gives an indication of the average number of the easily discernible arithmetic and
logic function units (word parallel) that are active in each task. The second com—
ponent of the performance bar provides an estimate of the number of storage ref-
erences (memory accesses) performed by the task per second. The third component
represents the number of floating-point operations. All of the tasks, except for the
2D-FFT application, use fixed-point operators. The pixel calculations for the 2D-FFT
task utilize custom—designed floating-point arithmetic. The combination of these three
components provides a basis for quantifying the computational load of each of the

1. tasks, and provides a rough estimate of the number of operations performed each
1 second.

, The operating speed for an application is under the control of the designer,
; and depends upon critical path delays in the implementation. The Splash 2 processor

features a programmable system clock that can be varied under software control
from zero to 40 MHz. The tasks developed in this project were made to satisfy the
minimum criteria of operating at the pixel data rate of 10 MHz. Because of limitations
of the image data source, the listed applications were tested only at this rate. It is
feasible that some of these tasks operate well beyond this clock frequency.

In addition to quantifying the number of operations per second, it is useful to
consider how fast computations are performed relative to the input image frame rate
of 30 Hz. Some of the tasks are completed during one frame time (histogramming,
median filtering, Gaussian pyramid generation, and gray—scale morphological opera—
tions). Others require two image frame times (region labeling, 8 X 8 convolution, and
Laplacian pyramid generation). The FFT implementation can completely process two
512 x 512 images per second (or 128 x 128 images at 30 frames per second) [21].
The time to complete the Hough transform is image-dependent; the implementation

.1 shown in Figure 11.11c distributes equal portions of an input image to separate PEs
: that process in parallel.

Another method of benchmarking the performance is to compare with con—

temporary machines. Comparisons were made with a general-purpose workstation
(a Sun SPARCstation—lO). The VTSPLASH applications run between 10 to 100 times
faster than the same application written in C and executed on the SPARC worksta-
tion. A number of commercial machines exist that have been designed specifically

for image processing. The Datacube MaxVideo 200 [8], for example, consists of
several functional units that have been carefully tuned to perform common image—

processing tasks. In most cases, for the specific tasks that are implemented by the
application—specific hardware, the VTSPLASH system is outperformed. For example,
the MaxVideo 200 can perform 8 X 8 convolution four times faster than the exist-
ing VTSPLASH implementation. The motivation of the custom-computing approach,
therefore, is not to provide the fastest possible performance for a given task. As
illustrated by VTSPLASH, the strength of this approach is the ability of the system
to be reconfigured to provide high performance for a wide range of tasks. The per-
formance of application-specific systems diminishes quickly for tasks that are not 1
directly supported in hardware. ' l
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11.7 SUMMARY

Reconfigurable computing platforms, such as Splash 2, can readily adapt to meet the
communication and computational requirements of a wide variety of applications.
With the addition of input/output hardware, we have demonstrated that general—

purpose custom computing machines are well suited for many meaningful image pro-
cessing tasks. Such platforms are excellent testbeds for prototyping high-performance
algorithms. The custom computing platform can be viewed not only as a general-
purpose computing engine, but also as:

o a medium for hardware/software codesign

o a VHDL accelerator

o a testbed for rapid prototyping

Furthermore, the platform is multi-use since it can be reconfigured from one task to
another by downloading a hardware-personalization database.

Applications operational on the VTSPLASH laboratory system include:

0 2—D Fast Fourier Transform (using floating point)

0 Expandable 8 X 8 convolver (with on—line filter adjustment)
0 Pan and zoom

0 Median filtering

0 Morphologic operators

0 Histogram and graphical display

0 Region detection and labeling

Splash is representative of the state of the art in custom computing processors——
both in hardware capabilities and software support—-yet it requires a substantial
time investment to develop an application. To make this class of machinery more

widely accepted and cost—effective, methods must be developed to reduce application
development time. There are several promising endeavors that focus on this issue
[3,5, 12, 15].
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CHAPTER 1 2
 

The Promise and

the Problems

Duncan A. Buell and Jeflrey M. Arnold

The time has come to reflect upon what we have done. The soldering irons have

grown cold on the workbenches, the celebration cake has long been eaten, and even

the T-shirts are fading from too many launderings. What have we learned? Where

did we go right? Where did we go wrong? Have suppositions been confirmed as facts

or debunked as myths? Most important, for it is the whole basis for research, what

from our experience might prove valuable to the next builders of such hardware?

12.1 SOME BOTTOM-LINE CONCLUSIONS

12.1.1 High Bandwidth I/O Is a Must

This will come as no surprise to anyone in the traditional high-performance computing

business, but in our situation, the rationale is slightly different. We have, in a CCM,

relatively little state that can be retained in the processor portion of the machine. To

achieve high performance, then, one must have an application that requires extensive

computation localized on a very small amount of data or a computation that requires

relatively little state but is “compute—intensive” because it must be done to a relatively

large volume of data. The RSA encryption/decryption algorithm done by Shand et al.

[3] at the DEC Paris lab—modular exponentiation of 512—bit integers with 512-bit

exponents—is an example of the former kind of application but we have found such

applications, in general, to be rare. The latter category of applications, including signal

processing, image processing, data compression, and the like, appear to predominate.

To handle such applications, it must be possible to get data to the CCM at a rate that

permits the FPGAs to demonstrate their computational superiority.

166
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; Another issue that contributes to the desire to operate on large sets or continuous

streams of data is the relatively high cost of loading an application “program” onto the
FPGA. A Xilinx XC4010 takes about 22 msec to configure (180, 000 bits at 8 MHz).

With system overhead from a workstation disk, this can approach 100 msec. At a
clock speed of 20 MHz, 100 msec is 2 million cycles lost to reconfiguration. If each
configuration of the FPGA ran for as many as 2 million cycles, the CCM would
be utilized only half the time; to achieve 90 percent utilization, each configuration
would need to execute on the order of 18 million cycles.

A corollary of the conclusion that I/O bandwidth is important is that 110 from
the CCM to the outside world, and not just to the host computer, is essential. The

4 Mbytes per second or so that can be delivered from a SCSI disk is not enough.
In the world of supercomputers, it is often observed that one of the few attributes

distinguishing a supercomputer from a high—performance workstation is the speed at
which data can be delivered from disk to processor. CCMs are unlikely to be designed

to connect to supercomputers, if only because the small number of supercomputers
makes it difficult for a commercial CCM industry to develop around them. We

believe, therefore, that for CCMs to become commercially successful there must be
a model of data flow and control similar to that of Splash 2: in addition to the usual

programming and control lines to the host (workstation), there must be an ability to
take data from some other source at rates much higher than workstation disks allow.
We remark that our conclusion here seems to be consistent with the thoughts behind

and design of the DEC systems.

2

l

lg

E

li3

12.1.2 Memory ls 21 Must

We have reasoned that a CCM like Splash 2 needs high I/O bandwidth because

‘1 the computations must be relatively simple and must require relatively little state.
1 Therefore, in order to be useful, the CCM must process a large volume of data.

Our conclusion that it is important to have as much memory as possible as close

to the FPGAs as possible stems from a similar line of reasoning. The Processing
Elements one designs into the FPGAs must be relatively simple; the FPGAs are
not yet large enough to accommodate complex objects, and they operate at speeds
that are slow by microprocessor standards, so multiple-tick state machines are not
going to provide a performance advantage unless significant pipelining is possible.
It has been our experience that including memory for lookup tables and similar
augmentations of processor state is absolutely vital to obtaining high performance.
Memory is essential, and the more memory the better, because it permits, among
other things, a fast horizontal encoding that requires little logic to implement, instead
of a vertical encoding that takes either more complex logic or more pipeline steps.

We point out here, as was mentioned once before, that some of the lookup tables
one might want to use would be much larger than could reasonably be implemented
in any system. A lookup table for an 8—bit by 8-bit multiplier requires only % Mbyte
of memory, for example, but an only slightly less modest 12—bit by 12—bit multiplier
requires 48 Mbytes. We further mention that the memory structure can also be
important. We were pin-limited in Splash 2 and coupled one memory to one FPGA.
As FPGAs accommodate larger and larger designs on a single chip, the probability

will grow that more than one part of a given chip’s design will need to access memory
in the same clock period. The data stream-oriented computations on Splash 2 tended
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to have many small computational units in a pipeline. It can easily happen that each

of these needs its own lookup table but more than one exists on a single FPGA,

making a single memory port the bottleneck.
To some extent our conclusion here differs from what one might deduce from

the work at DEC, but we remain skeptical of designs in which the FPGAs and

the memories lie in separate clusters. There has been work and there seems to be

continuing interest in single chips or in multi—chip modules that closely couple pro-

grammable logic and memory. Either arrangement would enlarge the processor state

without continuing the current limitations, faced by Splash 2 and all other present

systems, of insufficient pins for the memory bandwidth desired plus the inherent

loss of speed in having to go off-chip for memory references. The disadvantage of

this approach (at least the single—chip approach) is that the amount of memory that

can be integrated with the processor is severely limited. This implies the need for

a hierarchical memory, that is, a larger external backing store in addition to the

on—chip memory, which would now function much as a cache functions in traditional

processor architectures.

12.1.3 Programming Is Possible, and Becoming More So

We began Splash 2 with the firm belief that it would be possible to program Splash 2

from a high—level language, but without any clear notion of exactly how this would

be accomplished. Our belief has not turned out to be a delusion, and the clear ideas of

how to accomplish the desired ends came to us as we progressed in the project. There

were questions about whether an appropriate subset of VHDL could be identified as

the high-level “programming language.” There were questions about whether the

VHDL environment provided by vendors would provide the support we needed and,

if not, whether our own augmentations could be made. There were a number of

questions about the ability to sequence the vendors’ tools into a compilation process.

In part due to our sponsorship of work on the Synopsys FPGA Compiler and in

part as a consequence of more general interest in CCMs, the path from high-level
VHDL to Xilinx bitstream files is much smoother than it was three years ago. Xilinx,

on the one hand, has raised the level at which their software supports design—the

XBLOX tool allows circuit designers to use much larger building blocks of registers,

sequencers, and the like, instead of constructing them individually from CLBs. From

the top down, Synopsys has made a serious commitment to target the architecture of

FPGAs in the technology—mapping phase of logic synthesis so that the resources of
Xilinx (and other) FPGAs can be used efficiently and achieve performance closer to

that attainable with handcrafted designs. There is now a reasonably smooth process

from VHDL to Xilinx chips that yields acceptably high performance, and the situation
will no doubt continue to improve in the future.

12.1.4 The Programming Environment Is Crucial

We have asserted that programming of CCMS is in fact possible. We now maintain

further that the great effort we expended to create a complete programming environ—

ment has been crucial to users’ acceptance of the fact that a CCM is to be Viewed

as a “computer.” '
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Users of modern computer systems expect an interactive programming environ-

ment. They expect to be able to compile programs quickly, test them on sample data,

step them through a debugger, and examine the resulting output. With many experi-

mental hardware systems, performing these tasks on the hardware itself can be quite

difficult. Complicating the usual problems of dealing with experimental hardware

(which one might imagine to be of questionable reliability) is the very significant

problem for Splash 2 and for similar CCMs of the time required for logic synthesis

and the placement and routing of the netlist onto the Xilinx chips. In the absence of
the simulation environment that allowed programs to be written and debugged until

they were functionally correct, we doubt that many of our applications would have

been completed. Certainly we feel that none of the “users” (as distinct from the “true

believers”) would have been willing to follow through to a completed application

without the full panoply of simulation and development tools available to them.

A further reason to stress this point is that although, on the one hand a solid

programming environment is an obvious desideratum, its achievement requires the

cooperation of vendors. In order for T2 to be successful in a debugging mode, it was

necessary that T2 be able to associate with the objects of the synthesis process the ,3

VHDL objects named within the program; otherwise, it would not be possible for E
T2 to examine the state in the FPGAs for debugging purposes. Similarly, although

users need not ordinarily be concerned with information at the bitstream file level,

those who would write system software and programming development tools may
have occasion to need some of this information, at least the placement or mapping

of flip-flops to CLBs and the ability to extract the flip—flop state from the chip in i

readback mode for debugging. Certainly, if one is to envision a CCM acting as a '

closely connected coprocessor instead of as an attached processor “at cable’s lengt ”

like Splash 2, some details are also necessary. One concept being explored is the idea

of swapping parts of a design on an FPGA in and out, in the way that code is swapped
in and out of virtual memory. This will require that the systems software writer have

access to information about the location of the portions of the design to be swapped

out, and the I/O paths in and out of those regions of the FPGA. Swapping hardware

also implies the need to constrain the physical mapping phase of compilation to lay

the logic out in particular shapes, or use only particular portions of the chip.

E
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12.2 TO WHERE FROM HERE?

Throughout the Splash 2 project, we were asked the obvious question, “Will there

be a Splash 3?” That question has always been answered in the negative. There

have never been plans to do a third—version system, largely because Splash 2 is, if
anything, already too complex and contains too many features.

This is not a statement that Splash 2 is flawed in its design, but rather the simple

admission that it would make a poor “product” in its present form, something that

has been recognized by the commercial licensees—none of the commercial versions
contains all the features of the original Splash 2 system. Splash 2 was designed

to be large enough to deliver high performance through parallelism, and yet few

applications really used anything like the full complement of hardware that could 7

be assembled. It was designed with a rich interconnect structure, and yet many

applications use only a small part of the interconnect.  
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In general, we find that while all the features of the system have been used

at one time or another, any single application uses only a subset of the features.

And, given that we are on the edge of what can reasonably be put on a board or

in a system, the cost of the features is not linear with their number. If we had to

do it all over again, there are certainly some things we would change. With more

pins on a Xilinx chip, we could have a 32—bit data path to memory instead of only
16. With the newer, larger, Xilinx FPGAs, we could get more logic on a chip and

board and achieve higher performance. We have an extra address pin left over, and

we would certainly like to double the memory attached to each FPGA. But these

possibilities, intriguing as they are, represent incremental changes in the hardware

to the inevitable progress of technology. What should concern us more is not the

moving target of state—of—the-art technology but the broader choices of architecture,

programming style, and applications for which a Custom Computing Machine makes
sense.

It is within this broader framework that we realize that no good follow—on to

Splash 2 exists because the major goals of the research effort have been met. Splash 2

was largely a research prototype, although some of the requirements for “real work”

to be done go beyond those normally expected of such a prototype. The major goals

were to build the attached processor, to demonstrate its computational effectiveness,

and to demonstrate that it could be programmed. These have been met, and although

there are many research questions to be addressed, none of these require the building

of a “bigger and better” next version of this machine.

This is not to say that Splash 2 is “the last word” in CCMs. Rather, it is to

say that the benefits to be gained from building a Splash 2-like machine for research

purposes probably do not outweigh the costs. If one had real applications and real
customers for a similar machine, the conclusion on costs and benefits might be

different, but the decision for research purposes seems clear. A bigger machine does

not seem warranted. Splash 2 was extensible in terms of number of Array Boards

beyond what we found we had applications to support, and although one could now

build, with flat-pack FPGAs, a board with more compute power on it, it does not

seem clear that research conclusions could be drawn from the new system that could

not be drawn by extrapolation from Splash 2.

The Array Board architecture similarly seems, if not optimal, at least suf—-

ficiently general yet capable of high performance, such that variations within its

genre are unjustified. The two basic modes of data flow—linear and broadcast~—

are well supported and augmented by a crossbar whose full range of capabilities
was never needed. Here, as elsewhere, we believe the research value of this part

of the design space has been adequately explored. We can easily imagine a worth—

while machine produced for a niche market that resembles Splash 2. We can eas—

ily imagine other architectures (a richer hierarchical machine, for example, with
clusters of FPGAs at each level of a tree structure). We can easily imagine that

changes in or improvements to FPGA technology (for example, greater on-board

memory, perhaps content—addressable memory, incorporation of higher-level func—

tions, incorporation of FPGAs onto multi—chip modules) might introduce new rea-

sons to engineer a Splash 2-like machine. But absent these justifications, we do

not feel that research conducted in the building of another Splash 2—like machine

is likely to lead to conclusions that could not readily be predicted from studies on

Splash 2. ‘
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It is worth mentioning one major architectural feature that one would want to

change in a next-generation machine. Splash 2 was oriented toward computations in

, which the data streamed past processing elements. The 36-bit—wide data path allows
, both parallel single-bit streams or wider, word-oriented streams. On a given Array
3 Board, substantial interconnect allows for adjustments in time of the data stream.
2 Similarly, when programmed as a SIMD machine, extensive broadcast capability
l exists, as well as an efficient back door for removal of a result stream. Looked at
i this way, the next architectural step is obvious, and almost impossible. One would
i like to provide, at a board—to—board level, the rich interconnect that exists on the

l individual boards. This is the problem we dealt with in Chapter 4 in discussing the
l
l
l
l

l
l

 
evolution of the Splash 2 architecture. Providing the same level of interconnect among
the boards that the FPGAs have on each board is a complicated matter, however,

and one must ask whether the payoff justifies the expense. The answer, in terms of

good applications that were made impossible due only to insufficient board—to—board
communication, is no.

The problem of board-to-board communication is not unique to Splash 2 and its
orientation toward a linear data stream. The DEC PeRLe PAM, with its Xilinx chips

arranged in a two—dimensional grid, suffers from the same problem—at some point,
an application might outgrow a single board and require substantial communication
from one board to another. Fortunately, however, with Splash 2 we seem to win

on both fronts. Not only does it appear that most reasonable computations can be
done with at most a small number of boards requiring little communication among

them (and we are sincere in our belief that we have not begged the question here),
the omnipresent march of technology makes it possible to put more and more onto a
single board, so that the problem should be getting less, rather than more, pronounced
with time.

In retrospect, the most problematic feature of the Splash 2 architecture—the
crossbarl—was perhaps not worth the effort, although there was no way to pre-
dict the events that occurred. The features of the crossbar—multiple configurations,

dynamic choice of configuration, one-tick latency—were all used in one application
or another, but each can be obtained (at some cost) by means of other switch chips
or architectures.

 
 

12.3 IF NOT SPLASH 3, THEN WHAT?
g

% Having decided that Splash 3 is not in the offing, it is reasonable to ask what sort
, of future research does make sense. We do not feel that the end of the CCM idea

has been reached, and we expect that, in addition to other machines independently
designed, several variations on our general theme (Splash 2a, Splash 2,8, . . . , if you

i will) will appear.

l What we have claimed in the previous section is that the Splash 2 line of
l research machines for demonstration purposes is (at least temporarily) at an end,
i with strongly positive conclusions: sufficient compute power exists in an attached
i; processor to obtain high performance, data can be delivered at a rate high enough to
l keep the processor busy and meet real-world constraints, and the machine can in fact ‘
l

ll

l
1The reader should consult Appendix A for the saga of the crossbar chips.  
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be programmed. What we see as future work is an elaboration of the hardware and
software ideas for CCMs, now that we know that such elaboration could be worth-

while: not only must existence precede essence, but in the real world of engineering
design the existence of follow-on machines must be justified by the success of their
predecessors. We present some thoughts, then, on areas ripe for further work.

12.3.1 Architectures

There are strong arguments in favor of a trend toward physically smaller rather
than larger systems. It is difficult to justify the price of very large systems, and such
systems, with the added cabinet, backplane, interfacing, and such, are inherently more
cumbersome to build. Also, as systems get physically larger, it becomes more difficult

to keep propagation delays down. CCMs tend to get much of their performance
advantage from tightly pipelined and carefully, explicitly, synchronized computations;
these become more difficult to achieve in a system in which the propagation delays,

5 which must be taken into account, have more than one value.

; Mitigating the problem of justifying large systems is the fact that as technology
l

ll

l

   
advances, small systems tend more and more to deliver the processing capability

of large systems. A further advantage that comes with making systems smaller and
therefore cheaper is that they can be specialized to a particular collection of appli-
cations. These CCMs are inherently things that need not be single-purpose but are

not likely in the near future to be general-purpose; one clear trend is toward pro-

grammable systems within a particular market. For example, there have been several
designs from commercial vendors that combine DSP chips and FPGAs on a single
board, aimed at signal-processing tasks of various kinds. None of these of which
we are aware are “programmable” yet in the sense that Splash 2 is programmable—

applications are still designed using CAD tools. But with the success of Splash 2
and of the DEC PeRLe systems and the growing awareness of the ability to make
detailed circuit design unnecessary by the use of higher-level tools, we have no doubt

l that programming of such systems will come in the near future.
1 If physically smaller systems seem to be the trend, the following is, we feel,

an argument against logically smaller systems. For the foreseeable future, CCMs
will be one to two generations behind general-purpose machines, since commodity

microprocessors and not FPGAs drive the technology and the market. In terms of
logic performance (that is, clock rate), general-purpose machines start with about an
order of magnitude advantage over CCMs. A CCM must overcome this disadvantage

just to break even. Then, in order to cover the additional costs of hardware and
software, download time, and such, one can argue that the CCM needs another order

of magnitude in performance improvement to be considered a serious competitor.
These performance advantages are presumably to be made up through parallelism in
the application running on the CCM, but how small can one make a CCM and still
obtain at least 100-fold parallelism? For the next several years at least, we would
argue that systems with only a small number of FPGAs simply will not have the
compute power to be competitive.

Although it is not technically our province to comment on the architecture of
FPGAs themselves, at this point We discuss aspects of chip architecture that directly
affect their use in CCMs. In this discussion, although two competing themes emerge,

we do have a preference. At the grossest level and with the greatest of oversimpli—
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fications, there are two extant architectures in FPGAs. A coarse-grain architecture

has 2—bit or 4—bit logic blocks and routing resources around the blocks. A fine-grain

architecture, by contrast, has l—bit logic blocks (lookup tables with two or sometimes
three inputs, but only one output and only one stored value) with routing of lines
going through the blocks (and thus making them unavailable for other purposes).

I On the one hand, the larger logic block of the coarse-grain architecture is
E attractive, and the 4—bit block especially so, for the purpose of doing arithmetic. On

the other hand, the routing of signals in the fine—grain architecture design is “local,”

so that portions of the chip can be identified with portions of the design. If an ultimate
goal is to dynamically change part of the design on a chip, the fine—grain architecture
is preferable. It avoids one of the problems of the Xilinx architecture, which is that
the signals on routing resources adjacent to CLBs can come from distant parts of the
design and be relatively unrelated to the computation being performed in the CLB.

We have already mentioned the issue of including memory (in quantity) with

E the routing and logic on an FPGA. This would allow the processor element/memory

E pairs of a CCM to be shrunk onto the FPGA itself (or even multiple replicated

  
processor/memory pairs on a single FPGA).

12.3.2 Custom Processors

We have said nothing for the most part about one of the most enticing uses of FPGAs
for Custom Computing Machines—the idea of a custom coprocessor or customizable
processor. If one traces the development of microprocessor architecture through the
19703 and 19805, one can find arguments both for and against the inclusion of

coprocessors in modern workstations. Long ago, in the heyday of such chips as

the 8086, math coprocessors also flourished to do the arithmetic functions that just E
would not fit on chips of that era. Now we find in most modern high-performance

workstations both floating-point and integer arithmetic in the processor chip, and 64— E
bit arithmetic at that. One can legitimately argue that any further “special functions”

that might benefit from an FPGA coprocessor are probably things that could be
included in the next generation’s processor as a matter of course.

On the other hand, it is probably true that among all the computations performed

that need high performance, a rather broad range exists of “special functions” that
would be desirable to have as processor instructions and not in software emulations.

Whether any one of them would be deemed significant enough to warrant its inclusion
in silicon is questionable, and the full list of such possible instructions is no doubt
much longer than what would be feasible in the near future. A more interesting——
and feasible—idea is that the FPGA resource could be incorporated directly onto the

processor chip. If the math coprocessor can make the move, why not the customizable
processor?

A further argument against coprocessors is the extent to which the low—level
hardware and software of the machine must be adapted to permit the coprocessor

to be used. In order for a coprocessor to be of value (implementing an instruction

not found on the processor, for example, just as the 8087 implemented arithmetic
not present on the 8086), the connection between processor and coprocessor must be
very tight. Control of execution of the processor and coprocessor must be maintained
and data passed between the two with the barest minimum of overhead. Exceptional

conditions probably need to be handled in hardware. Most important, it must be
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possible for the compilers and the operating system to recognize when use of the
coprocessor is advantageous, to arrange in advance for the coprocessor’s “program”
to be loaded, and to handle use of the coprocessor so that the only way a user would

detect its presence would be by the decreased execution time.
If the future of coprocessors seems uncertain, the future of genuinely customiz—

able processors seems less so. The dbC approach seems to go the old Burroughs
B1700 one better than its multiple instruction set architectures. However one designs
an Instruction Set Architecture, the fact will remain that much of the silicon resource

on a chip is not actually in use in any given clock cycle. An advantage of the dbC
approach is that, at least as far as the individual program is concerned, only those
resources that are needed must be included. When the day comes that an FPGA (or

its technological successor) permits dynamic reconfiguration while in execution, one
could envision swapping portions of “processor hardware” in and out as needed. A
more limited silicon resource would provide more capability by being reusable for

multiple purposes.

The key to the above idea must come in the ability of the compiler and operating
system to identify “processing units” and locality thereof, to extract and synthesize
these units, and to manipulate their caching and loading with the same facility that
virtual memory is handled today. And this idea will probably not be relevant to all
forms of computation. There is and will no doubt continue to be a solid market
for machines that do those things we now consider ordinary, and unless there is a

substantial portion of a computation that is simply not done well on a traditional
machine, there will be no incentive to try a reconfigurable processor—custom silicon

will always be faster, and mass-market commodity machines will always be cheaper.
But the quicker time-to—market of programmable hardware is an advantage, and if
a selected set of niche markets were to be determined and were then targeted by

commercial operations capable of carrying out successful business plans, then we feel
that such reconfigurable processor machines, whose underlying processor architecture
was defined only at compile-time or runtime, could become almost commonplace.

12.3.3 Languages

Without doubt, the deepest and most fascinating question regarding the evolution of
CCMs is that of their programming models and languages. This is the thorny issue
that has bedeviled those responsible for language software for parallel computers for

nearly two decades. How much detail of the machine should the programmer see?
What is the penalty in performance for a high—level View? Users of high performance
computer systems have usually been willing to endure in the name of speed some
agony not suffered by those for whom speed is not so vital, but it is also true that there
is a limit to the patience of even these stalwarts. Should the cost of programming
surpass an ill-defined and yet very real threshold, the cost is not merely an incremental
loss in the number of users and applications but a rejection of the entire system.

We can look to several different experiences for insight in this issue. Most

significant is our own experience with VHDL and Splash 2. After that, of course, we
can make comparisons with dbC on Splash 2. Finally, there is the work of others,
such as the C extension done at DEC Paris and the VHDL work done by Box at

Lockheed Sanders for CHAMP [1]. All of these can also be viewed merely as the first

steps taken, in part because one could capitalize on existing knowledge and tools. A
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necessary further step is to contemplate in the abstract what would be most desirable
if one were free of the need to consider present cost, personnel, past history, and

backward compatibility.

A great many of the Splash 2 applications were done not as procedural pro—

grams but as a series of processes pipelined together, through which data flowed
., synchronously. These resemble nothing quite so much as programs in discrete event
E system simulation, and a language like VHDL seems highly suitable for this kind

of programming. The SIGNAL data type provides for explicitly concurrent events
and allows the programmer to express in a natural way the parallelism inherent in

f a computation. The fact that SIGNALS are updated with every clock tick allows the
[ programmer to specify very precisely what the synchronization of the concurrent

{ processes is to be. The alternative of the VARIABLE data type, by contrast, is suitable
; for procedural segments of code or for code over whose execution the programmer
g need not take such care.
i The negative side of the program control offered by the explicit parallelism of

E SIGNALS in VHDL is that the programmer must in fact synchronize the updates and
l
l

l

l

  
that “off by one” errors in choreographing this process can be common. We feel
that this does not argue against VHDL so much as it argues in favor of spreadsheet—
like tools that facilitate such programming. The expressiveness of a genuine parallel

language (which VHDL most certainly is) seems to be necessary to achieve the
needed performance. Rather than abandoning the parallelism because it can make
programming difficult, one must work to compensate for the difficulty, with better

g tools.

If many of the Splash 2 applications resemble discrete event system simulation
2 programs, they are also like systolic programs or data flow programs. They differ from

the former in that the processes can vary widely in type and size and the programs
are not nearly so well-structured as are systolic programs. And they differ from data ;

flow programs in that they have more structure—the expected performance advantage
comes in part from the tight pipelining and synchronization of the processes, as ,
mentioned above. ‘

We contemplated at several points in the Splash 2 project an investigation of
one or more of the various languages available for programming in which the control
of execution comes not from an instruction sequencer but from the synchronous flow

of the data. We have no doubt that for many applications this might be a much

more natural model of computation than presently exists. That we have done no such

investigation is due entirely to the fact that we had to stay focused on the main goals
and could not allow ourselves to be too distracted by curiosity from those ends which

had to be accomplished. In the eventual fullness of time, however, we expect that

such a study would be of great value.

One major drawback to the use of a data-driven language and model of com-

putation must be raised. Programming of Splash 2 in VHDL has already proved to
be a bit of a hard sell because VHDL “just isn’t C.” VHDL is nonetheless a DoD

standard, taught to students across the world, used in industry, and supported by very
sophisticated software tools. With all this in its favor, and working against it only
the religious objections and the concerned hand-wringing of middle managers Whose
performance appraisals depend on quantity of present output, how much harder would
it be to gain acceptance of another language, which no doubt would be viewed as
even more exotic?
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It was to a great extent in response to the above concerns that we discussed aug-

menting the standard VHDL framework with features that would make programming
Splash 2 much more C-like (a VHDL++, as it were), or in the other direction remov—

ing from the available VHDL language tools those aspects not needed for Splash 2

programming and potentially confusing or threatening to applications programmers

(to produce VHDL——?). Some of each would seem desirable.

We remark finally that with two different applications the price paid both in
FPGA resources used and in speed of execution was about a factor of three or

less between handcrafted XACT designs and synthesized VHDL code in the normal

Splash 2 programming model. We feel that both are acceptable. The resource estimate

was with an earlier version of the synthesis tools than is presently available, and may

already have improved. The speed differential is not much different from that between
high—level language and assembly code, and thus is not likely to be the deciding factor,

except for those few applications that are even with XACT implementations running

on the margins of acceptable speed.

If the questions surrounding Splash 2 and its normal VHDL programming model

are not of capability but of acceptability, then almost the opposite is true of dbC. .

The language here clearly is C, or as close to C as one can expect to get and still be 3

running on a SIMD machine. There are two basic questions: Can the performance

be great enough to be adequate? Is the range of SIMD applications broad enough to

justify the use of a different language for them? i
We have remarked on the factor-of—three performance difference between XACT

and VHDL. It has been further noticed that roughly the same difference exists

between dbC programs and their “directly VHDL” counterparts. This comes to a

factor of nearly an order of magnitude, which is probably not tolerable. (The genome

sequence comparisons mentioned in Chapters 8 and 9, in contrast, show a factor of

150 superiority for the VHDL version.) There will no doubt always be some penalty

for generating the code automatically through dbC; it remains to be seen whether the

minimized value of this penalty is small enough.

We are much more sanguine about the breadth of SIMD applications. There

are several computational problems—including much of image processing, one nat—

ural area for CCMs—that can be done very effectively as SIMD computations. An

additional argument in favor of a programming model like that of dbC is that SIMD

programs have the same sort of carefully sequenced flow of control that the Splash 2

VHDL programs do. Thus, although the applications are limited and there is a danger

that one might need a VHDL-like programming model as well to handle non—SIMD

aspects of even a largely SIMD computation, we expect that continued work on dbC

is reasonable and will find use in real applications.

We comment finally on a matter that is not just a matter of language but of

the entire programming process for CCMS, and that is the question of upward com-

patibility. It has been crucial in many computing environments for established users

to be able to upgrade hardware without substantially changing programs that rep—

resent their investment of time in the process of solving their problems. It seems

unlikely in this early stage of marketing of CCM that users will be able to avoid

some level of discomfort at the changes in the hardware, programming, and logic

synthesis tools underneath their applications. Clearly, then, to be successful, the

benefits in improved performance will need to be able to overcome this draw—
back. '
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12.4 THE ”KILLER” APPLICATIONS

It seems a staple of the computing industry’s folklore that novel products like CCMs

need to have at least one “killer” application for which the new product is so well

suited that it is clearly the preferred choice. Once the product has gained a foothold in

the commercial marketplace and can be viewed to “exist” in a serious sense, broader

usage is then to be expected. This is part of the very real spinoff and serendipity side

of technology advancement.

What, then, might be those killer applications? Three broad categories seem

clear: a) image processing; b) real-time data handling and control, in which one

finds large volumes of data with computations that are limited in complexity but

relatively unusual if done on standard microprocessors; and 0) rapid prototyping and

architecture emulation, in which reconfigurability of a platform is essential to allow

exploration of alternatives, but for which some sort of hardware solution is required

to provide answers in a reasonably timely manner.

The two chapters on video processing and fingerprint matching are illustrative

of the first of these three categories. The number of basic operations to be performed

in unit time is very high. The operations themselves are not “standard,” often because

arithmetic using relatively few bits is possible. There is a high degree of parallelism

and/or pipelining in the modest collection of algorithms that need to be implemented.

These argue in favor of a hardware solution. And, arguing against ASIC development,

the computations or data formats are not so totally standard and structured that

today’s full-custom hardware can be expected to provide a longer—term solution.

Arguing further in favor of a CCM is that while hardware can be built to handle

data or image compression, convolutional filtering, signal encoding or decoding, and

so forth, with the use of reconfigurable hardware one can use the same hardware, or

at least replicated versions of the same hardware running different programs, rather

than requiring multiple distinct parts. The obvious advantages then apply with respect

to building and maintaining the hardware and the application programmer/designer

being able to implement and maintain programs on the final system.

Perhaps the best present example of real-time data handling or control using a

CCM is the use by Moll et al. [2] of the DEC PeRLe-1 system in handling data from

experiments to be run on the Large Hadron Collider soon to be built at CERN (the

European Organization for Nuclear Research, Geneva, Switzerland). The plan is to

use PeRLe in the second of three levels of data filtering before the data is saved off

for further study. Here, there is a need for a flexible or reconfigurable processor and

for high-performance processing in which substantial parallelism exists, and the data

flow rate is high. A link from the PeRLe host TURBOchannel to HiPPI will provide

the high data rate (a similar HiPPI-to-Splash 2 interface went through early design

at SRC but was never completed for lack of a good target application or system that

would use it). The flexibility of a CCM is an asset here in part because this is an

experimental framework—unlike the day-to-day handling of large volumes of data

that might take place in a commercial environment, one can expect the requirements

at CERN to change over time with different experiments and different variations of

the same experiment.

Very little has been said in this book about rapid prototyping using a CCM.

This is due to our concentration with Splash 2 not on its use as an engineering tool

but as a machine to be used for computing. But the use of FPGAs for prototyping is
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already well developed, as is evidenced by the health of companies such as Quicktum.
The Quicktum hardware is geared, however, toward circuit design rather than system

design. Emerging from several ongoing university projects, however, is the ability to
test component-level issues rather than chip-level issues—processor interactions with
memory, various memory and caching schemes, bus strategies, and such. Splash 2, for
example, is presently being used to study a proposed parallel computer architecture.
We suspect that, as good as hardware such as that from Quickturn is for many of
the design uses to which it is put, it may not work well on higher-level architectural
emulation, and that what will be needed is a system of the nature of Splash 2 with

its built—in data path, explicit connections to memory, and so forth. The basic boxes

of a computer architecture’s block diagram are already present in Splash 2; they’re

just somewhat more amorphous than in a “real” computer.

Although the emulation on Splash 2 of a proposed architecture would be slower

that the hardware itself, the parallelism of the machine can make it much faster

than software simulation. Importantly, although one could not expect a proposed

architecture to map directly to Splash 2, the partial structure of Splash 2’s data and

memory paths and its processor interconnections would allow many architectural
features that did not fit directly to be time-multiplexed in a measurable way that

would permit accurate extrapolations.

12.5 FINAL WORDS

We close this book with the not-very—bold statement that we doubt that these will be

the last words spoken about Custom Computing Machines. We hope that what we

have produced is more than just a project report and that a study of our system, taken
as a whole, can provide insight to others planning related work. We believe we have
influenced the course of research in CCMs by what we have already done, and we

hope that somewhere in these pages will have been found a satisfactory explanation
of the paths we took and the choices we made.
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APPENDIX A
 

Splash 2 Development—The
Project Manager’s Summary

Duncan A. Buell

I fully admit now that when Fred More first approached me in the summer of 1991
with the idea of my supervising the general development of a second version of the
Splash processor, I had no idea what I was getting into. I certainly didn’ t expect this
to turn into a virtually full-time job for two and a half years, or else I might well
have said no to the idea. In hindsight, it is clear that my ignorance was a good thing,

for I think that Splash 2 was a solid success as well as the most exciting piece of
work in which I’ve had the chance to be involved.

After some serious thinking about the issues, I told Fred I’d do it. I had been

very interested in the first Splash machine, but had been unable, due to other pressures,
to do direct work on it. My line management position had left me with very little
time to work directly on research projects, and in every instance in which I had found
time, I hadn’t found enough time. I had wanted in one instance to write a program

that was essentially a double loop with a table lookup in the body of the inner loop.
After an entire afternoon spent trying—~and failing—to construct the counter for the

outer loop, I gave up. Although there were a number of people who had programmed
Splash with great success, I was unlikely to become one among them.

The task that Fred More originally offered me was to rectify the problem that

led to my frustrating admission of failure. The hardware of Splash was a solid suc-
cess; it ran as expected and had few, if any, failures. Similarly, the software was as

good as one could hope for, given the time and context. Maya Gokhale’s LDG had
been a tremendous advance for the intended purposes over the still—developing Xil-

inx tools. But the problem remained that it was an FPGA-based machine on which

179
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one could design circuitry to perform applications, but not a machine on which
one could program applications. Fred’s charge to me was to drive the development
from the applications perspective and from the point of View of an applications pro—
grammer. The goal was to be able to say that programmers without a background
in hardware design could write applications and achieve moderately high perfor-
mance. -

In accepting Fred’s offer, I had one condition—I was perfectly happy to mount
a search for applications that could perform well on this machine and to deal with
the problem of getting the sense of “programming” into Splash 2, but I insisted that I
have someone working with me who would feel responsible for the actual hardware
development and someone else who would do 'the same for the systems software.
The hardware person was to have been Andy Kopser, until he announced in late
summer that he would be leaving SRC in mid-September. Elaine Davis took over
the hardware, to be succeeded by Wally Kleinfelder when Elaine left for a new job
the following February. The software position remained unfilled until late October,
when Jeff Arnold agreed to take on the job.

From the very beginning, it was assumed that building a small system and
programming kernels as benchmarks would be insufficient justification for claims
of success. It would be necessary to have a system large enough to do, if not real

problems, at least problems of a size comparable to real ones.
In terms of the scope and nature of the applications programming process, my

agreement with SRC management was the following: We would make an honest
attempt at perhaps a dozen problems. Three to six of these would be genuinely
unsuccessful, either because the problems would fairly quickly be found to have a

show—stopping component for Splash 2 or because the projected payoff would appear
too low to warrant a complete experiment. Of the six remaining, half would prove to
be successful “experiments” with nonpositive results. That is, the experiments would
be complete enough that hard performance numbers could be obtained and an objec-
tive analysis of results made, but the results themselves would not show that Splash 2
was a big win or a win big enough to warrant for “production computation” the use
of unusual extra hardware and the attendant problems of programming, interfacing,

and maintenance. Finally, it was assumed that perhaps three of the original dozen
applications would prove to be major successes, and that this would be sufficient to
declare victory for Splash 2.

In order to obtain the dozen attempts at Splash 2 applications, I asked for and

received from management at SRC “12 applications” worth of people, figuring the
unsuccessful six applications at one to three months’ effort and the successful six
at three to six months’ effort. Looking back, I believe that little or no revision is

necessary to assert that this was, in fact, the way things went.
Funding for Splash 2 came from a special DoD “dual-use” appropriation. On

October 16, 1991, an SRC presentation was one of about 35 made to various civilian
government agency representatives. The requirement to obtain funding was not only
that the project be technically worthy of funding; it was also necessary that some
civilian agency sign on to be a recipient of the technology transfer. In our case, the
recipient was the Department of Mathematical Biology of the National Cancer Insti-
tute (NCI). From the very beginning, we had contracted for delivery of a Splash 2
system and working code for the sequence comparison problem as part of a Memo-
randum of Understanding with NCI. Although final funding approval did not come
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until the spring, we had the go—ahead, rather shortly after the October 16 presentation,

to continue with Splash 2.

Architectural design proceeded through the fall of 1991. The actual engineering

and construction of Splash 2 were to have been done under a contract with a private

_, company that was handling both Splash 2 and another novel machine—TERASYS—

3 being built by SRC. TERASYS had started about four months earlier than Splash 2,

and the first change in the general project plan came in February of 1992. Due to

i cost overruns, it was clear that TERASYS and Splash 2 could not both be completed
under the outside contract. Since TERASYS was nearer completion, a decision was

made to pull back into SRC the design and construction of Splash 2.
i This was to be the first of several headaches. An ongoing problem was that of

obtaining cabinets in which to house the Splash 2 system. The early choice of the

Futurebus+ backplane by the contractor proved to be ill-advised. We went through

no fewer than three complete bid procedures to obtain cabinets and backplanes—

vendor A supplied one model A cabinet, then got out of the Futurebus+ business;

vendor B then did the same thing, by the end of which time vendor A was back in

the Futurebus+ business and supplied still a third version. Fortunately, all models

actually did work, but the lack of uniformity and the effort spent in procurement was

a great annoyance.

A more critical problem was the discovery, in the spring of 1992, that the TI

switch chips planned for use in the crossbar were no longer in production. By this

time, we had committed to a planned 10 Splash 2 systems, some 40 array boards,

needing a total of 360 switch chips (plus spares). We quickly cornered the market

on the switch chips known to exist, although we were naturally forced to pay a

premium price for them. From then on, the number of available switch chips was the

limiting factor in the number of Splash 2 systems that could be built. Later, when

technology transfer was being discussed with commercial enterprises, this was the

single greatest sticking point, which more than once almost brought things grinding
to a halt.

Had we been able to change switch chips, even at that relatively late date, we

might well have done so, but there was not then and there still does not exist a

genuine substitute for the TI chips we had chosen. We felt we needed on the array

card the ability to get across the crossbar in one tick and the ability to change, on

a tick-by-tick basis, the configuration of the crossbar. The former capability allows

a programmer to treat crossbar or linear FPGA-to-FPGA data transfers as identical,

so that algorithms and programming do not require explicit pipelines or hierarchy.

The latter allows flexibility in an algorithm and reduces the impact of a scarcity of
resources.

Later revisionist thoughts on how the crossbar should or could have been done

. included using FPGAs or multiple Aptix chips. The TI chips permitted as many as

eight configurations, but no applications that were implemented actually used more

than four. The longer time for reconfiguration required by either alternative could

have been taken care of by having as many as four devices on a board and the choice

of configuration made with a multiplexor selection of one of the four “static” options.

Although progress on the Splash 2 hardware seemed at times to go in fits and

starts, progress on the software was rapid through 1992. By the end of February,

a working version of a simulator for the Splash 2 hardware existed, and a brief

workshop was held at the end of the month to train the first guinea-pig group of

iIls
il  
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programmers. Although one of the initial group was so disillusioned as to vow never

to get near Splash 2 again, the general response was guardedly positive. We were

indeed in uncharted waters, using for programming a language (VHDL) not intended

for programming, and using VHDL tools from Synopsys and Model Technologies

for purposes other than those for which they had been intended, by users much more

naive (with regard to circuit design) than was ever the plan of these vendors. Also,

the simulator was imperfect and incomplete at first.

All in all, programming the Splash 2 simulator in the spring and early summer

of 1992 was not an entirely pleasant task. But we had begun the project with only

a hazy understanding of what we needed and wanted, and it was crucial to the

development of the software environment that genuine efforts be made to use the

tools. We could not have laid out the specifications a priori; what evolved was a

compromise between what was needed by the programmers and what was possible

given the tools.

The patience and cooperation of the “programmers” in this period was matched

only by the skill of those who were continually rewriting and upgrading the simulator

and tools, notably Jeff Arnold. In a world of modern windows—based software tools,

we were necessarily conducting a human—factors experiment on our own people on the

level of frustration acceptable to goal-oriented application programmers working with ;

changing tools. Remarkably, with the one exception, all the commitments were carried ‘
through to completion, and the systems software personnel for their part survived the i
onslaught of users clamoring for bug fixes and the instant implementation of the l

planned features currently holding up their progress. g

Beginning with discussions with Synopsys management in June of 1992, we i
attempted to influence the development of VHDL simulation and synthesis tools

aimed at “programming” applications on (to begin with, Xilinx) FPGAs. This led to i
a contract with Synopsys for a product later to become their FPGA Compiler. For ,

several months Jeff Arnold went back and forth with Synopsys on a list of needs l
and wants that would make their tool look to a programmer more like a “regular l
compiler” for a language like C or Fortran.

Crucial to eventual success was the discovery during this period that the

underlying Xilinx hardware and software was a significant improvement over what

had gone before. Two problems with the XC3090 chips and their attendant apr 3

software for placement and routing were that the chips themselves were a little too i
small to accommodate a natural “unit of computation” for many applications and that 1

apr, as it existed in about 1990, had major drawbacks. It often either took too long

to run or failed to route an entire design, especially if left to work “automatically,”

that is, without human intervention to guide the placement and routing. We intended

to use the XC4010 ppr software as “automatic” software without any help from a

user assumed to be uninterested or unable to help the design process. It was a great

relief, then, to find that it was possible to write VHDL code for realistic applications

that used a significant fraction (75 percent or more) of the XC4010 chips and to g
have the Synopsys and Xilinx tools synthesize, place, and route the program/design

into a Xilinx bitfile that would allegedly execute at 10—25 MHz. One reason for this }
improved performance of the placement and routing software clearly seemed to be i
that the XC4000 series chips haVe a much better balance between logic resources ,

and routing resources. In one very special instance of the DNA sequence comparison iprogram, which has an extremely regular structure, it was possible to utilize all of
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the CLBs on a chip and still have the VHDL-to-bitfile translation take place without
human intervention.

The summer of 1992 was a Vigorous and rowdy period in the life of the Splash 2

project, in part due to the presence of five summer students working on various
aspects of hardware, software, and applications programs. It was in this period that
the explosive growth toward a usable programming environment took place—~a large
number of both small and large applications were tried, fixes or work-arounds for

problems or bugs were found and shared, and tools to assist program development

: were written. (As always, the work of programming benefits from the deep and
i abiding sloth of students who insist on writing tools because they are too lazy to do

things “the hard way.”)

From the beginning of the project, and continuing through until about March
of 1993, we had been conducting a vigorous search for good test applications. Over

the course of the project we spoke at more than 20 universities, 15 companies,
10 government agencies, and 9 conferences. From the very beginning, of course,
we had the sequence comparison problem from NCI as a “must do” application, and
work began early in 1992 on a solution to this problem, leading to the paper presented
as a later chapter of this book. But this by itself would clearly not be enough.

A potential problem from the National Center for Biotechnology Information
involving clustering of bibliographic records was a moderately good match for
Splash 2, but a single complete run would take two years (compared with 10 months
on a Thinking Machines CM—2 supercomputer); this was dropped. Discussions with

z a NASA contractor on the use of Splash 2 as a platform on which to do rapid proto-

typing were positive. An engineer from the company spent several weeks at SRC and
came away with very positive thoughts, but the lack of extant hardware to borrow

1 or buy was probably the Show stopper in that deadline-driven world of government
contracting—we were a little too far ahead of the curve for them to use Splash 2 to
advantage.

I had visited VPI, however, on an early speaking trip through North Carolina and

Virginia in September of 1991, and our discussions with members of the Electrical
Engineering Department had continued. Peter Athanas had recently finished his Ph.D.
at Brown University working on the PRISM FPGA project, and had then joined the

faculty at VPI. Lynn Abbott had interesting problems in image processing and a desire
to explore the use of FPGAs in hardware to accelerate the computations. The presence
of Jim Armstrong suggested strong support for and solid expertise in VHDL among 1
the students. All this was helped by the fact that John McHenry, who had spent two

summers at SRC working first on Splash 1 and then on Splash 2, was finishing his
Ph.D. in the department and knew the program well. When IDA. Headquarters made

money available for a university contract for Splash 2 applications and research, VPI
was a natural choice. The ongoing relationship has been close and profitable, and a

summary of their work on Splash 2 appears earlier in this book.
The variation of image processing necessary to do fingerprint matching had been

discussed as a possible Splash 2 application at the October 16, 1991, presentation
to government agencies. We had, at times, talked with the FBI and with potential
government contractors about machines to match fingerprints, but had failed to land
upon a definable experiment that could be performed. The second IDA contract thus '
went to Anil Jain and Diane Rover at Michigan State University after a trip I made

there in January of 1993, and their work is also reported here.

 
j
i
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Not everything was proceeding smoothly, however. What with having to pull
the design back from the contractor and the switch chip and cabinet/backplane delays,
a planned “hardware working” date for fall of 1992 slipped, then slipped again, then i
slipped still further as some of the Splash 2 engineers were time—sliced with the i
ongoing TERASYS project. Such delays might have killed Splash 2 in an organization
that required a marketable product or needed to keep tighter control on employee time
invested. At SRC, however, although we were always subject to the possibility that

key players would feel compelled to drop everything to take advantage of a window
of opportunity elsewhere, we were allowed to make our steady but sometimes slow 1
progress. One could even argue (if one had to) that the hardware delays worked to
the benefit of the system results by allowing more time to be spent on debugging
and streamlining the process of developing applications code.

Finally, on Thursday afternoon, February 18, 1993, the first Splash 2 hardware
system worked. Jeff Arnold downloaded an edge—detection program to an array board,
streamed the pixels of a digitized image through the board, and received as output
the edges of the image. ;

From then on, replication of the hardware components was rapid. Although we i
had stretched our resources to the limit in committing to build 10 Splash 2 systems,

demand soon exceeded the supply. In addition to the systems committed to VPI,
MSU, NCI, and to SRC for its own purposes, university researchers and outside

companies were beginning to call to ask how copies of Splash 2 could be bought or i
borrowed. Even without the obvious problem presented by the switch chip, SRC was

faced with a very difficult dilemma. Further Splash 2 clones were impossible without
either redesigning the array board (and modifying the systems software accordingly)
or designing a new, functionally equivalent and pin—compatible chip to fit into the
existing board design. Neither option seemed attractive. Further, it was clear that SRC
could not afford the real dollar and personnel cost of becoming the manufacturing

and maintenance organization for Splash 2. Success, in this case, could come with a
heavy price tag.

After some months of deliberation and at least one false start, SRC’s gov-

ernment sponsors undertook in the first part of 1994 the technology transfer and
commercialization of Splash 2. Outside private companies were to be granted, for
$100, a complete data dump of schematics, diagnostics, manuals, and code, together
with some guidance from SRC about things done right, things done wrong, and
things that should simply be done in a different way. An initial group of potential
licensees was brought to SRC for a presentation in March of 1994. The first license
was issued soon after that; within six months 10 companies had obtained licenses,

and by the end of calendar year 1994 the first commercial Splash 2 derivatives had
become available.

Not all of the many licensees have the intention of producing anything like
a commercial version of Splash 2. There are several other processors, board, and

systems available or nearly available from other companies; some of the licensees
have more of an interest in the software we developed for programming an FPGA-

based machine or the general systems approach we took than in the specific details of

Splash 2. A small consortium of licensees has formed to target an image processing
market; the companies involved have divided the hardware, software, and applications
into areas where each can contribute from its strength and benefit from cooperation
with the others. I
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From the earliest days of the Splash 2 project, I had insisted that we could

declare victory if any one of these criteria were met:

1. Splash 2 would be used to get real work done and not just provide demonstra-
tions of capability.

2. Someone who did not get an SRC paycheck would use Splash 2 in his/her work

and not walk away vowing “Never again!”

3. Some commercial machine would appear and have a clear and traceable ancestry

to Splash 2.

It is perhaps too soon, and we are perhaps too close to the matter, to judge exactly
why we succeeded; I leave such analysis to others. Having a brilliant and dedicated
technical team was a major factor. Not having a particular target application helped——
we were free to search for reasonable applications that would be successes. Not having

marketability and “productizing” constraints helped. Not having a deadline that forced
us to abandon “the right thing to do” in order to meet the deadline helped. But as it
has turned out, not just one but all three of my criteria have been met. Further, we
have effected something often talked about but seemingly rarely ever done—we have

been able to convert proof-of—concept technology, developed at government expense

as an engineering research project, into products available for sale from private-sector
companies whose personnel rosters do not intersect the list of principals from the
research project.
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APPENDIX B
 

An Example Application

Jeflrey M. Arnold1

In this appendix we illustrate the Splash 2 programming style through an example g
application written in VHDL. This example, a simple digital filter, is much smaller 1
than most Splash 2 applications, but does touch many of the issues facing the pro— 1
grammer. Equation 1 shows the general form of a finite impulse response (FIR) filter: '

_ Zj Ii—ij
Qi — —-C— (1)

where I is the input data stream, F is the set of filter coefficients, C is a constant
scale factor, and Q is the output data stream.

In this example the input data is a stream of 12-bit signed integer samples, the 1
output is a stream of 16-bit signed integers, and the filter is a five-tap low-pass filter !
with constant coefficients. The filter can be Viewed as a weighted sum computed on ‘
a sliding window of the input data followed by the application of a constant scale ;

factor. A block diagram of this interpretation of the filter is shown in Figure B.1. i
This application is simple enough to be mapped entirely onto a single Processing

Element, obviating the need to partition across multiple FPGAS. The input data

arrives on the left port of the PE at the rate of one 12-bit sample per clock cycle

conditioned by a valid data tag. The output data is produced at the same rate on the

right port. For the sake of simplicity we assume the filter coefficients are powers of
two, F = {1, 4, 8, 4, 1}, eliminating the need for combinational multipliers. The five-

input add operator is implemented as a pipelined tree of two input adders. Finally,
the division by the constant scale factor C is implemented by table lookup in the

 
1A version of this chapter appeared as Arnold and Buell [l] and is used with permission.
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FIGURE 8.1 Block Diagram of

Q Five-Tap FIR Filter
ii
l
l

l
external RAM. The output of the add operator is used to index into the table and the
contents of the addressed location is returned as the output of the filter.

Figure B.2 shows the annotated VHDL FIR program. The Processing Element

entity declaration is shown in Figure 6.1 and is not reproduced here. The 12-bit input
stream enters the PE on the left port (XP_Left), a weighted sum over a five—element

window of the stream is computed, the sum is scaled by table lookup in the external .

memory, and a 16-bit result stream is sent to the right port (XP_Right). The first four ‘3
lines of the architecture specify data type and parametric information that would be "

placed more appropriately in a separate package, but are included here for brevity.

Line 2 defines the type of the input stream samples to be 12—bit signed integers.

Line 3 declares the data type to be used for vectors of Samples. The number of

filter taps (the data “window”) is defined to be a constant 5 in line 4. Line 5 defines

the set of coefficients by which each element of the window is to be multiplied.

Note that for the sake of efficiency the coefficients are chosen to be powers of two,

obviating the need to synthesize combinational multipliers. In general, though, the
coefficient vector could be any set of constant integers; the compilation tools will

synthesize the appropriate logic. g
The next five lines (6-10) are declarations of internal signal objects, the storage

elements of the program. Line_Buf fer contains the sliding window of data samples
to be filtered. suml, sum2, and sum3 are temporary registers that hold intermediate

values. The remaining signals constitute the interfaces to the external memory and

i to the neighboring PEs.

The body of the architecture contains two synchronous processes and one con-

current procedure call. The synchronous processes respectively compute the weighted

sum and interface to the external memory. The Filter process declares an internal
variable, Sum, which is used as an identifier for an intermediate value. By choosing

to make Sum a variable rather than a signal, no register will be inferred. Within the

body of the process, the call to the procedure Padlnput performs type conversion

from the port type RBit3 to the intrinsic Bit_Vector type. By placing the procedure

call within the body of the clocked process, a pipeline register is implicitly added.

This is a standard practice used on most input and output ports, designed to improve

performance by allowing the ICE flip—flops in the Xilinx XC4010 FPGA to be used
to stage data onto and off of the PB.

The FOR loop in lines 17—19 shifts the data window by one sample each clock

cycle. Because signal assignments take effect after the execution of the process, all
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30 END PROCESS Filter;
31 Mem_Access : PROCESS

 

l ARCHITECTURE FIR OE Processing_Element IS g
2 SUBTYPE Sample IS Integer range —(2**ll) to (2**ll — l); i
3 TYPE Sample_Vector IS Array (Integer range <>) of Sample; i
4 CONSTANT NTaps : Integer :2 5; )
5 CONSTANr1 Coeff : Sample_Vector(O to NTaps—l) = (l,4,8,4,1); I

6 SIGNAL LinenBuffer : Sample_Vector(O to NTaps—l); i
7 SIGNAL suml, sum2, sum3 : Integer range —(2**l4) to (2**14 — l); i
8 SIGNAL madr : Bit_Vector(MAR_RANGE—l downto 0); g

9 SIGNAL mdata_in : Bit_Vector(MEM_WIDTH—l downto O); i
10 SIGNAL Left, Right : Bit_Vector(Datapath_Width—l downto 0); g

11 BEGIN —— FIR g

12 Filter : PROCESS i

13 VARIABLE Sum : Integer; %
l4 BEGIN 5
15 WAIT UNTIL XP_Clk’Event and XP_Clk = ’1’; E
16 Pad__Input(XP_Left, Left);

17 FOR i IN 1 to NTapS—l LOOP 1
l8 Line_Buffer(i) <= Line_Buffer(i—l); i

19 END LOOP; f
20 IF (Left(35) : ’1’) THEN E

21 Line_Buffer(O) <= ConV_Integer(Left(ll downto 0)); i
22 ELSE

23 Line_Buffer(O) <= 0; g
24 END IF; i
25 suml <= (Line_Buffer(0) * Coeff(0)) + (Line_Buffer(l) * Coeff(l)); ’
26 sum2 <= (Line_Buffer(2) * Coeff(2)) + (Line_Buffer(3) * Coeff(3)); i

27 sum3 <= Line_Buffer(4) * Coeff(4); i
28 sum z: suml + sum2 + sum3; )

29 madr <= CONV_Unsigned(sum, MAR_Range); g
i

i

 

32 BEGIN

33 WAIT UNTIL XP_Clk’Event and XP_Clk : ’l’;

34 XP_Mem_Rd_L <= ’0’; g

35 XP_Mem_Wr_L <: ’l’; i
36 Pad_0utput (XP_Mem_A, madr);

37 Pad_Input (XP_Mem_D, mdata_in);
38 Right(15 downto 0) <= mdata_in;
39 END PROCESS Mem_Access;

4O Pad_Output(XP_Right, Right);
41 END FIR;

FIGURE 8.2 Body of Finite Impulse Response Program

assignments occur in parallel, so the direction of iteration is not significant. Lines 20

through 25 control the loading of the window buffer: if bit 35 of the input stream is

a ‘1’ the low-order 12 bits are converted to integer and shifted into Line_Buf fer;

otherwise a constant zero is shifted in. The weighted sum is computed in two pipeline

stages by lines 25—29. In the first stage each window element is “multiplied” by

its coefficient (in zero time and area, as the coefficients are powers of two), and
three partial sums are computed and stored in registers (suml, sum2, and sum3). In

 

I
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28a sum4 <= suml + sum2;
28b sum5 <= sum3;

' 28c sum := sum4 + s_um4; FIGURE 3.3 Optimized Final Addition

the second stage a three-input sum is computed, the type is converted to unsigned
bit vector and zero extended to the length of MAR_Range (the size of the memory

I, address), and stored in the memory address register, madr, in preparation for the

i table lookup. V
The second synchronous process latches the address (the weighted sum com-

puted by Filter) to the external memory, and the scaled result returned from the
memory. These pipeline stages are necessary to ensure that the memory address, data,
and control signals are registered in the 108s of the FPGA. The memory control sig-
nals, XP_Mem_Rd_L, and XP_Mem_Wr_L, are held constant by lines 34—35, forcing the

memory to always read. Line 38 is an additional pipeline register on the return data
prior to transmission to the next PE. By registering the data here, the assignment
to the XP_Right port may be performed outside of the process by the concurrent

procedure call in line 40.
There are six total pipeline stages in this program:

   
the assignment of the input data to the Left signal (line 16)

the computation of the partial sums suml, sum2, and sum3 (lines 25—27)
the calculation of the final sum, madr (lines 28—29)

the assignment to the memory address register, XP_Mem_A (line 36)

the return data from the memory, mdata_in (line 37)

the assignment into the output data register, Right (line 38)

When this program is compiled it occupies 61 of the 400 CLBs, or 15 percent of the
available real estate. The critical path delay is 106 ns, limiting the maximum clock

frequency to 9.3 MHz. The static timing analyzer shows the critical path is through
the three-input adder in line 28. If we needed to optimize the performance of this
design further, an extra pipeline stage could be added as shown in Figure B.3.
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Atmel Corp., 4

attached processors, 6, 169, 171
Automatic Fingerprint Identification

System, 119

band-pass pyramids, 145
Bank Register, 21

Batley’s formula, 119
broadcast, 17

Brown University, 3, 95, 183
Burroughs Corp.

B1700, 2, 174

bypass mode, 25

C*, 80

Center for Computing Sciences, see

Supercomputing Research Center
CERN, 177
CHAMP, 6, 174

CLB, see Configurable Logic Block
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clock, 18

free-running, 57
hardware, 24

implementation, 24

regulation of system, 18
setting frequency, 58
SIMD, 57 ,

single-step, 18
software, 24, 57

variable frequency, 24

comp . arch. fpga newsgroup, 3
compression, 177
Concurrent Logic, Inc., 4

CLi6005 FPGA, 37

Configurable Logic Block, 4
flip-flops, 169

configuration register, 30
Control Element, 20

entity declaration, 62

implementation, 28

programming view, 56—57
control/status register, see CSR
convolutional filtering, 177

coprocessors, 5—6, 169, 173—174
core point, fingerprint, 123
corner turning, 24

Cray Research
YMP processor, 2

cross-correlation example, 81
crossbar, 16—17, 181

configuration of, 30, 68—69
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crossbar continued

dataflow modes, 170

implementation, 28—29
programming view, 56

CSR, 25

data-driven model, 175
Datacube MaxVideo 200, 162
dbC, 49, 77—95, 174, 176
De La Rue Printrak, 119

DEC, see Digital Equipment Corp.
Department of Defense, 180
Development Board, 19, 57

implementation, 21
device driver, 74—75

diagnostic software, 75—76

Digital Equipment Corp., see Paris
research lab, DEC’s

digital signal processor, 172
dilation, 146

direct memory access, see DMA
discrete Fourier transform, 147
DMA, 12, 19
DMA Channel

daughterboard, 20
implementation, 23

DNA sequence, see sequence comparison
DoD, see Department of Defense
double loop, fingerprint, 123
DSP, see digital signal processor

edge detection, 16
edif2xnf, 53, 56, 70
edit distance, 98

dynamic programming algorithm, 98
modular encoding, 105

erosion, 146

FBI, see Federal Bureau of Investigation
Federal Bureau of Investigation,

118, 183

Field Programmable Gate Array, 2, 4~5,
11, 20, 37

architecture, 172

fingerprint
matching algorithm, 125—128
performance, 137—139
registration, 126

FIR filter, 186—189

FPGA, see Field Programmable Gate
Array

Futurebus+, 12, 19, 181

Index

Ganglion, 5
Gaussian pyramid, 145, 154
generic SIMD instructions, 82, 84

genetic database search, see sequence
comparison

global OR signal, 18, 43
global tri-state signal, 28, 54
Gordon Bell prize

1989, 34

GTS signal, see global tri»state signal

handshake register, 30, 58
hard macros, 12, 52, 61

Henry formula, 117

high—pass filters, 145
host computer

programming View, 57—58
Hough transform, 2, 147
Human Genome Initiative, 97

IDA, see Institute for Defense Analyses
Identification register, 25
IEEE, 3, 50

image expansion, 158
image processing, 141—163, 177

fingerprint, 119
performance, 159—162

image pyramid, 153

image pyramid generation, 153
image subtraction, 158
Input Output Block, 4

exploiting flip-flops, 56, 187

Institute for Defense Analyses, 183
instruction set synthesis, 84
Intel Corp.

8086 processor, 173
Interface Board, 12, 19

architecture, 17—18

implementation, 21—25
memory, 24
programming View, 57

interrupt register, 30
interrupts, 24
108, see Input Output Block

Laplacian pyramid, 146, 157
LDG, 32, 46, 78, 179

LED register, 26
LEXIS, 110

libsplash. a, see runtime library

Light—Emitting Diodes, see LED register

I linear data path, 13—14, 20
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Lockheed Sanders, 174 .

Logic Description Generator, see LDG
logic synthesis, 6, 48
Logica, 119

loop, fingerprint, 123
low-pass filter, 144
low—pass pyramids, 145

macro instructions, 92—94

mask register, 30
mathematical morphology, 146
median filtering, 146, 150—153
MEDLARS, 110
memory

architecture of, 44, 167—168

host access to, 21, 28
initialization, 69

mapped into address space, 58
Michigan State University, 183
minutia, 118, 123

matching, 126
Model Technologies, Inc., 182
MPL, 80

National Cancer Institute

Dept. of Mathematical Biology, 180
National Center for Biotechnology

Information, 183

National Semiconductor Corp., 4
NCI, see National Cancer Institute

nearest—neighbor communication, 88
NEC Information Systems, 119
North American Morpho, 119

opPar, see generic SIMD
instructions

Oxford University, 95

P—NAC, 31, 97

PAM, see Paris research lab, DEC’s
Paris research lab, DEC’s, 166, 174

PeRLe, 2

PeRLe—l, 6, 171, 177
Paris research lab, DEC’s

PeRLe—O, 6

pattern recoginition systems, 121
PeRLe, see Paris research lab, DEC’s

physical mapping, 48

placement and routing, 6
poly data type, 81
Princeton Nucleic Acid Comparator, see

P-NAC
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Princeton University, 31
PRISM, 3, 5, 183

Processing Element, 20

entity declaration, 61
implementation, 26—28
programming, 24—25
programming View, 56—57

Processor-in-Memory (PIM), 79

protein sequence, see sequence
comparison

PRS, see pattern recoginition systems

pyramid, 145, see Gaussian pyramid,
Laplacian pyramid

Quick and Dirty Board, see Development
Board

Quicktum Design Systems, Inc., 178

rapid prototyping, 177
RBus, 14, 20

data register, 58
readback, 24—25, 29

role in symbolic debugging, 58, 169
real-time control, 177

reduction operation, 80, 89—91
reset, 25, 29

ridge, fingerprint, 123
robocop, 76

RSA decryption, 2, 166
RSA encryption, 166
runtime library, 54, 73

SBus, 12, 19

Adapter Board, 19
address space, 18, 21
choice of, 38

DMA performance, 75
slave accesses, 22

sequence comparison, 15, 100—104, 111,
182

bidirectional algorithm, 100, 103

dbC example, 94-95
performance, 107

SIMD Bus, 13, 20

data register, 58
SIMD model, 11, 13, 17

single—instruction multiple-data, see
SIMD model

size estimation, see utilization

Sobel operators, 145
SPARCstation 2, 12, 19, 38

special-purpose devices, 5
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Splash 1, 6, 179
architecture, 31—32

Splash 2, 179
Splash 2 Library, 51, 61

Splash 2 simulator, 51, 66—70

configuring, 67—68
SRC, see Supercomputing Research

Center

Sun Microsystems, Inc., 12, 19, 3,8
Supercomputing Research Center, 4
Synopsys, Inc., 182

Design Compiler, 53, 70
FPGA Compiler, 53, 71, 168, 182

systolic, 13

T2 debugger, 55, 72—73
tags, 14

valid data, 57

Tel language, 55
TERASYS, 79, 181, 184
Texas Instruments

crossbar chip, 28, 41, 181
text searchng

16—bit approach, 115
8-bit implementation, 113—1 14
algorithm, 111—1 12
general approach, 111
performance, 114, 116

Thinking Machines Corp.
CM-2, 2, 81, 183
CM-2X, 5

timing analysis, 49
tolerance box, 128

trigger debugger, 32
tsdb debugger, 55, 76

utilization, 56

valley, fingerprint, 123

Verilog, 51

VHDL, 36—37, 49—51, 182
choice of, 36, 45

history of, 50

pipelining in, 189
synchronous processes in, 187

VHSIC initiative, 47, 50

Viewlogic, 32
Virginia Polytechnic Institute

and State University, 183
virtual computer, 3
VMEbus, 34, 39

VTSplash, 142

whirl, fingerprint, 123

X0, 13, 17

purpose, 43
use in dbC, 86, 89

use in fingerprint matching,
132—133

XACT editor, 32
XBLOX, 168
Xilinx, 2, 4, 7, 11

apr tool, 33
choice of, '38

Netlist Format (XNF), 53
XC3090 FPGA, 32, 182
XC4010 FPGA, 4, 11—12,

182

XL, 15

entity declaration, 63
implementation, 23—24
purpose, 43
use in dbC, 86
use in text search, 111

xnfer, 54, 56, 71
XR, 15

implementation, 23—24
purpose, 43
use in text search, 112

Petitioner Microsoft Corporation

Index

 

 
- Ex. 1007, p. 204



Petitioner Microsoft Corporation - Ex. 1007, p. 205

 
xl
ii
Si

Contributors
 

A. Lynn Abbott, Bradley Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061. 703—231-4472
Jeffrey M. Arnold, Center for Computing Sciences, 17100 Science Drive, Bowie,
Maryland 20715. 301-805-7479
Peter Athanas, Bradley Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061. 703-231-7010
Duncan A. Buell, Center for Computing Sciences, 17100 Science Drive, Bowie,

Maryland 20715. 301-805-7372
Maya Gokhale, David Sarnoff Research Center, CN 5300, Princeton, New Jersey
08543. 609—734—31 19

Dzung T. Hoang, Department of Computer Science, Duke University, Durham, North
Carolina 27706. 919-660—6598

Anil Jain, Department of Computer Science, Michigan State University, East Lan-
sing, Michigan 48824. 517-353-5150
Walter J. Kleinfelder, Center for Computing Sciences, 17100 Science Drive, Bowie,

Maryland 20715. 301-805—7355
Daniel V. Pryor, Center for Computing Sciences, 17100 Science Drive, Bowie,
Maryland 20715. 301-805-7407
Nalini Ratha, Department of Computer Science, Michigan State University, East
Lansing, Michigan 48824. c/o A. Jain 517-353-5150
Diane Rover, Department of Electrical Engineering, Michigan State University, East
Lansing, Michigan 48824. 517-353—7735
Nabeel Shirazi, Bradley Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061. 0/0 P. Athanas 703—231-
7010L

Mark R. Thistle, Center for Computing Sciences, 17100 Science Drive, Bowie,
Maryland 20715. 301-805-7413 ‘

 
205

           
Petitioner Microsoft Corporation - EX. 1007, p. 205



Petitioner Microsoft Corporation - Ex. 1007, p. 206

IEEE Computer Society Press Editorial Board

Advances in Computer Science and Engineering
Editor-in-Chief

Jon Butler, Naval Postgraduate School

Associate Editor-inChief/Acquisitions

Pradip K. Srimani, Colorado State University

The IEEE Computer Society Press Advances Board seeks manuscripts that describe new and sig-
nificant advances in computer science and engineering. Although immediate application is not neces-

sary, ultimate application to advanced computing systems is an important quality. Publications represent
technically substantive and clear expositions of innovative ideas.

 Editorial Board

Dharma P. Agrawal, North Carolina State University
Ruud Bolle, IBM T.J. Watson Research Center

Vijay K. Jain, University of South Florida

Yutaka Kanayama, Naval Postgraduate School
Gerald M. Masson, The Johns Hopkins University

Sudha Ram, University ofArizona

David C. Rine, George Mason University

A.Ft.K. Sastry, Rockwell International Science Center

Abhijit Sengupta, University of South Carolina

Mukesh Singhal, Ohio State University

Scott M. Stevens, Carnegie Mellon University

Michael Roy Williams. The University of Calgary
Ronald D. Williams, University of Virginia

Lotti Zadeh, University of California, Berkeley

 

  
  
  
  
  
  
  
  
 

  
   

Additional Advances Board Titles

A Probabilistic Analysis of Test-Response Compaction
Slawomir Pilarski and Tiko Kameda

The Cache Coherence Problem in Shared-Memory Multiprocessors: Software Solutions

Igor Tartalja and Veljko Milutinovié

The Cache Coherence Problem in Shared—Memory Multiprocessors: Hardware Solutions

Igor Tartalja and Veljko Milutinovié

Advanced Multimicroprocessor Bus Architectures
Janusz Zalewski

 : S

i
il

E
5

t

ri:1.3 .1:

 
Petitioner Microsoft Corporation - EX. 1007, p. 206



Petitioner Microsoft Corporation - Ex. 1007, p. 207

 

® Cdii/IPUTER SOCIETY
SOYEARS or SERVICE - 1 9 4 6 - 1 99 6

http://www.computer.org

Press Activities Board

Vice President: Editor-in-Chief

Joseph Boykin Advances in Computer Science and Engineering Board
CLARiiON Advanced Storage Solutions Jon T. Butler
Coslin Drive Naval Postgraduate School
Southborough, MA 01772 Dept. of Electrical and Computer Engineering
(508) 480-7286 833 Dyer Road #437, Code EC/BU
FAX (508) 480—7908 Monierey, CA 93943-5121
j.boykin@computer.org Phone: 408-656-3299 FAX: 408-656-2760

butler@cs.nps.navy.mi|
Jon T. Butler, Naval Postgraduate School
James J. Farrell Ill, Motorola Corp. Editor-in-Chief

Mohammed E. Fayad, University of Nevada Practices for Computer Science and Engineering Board
I. Mark Haas, Tandem Computers, lnc. Mohamed E. Fayad

Ronald G. Hoelzeman, University of Pittsburgh Computer Science, MS/171
Gene F. Hoffnagle, IBM Corporation Bldg. LME, Room 308
John R. Nicol, GTE Laboratories University of Nevada

Yale N. Patt, University of Michigan Reno, NV 89557
Benjamin W. Wah, University of lllinois Phone: 702-784-4356 FAX: 702-784—1833
Ronald D. Williams, University of Virginia iayad@cs.unr.edu

IEEE Computer Society Executive Staff
T. Michael Elliott, Executive Director

H. True Seaborn, Publisher
Matthew S. Loeb, Assistant Publisher

IEEE Computer Society Press Publications

The world-renowned Computer Society Press publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available in two formats:
100 percent original material by authors preeminent in their field who focus on relevant topics and
cutting-edge research, and reprint collections consisting of carefully selected groups of previously
published papers with accompanying original introductory and explanatory text.

Submission of proposals: For guidelines and information on CS Press books, send e—mail to

csbooks@computer.org or write to the Acquisitions Editor, IEEE Computer Society Press, PO. Box
3014, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1 714-821-8380. FAX +1
714-761-1784.

IEEE Computer Society Press Proceedings

The Computer Society Press also produces and actively promotes the proceedings of more than 130
acclaimed international conferences each year in multimedia formats that include hard and softcover
books, CD-ROMs, videos, and on-line publications.

For information on CS Press proceedings, send e-mail to csbooks@computer.org or write to Proceed-

ings, IEEE Computer Society Press, PO. Box 3014, 10662 Los Vaqueros Circle, Los Alamitos, CA
90720-1314. Telephone +1 714-821-8380. FAX +1 714-761-1784.

Additional information regarding the Computer Society, conferences and proceedings,
CD-ROMs, videos, and books can also ,be accessed from our web site at
www.computer.org.

3/21/96

 
 

Petitioner Microsoft Corporation? EX. 1007, p. 207A



Petitioner Microsoft Corporation - Ex. 1007, p. 208

\llllllllllllllllllll
edited by Duncan A. Bue/l, Jeffrey M. Arnold, and Walté o 003 497 088 9- .

Details the complete Splash 2 project—the hardware and software sys-
tems, their architecture and implementation, and the design process by
which the architecture evolved from an earlier version machine. In addi-

tion to the description of the machine, this book explains Why Splash 2
was engineered. It illustrates several applications in detail, allowing you
to gain an understanding of the capabilities and the limitations of this

kind of computing device.

The Splash 2 program is significant for two reasons. First, it is part of a
complete computer system that achieves supercomputer like perfor-
mance on a number of different applications. The second significant

aspect is that this large system is capable of performing real computa—
tions on real problems. In order to understand what happens when the
application programmer designs the processor architecture of the

machine that executes his programs, it is necessary to see the system as
a whole. This book looks in-depth at one of the handful of data points
in the design space of this new kind of machine.

Contents:

Custom Computing Machines: An Introduction

The Architecture of Splash 2

Hardware Implementation

Splash 2: The Evolution of a New Architecture
Software Architecture

Software Implementation

A Data Parallel Programming Model

Searching Genetic Databases on Splash 2

Text Searching on Splash 2

Fingerprint Matching on Splash 2

High-Speed Image Processing with Splash 2
The Promise and the Problems

An Example Application
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